1
|
Cormier SA, Kappen C. Identification of a Chondrocyte-Specific Enhancer in the Hoxc8 Gene. J Dev Biol 2024; 12:5. [PMID: 38390956 PMCID: PMC10885077 DOI: 10.3390/jdb12010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024] Open
Abstract
Hox genes encode transcription factors whose roles in patterning animal body plans during embryonic development are well-documented. Multiple studies demonstrate that Hox genes continue to act in adult cells, in normal differentiation, in regenerative processes, and, with abnormal expression, in diverse types of cancers. However, surprisingly little is known about the regulatory mechanisms that govern Hox gene expression in specific cell types, as they differentiate during late embryonic development, and in the adult organism. The murine Hoxc8 gene determines the identity of multiple skeletal elements in the lower thoracic and lumbar region and continues to play a role in the proliferation and differentiation of cells in cartilage as the skeleton matures. This study was undertaken to identify regulatory elements in the Hoxc8 gene that control transcriptional activity, specifically in cartilage-producing chondrocytes. We report that an enhancer comprising two 416 and 224 bps long interacting DNA elements produces reporter gene activity when assayed on a heterologous transcriptional promoter in transgenic mice. This enhancer is distinct in spatial, temporal, and molecular regulation from previously identified regulatory sequences in the Hoxc8 gene that control its expression in early development. The identification of a tissue-specific Hox gene regulatory element now allows mechanistic investigations into Hox transcription factor expression and function in differentiating cell types and adult tissues and to specifically target these cells during repair processes and regeneration.
Collapse
Affiliation(s)
- Stephania A. Cormier
- Department of Respiratory Immunology and Toxicology, Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808, USA;
| | - Claudia Kappen
- Department of Developmental Biology, Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| |
Collapse
|
2
|
Schyr RB, Shabtai Y, Shashikant CS, Fainsod A. Cdx1 is essential for the initiation of
HoxC8
expression during early embryogenesis. FASEB J 2012; 26:2674-84. [DOI: 10.1096/fj.11-191403] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rachel Ben‐Haroush Schyr
- Department of Developmental Biology and Cancer ResearchInstitute for Medical Research Israel‐CanadaFaculty of MedicineHebrew UniversityJerusalemIsrael
| | - Yehuda Shabtai
- Department of Developmental Biology and Cancer ResearchInstitute for Medical Research Israel‐CanadaFaculty of MedicineHebrew UniversityJerusalemIsrael
| | - Cooduvalli S. Shashikant
- Department of Dairy and Animal ScienceCollege of Agricultural SciencesThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Abraham Fainsod
- Department of Developmental Biology and Cancer ResearchInstitute for Medical Research Israel‐CanadaFaculty of MedicineHebrew UniversityJerusalemIsrael
| |
Collapse
|
3
|
Huber L, Ferdin M, Holzmann J, Stubbusch J, Rohrer H. HoxB8 in noradrenergic specification and differentiation of the autonomic nervous system. Dev Biol 2011; 363:219-33. [PMID: 22236961 DOI: 10.1016/j.ydbio.2011.12.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 12/14/2011] [Accepted: 12/15/2011] [Indexed: 10/25/2022]
Abstract
Different prespecification of mesencephalic and trunk neural crest cells determines their response to environmental differentiation signals and contributes to the generation of different autonomic neuron subtypes, parasympathetic ciliary neurons in the head and trunk noradrenergic sympathetic neurons. The differentiation of ciliary and sympathetic neurons shares many features, including the initial BMP-induced expression of noradrenergic characteristics that is, however, subsequently lost in ciliary but maintained in sympathetic neurons. The molecular basis of specific prespecification and differentiation patterns has remained unclear. We show here that HoxB gene expression in trunk neural crest is maintained in sympathetic neurons. Ectopic expression of a single HoxB gene, HoxB8, in mesencephalic neural crest results in a strongly increased expression of sympathetic neuron characteristics like the transcription factor Hand2, tyrosine hydroxylase (TH) and dopamine-beta-hydroxylase (DBH) in ciliary neurons. Other subtype-specific properties like RGS4 and RCad are not induced. HoxB8 has only minor effects in postmitotic ciliary neurons and is unable to induce TH and DBH in the enteric nervous system. Thus, we conclude that HoxB8 acts by maintaining noradrenergic properties transiently expressed in ciliary neuron progenitors during normal development. HoxC8, HoxB9, HoxB1 and HoxD10 elicit either small and transient or no effects on noradrenergic differentiation, suggesting a selective effect of HoxB8. These results implicate that Hox genes contribute to the differential development of autonomic neuron precursors by maintaining noradrenergic properties in the trunk sympathetic neuron lineage.
Collapse
Affiliation(s)
- Leslie Huber
- Research Group Developmental Neurobiology, Max Planck Institute for Brain Research, Frankfurt/Main, Germany
| | | | | | | | | |
Collapse
|
4
|
Adwan H, Zhivkova-Galunska M, Georges R, Eyol E, Kleeff J, Giese NA, Friess H, Bergmann F, Berger MR. Expression of HOXC8 is inversely related to the progression and metastasis of pancreatic ductal adenocarcinoma. Br J Cancer 2011; 105:288-95. [PMID: 21712827 PMCID: PMC3142801 DOI: 10.1038/bjc.2011.217] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Background: The transcription factor HOXC8 regulates many genes involved in tumour progression. This study was to investigate the role of HOXC8 in pancreatic ductal adenocarcinoma (PDAC) growth and metastasis. Methods: The Hoxc8 expression was determined in 15 PDAC cell lines and human specimens by RT–polymerase chain reaction and/or immunohistochemistry. The effects of HOXC8 silencing by RNA interference were investigated by functional tests. Results: The Hoxc8 mRNA expression in PDAC cell lines was negatively related to their growth in vivo. Except for Suit2-007 cells, only those with low Hoxc8 mRNA expression grew in nude rats. Successful down-regulation of HOXC8 expression caused increased proliferation, migration (P⩽0.05) and colony formation (P⩽0.05) in Suit2-007, Panc-1 and MIA PaCa-2 PDAC cells, respectively. The Hoxc8 mRNA levels in diseased human pancreas tissues were significantly increased over normal in PDAC and autoimmune chronic pancreatitis specimens (P<0.01, respectively), but negatively related to tumour stage (P=0.09). In primary and metastatic tumour samples, immunohistochemical staining for HOXC8 was stronger in surrounding than in neoplastic tissues. Furthermore, grading of primary carcinomas was negatively associated with HOXC8 staining (P=0.03). Liver metastases showed the lowest HOXC8 expression of all neoplastic lesions. Conclusion: These data indicate that HOXC8 expression is inversely related to PDAC progression and metastasis.
