1
|
Hypoxia promotes a perinatal-like progenitor state in the adult murine epicardium. Sci Rep 2022; 12:9250. [PMID: 35661120 PMCID: PMC9166725 DOI: 10.1038/s41598-022-13107-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 05/20/2022] [Indexed: 11/22/2022] Open
Abstract
The epicardium is a reservoir of progenitors that give rise to coronary vasculature and stroma during development and mediates cardiac vascular repair. However, its role as a source of progenitors in the adult mammalian heart remains unclear due to lack of clear lineage markers and single-cell culture systems to elucidate epicardial progeny cell fate. We found that in vivo exposure of mice to physiological hypoxia induced adult epicardial cells to re-enter the cell cycle and to express a subset of developmental genes. Multiplex single cell transcriptional profiling revealed a lineage relationship between epicardial cells and smooth muscle, stromal cells, as well as cells with an endothelial-like fate. We found that physiological hypoxia promoted a perinatal-like progenitor state in the adult murine epicardium. In vitro clonal analyses of purified epicardial cells showed that cell growth and subsequent differentiation is dependent upon hypoxia, and that resident epicardial cells retain progenitor identity in the adult mammalian heart with self-renewal and multilineage differentiation potential. These results point to a source of progenitor cells in the adult heart that can be stimulated in vivo and provide an in vitro model for further studies.
Collapse
|
2
|
Role of the Epicardium in the Development of the Atrioventricular Valves and Its Relevance to the Pathogenesis of Myxomatous Valve Disease. J Cardiovasc Dev Dis 2021; 8:jcdd8050054. [PMID: 34066253 PMCID: PMC8152025 DOI: 10.3390/jcdd8050054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023] Open
Abstract
This paper is dedicated to the memory of Dr. Adriana "Adri" Gittenberger-de Groot and in appreciation of her work in the field of developmental cardiovascular biology and the legacy that she has left behind. During her impressive career, Dr. Gittenberger-de Groot studied many aspects of heart development, including aspects of cardiac valve formation and disease and the role of the epicardium in the formation of the heart. In this contribution, we review some of the work on the role of epicardially-derived cells (EPDCs) in the development of the atrioventricular valves and their potential involvement in the pathogenesis of myxomatous valve disease (MVD). We provide an overview of critical events in the development of the atrioventricular junction, discuss the role of the epicardium in these events, and illustrate how interfering with molecular mechanisms that are involved in the epicardial-dependent formation of the atrioventricular junction leads to a number of abnormalities. These abnormalities include defects of the AV valves that resemble those observed in humans that suffer from MVD. The studies demonstrate the importance of the epicardium for the proper formation and maturation of the AV valves and show that the possibility of epicardial-associated developmental defects should be taken into consideration when determining the genetic origin and pathogenesis of MVD.
Collapse
|
3
|
Deepe R, Fitzgerald E, Wolters R, Drummond J, Guzman KD, van den Hoff MJ, Wessels A. The Mesenchymal Cap of the Atrial Septum and Atrial and Atrioventricular Septation. J Cardiovasc Dev Dis 2020; 7:jcdd7040050. [PMID: 33158164 PMCID: PMC7712865 DOI: 10.3390/jcdd7040050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/28/2020] [Accepted: 11/02/2020] [Indexed: 12/26/2022] Open
Abstract
In this publication, dedicated to Professor Robert H. Anderson and his contributions to the field of cardiac development, anatomy, and congenital heart disease, we will review some of our earlier collaborative studies. The focus of this paper is on our work on the development of the atrioventricular mesenchymal complex, studies in which Professor Anderson has played a significant role. We will revisit a number of events relevant to atrial and atrioventricular septation and present new data on the development of the mesenchymal cap of the atrial septum, a component of the atrioventricular mesenchymal complex which, thus far, has received only moderate attention.
Collapse
Affiliation(s)
- Ray Deepe
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (R.D.); (E.F.); (R.W.); (J.D.); (K.D.G.)
| | - Emily Fitzgerald
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (R.D.); (E.F.); (R.W.); (J.D.); (K.D.G.)
| | - Renélyn Wolters
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (R.D.); (E.F.); (R.W.); (J.D.); (K.D.G.)
| | - Jenna Drummond
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (R.D.); (E.F.); (R.W.); (J.D.); (K.D.G.)
| | - Karen De Guzman
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (R.D.); (E.F.); (R.W.); (J.D.); (K.D.G.)
| | - Maurice J.B. van den Hoff
- Amsterdam UMC, Academic Medical Center, Department of Medical Biology, Meibergdreef 15, 1105AZ Amsterdam, The Netherlands;
| | - Andy Wessels
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (R.D.); (E.F.); (R.W.); (J.D.); (K.D.G.)
- Correspondence: ; Tel.: +1-843-792-8183
| |
Collapse
|
4
|
Abstract
Cardiac fibroblasts and fibrosis contribute to the pathogenesis of heart failure, a prevalent cause of mortality. Therefore, a majority of the existing information regarding cardiac fibroblasts is focused on their function and behavior after heart injury. Less is understood about the signaling and transcriptional networks required for the development and homeostatic roles of these cells. This review is devoted to describing our current understanding of cardiac fibroblast development. I detail cardiac fibroblast formation during embryogenesis including the discovery of a second embryonic origin for cardiac fibroblasts. Additional information is provided regarding the roles of the genes essential for cardiac fibroblast development. It should be noted that many questions remain regarding the cell-fate specification of these fibroblast progenitors, and it is hoped that this review will provide a basis for future studies regarding this topic.
Collapse
|
5
|
Dronkers E, Wauters MMM, Goumans MJ, Smits AM. Epicardial TGFβ and BMP Signaling in Cardiac Regeneration: What Lesson Can We Learn from the Developing Heart? Biomolecules 2020; 10:biom10030404. [PMID: 32150964 PMCID: PMC7175296 DOI: 10.3390/biom10030404] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 12/31/2022] Open
Abstract
The epicardium, the outer layer of the heart, has been of interest in cardiac research due to its vital role in the developing and diseased heart. During development, epicardial cells are active and supply cells and paracrine cues to the myocardium. In the injured adult heart, the epicardium is re-activated and recapitulates embryonic behavior that is essential for a proper repair response. Two indispensable processes for epicardial contribution to heart tissue formation are epithelial to mesenchymal transition (EMT), and tissue invasion. One of the key groups of cytokines regulating both EMT and invasion is the transforming growth factor β (TGFβ) family, including TGFβ and Bone Morphogenetic Protein (BMP). Abundant research has been performed to understand the role of TGFβ family signaling in the developing epicardium. However, less is known about signaling in the adult epicardium. This review provides an overview of the current knowledge on the role of TGFβ in epicardial behavior both in the development and in the repair of the heart. We aim to describe the presence of involved ligands and receptors to establish if and when signaling can occur. Finally, we discuss potential targets to improve the epicardial contribution to cardiac repair as a starting point for future investigation.