Collapse
Affiliation(s)
- H Adwan
- Toxicology and Chemotherapy Unit, German Cancer Research Center, Deutsches Krebsforschungszentrum Heidelberg, Im Neuenheimer Feld 581, Heidelberg D-69120, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Boué S, Paramonov I, Barrero MJ, Izpisúa Belmonte JC. Analysis of human and mouse reprogramming of somatic cells to induced pluripotent stem cells. What is in the plate? PLoS One 2010; 5. [PMID: 20862250 PMCID: PMC2941458 DOI: 10.1371/journal.pone.0012664] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 08/15/2010] [Indexed: 01/22/2023] Open
Abstract
After the hope and controversy brought by embryonic stem cells two decades ago for regenerative medicine, a new turn has been taken in pluripotent cells research when, in 2006, Yamanaka's group reported the reprogramming of fibroblasts to pluripotent cells with the transfection of only four transcription factors. Since then many researchers have managed to reprogram somatic cells from diverse origins into pluripotent cells, though the cellular and genetic consequences of reprogramming remain largely unknown. Furthermore, it is still unclear whether induced pluripotent stem cells (iPSCs) are truly functionally equivalent to embryonic stem cells (ESCs) and if they demonstrate the same differentiation potential as ESCs. There are a large number of reprogramming experiments published so far encompassing genome-wide transcriptional profiling of the cells of origin, the iPSCs and ESCs, which are used as standards of pluripotent cells and allow us to provide here an in-depth analysis of transcriptional profiles of human and mouse cells before and after reprogramming. When compared to ESCs, iPSCs, as expected, share a common pluripotency/self-renewal network. Perhaps more importantly, they also show differences in the expression of some genes. We concentrated our efforts on the study of bivalent domain-containing genes (in ESCs) which are not expressed in ESCs, as they are supposedly important for differentiation and should possess a poised status in pluripotent cells, i.e. be ready to but not yet be expressed. We studied each iPSC line separately to estimate the quality of the reprogramming and saw a correlation of the lowest number of such genes expressed in each respective iPSC line with the stringency of the pluripotency test achieved by the line. We propose that the study of expression of bivalent domain-containing genes, which are normally silenced in ESCs, gives a valuable indication of the quality of the iPSC line, and could be used to select the best iPSC lines out of a large number of lines generated in each reprogramming experiment.
Collapse
Affiliation(s)
- Stéphanie Boué
- Center for Regenerative Medicine in Barcelona (CMRB), Barcelona, Spain
| | - Ida Paramonov
- Center for Regenerative Medicine in Barcelona (CMRB), Barcelona, Spain
| | | | - Juan Carlos Izpisúa Belmonte
- Center for Regenerative Medicine in Barcelona (CMRB), Barcelona, Spain
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
6
|
Kamel S, Kruger C, Salbaum JM, Kappen C. Morpholino-mediated knockdown in primary chondrocytes implicates Hoxc8 in regulation of cell cycle progression. Bone 2009; 44:708-16. [PMID: 19071237 PMCID: PMC2760390 DOI: 10.1016/j.bone.2008.10.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 10/15/2008] [Accepted: 10/30/2008] [Indexed: 12/15/2022]
Abstract
Numerous experiments in mutant and transgenic mice have implicated Hox transcription factors in development of the skeletal system, postulating a role for these proteins in cell proliferation of precursor cells and regulation of cell differentiation. Our own data from Hoxc8 and Hoxd4 transgenic mice suggest that Hoxc8 is involved in cell proliferation during cartilage development. In order to directly assess its role in cell proliferation of a specific skeletal cell type, the cartilage-producing chondrocyte, we performed morpholino-mediated knockdown experiments in normal primary chondrocytes. Through analysis of PCNA expression and staining for phosphorylated Histone 3, two cell cycle markers, we show that interference with Hoxc8 expression in chondrocytes reduces cell proliferation, but in the absence of apoptosis. Instead, cells with a knockdown in Hoxc8 expression appear to be delayed in their progression through the cell cycle. Our results provide evidence for prolonged duration of and delayed exit from M-phase, thus implicating a role for Hoxc8 in controlling cell cycle progression at this critical check point.
Collapse
Affiliation(s)
- Suzan Kamel
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198-5805
| | - Claudia Kruger
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198-5805
- Center for Human Molecular Genetics, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE 68198-5455
| | - J. Michael Salbaum
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198-5805
- Center for Human Molecular Genetics, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE 68198-5455
| | - Claudia Kappen
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198-5805
- Center for Human Molecular Genetics, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE 68198-5455
| |
Collapse
|
7
|
Abstract
The emergence of coordinated locomotor behaviors in vertebrates relies on the establishment of selective connections between discrete populations of neurons present in the spinal cord and peripheral nervous system. The assembly of the circuits necessary for movement presumably requires the generation of many unique cell types to accommodate the intricate connections between motor neurons, sensory neurons, interneurons, and muscle. The specification of diverse neuronal subtypes is mediated largely through networks of transcription factors that operate within progenitor and postmitotic cells. Selective patterns of transcription factor expression appear to define the cell-type-specific cellular programs that govern the axonal guidance decisions and synaptic specificities of neurons, and may lay the foundation through which innate motor behaviors are genetically predetermined. Recent studies on the developmental programs that specify two highly diverse neuronal classes-spinal motor neurons and proprioceptive sensory neurons-have provided important insights into the molecular strategies used in the earliest phases of locomotor circuit assembly. This chapter reviews progress toward elucidating the early transcriptional networks that define neuronal identity in the locomotor system, focusing on the pathways controlling the specific connections of motor neurons and sensory neurons in the formation of simple reflex circuits.
Collapse
|
8
|
Dasen JS, Jessell TM. Chapter Six Hox Networks and the Origins of Motor Neuron Diversity. Curr Top Dev Biol 2009; 88:169-200. [DOI: 10.1016/s0070-2153(09)88006-x] [Citation(s) in RCA: 248] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Miesegaes GR, Klisch TJ, Thaller C, Ahmad KA, Atkinson RC, Zoghbi HY. Identification and subclassification of new Atoh1 derived cell populations during mouse spinal cord development. Dev Biol 2008; 327:339-51. [PMID: 19135992 DOI: 10.1016/j.ydbio.2008.12.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 12/10/2008] [Accepted: 12/10/2008] [Indexed: 01/06/2023]
Abstract
At spinal levels, sensory information pertaining to body positioning (proprioception) is relayed to the cerebellum by the spinocerebellar tracts (SCTs). In the past we revealed the basic helix-loop-helix transcription factor Atoh1 (Math1) to be important for establishing Dorsal Progenitor 1 (DP1) commissural interneurons, which comprise a subset of proprioceptive interneurons. Given there exists multiple subdivisions of the SCT we asked whether Atoh1 may also play a role in specifying other cell types in the spinal cord. Here, we reveal the generation of at least three DP1 derived interneuron populations that reside at spatially restricted positions along the rostral-caudal axis. Each of these cell populations expresses distinct markers and anatomically coincides with the cell bodies of the various subdivisions of the SCT. In addition, we found that as development proceeds (e.g. by E13.5) Atoh1 expression becomes apparent in the dorsal midline in the region of the roof plate (RP). Interestingly, we find that cells derived from Atoh1 expressing RP progenitors express SSEA-1, and in the absence of Atoh1 these progenitors become SOX9 positive. Altogether we reveal the existence of multiple Atoh1 dependent cell types in the spinal cord, and uncover a novel progenitor domain that arises late in development.
Collapse
Affiliation(s)
- George R Miesegaes
- Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
10
|
Yang XF, Xu J, Guo HL, Hou XH, Hao LP, Liu LG, Sun XF. Effect of excessive iodine exposure on the placental deiodinase activities and Hoxc8 expression during mouse embryogenesis. Br J Nutr 2007; 98:116-22. [PMID: 17456249 DOI: 10.1017/s0007114507691909] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Excessive iodine induces thyroid dysfunction. However, the effect of excessive iodine exposure on maternal-fetal thyroid hormone metabolism and on the expression of genes involved in differentiation, growth and development is poorly understood. Since a thyroid hormone receptor response element was found in the Hoxc8 promoter region, Hoxc8 expression possibly regulated by excessive iodine exposure was firstly investigated. In the present study, Balb/C mice were given different doses of iodine in the form of potassium iodate (KIO3) at the levels of 0 (sterile water), 1.5, 3.0, 6.0, 12.0 and 24.0 microg/ml in drinking water for 4 months, then were mated. On 12.5 d postcoitum, placental type 2 and type 3 deiodinase activities and fetal Hoxc8 expression were determined. The results showed that excessive iodine exposure above 1.5 microg/ml resulted in an increase of total thyroxine and a decrease of total triiodothyronine in the serum of maternal mice, which was mainly associated with the inhibition of type 1 deiodinase activity in liver and kidney. Placental type 2 deiodinase activity decreased, showing an inverse relationship with maternal thyroxine level. Hoxc8 mRNA and protein expression at 12.5 d postcoitum embryos were down regulated. Because Hoxc8 plays an important role in normal skeletal development, this finding provides a possible explanation for the skeletal malformation induced by excessive iodine exposure and also provides a new clue to study the relationship between iodine or thyroid hormones and Hox gene expression pattern.
Collapse
Affiliation(s)
- Xue F Yang
- Department of Nutrition and Food Hygiene and MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei, China
| | | | | | | | | | | | | |
Collapse
|
11
|
Wang WCH, Shashikant CS. Evidence for positive and negative regulation of the mouseCdx2 gene. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2007; 308:308-21. [PMID: 17358012 DOI: 10.1002/jez.b.21154] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The caudal family of transcription factors specifies posterior structures during mouse development. We describe the cis-regulatory regions that control mouse Cdx2 expression in the posterior neural tube and mesoderm. An 11.4 kb genomic fragment directs reporter gene expression in a pattern reflecting endogenous Cdx2 expression. A crucial enhancer is located in a 1 kb fragment upstream of the Cdx2 transcriptional start site. This enhancer by itself directs reporter gene expression to more anterior levels in the neural tube compared to the endogenous Cdx2 expression, suggesting the presence of negative regulatory elements outside the 1 kb fragment. A second enhancer, located in the first intron directs robust expression to the posterior two-thirds of the developing embryo in a pattern that is ectopic to Cdx2 expression. The intronic enhancer activity is silenced in the context of the larger 11.4 kb reporter construct. Intron 1 contains two independent enhancers that specifically direct expression to mesoderm (MSE) and neural tube (NSE). Phylogenetic comparison of vertebrate Cdx2 sequences indicates several conserved regions of sequences within the three-enhancer regions. A transcription factor database search suggests potential binding sites for factors involved in FGF and Wnt signaling pathways.
Collapse
Affiliation(s)
- Wayne C H Wang
- Department of Dairy and Animal Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
12
|
Juan AH, Lei H, Bhargava P, Lebrun M, Ruddle FH. Multiple roles of hoxc8 in skeletal development. Ann N Y Acad Sci 2006; 1068:87-94. [PMID: 16831908 DOI: 10.1196/annals.1346.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We are interested in investigating the function of Hoxc8 in skeletogenesis during mouse development. Previous studies have shown that deregulation of Hoxc8 expression in the mouse leads to several skeletal defects, such as homeotic transformation in the thoracic vertebrae, abnormal development of the rib cage, and overproliferation of chondrocytes in the hypertrophic area. By deleting a crucial enhancer of Hoxc8 in vivo, we found that precise temporal expression of Hoxc8 is important for determining the correct identity of the vertebral column in early embryos. We also identified downstream targets of Hoxc8 relevant to osteoblast differentiation at later developmental stages.
Collapse
Affiliation(s)
- Aster H Juan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA.
| | | | | | | | | |
Collapse
|
13
|
Lei H, Juan AH, Kim MS, Ruddle FH. Identification of a Hoxc8-regulated transcriptional network in mouse embryo fibroblast cells. Proc Natl Acad Sci U S A 2006; 103:10305-10309. [PMID: 16793922 PMCID: PMC1502453 DOI: 10.1073/pnas.0603552103] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The transcription factor, Hoxc8, is a member of the homeobox gene family that is vital for growth and differentiation. Previously, we identified 34 genes whose expression levels were changed at least 2-fold by forced expression of Hoxc8 in C57BL/6J mouse embryo fibroblast cells using a mouse 16,463-gene oligonucleotide microarray. In the present study, we used the combined power of microarray profiling, global Hoxc8 DNA-binding site analysis, and high-throughput chromatin immunoprecipitation assays to identify direct and biologically relevant targets of Hoxc8 in vivo. Here we show that 19 of the 34 responsive genes contain Hoxc8 consensus DNA-binding sequence(s) in their regulatory regions. Chromatin immunoprecipitation analysis indicated that Hoxc8-DNA interaction was detected in five of the 19 candidate genes. All of these five target genes have been implicated in oncogenesis, cell adhesion, proliferation, and apoptosis. Overall, the genes described here should aid in the understanding of global regulatory networks of Hox genes and to provide valuable insight into the molecular basis of Hoxc8 in development and carcinogenesis.