Collapse
|
6
|
Weinberger M, Simões FC, Patient R, Sauka-Spengler T, Riley PR. Functional Heterogeneity within the Developing Zebrafish Epicardium. Dev Cell 2020; 52:574-590.e6. [PMID: 32084358 PMCID: PMC7063573 DOI: 10.1016/j.devcel.2020.01.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/07/2019] [Accepted: 01/22/2020] [Indexed: 12/31/2022]
Abstract
The epicardium is essential during cardiac development, homeostasis, and repair, and yet fundamental insights into its underlying cell biology, notably epicardium formation, lineage heterogeneity, and functional cross-talk with other cell types in the heart, are currently lacking. In this study, we investigated epicardial heterogeneity and the functional diversity of discrete epicardial subpopulations in the developing zebrafish heart. Single-cell RNA sequencing uncovered three epicardial subpopulations with specific genetic programs and distinctive spatial distribution. Perturbation of unique gene signatures uncovered specific functions associated with each subpopulation and established epicardial roles in cell adhesion, migration, and chemotaxis as a mechanism for recruitment of leukocytes into the heart. Understanding which mechanisms epicardial cells employ to establish a functional epicardium and how they communicate with other cardiovascular cell types during development will bring us closer to repairing cellular relationships that are disrupted during cardiovascular disease. scRNA-seq uncovered 3 developmental epicardial subpopulations (Epi1-3) in the zebrafish Epi1-specific gene, tgm2b, regulates the cell numbers in the main epicardial sheet Epi2-specific gene, sema3fb, restricts the number of tbx18+ cells in the cardiac outflow tract Epi3-specific gene, cxcl12a, guides ptprc/CD45+ myeloid cells to the developing heart
Collapse
Affiliation(s)
- Michael Weinberger
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, Oxfordshire OX1 3PT, UK; MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, Oxfordshire OX3 9DS, UK
| | - Filipa C Simões
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, Oxfordshire OX1 3PT, UK; MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, Oxfordshire OX3 9DS, UK
| | - Roger Patient
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, Oxfordshire OX3 9DS, UK
| | - Tatjana Sauka-Spengler
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, Oxfordshire OX3 9DS, UK.
| | - Paul R Riley
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, Oxfordshire OX1 3PT, UK.
| |
Collapse
|
7
|
Ramai D, Lai J, Monzidelis C, Reddy S. Coronary Artery Development: Origin, Malformations, and Translational Vascular Reparative Therapy. J Cardiovasc Pharmacol Ther 2018; 23:292-300. [PMID: 29642708 DOI: 10.1177/1074248418769633] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
After thickening of the cardiac chamber walls during embryogenesis, oxygen and nutrients can no longer be adequately supplied to cardiac cells via passive diffusion; therefore, a primitive vascular network develops to supply these vital structures. This plexus further matures into coronary arteries and veins, which ensures continued development of the heart. Various models have been proposed to account for the growth of the coronary arteries. However, lineage-tracing studies in the last decade have identified 3 major sources, namely, the proepicardium, the sinus venosus, and endocardium. Although the exact contribution of each source remains unknown, the emerging model depicts alternative pathways and progenitor cells, which ensure successful coronary angiogenesis. We aim to explore the current trends in coronary artery development, the cellular and molecular signals regulating heart vascularization, and its implications for heart disease and vascular regeneration.
Collapse
Affiliation(s)
- Daryl Ramai
- Department of Medicine, The Brooklyn Hospital Center, Academic Affiliate of The Icahn School of Medicine at Mount Sinai, Clinical Affiliate of The Mount Sinai Hospital, Brooklyn, NY, USA
- Department of Anatomical Sciences, School of Medicine, St George’s University, Grenada, West Indies
| | - Jonathan Lai
- Department of Anatomical Sciences, School of Medicine, St George’s University, Grenada, West Indies
| | - Constantine Monzidelis
- Department of Medicine, The Brooklyn Hospital Center, Academic Affiliate of The Icahn School of Medicine at Mount Sinai, Clinical Affiliate of The Mount Sinai Hospital, Brooklyn, NY, USA
| | - Sarath Reddy
- Division of Cardiology, The Brooklyn Hospital Center, Academic Affiliate of The Icahn School of Medicine at Mount Sinai, Clinical Affiliate of The Mount Sinai Hospital, Brooklyn, NY, USA
| |
Collapse
|
8
|
Li J, Miao L, Zhao C, Shaikh Qureshi WM, Shieh D, Guo H, Lu Y, Hu S, Huang A, Zhang L, Cai CL, Wan LQ, Xin H, Vincent P, Singer HA, Zheng Y, Cleaver O, Fan ZC, Wu M. CDC42 is required for epicardial and pro-epicardial development by mediating FGF receptor trafficking to the plasma membrane. Development 2017; 144:1635-1647. [PMID: 28465335 PMCID: PMC5450847 DOI: 10.1242/dev.147173] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/16/2017] [Indexed: 01/26/2023]
Abstract
The epicardium contributes to multiple cardiac lineages and is essential for cardiac development and regeneration. However, the mechanism of epicardium formation is unclear. This study aimed to establish the cellular and molecular mechanisms underlying the dissociation of pro-epicardial cells (PECs) from the pro-epicardium (PE) and their subsequent translocation to the heart to form the epicardium. We used lineage tracing, conditional deletion, mosaic analysis and ligand stimulation in mice to determine that both villous protrusions and floating cysts contribute to PEC translocation to myocardium in a CDC42-dependent manner. We resolved a controversy by demonstrating that physical contact of the PE with the myocardium constitutes a third mechanism for PEC translocation to myocardium, and observed a fourth mechanism in which PECs migrate along the surface of the inflow tract to reach the ventricles. Epicardial-specific Cdc42 deletion disrupted epicardium formation, and Cdc42 null PECs proliferated less, lost polarity and failed to form villous protrusions and floating cysts. FGF signaling promotes epicardium formation in vivo, and biochemical studies demonstrated that CDC42 is involved in the trafficking of FGF receptors to the cell membrane to regulate epicardium formation. Highlighted article: During epicardial formation in mice, four different mechanisms of pro-epicardial cell translocation to the myocardium can be identified, with CDC42 playing a key role.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Lianjie Miao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA.,Institute of Translational Medicine, Nanchang University, Nanchang 330031, China.,School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Chen Zhao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | | | - David Shieh
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Hua Guo
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Yangyang Lu
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Saiyang Hu
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Alice Huang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Lu Zhang
- Developmental and Regenerative Biology, Mount Sinai Hospital, New York, NY 10029, USA
| | - Chen-Leng Cai
- Developmental and Regenerative Biology, Mount Sinai Hospital, New York, NY 10029, USA
| | - Leo Q Wan
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th street, Biotech 2147, Troy, NY 12180, USA
| | - Hongbo Xin
- Institute of Translational Medicine, Nanchang University, Nanchang 330031, China.,School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Peter Vincent
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Harold A Singer
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ondine Cleaver
- Molecular Biology, UT Southwestern, Dallas, TX 75390, USA
| | - Zhen-Chuan Fan
- International Collaborative Research Center for Health Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mingfu Wu
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| |
Collapse
|
9
|
Abstract
Cardiac fibroblasts deposit and maintain extracellular matrix during organogenesis and under physiological conditions. In the adult heart, activated cardiac fibroblasts also participate in the healing response after acute myocardial infarction and during chronic disease states characterized by augmented interstitial fibrosis and ventricular remodelling. However, delineation of the characteristics, plasticity, and origins of cardiac fibroblasts is an area of ongoing investigation and controversy. A set of genetic mouse models has been developed that specifically addresses the nature of these cells, in terms of both their origins and their response during cardiac disease and ventricular remodelling. As our understanding of cardiac fibroblasts becomes more defined and refined, so does the potential to develop new therapeutic strategies to control fibrosis and adverse ventricular remodelling.
Collapse
Affiliation(s)
- Michelle D Tallquist
- Department of Medicine, Center for Cardiovascular Research, University of Hawaii, Honolulu, Hawaii 96813, USA
| | - Jeffery D Molkentin
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, Ohio 45229-3026, USA.,The Howard Hughes Medical Institute, 240 Albert Sabin Way, Cincinnati, Ohio 45229-3039, USA
| |
Collapse
|
10
|
Smart N. Prospects for improving neovascularization of the ischemic heart: Lessons from development. Microcirculation 2017; 24. [DOI: 10.1111/micc.12335] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 11/14/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Nicola Smart
- Department of Physiology, Anatomy & Genetics; University of Oxford; Oxford UK
| |
Collapse
|
11
|
Villa del Campo C, Lioux G, Carmona R, Sierra R, Muñoz-Chápuli R, Clavería C, Torres M. Myc overexpression enhances of epicardial contribution to the developing heart and promotes extensive expansion of the cardiomyocyte population. Sci Rep 2016; 6:35366. [PMID: 27752085 PMCID: PMC5082763 DOI: 10.1038/srep35366] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 09/22/2016] [Indexed: 12/23/2022] Open
Abstract
Myc is an essential regulator of cell growth and proliferation. Myc overexpression promotes the homeostatic expansion of cardiomyocyte populations by cell competition, however whether this applies to other cardiac lineages remains unknown. The epicardium contributes signals and cells to the developing and adult injured heart and exploring strategies for modulating its activity is of great interest. Using inducible genetic mosaics, we overexpressed Myc in the epicardium and determined the differential expansion of Myc-overexpressing cells with respect to their wild type counterparts. Myc-overexpressing cells overcolonized all epicardial-derived lineages and showed increased ability to invade the myocardium and populate the vasculature. We also found massive colonization of the myocardium by Wt1Cre-derived Myc-overexpressing cells, with preservation of cardiac development. Detailed analyses showed that this contribution is unlikely to derive from Cre activity in early cardiomyocytes but does not either derive from established epicardial cells, suggesting that early precursors expressing Wt1Cre originate the recombined cardiomyocytes. Myc overexpression does not modify the initial distribution of Wt1Cre-recombined cardiomyocytes, indicating that it does not stimulate the incorporation of early expressing Wt1Cre lineages to the myocardium, but differentially expands this initial population. We propose that strategies using epicardial lineages for heart repair may benefit from promoting cell competitive ability.
Collapse
Affiliation(s)
- Cristina Villa del Campo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernández Almagro, 3, E-28029 Madrid, Spain
| | - Ghislaine Lioux
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernández Almagro, 3, E-28029 Madrid, Spain
| | - Rita Carmona
- Department of Animal Biology, Faculty of Science, Campus de Teatinos, University of Málaga, Málaga, Spain
- Andalusian Center for Nanomedicine and Biotechnology (BIONAND), c/Severo Ochoa n°25, 29590 Campanillas (Málaga), Spain
| | - Rocío Sierra
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernández Almagro, 3, E-28029 Madrid, Spain
| | - Ramón Muñoz-Chápuli
- Department of Animal Biology, Faculty of Science, Campus de Teatinos, University of Málaga, Málaga, Spain
- Andalusian Center for Nanomedicine and Biotechnology (BIONAND), c/Severo Ochoa n°25, 29590 Campanillas (Málaga), Spain
| | - Cristina Clavería
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernández Almagro, 3, E-28029 Madrid, Spain
| | - Miguel Torres
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernández Almagro, 3, E-28029 Madrid, Spain
| |
Collapse
|
12
|
Abstract
Cardiac fibrosis remains an important health concern, but the study of fibroblast biology has been hindered by a lack of effective means for identifying and tracking fibroblasts. Recent advances in fibroblast-specific lineage tags and reporters have permitted a better understanding of these cells. After injury, multiple cell types have been implicated as the source for extracellular matrix-producing cells, but emerging studies suggest that resident cardiac fibroblasts contribute substantially to the remodeling process. In this review, we discuss recent findings regarding cardiac fibroblast origin and identity. Our understanding of cardiac fibroblast biology and fibrosis is still developing and will expand profoundly in the next few years, with many of the recent findings regarding fibroblast gene expression and behavior laying down the groundwork for interpreting the purpose and utility of these cells before and after injury. (Circ J 2016; 80: 2269-2276).