Collapse
Affiliation(s)
- Haiyan Lei
- Department of Molecular, Cellular and Developmental Biology, Yale University, 266 Whitney Avenue, New Haven, CT 06511
| | - Aster H Juan
- Department of Molecular, Cellular and Developmental Biology, Yale University, 266 Whitney Avenue, New Haven, CT 06511
| | - Moo-Sang Kim
- Department of Molecular, Cellular and Developmental Biology, Yale University, 266 Whitney Avenue, New Haven, CT 06511
| | - Frank H Ruddle
- Department of Molecular, Cellular and Developmental Biology, Yale University, 266 Whitney Avenue, New Haven, CT 06511
| |
Collapse
|
14
|
Dasen JS, Tice BC, Brenner-Morton S, Jessell TM. A Hox Regulatory Network Establishes Motor Neuron Pool Identity and Target-Muscle Connectivity. Cell 2005; 123:477-91. [PMID: 16269338 DOI: 10.1016/j.cell.2005.09.009] [Citation(s) in RCA: 328] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 07/20/2005] [Accepted: 09/02/2005] [Indexed: 11/29/2022]
Abstract
Spinal motor neurons acquire specialized "pool" identities that determine their ability to form selective connections with target muscles in the limb, but the molecular basis of this striking example of neuronal specificity has remained unclear. We show here that a Hox transcriptional regulatory network specifies motor neuron pool identity and connectivity. Two interdependent sets of Hox regulatory interactions operate within motor neurons, one assigning rostrocaudal motor pool position and a second directing motor pool diversity at a single segmental level. This Hox regulatory network directs the downstream transcriptional identity of motor neuron pools and defines the pattern of target-muscle connectivity.
Collapse
Affiliation(s)
- Jeremy S Dasen
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, NY 10032, USA
| | | | | | | |
Collapse
|
15
|
Wilson L, Maden M. The mechanisms of dorsoventral patterning in the vertebrate neural tube. Dev Biol 2005; 282:1-13. [PMID: 15936325 DOI: 10.1016/j.ydbio.2005.02.027] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Revised: 02/21/2005] [Accepted: 02/25/2005] [Indexed: 01/03/2023]
Abstract
We describe the essential features of and the molecules involved in dorsoventral (DV) patterning in the neural tube. The neural tube is, from its very outset, patterned in this axis as there is a roof plate, floor plate, and differing numbers and types of neuroblasts. These neuroblasts develop into different types of neurons which express a different range of marker genes. Early embryological experiments identified the notochord and the somites as being responsible for the DV patterning of the neural tube and we now know that 4 signaling molecules are involved and are generated by these surrounding structures. Fibroblast growth factors (FGFs) are produced by the caudal mesoderm and must be down-regulated before neural differentiation can occur. Retinoic acid (RA) is produced by the paraxial mesoderm and is an inducer of neural differentiation and patterning and is responsible for down-regulating FGF. Sonic hedgehog (Shh) is produced by the notochord and floor plate and is responsible for inducing ventral neural cell types in a concentration-dependent manner. Bone morphogenetic proteins (BMPs) are produced by the roof plate and are responsible for inducing dorsal neural cell types in a concentration-dependent manner. Subsequently, RA is used twice more. Once from the somites for motor neuron differentiation and secondly RA is used to define the motor neuron subtypes, but in the latter case it is generated within the neural tube from differentiating motor neurons rather than from outside. These 4 signaling molecules also interact with each other, generally in a repressive fashion, and DV patterning shows how complex these interactions can be.
Collapse
Affiliation(s)
- Leigh Wilson
- MRC Centre for Developmental Neurobiology, 4th Floor New Hunt's House, King's College London, Guy's Campus, London SE1 1UL, UK
| | | |
Collapse
|
16
|
Kwon Y, Shin J, Park HW, Kim MH. Dynamic expression pattern of Hoxc8 during mouse early embryogenesis. ACTA ACUST UNITED AC 2005; 283:187-92. [PMID: 15674821 DOI: 10.1002/ar.a.20160] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The Hoxc8 expression pattern was examined in mouse embryos 7.5-12.5 days postcoitum (dpc) using whole-mount in situ hybridization and RT-PCR. The expression of Hoxc8 started between 7.5 and 8.5 dpc. A strong expression was detected in the ectoderm and mesoderm at 8.5 dpc. At 9.5 dpc, a distinct anterior boundary of Hoxc8 expression was established at the 10th and 16th somites in the neural tube and the paraxial mesoderm, respectively. This staggered expression pattern was maintained throughout the later stages. By 12.5 dpc, the forward progression of the Hoxc8 expression pattern was observed and the stain was weakened. In the ectoderm-derived neural tube, strong Hoxc8 expression was observed in the ventral horn and later in the ventral and mediolateral region of the mantle layer, indicating a possible association with the onset and progression of neural differentiation. In the case of the mesoderm-derivative cells, strong Hoxc8 expression was detected in the sclerotome on the way to the notochord and neural tube and mesonephros, suggesting a role of Hoxc8 in the formation of the vertebrae and ribs and the possible involvement in the differentiation into the kidney.
Collapse
Affiliation(s)
- Yunjeong Kwon
- Department of Anatomy, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | | | | | | |
Collapse
|
17
|
Shashikant C, Bolanowski SA, Danke J, Amemiya CT. Hoxc8 early enhancer of the Indonesian coelacanth, Latimeria menadoensis. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2005; 302:557-63. [PMID: 15470754 DOI: 10.1002/jez.b.21018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hoxc8 early enhancer controls the initiation and establishment phase of Hoxc8 expression in the mouse. Comparative studies indicate the presence of Hoxc8 early enhancer sequences in different vertebrate clades including mammals, birds and fish. Previous studies have shown differences between teleost and mammalian Hoxc8 early enhancers with respect to sequence and organization of protein binding elements. This raises the question of when the Hoxc8 early enhancer arose and how it has become modified in different vertebrate lineages. Here, we describe Hoxc8 early enhancer from the Indonesian coelacanth, Latimeria menadoensis. Coelacanths are the only extant lobefinned fish whose genome is tractable to genome analysis. The Latimeria Hoxc8 early enhancer sequence more closely resembles that of the mouse than that of Fugu or zebrafish. When assayed for enhancer activity by reporter gene analysis in transgenic mouse embryos, Latimeria Hoxc8 early enhancer directs expression to the posterior neural tube and mesoderm similar to that of the mouse enhancer. These observations support a close relationship between coelacanths and tetrapods and place the origin of a common Hoxc8 early enhancer sequence within the sarcopterygian lineage. The divergence of teleost (actinopterygii) Hoxc8 early enhancer may reflect a case of relaxed selection or other forms of instability induced by genome duplication events.