Collapse
Affiliation(s)
- Malina J Ivey
- Department of Cell and Molecular Biology, Center for Cardiovascular Research, University of Hawaii
| | | |
Collapse
|
13
|
Abstract
Development of coronary vessels is a complex process in developmental biology and it may have clinical implications. Although coronary vessels develop as a form of vasculogenesis followed by angiogenesis, the cells of the entire coronary system do not arise from the developing heart. The key events of the coronary system formation include the generation of primordium and proepicardial organ; formation of epicardium; generation of subepicardial mesenchymal cells, and the formation, remodeling and maturation of the final vascular plexus. These events represent a complex regulation of the cell fate determination, cellular migration, epicardial/mesenchymal transformation, and patterning of vasculatures. Recent studies suggest that several transcription factors, adhesion molecules, growth factors and signaling molecules play essential roles in these events. This article reviews the literature on the development of coronary vessels, and discusses current advances and controversies of molecular and cellular mechanisms, thereby directing future investigations.
Collapse
Affiliation(s)
- Hong Mu
- Molecular Surgeon Research Center, Division of Vascular Surgery and Endovascular Therapy, Michael E DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
14
|
Ruiz-Villalba A, Hoppler S, van den Hoff MJB. Wnt signaling in the heart fields: Variations on a common theme. Dev Dyn 2016; 245:294-306. [PMID: 26638115 DOI: 10.1002/dvdy.24372] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 12/27/2022] Open
Abstract
Wnt signaling plays an essential role in development and differentiation. Heart development is initiated with the induction of precardiac mesoderm requiring the tightly and spatially controlled regulation of canonical and noncanonical Wnt signaling pathways. The role of Wnt signaling in subsequent development of the heart fields is to a large extent unclear. We will discuss the role of Wnt signaling in the development of the arterial and venous pole of the heart, highlighting the dual roles of Wnt signaling with respect to its time- and dosage-dependent effects and the balance between the canonical and noncanonical signaling. Canonical signaling appears to be involved in retaining the cardiac precursors in a proliferative and precursor state, whereas noncanonical signaling promotes their differentiation. Thereafter, both canonical and noncanonical signaling regulate specific steps in differentiation of the cardiac compartments. Because heart development is a contiguous, rather than a sequential, process, analyses tend only to show a single timeframe of development. The repetitive alternating and reciprocal effect of canonical and noncanonical signaling is lost when studied in homogenates. Without the simultaneous in vivo visualization of the different Wnt signaling pathways, the mechanism of Wnt signaling in heart development remains elusive.
Collapse
Affiliation(s)
- Adrián Ruiz-Villalba
- Academic Medical Center, Department of Anatomy, Embryology and Physiology, Amsterdam, The Netherlands
| | - Stefan Hoppler
- Cardiovascular Biology and Medicine Research Programme, Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Maurice J B van den Hoff
- Academic Medical Center, Department of Anatomy, Embryology and Physiology, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Ariza L, Carmona R, Cañete A, Cano E, Muñoz-Chápuli R. Coelomic epithelium-derived cells in visceral morphogenesis. Dev Dyn 2015; 245:307-22. [DOI: 10.1002/dvdy.24373] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 02/06/2023] Open
Affiliation(s)
- Laura Ariza
- University of Málaga, Faculty of Science, Department of Animal Biology; Málaga Spain
- Andalusian Center for Nanomedicine and Biotechnology (BIONAND); Campanillas Spain
| | - Rita Carmona
- University of Málaga, Faculty of Science, Department of Animal Biology; Málaga Spain
- Andalusian Center for Nanomedicine and Biotechnology (BIONAND); Campanillas Spain
| | - Ana Cañete
- University of Málaga, Faculty of Science, Department of Animal Biology; Málaga Spain
- Andalusian Center for Nanomedicine and Biotechnology (BIONAND); Campanillas Spain
| | - Elena Cano
- Integrative Vascular Biology Lab, Max Delbrück Center for Molecular Medicine; Robert-Rössle-Str. 10 13092, Berlin Germany
| | - Ramón Muñoz-Chápuli
- University of Málaga, Faculty of Science, Department of Animal Biology; Málaga Spain
- Andalusian Center for Nanomedicine and Biotechnology (BIONAND); Campanillas Spain
| |
Collapse
|
16
|
Interacting resident epicardium-derived fibroblasts and recruited bone marrow cells form myocardial infarction scar. J Am Coll Cardiol 2015; 65:2057-66. [PMID: 25975467 DOI: 10.1016/j.jacc.2015.03.520] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 02/04/2015] [Accepted: 03/09/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Although efforts continue to find new therapies to regenerate infarcted heart tissue, knowledge of the cellular and molecular mechanisms involved remains poor. OBJECTIVES This study sought to identify the origin of cardiac fibroblasts (CFs) in the infarcted heart to better understand the pathophysiology of ventricular remodeling following myocardial infarction (MI). METHODS Permanent genetic tracing of epicardium-derived cell (EPDC) and bone marrow-derived blood cell (BMC) lineages was established using Cre/LoxP technology. In vivo gene and protein expression studies, as well as in vitro cell culture assays, were developed to characterize EPDC and BMC interaction and properties. RESULTS EPDCs, which colonize the cardiac interstitium during embryogenesis, massively differentiate into CFs after MI. This response is disease-specific, because angiotensin II-induced pressure overload does not trigger significant EPDC fibroblastic differentiation. The expansion of epicardial-derived CFs follows BMC infiltration into the infarct site; the number of EPDCs equals that of BMCs 1 week post-infarction. BMC-EPDC interaction leads to cell polarization, packing, massive collagen deposition, and scar formation. Moreover, epicardium-derived CFs display stromal properties with respect to BMCs, contributing to the sustained recruitment of circulating cells to the damaged zone and the cardiac persistence of hematopoietic progenitors/stem cells after MI. CONCLUSIONS EPDCs, but not BMCs, are the main origin of CFs in the ischemic heart. Adult resident EPDC contribution to the CF compartment is time- and disease-dependent. Our findings are relevant to the understanding of post-MI ventricular remodeling and may contribute to the development of new therapies to treat this disease.
Collapse
|
17
|
Wu M, Li J. Numb family proteins: novel players in cardiac morphogenesis and cardiac progenitor cell differentiation. Biomol Concepts 2015; 6:137-48. [PMID: 25883210 PMCID: PMC4589147 DOI: 10.1515/bmc-2015-0003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/16/2015] [Indexed: 11/15/2022] Open
Abstract
Vertebrate heart formation is a spatiotemporally regulated morphogenic process that initiates with bilaterally symmetric cardiac primordial cells migrating toward the midline to form a linear heart tube. The heart tube then elongates and undergoes a series of looping morphogenesis, followed by expansions of regions that are destined to become primitive heart chambers. During the cardiac morphogenesis, cells derived from the first heart field contribute to the primary heart tube, and cells from the secondary heart field, cardiac neural crest, and pro-epicardial organ are added to the heart tube in a precise spatiotemporal manner. The coordinated addition of these cells and the accompanying endocardial cushion morphogenesis yield the atrial, ventricular, and valvular septa, resulting in the formation of a four-chambered heart. Perturbation of progenitor cells' deployment and differentiation leads to a spectrum of congenital heart diseases. Two of the genes that were recently discovered to be involved in cardiac morphogenesis are Numb and Numblike. Numb, an intracellular adaptor protein, distinguishes sibling cell fates by its asymmetric distribution between the two daughter cells and its ability to inhibit Notch signaling. Numb regulates cardiac progenitor cell differentiation in Drosophila and controls heart tube laterality in Zebrafish. In mice, Numb and Numblike, the Numb family proteins (NFPs), function redundantly and have been shown to be essential for epicardial development, cardiac progenitor cell differentiation, outflow tract alignment, atrioventricular septum morphogenesis, myocardial trabeculation, and compaction. In this review, we will summarize the functions of NFPs in cardiac development and discuss potential mechanisms of NFPs in the regulation of cardiac development.
Collapse
Affiliation(s)
- M Wu
- Cardiovascular Science Center, Albany Medical College, Albany NY 12208
| | - J Li
- Cardiovascular Science Center, Albany Medical College, Albany NY 12208
| |
Collapse
|
18
|
Moazzen H, Lu X, Liu M, Feng Q. Pregestational diabetes induces fetal coronary artery malformation via reactive oxygen species signaling. Diabetes 2015; 64:1431-43. [PMID: 25422104 DOI: 10.2337/db14-0190] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Hypoplastic coronary artery disease is a congenital coronary artery malformation associated with a high risk of sudden cardiac death. However, the etiology and pathogenesis of hypoplastic coronary artery disease remain undefined. Pregestational diabetes increases reactive oxygen species (ROS) levels and the risk of congenital heart defects. We show that pregestational diabetes in mice induced by streptozotocin significantly increased 4-hydroxynonenal production and decreased coronary artery volume in fetal hearts. Pregestational diabetes also impaired epicardial epithelial-to-mesenchymal transition (EMT) as shown by analyses of the epicardium, epicardial-derived cells, and fate mapping. Additionally, the expression of hypoxia-inducible factor 1α (Hif-1α), Snail1, Slug, basic fibroblast growth factor (bFgf), and retinaldehyde dehydrogenase (Aldh1a2) was decreased and E-cadherin expression was increased in the hearts of fetuses of diabetic mothers. Of note, these abnormalities were all rescued by treatment with N-acetylcysteine (NAC) in diabetic females during gestation. Ex vivo analysis showed that high glucose levels inhibited epicardial EMT, which was reversed by NAC treatment. We conclude that pregestational diabetes in mice can cause coronary artery malformation through ROS signaling. This study may provide a rationale for further clinical studies to investigate whether pregestational diabetes could cause hypoplastic coronary artery disease in humans.
Collapse
Affiliation(s)
- Hoda Moazzen
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Xiangru Lu
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Murong Liu
- Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada
| | - Qingping Feng
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada Department of Medicine, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
19
|
Artamonov MV, Jin L, Franke AS, Momotani K, Ho R, Dong XR, Majesky MW, Somlyo AV. Signaling pathways that control rho kinase activity maintain the embryonic epicardial progenitor state. J Biol Chem 2015; 290:10353-67. [PMID: 25733666 DOI: 10.1074/jbc.m114.613190] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Indexed: 12/25/2022] Open
Abstract
This study identifies signaling pathways that play key roles in the formation and maintenance of epicardial cells, a source of progenitors for coronary smooth muscle cells (SMCs). After epithelial to mesenchymal transition (EMT), mesenchymal cells invade the myocardium to form coronary SMCs. RhoA/Rho kinase activity is required for EMT and for differentiation into coronary SMCs, whereas cAMP activity is known to inhibit EMT in epithelial cells by an unknown mechanism. We use outgrowth of epicardial cells from E9.5 isolated mouse proepicardium (PE) explants, wild type and Epac1 null E12.5 mouse heart explants, adult rat epicardial cells, and immortalized mouse embryonic epicardial cells as model systems to identify signaling pathways that regulate RhoA activity to maintain the epicardial progenitor state. We demonstrate that RhoA activity is suppressed in the epicardial progenitor state, that the cAMP-dependent Rap1 GTP exchange factor (GEF), Epac, known to down-regulate RhoA activity through activation of Rap1 GTPase activity increased, that Rap1 activity increased, and that expression of the RhoA antagonistic Rnd proteins known to activate p190RhoGAP increased and associated with p190RhoGAP. Finally, EMT is associated with increased p63RhoGEF and RhoGEF-H1 protein expression, increased GEF-H1 activity, with a trend in increased p63RhoGEF activity. EMT is suppressed by partial silencing of p63RhoGEF and GEF-H1. In conclusion, we have identified new signaling molecules that act together to control RhoA activity and play critical roles in the maintenance of coronary smooth muscle progenitor cells in the embryonic epicardium. We suggest that their eventual manipulation could promote revascularization after myocardial injury.
Collapse
Affiliation(s)
- Mykhaylo V Artamonov
- From the Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908 and
| | - Li Jin
- From the Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908 and
| | - Aaron S Franke
- From the Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908 and
| | - Ko Momotani
- From the Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908 and
| | - Ruoya Ho
- From the Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908 and
| | - Xiu Rong Dong
- Seattle Children's Research Institute, Seattle, Washington 98101
| | - Mark W Majesky
- Seattle Children's Research Institute, Seattle, Washington 98101
| | - Avril V Somlyo
- From the Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908 and
| |
Collapse
|
20
|
Lockhart MM, Phelps AL, van den Hoff MJB, Wessels A. The Epicardium and the Development of the Atrioventricular Junction in the Murine Heart. J Dev Biol 2014; 2:1-17. [PMID: 24926431 PMCID: PMC4051323 DOI: 10.3390/jdb2010001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Insight into the role of the epicardium in cardiac development and regeneration has significantly improved over the past ten years. This is mainly due to the increasing availability of new mouse models for the study of the epicardial lineage. Here we focus on the growing understanding of the significance of the epicardium and epicardially-derived cells in the formation of the atrioventricular (AV) junction. First, through the process of epicardial epithelial-to-mesenchymal transformation (epiEMT), the subepicardial AV mesenchyme is formed. Subsequently, the AV-epicardium and epicardially-derived cells (EPDCs) form the annulus fibrosus, a structure important for the electrical separation of atrial and ventricular myocardium. Finally, the AV-EPDCs preferentially migrate into the parietal AV valve leaflets, largely replacing the endocardially-derived cell population. In this review, we provide an overview of what is currently known about the regulation of the events involved in this process.