Collapse
Affiliation(s)
- Cooduvalli Shashikant
- Department of Dairy and Animal Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, 324 Henning Building, University Park, PA 16802, USA.
| | | | | | | |
Collapse
|
18
|
Abstract
Hox genes encode transcription factors that control spatial patterning during embryogenesis. To date, downstream targets of Hox genes have proven difficult to identify. Here, we describe studies designed to identify target genes under the control of the murine transcription factor Hoxc8. We used a mouse 16,463 gene oligonucleotide microarray to identify mRNAs whose expression was altered by the overexpression of Hoxc8 in C57BL/6J mouse embryo fibroblasts (MEF) in cell culture (in vitro). We identified a total of 34 genes whose expression was changed by 2-fold or greater: 16 genes were up-regulated, and 18 genes were down-regulated. The majority of genes encoded proteins involved in critical biological processes, such as cell adhesion, migration, metabolism, apoptosis, and tumorigenesis. Two genes showed high levels of regulation: (i) secreted phosphoprotein 1 (Spp1), also known as osteopontin (OPN), was down-regulated 4.8-fold, and (ii) frizzled homolog 2 (Drosophila) (Fzd2) was up-regulated 4.4-fold. Chromatin immunoprecipitation (ChIP) analysis confirmed the direct interaction between the OPN promoter and Hoxc8 protein in vivo, supporting the view that OPN is a direct transcriptional target of Hoxc8.
Collapse
Affiliation(s)
- Haiyan Lei
- Department of Molecular, Cellular, and Developmental Biology, Yale University, 266 Whitney Avenue, New Haven, CT 06511, USA
| | | | | | | |
Collapse
|
19
|
Wang WCH, Anand S, Powell DR, Pawashe AB, Amemiya CT, Shashikant CS. Comparative cis-regulatory analyses identify new elements of the mouse Hoxc8 early enhancer. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2005; 302:436-45. [PMID: 15384168 DOI: 10.1002/jez.b.21009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The Hoxc8 early enhancer is a 200 bp region that controls the early phase of Hoxc8 expression during mouse embryonic development. This enhancer defines the domain of Hoxc8 expression in the neural tube and mesoderm of the posterior regions of the developing embryo. Five distinct cis-acting elements, A-E, were previously shown to govern early phase Hoxc8 expression. Significant divergence between mammalian and fish Hoxc8 early enhancer sequences and activities suggested additional cis-acting elements. Here we describe four additional cis-acting elements (F-I) within the 200 bp Hoxc8 early enhancer region identified by comparative regulatory analysis and transgene-mutation studies. These elements affect posterior neural tube and mesoderm expression of the reporter gene, either singly or in combination. Surprisingly, these new elements are missing from the zebrafish and Fugu Hoxc8 early enhancer sequences. Considering that fish enhancers direct robust reporter expression in transgenic mouse embryos, it is tempting to postulate that fish and mammalian Hoxc8 early enhancers utilize different sets of elements to direct Hoxc8 early expression. These observations reveal a remarkable plasticity in the Hoxc8 early enhancer, suggesting different modes of initiation and establishment of Hoxc8 expression in different species. We postulate that extensive restructuring and remodeling of Hox cis-regulatory regions occurring in different taxa lead to relatively different Hox expression patterns, which in turn may act as a driving force in generating diverse axial morphologies.
Collapse
Affiliation(s)
- Wayne C H Wang
- Department of Dairy and Animal Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | | | |
Collapse
|
20
|
Pilbeam D. The anthropoid postcranial axial skeleton: Comments on development, variation, and evolution. ACTA ACUST UNITED AC 2004; 302:241-67. [PMID: 15211685 DOI: 10.1002/jez.b.22] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Within-species phenotypic variation is the raw material on which natural selection acts to shape evolutionary change, and understanding more about the developmental genetics of intraspecific as well as interspecific phenotypic variation is an important component of the Evo-Devo agenda. The axial skeleton is a useful system to analyze from such a perspective. Its development is increasingly well understood, and between-species differences in functionally important developmental parameters are well documented. I present data on intraspecific variation in the axial postcranial skeleton of some Primates, including hominoids (apes and humans). Hominoid species are particularly valuable, because counts of total numbers of vertebrae, and hence original somite numbers, are available for large samples. Evolutionary changes in the axial skeleton of various primate lineages, including bipedal humans, are reviewed, and hypotheses presented to explain the changes in terms of developmental genetics. Further relevant experiments on model organisms are suggested in order to explore more fully the differences in developmental processes between primate species, and hence to test these hypotheses.
Collapse
Affiliation(s)
- David Pilbeam
- Program in Biological Anthropology, Peabody Museum, Harvard University, Cambridge, Massachusetts 02138, USA.
| |
Collapse
|
21
|
Juan AH, Ruddle FH. Enhancer timing of Hox gene expression: deletion of the endogenous Hoxc8 early enhancer. Development 2003; 130:4823-34. [PMID: 12917291 DOI: 10.1242/dev.00672] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The proper expression of Hox genes is necessary for the accurate patterning of the body plan. The elucidation of the developmental genetic basis of transcriptional regulation of Hox genes by the study of their cis-regulatory elements provides crucial information regarding the establishment of axial specification. In this report, we investigate the role of the early enhancer (EE) of the murine Hoxc8 gene to better understand its role in pattern formation. Previous reports show that knockouts of the endogenous Hoxc8 coding region result in a combination of neural, behavioral and skeletal phenotypes. In this report, we limit ourselves to a consideration of the skeletal abnormalities. Early reports from our laboratory based on exogenous transgenic reporter constructs implicate a 200 bp non-coding element 3 kb upstream of the Hoxc8 promoter as a crucial enhancer that regulates the transcription of Hoxc8. In the present work, we have deleted this regulatory region from the endogenous genome using embryonic stem cell technology. Our results show that the deletion of the EE results in a significant delay in the temporal expression of Hoxc8. We also show that the deletion of the EE does not eliminate the expression of the Hoxc8 protein, but delays the attainment of control levels of expression and anterior and posterior boundaries of expression on the AP axis. The temporal delay in Hoxc8 expression is sufficient to produce phenocopies of many of the axial skeletal defects associated with the complete absence of Hoxc8 gene product as previously reported for the Hoxc8-null mutation. Our results are consistent with emerging evidence that the precise temporal expression of Hox genes is crucial for the establishment of regional identities. The fact that the EE deletion does not eliminate Hoxc8 expression indicates the existence of a Hoxc8 transcriptional regulatory apparatus independent to some degree of the Hoxc8 EE. In a comparison of our results with those reported previously by others investigating temporal control of Hox gene expression, we have discovered a structural similarity between the Hoxc8 EE reported here and a transcriptional control element located in the Hoxd11 region. We speculate that a distributed system of expression timing control may exist that is similar the one we propose for Hoxc8. Last, our data is consistent with the position that disparate regulatory pathways are responsible for the expression of Hoxc8 in the organogenesis of somites, neural tube and limb bud.
Collapse
Affiliation(s)
- Aster H Juan
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
22
|
Abstract
▪ Abstract Our understanding of developmental biology burgeoned during the last decade. This review summarizes recent advances, provides definitions and explanations of some basic principles, and does so in a way that will aid anthropologists in understanding their profound implications. Crucial concepts, such as developmental fields, selector and realizator genes, cell signaling mechanisms, and gene regulatory elements are briefly described and then integrated with the emergence of skeletal morphology. For the postcranium, a summary of events from limb bud formation, the appearance of anlagen, the expression of Hox genes, and the fundamentals of growth plate dynamics are briefly summarized. Of particular importance are revelations that bony morphology is largely determined by pattern formation, that growth foci such as physes and synovial joints appear to be regulated principally by positional information, and that variation in these fields is most likely determined by cis-regulatory elements acting on restricted numbers of anabolic genes downstream of selectors (such as Hox). The implications of these discoveries for the interpretation of both contemporary and ancient human skeletal morphology are profound. One of the most salient is that strain transduction now appears to play a much reduced role in shaping the human skeleton. Indeed, the entirety of “Wolff's Law” must now be reassessed in light of new knowledge about pattern formation. The review concludes with a brief discussion of some implications of these findings, including their impact on cladistics and homology, as well as on biomechanical and morphometric analyses of both ancient and modern human skeletal material.
Collapse
Affiliation(s)
- C. Owen Lovejoy
- Matthew Ferrini Institute of Human Evolutionary Research, Department of Anthropology and Division of Biomedical Sciences, Kent State University, Kent, Ohio 44242
- Departments of Anatomy and Oral and Maxillofacial Surgery, Case Western Reserve University, Cleveland, Ohio 44106
| | - Melanie A. McCollum
- Matthew Ferrini Institute of Human Evolutionary Research, Department of Anthropology and Division of Biomedical Sciences, Kent State University, Kent, Ohio 44242
- Departments of Anatomy and Oral and Maxillofacial Surgery, Case Western Reserve University, Cleveland, Ohio 44106
| | - Philip L. Reno
- Matthew Ferrini Institute of Human Evolutionary Research, Department of Anthropology and Division of Biomedical Sciences, Kent State University, Kent, Ohio 44242
- Departments of Anatomy and Oral and Maxillofacial Surgery, Case Western Reserve University, Cleveland, Ohio 44106
| | - Burt A. Rosenman
- Matthew Ferrini Institute of Human Evolutionary Research, Department of Anthropology and Division of Biomedical Sciences, Kent State University, Kent, Ohio 44242
- Departments of Anatomy and Oral and Maxillofacial Surgery, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
23
|
Omelchenko N, Lance-Jones C. Programming neural Hoxd10: in vivo evidence that early node-associated signals predominate over paraxial mesoderm signals at posterior spinal levels. Dev Biol 2003; 261:99-115. [PMID: 12941623 DOI: 10.1016/s0012-1606(03)00280-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Studies of the programming of Hox patterns at anterior spinal levels suggest that these events are accomplished through an integration of Hensen's node-derived and paraxial mesoderm signaling. We have used in vivo tissue manipulation in the avian embryo to examine the respective roles of node- derived and other local signals in the programming of a Hox pattern at posterior spinal levels. Hoxd10 is highly expressed in the lumbosacral (LS) spinal cord and adjacent paraxial mesoderm. At stages of LS neural tube formation (stages 12-14), the tailbud contains the remnants of Hensen's node and the primitive streak. Hoxd10 expression was analyzed after transposition of LS neural segments with and without the tailbud, after isolation of normally positioned LS segments from the stage 13 tailbud, and after axial displacement of posterior paraxial mesoderm. Data suggest that inductive signals from the tailbud are primarily responsible for the programming of Hoxd10 at neural plate and the earliest neural tube stages. After these stages, the LS neural tube appears to differ from more anterior neural segments in its lack of dependence on Hox-inductive signals from local tissues, including paraxial mesoderm. Our data also suggest that a graded system of repressive signals for posterior Hox genes is present at cervical and thoracic levels and likely to originate from paraxial mesoderm.
Collapse
Affiliation(s)
- Natalia Omelchenko
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
24
|
Brend T, Gilthorpe J, Summerbell D, Rigby PWJ. Multiple levels of transcriptional and post-transcriptional regulation are required to define the domain of Hoxb4 expression. Development 2003; 130:2717-28. [PMID: 12736215 DOI: 10.1242/dev.00471] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Hox genes are key determinants of anteroposterior patterning of animal embryos, and spatially restricted expression of these genes is crucial to this function. In this study, we demonstrate that expression of Hoxb4 in the paraxial mesoderm of the mouse embryo is transcriptionally regulated in several distinct phases, and that multiple regulatory elements interact to maintain the complete expression domain throughout embryonic development. An enhancer located within the intron of the gene (region C) is sufficient for appropriate temporal activation of expression and the establishment of the correct anterior boundary in the paraxial mesoderm (somite 6/7). However, the Hoxb4 promoter is required to maintain this expression beyond 8.5 dpc. In addition, sequences within the 3' untranslated region (region B) are necessary specifically to maintain expression in somite 7 from 9.0 dpc onwards. Neither the promoter nor region B can direct somitic expression independently, indicating that the interaction of regulatory elements is crucial for the maintenance of the paraxial mesoderm domain of Hoxb4 expression. We further report that the domain of Hoxb4 expression is restricted by regulating transcript stability in the paraxial mesoderm and by selective translation and/or degradation of protein in the neural tube. Moreover, the absence of Hoxb4 3'-untranslated sequences from transgene transcripts leads to inappropriate expression of some Hoxb4 transgenes in posterior somites, indicating that there are sequences within region B that are important for both transcriptional and post-transcriptional regulation.