Collapse
Affiliation(s)
- Marie M Lockhart
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (M.M.L.); (A.L.P.)
| | - Aimee L Phelps
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (M.M.L.); (A.L.P.)
| | - Maurice J B van den Hoff
- Academic Medical Center, Heart Failure Research Center, Department of Anatomy, Embryology and Physiology, Meibergdreef 15, 1105AZ, Amsterdam, The Netherlands;
| | - Andy Wessels
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (M.M.L.); (A.L.P.)
| |
Collapse
|
21
|
|
22
|
Cano E, Carmona R, Muñoz-Chápuli R. Wt1-expressing progenitors contribute to multiple tissues in the developing lung. Am J Physiol Lung Cell Mol Physiol 2013; 305:L322-32. [PMID: 23812634 DOI: 10.1152/ajplung.00424.2012] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lungs develop from paired endodermal outgrowths surrounded by a mesodermal mesenchyme. Part of this mesenchyme arises from epithelial-mesenchymal transition of the mesothelium that lines the pulmonary buds. Previous studies have shown that this mesothelium-derived mesenchyme contributes to the smooth muscle of the pulmonary vessels, but its significance for lung morphogenesis and its developmental fate are still little known. We have studied this issue using the transgenic mouse model mWt1/IRES/GFP-Cre (Wt1cre) crossed with the Rosa26R-EYFP reporter mouse. In the developing lungs, Wt1, the Wilms' tumor suppressor gene, is specifically expressed in the embryonic mesothelium. In the embryos obtained from the crossbreeding, the Wt1-expressing cell lineage produces the yellow fluorescent protein (YFP), allowing for colocalization with differentiation markers. Wt1cre-YFP cells were very abundant from the origin of the lung buds to postnatal stages, contributing significantly to pulmonary endothelial and smooth muscle cells, bronchial musculature, tracheal and bronchial cartilage, as well as CD34⁺ fibroblast-like interstitial cells. Thus Wt1cre-YFP mesenchymal cells show the very same differentiation potential as the splanchnopleural mesenchyme surrounding the lung buds. FSP1⁺ fibroblast-like cells were always YFP⁻; they expressed the common leukocyte antigen CD45 and were apparently recruited from circulating progenitors. We have also found defects in pulmonary development in Wt1-/- embryos, which showed abnormally fused lung lobes, round-shaped and reduced pleural cavities, and diaphragmatic hernia. Our results suggest a novel role for the embryonic mesothelium-derived cells in lung morphogenesis and involve the Wilms' tumor suppressor gene in the development of this organ.
Collapse
Affiliation(s)
- Elena Cano
- Dept. of Animal Biology, Faculty of Sciences, Univ. of Málaga, 29071 Málaga, Spain.
| | | | | |
Collapse
|
23
|
|
24
|
Ruiz-Villalba A, Ziogas A, Ehrbar M, Pérez-Pomares JM. Characterization of epicardial-derived cardiac interstitial cells: differentiation and mobilization of heart fibroblast progenitors. PLoS One 2013; 8:e53694. [PMID: 23349729 PMCID: PMC3548895 DOI: 10.1371/journal.pone.0053694] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 12/03/2012] [Indexed: 11/19/2022] Open
Abstract
The non-muscular cells that populate the space found between cardiomyocyte fibers are known as ‘cardiac interstitial cells’ (CICs). CICs are heterogeneous in nature and include different cardiac progenitor/stem cells, cardiac fibroblasts and other cell types. Upon heart damage CICs soon respond by initiating a reparative response that transforms with time into extensive fibrosis and heart failure. Despite the biomedical relevance of CICs, controversy remains on the ontogenetic relationship existing between the different cell kinds homing at the cardiac interstitium, as well as on the molecular signals that regulate their differentiation, maturation, mutual interaction and role in adult cardiac homeostasis and disease. Our work focuses on the analysis of epicardial-derived cells, the first cell type that colonizes the cardiac interstitium. We present here a characterization and an experimental analysis of the differentiation potential and mobilization properties of a new cell line derived from mouse embryonic epicardium (EPIC). Our results indicate that these cells express some markers associated with cardiovascular stemness and retain part of the multipotent properties of embryonic epicardial derivatives, spontaneously differentiating into smooth muscle, and fibroblast/myofibroblast-like cells. Epicardium-derived cells are also shown to initiate a characteristic response to different growth factors, to display a characteristic proteolytic expression profile and to degrade biological matrices in 3D in vitro assays. Taken together, these data indicate that EPICs are relevant to the analysis of epicardial-derived CICs, and are a god model for the research on cardiac fibroblasts and the role these cells play in ventricular remodeling in both ischemic or non/ischemic myocardial disease.
Collapse
Affiliation(s)
- Adrián Ruiz-Villalba
- Department of Animal Biology, Faculty of Science, University of Málaga, Málaga, Spain
| | - Algirdas Ziogas
- Department of Obstetrics, University Hospital Zürich, Zürich, Switzerland
| | - Martin Ehrbar
- Department of Obstetrics, University Hospital Zürich, Zürich, Switzerland
| | - José M. Pérez-Pomares
- Department of Animal Biology, Faculty of Science, University of Málaga, Málaga, Spain
- * E-mail:
| |
Collapse
|
25
|
Nakajima Y, Imanaka-Yoshida K. New insights into the developmental mechanisms of coronary vessels and epicardium. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 303:263-317. [PMID: 23445813 DOI: 10.1016/b978-0-12-407697-6.00007-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
During heart development, the epicardium, which originates from the proepicardial organ (PE), is a source of coronary vessels. The PE develops from the posterior visceral mesoderm of the pericardial coelom after stimulation with a combination of weak bone morphogenetic protein and strong fibroblast growth factor (FGF) signaling. PE-derived cells migrate across the heart surface to form the epicardial sheet, which subsequently seeds multipotent subepicardial mesenchymal cells via epithelial-mesenchymal transition, which is regulated by several signaling pathways including retinoic acid, FGF, sonic hedgehog, Wnt, transforming growth factor-β, and platelet-derived growth factor. Subepicardial endothelial progenitors eventually generate the coronary vascular plexus, which acquires an arterial or venous phenotype, connects with the sinus venosus and aortic sinuses, and then matures through the recruitment of vascular smooth muscle cells under the regulation of complex growth factor signaling pathways. These developmental programs might be activated in the adult heart after injury and play a role in the regeneration/repair of the myocardium.