Collapse
Affiliation(s)
- Tim Brend
- Section of Gene Function and Regulation, The Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | | | | | | |
Collapse
|
25
|
Thickett C, Morgan R. Hoxc-8 expression shows left-right asymmetry in the posterior lateral plate mesoderm. Gene Expr Patterns 2002; 2:5-6. [PMID: 12617829 DOI: 10.1016/s0925-4773(02)00353-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
XHoxc-8 is the Xenopus homologue of the mouse Hoxc-8 gene, a homeodomain-containing transcription factor that is expressed in the posterior neural tube and adjacent tissues. Although XHoxc-8 has a very similar expression pattern to the Hoxc-8 gene in other species, it also displays distinct left/right asymmetry at later stages of development, being expressed in the posterior lateral mesoderm only on the left-hand side of the embryo.
Collapse
Affiliation(s)
- Christopher Thickett
- Department of Anatomy and Developmental Biology, St. George's Hospital Medical School, Cranmer Terrace, London SW17 0RE, UK
| | | |
Collapse
|
26
|
Wichterle H, Lieberam I, Porter JA, Jessell TM. Directed differentiation of embryonic stem cells into motor neurons. Cell 2002; 110:385-97. [PMID: 12176325 DOI: 10.1016/s0092-8674(02)00835-8] [Citation(s) in RCA: 1271] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inductive signals and transcription factors involved in motor neuron generation have been identified, raising the question of whether these developmental insights can be used to direct stem cells to a motor neuron fate. We show that developmentally relevant signaling factors can induce mouse embryonic stem (ES) cells to differentiate into spinal progenitor cells, and subsequently into motor neurons, through a pathway recapitulating that used in vivo. ES cell-derived motor neurons can populate the embryonic spinal cord, extend axons, and form synapses with target muscles. Thus, inductive signals involved in normal pathways of neurogenesis can direct ES cells to form specific classes of CNS neurons.
Collapse
Affiliation(s)
- Hynek Wichterle
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|
27
|
Liu JP, Laufer E, Jessell TM. Assigning the positional identity of spinal motor neurons: rostrocaudal patterning of Hox-c expression by FGFs, Gdf11, and retinoids. Neuron 2001; 32:997-1012. [PMID: 11754833 DOI: 10.1016/s0896-6273(01)00544-x] [Citation(s) in RCA: 228] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Subclasses of motor neurons are generated at different positions along the rostrocaudal axis of the spinal cord. One feature of the rostrocaudal organization of spinal motor neurons is a position-dependent expression of Hox genes, but little is known about how this aspect of motor neuron subtype identity is assigned. We have used the expression profile of Hox-c proteins to define the source and identity of patterning signals that impose motor neuron positional identity along the rostrocaudal axis of the spinal cord. We provide evidence that the convergent activities of FGFs, Gdf11, and retinoid signals originating from Hensen's node and paraxial mesoderm establish and refine the Hox-c positional identity of motor neurons in the developing spinal cord.
Collapse
Affiliation(s)
- J P Liu
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University, 701 West 168th Street, New York, NY 10032, USA
| | | | | |
Collapse
|
28
|
Lance-Jones C, Omelchenko N, Bailis A, Lynch S, Sharma K. Hoxd10 induction and regionalization in the developing lumbosacral spinal cord. Development 2001; 128:2255-68. [PMID: 11493545 DOI: 10.1242/dev.128.12.2255] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have used Hoxd10 expression as a primary marker of the lumbosacral region to examine the early programming of regional characteristics within the posterior spinal cord of the chick embryo. Hoxd10 is uniquely expressed at a high level in the lumbosacral cord, from the earliest stages of motor column formation through stages of motoneuron axon outgrowth. To define the time period when this gene pattern is determined, we assessed Hoxd10 expression after transposition of lumbosacral and thoracic segments at early neural tube stages. We present evidence that there is an early prepattern for Hoxd10 expression in the lumbosacral neural tube; a prepattern that is established at or before stages of neural tube closure. Cells within more posterior lumbosacral segments have a greater ability to develop high level Hoxd10 expression than the most anterior lumbosacral segments or thoracic segments. During subsequent neural tube stages, this prepattern is amplified and stabilized by environmental signals such that all lumbosacral segments acquire the ability to develop high levels of Hoxd10, independent of their axial environment. Results from experiments in which posterior neural segments and/or paraxial mesoderm segments were placed at different axial levels suggest that signals setting Hoxd10 expression form a decreasing posterior-to-anterior gradient. Our experiments do not, however, implicate adjacent paraxial mesoderm as the only source of graded signals. We suggest, instead, that signals from more posterior embryonic regions influence Hoxd10 expression after the early establishment of a regional prepattern. Concurrent analyses of patterns of LIM proteins and motor column organization after experimental surgeries suggest that the programming of these characteristics follows similar rules.
Collapse
Affiliation(s)
- C Lance-Jones
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| | | | | | | | | |
Collapse
|
29
|
Jessell TM. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat Rev Genet 2000; 1:20-9. [PMID: 11262869 DOI: 10.1038/35049541] [Citation(s) in RCA: 1542] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Neural circuits are assembled with remarkable precision during embryonic development, and the selectivity inherent in their formation helps to define the behavioural repertoire of the mature organism. In the vertebrate central nervous system, this developmental program begins with the differentiation of distinct classes of neurons from progenitor cells located at defined positions within the neural tube. The mechanisms that specify the identity of neural cells have been examined in many regions of the nervous system and reveal a high degree of conservation in the specification of cell fate by key signalling molecules.
Collapse
Affiliation(s)
- T M Jessell
- Howard Hughes Medical Institute, Center for Neurobiology and Behavior, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA.