Collapse
Affiliation(s)
- Yuji Nakajima
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Osaka City University, Osaka, Japan.
| | | |
Collapse
|
26
|
Smart N, Dubé KN, Riley PR. Epicardial progenitor cells in cardiac regeneration and neovascularisation. Vascul Pharmacol 2012; 58:164-73. [PMID: 22902355 DOI: 10.1016/j.vph.2012.08.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 07/31/2012] [Accepted: 08/06/2012] [Indexed: 01/14/2023]
Abstract
While cardiovascular diseases remain the major worldwide cause of mortality and morbidity, there is an urgent need to tackle the clinical and economic burden of heart failure. Since the mammalian heart is unable to adequately regenerate beyond early postnatal stages, individuals surviving acute myocardial infarction are at risk of heart failure. Understanding the embryonic mechanisms of vasculogenesis and cardiogenesis, as well as the mechanisms retained for regeneration in species such as the zebrafish, will inform on strategies for human myocardial repair. Due to their fundamental role in heart development, epicardium-derived cells (EPDCs) have emerged as a population with potential to restore myocardium and coronary vasculature. The ability to revive ordinarily dormant EPDCs lies in the identification of key molecular cues used in the embryo to orchestrate cardiovascular development. One such stimulatory factor, Thymosin β4 (Tβ4), restores the quiescent adult epicardium to its pluripotent embryonic state. Tβ4 treatment of infarcted hearts induces dramatic EPDC proliferation and formation of a network of perfused, functional vessels to enhance blood flow to the ischaemic myocardium. Moreover, Tβ4 facilitates an epicardial contribution of mature de novo cardiomyocytes, structurally and functionally coupled with resident myocardium, which may contribute towards the functional improvement of Tβ4-treated hearts post-MI.
Collapse
Affiliation(s)
- Nicola Smart
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK.
| | | | | |
Collapse
|
27
|
Gittenberger-de Groot AC, Winter EM, Bartelings MM, Goumans MJ, DeRuiter MC, Poelmann RE. The arterial and cardiac epicardium in development, disease and repair. Differentiation 2012; 84:41-53. [PMID: 22652098 DOI: 10.1016/j.diff.2012.05.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 04/27/2012] [Accepted: 05/02/2012] [Indexed: 02/01/2023]
Abstract
The importance of the epicardium covering the heart and the intrapericardial part of the great arteries has reached a new summit. It has evolved as a major cellular component with impact both in development, disease and more recently also repair potential. The role of the epicardium in development, its differentiation from a proepicardial organ at the venous pole (vPEO) and the differentiation capacities of the vPEO initiating cardiac epicardium (cEP) into epicardium derived cells (EPDCs) have been extensively described in recent reviews on growth and transcription factor pathways. In short, the epicardium is the source of the interstitial, the annulus fibrosus and the adventitial fibroblasts, and differentiates into the coronary arterial smooth muscle cells. Furthermore, EPDCs induce growth of the compact myocardium and differentiation of the Purkinje fibers. This review includes an arterial pole located PEO (aPEO) that provides the epicardium covering the intrapericardial great vessels. In avian and mouse models disturbance of epicardial outgrowth and maturation leads to a broad spectrum of cardiac anomalies with main focus on non-compaction of the myocardium, deficient annulus fibrosis, valve malformations and coronary artery abnormalities. The discovery that in disease both arterial and cardiac epicardium can again differentiate into EPDCs and thus reactivate its embryonic program and potential has highly broadened the scope of research interest. This reactivation is seen after myocardial infarction and also in aneurysm formation of the ascending aorta. Use of EPDCs for cell therapy show their positive function in paracrine mediated repair processes which can be additive when combined with the cardiac progenitor stem cells that probably share the same embryonic origin with EPDCs. Research into the many cell-autonomous and cell-cell-based capacities of the adult epicardium will open up new realistic therapeutic avenues.
Collapse
Affiliation(s)
- Adriana C Gittenberger-de Groot
- Department of Cardiology, Leiden University Medical Center, Postal zone: S-5-24, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
28
|
Baek ST, Tallquist MD. Nf1 limits epicardial derivative expansion by regulating epithelial to mesenchymal transition and proliferation. Development 2012; 139:2040-9. [PMID: 22535408 DOI: 10.1242/dev.074054] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The epicardium is the primary source of coronary vascular smooth muscle cells (cVSMCs) and fibroblasts that reside in the compact myocardium. To form these epicardial-derived cells (EPDCs), the epicardium undergoes the process of epithelial to mesenchymal transition (EMT). Although several signaling pathways have been identified that disrupt EMT, no pathway has been reported that restricts this developmental process. Here, we identify neurofibromin 1 (Nf1) as a key mediator of epicardial EMT. To determine the function of Nf1 during epicardial EMT and the formation of epicardial derivatives, cardiac fibroblasts and cVSMCs, we generated mice with a tissue-specific deletion of Nf1 in the epicardium. We found that mutant epicardial cells transitioned more readily to mesenchymal cells in vitro and in vivo. The mesothelial epicardium lost epithelial gene expression and became more invasive. Using lineage tracing of EPDCs, we found that the process of EMT occurred earlier in Nf1 mutant hearts, with an increase in epicardial cells entering the compact myocardium. Moreover, loss of Nf1 caused increased EPDC proliferation and resulted in more cardiac fibroblasts and cVSMCs. Finally, we were able to partially reverse the excessive EMT caused by loss of Nf1 by disrupting Pdgfrα expression in the epicardium. Conversely, Nf1 activation was able to inhibit PDGF-induced epicardial EMT. Our results demonstrate a regulatory role for Nf1 during epicardial EMT and provide insights into the susceptibility of patients with disrupted NF1 signaling to cardiovascular disease.
Collapse
Affiliation(s)
- Seung Tae Baek
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | | |
Collapse
|
29
|
Abstract
The epicardium, the tissue layer covering the cardiac muscle (myocardium), develops from the proepicardium, a mass of coelomic progenitors located at the venous pole of the embryonic heart. Proepicardium cells attach to and spread over the myocardium to form the primitive epicardial epithelium. The epicardium subsequently undergoes an epithelial-to-mesenchymal transition to give rise to a population of epicardium-derived cells, which in turn invade the heart and progressively differentiate into various cell types, including cells of coronary blood vessels and cardiac interstitial cells. Epicardial cells and epicardium-derived cells signal to the adjacent cardiac muscle in a paracrine fashion, promoting its proliferation and expansion. Recently, high expectations have been raised about the epicardium as a candidate source of cells for the repair of the damaged heart. Because of its developmental importance and therapeutic potential, current research on this topic focuses on the complex signals that control epicardial biology. This review describes the signaling pathways involved in the different stages of epicardial development and discusses the potential of epicardial signals as targets for the development of therapies to repair the diseased heart.