| |
Collapse
|
30
|
Kömüves LG, Shen WF, Kwong A, Stelnicki E, Rozenfeld S, Oda Y, Blink A, Krishnan K, Lau B, Mauro T, Largman C. Changes in HOXB6 homeodomain protein structure and localization during human epidermal development and differentiation. Dev Dyn 2000; 218:636-47. [PMID: 10906782 DOI: 10.1002/1097-0177(2000)9999:9999<::aid-dvdy1014>3.0.co;2-i] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
HOX homeodomain proteins are master developmental regulators, which are now thought to function as transcription factors by forming cooperative DNA binding complexes with PBX or other protein partners. Although PBX proteins exhibit regulated subcellular localization and function in the nucleus in other tissues, little data exists on HOX and PBX protein localization during skin development. We now show that the HOXB6 protein is expressed in the suprabasal layer of the early developing epidermis and throughout the upper layers of late fetal and adult human skin. HOXB6 signal is cytoplasmic throughout fetal epidermal development, but substantially nuclear in normal adult skin. HOXB6 protein is also partially nuclear in hyperproliferative skin conditions, but appears to be cytoplasmic in basal and squamous cell carcinomas. Although all three PBX genes are expressed in fetal epidermis, none of the three PBX proteins exhibit nuclear co-localization with HOXB6 in either fetal or adult epidermis. RNA and protein data suggest that a truncated HOXB6 protein, lacking the homeodomain, is expressed in undifferentiated keratinocytes and that the full-length protein is induced by differentiation. GFP-fusion proteins were used to demonstrate that the full-length HOXB6 protein is localized to the nucleus while the truncated protein is largely cytoplasmic. Taken together, these data suggest that during epidermal development the truncated HOXB6 isoform may function by a mechanism other than as DNA binding protein, and that most of the nuclear, homeodomain-containing HOXB6 protein does not utilize PBX proteins as DNA binding partners in the skin. Published 2000 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- L G Kömüves
- Department of Dermatology, University of California VA Medical Center, San Francisco, California
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Mechanisms of Hox gene colinearity: transposition of the anterior Hoxb1 gene into the posterior HoxD complex. Genes Dev 2000. [DOI: 10.1101/gad.14.2.198] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Transposition of Hoxd genes to a more posterior (5′) location within the HoxD complex suggested that colinearity in the expression of these genes was due, in part, to the existence of a silencing mechanism originating at the 5′ end of the cluster and extending towards the 3′ direction. To assess the strength and specificity of this repression, as well as to challenge available models on colinearity, we inserted a Hoxb1/lacZtransgene within the posterior HoxD complex, thereby reconstructing a cluster with a copy of the most anterior gene inserted at the most posterior position. Analysis of Hoxb1 expression after ectopic relocation revealed that Hoxb1-specific activity in the fourth rhombomere was totally abolished. Treatment with retinoic acid, or subsequent relocations toward more 3′ positions in theHoxD complex, did not release this silencing in hindbrain cells. In contrast, however, early and anterior transgene expression in the mesoderm was unexpectedly not suppressed. Furthermore, the transgene induced a transient ectopic activation of the neighboringHoxd13 gene, without affecting other genes of the complex. Such a local and transient break in colinearity was also observed after transposition of the Hoxd9/lacZ reporter gene, indicating that it may be a general property of these transgenes when transposed at an ectopic location. These results are discussed in the context of existing models, which account for colinear activation of vertebrate Hox genes.
Collapse
|
32
|
Hao Z, Yeung J, Wolf L, Doucette R, Nazarali A. Differential expression of Hoxa-2 protein along the dorsal-ventral axis of the developing and adult mouse spinal cord. Dev Dyn 1999; 216:201-17. [PMID: 10536059 DOI: 10.1002/(sici)1097-0177(199910)216:2<201::aid-dvdy10>3.0.co;2-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
We have used synthetic oligopeptides derived from the coding sequence of the murine Hoxa-2 protein to produce polyclonal antibodies that specifically recognize the Hoxa-2 recombinant protein. Immunohistochemical studies reveal a distinct pattern of spatial and temporal expression of Hoxa-2 protein within the mouse spinal cord which is concomitant with the cytoarchitectural changes occurring in the developing cord. Hoxa-2 protein is predominantly detected in the nuclei of cells in the ventral mantle region of 10-day-old mouse embryos. Islet-1, a marker for motor neurons was also shown to be co-localized with Hoxa-2 in nuclei of cells in this region. As development progresses from 10-days to 14-days of gestation, Hoxa-2 protein expression gradually extends to the dorsal regions of the mantle layer. The Hoxa-2 protein expression pattern changes at 16-days of embryonic development with strong expression visible throughout the dorsal mantle layer. In 18-day-old and adult mouse spinal cords, Hoxa-2 protein was expressed predominantly by cells of the dorsal horn and only by a few cells of the ventral horn. Double labeling studies with an antibody against glial fibrillary acidic protein (GFAP, an astrocyte-specific intermediate filament protein) showed that within the adult spinal cord, astrocytes rarely expressed the Hoxa-2 protein. However, Hoxa-2 and GFAP double-labeled astrocytes were found in the neopallial cultures, although not all astrocytes expressed Hoxa-2. Hoxa-2 expressing oligodendrocyte progenitor cells were also identified after double-labeling with O4 and Hoxa-2 antibodies; although cells in this lineage that have begun to develop a more extensive array of cytoplasmic processes were less likely to be Hoxa-2 positive. The early pattern of Hoxa-2 protein expression across transverse sections of the neural tube is temporally and spatially modified as each major class of neuron is generated. This congruence in the expression of the Hoxa-2 protein and the generation of neurons in the cord suggests that the Hoxa-2 protein may contribute to dorsal-ventral patterning and/or to the specification of neuronal phenotype. Dev Dyn 1999;216:201-217.
Collapse
Affiliation(s)
- Z Hao
- Laboratory of Molecular Biology, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | | | | | | | | |
Collapse
|
33
|
Shashikant CS, Kim CB, Borbély MA, Wang WC, Ruddle FH. Comparative studies on mammalian Hoxc8 early enhancer sequence reveal a baleen whale-specific deletion of a cis-acting element. Proc Natl Acad Sci U S A 1998; 95:15446-51. [PMID: 9860988 PMCID: PMC28062 DOI: 10.1073/pnas.95.26.15446] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/1998] [Indexed: 11/18/2022] Open
Abstract
Variations in regulatory regions of developmental control genes have been implicated in the divergence of axial morphologies. To find potentially significant changes in cis-regulatory regions, we compared nucleotide sequences and activities of mammalian Hoxc8 early enhancers. The nucleotide sequence of the early enhancer region is extremely conserved among mammalian clades, with five previously described cis-acting elements, A-E, being invariant. However, a 4-bp deletion within element C of the Hoxc8 early enhancer sequence is observed in baleen whales. When assayed in transgenic mouse embryos, a baleen whale enhancer (unlike other mammalian enhancers) directs expression of the reporter gene to more posterior regions of the neural tube but fails to direct expression to posterior mesoderm. We suggest that regulation of Hoxc8 in baleen whales differs from other mammalian species and may be associated with variation in axial morphology.
Collapse
Affiliation(s)
- C S Shashikant
- Department of Molecular, Cellular, and Developmental Biology, P.O. Box 208103, New Haven, CT 06520, USA.
| | | | | | | | | |
Collapse
|