Collapse
|
30
|
Abstract
Abstract
The embryonic heart initially consists of only two cell layers, the endocardium and the myocardium. The epicardium, which forms an epithelial layer on the surface of the heart, is derived from a cluster of mesothelial cells developing at the base of the venous inflow tract of the early embryonic heart. This cell cluster is termed the proepicardium and gives rise not only to the epicardium but also to epicardium-derived cells. These cells populate the myocardial wall and differentiate into smooth muscle cells and fibroblasts, while the contribution to the vascular endothelial lineage is uncertain. In this review we will discuss the signaling molecules involved in recruiting mesodermal cells to undergo proepicardium formation and guide these cells to the myocardial surface. Marker genes which are suitable to follow these cells during proepicardium formation and cell migration will be introduced. We will address whether the proepicardium consists of a homogenous cell population or whether different cell lineages are present. Finally the role of the epicardium as a source for cardiac stem cells and its importance in cardiac regeneration, in particular in the zebrafish and mouse model systems is discussed.
Collapse
Affiliation(s)
- Jan Schlueter
- 1Harefield Heart Science Centre, National Heart
and Lung Institute, Imperial College London, Hill End Road, Harefield,
Middlesex, UB9 6JH, United Kingdom
| | - Thomas Brand
- 1Harefield Heart Science Centre, National Heart
and Lung Institute, Imperial College London, Hill End Road, Harefield,
Middlesex, UB9 6JH, United Kingdom
| |
Collapse
|
31
|
Matthes SA, Taffet S, Delmar M. Plakophilin-2 and the migration, differentiation and transformation of cells derived from the epicardium of neonatal rat hearts. ACTA ACUST UNITED AC 2011; 18:73-84. [PMID: 21985446 DOI: 10.3109/15419061.2011.621561] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During development, epicardial cells act as progenitors for a large fraction of non-myocyte cardiac cells. Expression and function of molecules of the desmosome in the postnatal epicardium has not been studied. The objective of this study was to assess the expression of desmosomal molecules, and the functional importance of the desmosomal protein plakophilin-2 (PKP2), in epicardial and epicardium-derived cells. Epicardial explants were obtained from neonatal rat hearts. Presence of mechanical junction proteins was assessed by immunocytochemistry. Explants after PKP2 knockdown showed increased abundance of alpha smooth muscle actin-positive cells, increased abundance of lipid markers, enhanced cell migration velocity and increased abundance of a marker of cell proliferation. We conclude that a population of non-excitable, cardiac-resident cells express desmosomal molecules and, in vitro, show functional properties (including lipid accumulation) that depend on PKP2 expression. The possible relevance of our data to the pathophysiology of arrhythmogenic right ventricular cardiomyopathy, is discussed.
Collapse
Affiliation(s)
- Stephanie A Matthes
- Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | | |
Collapse
|
32
|
Smith CL, Baek ST, Sung CY, Tallquist MD. Epicardial-derived cell epithelial-to-mesenchymal transition and fate specification require PDGF receptor signaling. Circ Res 2011; 108:e15-26. [PMID: 21512159 DOI: 10.1161/circresaha.110.235531] [Citation(s) in RCA: 255] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
RATIONALE In early heart development, platelet-derived growth factor (PDGF) receptor expression in the heart ventricles is restricted to the epicardium. Previously, we showed that PDGFRβ is required for coronary vascular smooth muscle cell (cVSMC) development, but a role for PDGFRα has not been identified. Therefore, we investigated the combined and independent roles of these receptors in epicardial development. OBJECTIVE To understand the contribution of PDGF receptors in epicardial development and epicardial-derived cell fate determination. METHODS AND RESULTS By generating mice with epicardial-specific deletion of the PDGF receptors, we found that epicardial epithelial-to-mesenchymal transition (EMT) was defective. Sox9, an SRY-related transcription factor, was reduced in PDGF receptor-deficient epicardial cells, and overexpression of Sox9 restored epicardial migration, actin reorganization, and EMT gene expression profiles. The failure of epicardial EMT resulted in hearts that lacked epicardial-derived cardiac fibroblasts and cVSMC. Loss of PDGFRα resulted in a specific disruption of cardiac fibroblast development, whereas cVSMC development was unperturbed. CONCLUSIONS Signaling through both PDGF receptors is necessary for epicardial EMT and formation of epicardial-mesenchymal derivatives. PDGF receptors also have independent functions in the development of specific epicardial-derived cell fates.
Collapse
Affiliation(s)
- Christopher L Smith
- Department of Molecular Biology, MC9148, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | | | | | | |
Collapse
|
33
|
Hanato T, Nakagawa M, Okamoto N, Nishijima S, Fujino H, Shimada M, Takeuchi Y, Imanaka-Yoshida K. Developmental defects of coronary vasculature in rat embryos administered bis-diamine. ACTA ACUST UNITED AC 2010; 92:10-6. [PMID: 21312320 DOI: 10.1002/bdrb.20279] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 10/08/2010] [Indexed: 12/28/2022]
Abstract
BACKGROUND Conotruncal anomalies are often associated with abnormal coronary arteries. Although bis-diamine is known to induce conotruncal defects, its pathological effects on coronary vascular development have not been demonstrated. This study sought to assess the teratogenic effects of bis-diamine on coronary vascular development and the pathogenesis of this anomalous association. METHODS AND RESULTS A single 200 mg dose of bis-diamine was administered to pregnant Wistar rats at 10.5 days of gestation. Fifty-two embryos from 10 mother rats underwent morphological analysis of the coronary arteries. Three embryos each were removed from four mothers on embryonic days (ED) 14.5, 15.5, 16.5, and 17.5 and used for immunohistochemical studies using the anti-vascular cell adhesion molecule (VCAM)-1 antibody. Conotruncal anomalies were detected in 48 of 52 embryos, and an aplastic or hypoplastic left coronary artery was found in all of them. In control embryos at ED 16.5, VCAM-1-positive epicardial cells were transformed into mesenchymal cells in vascular plexus, which appeared to differentiate into the endothelial cells of coronary vasculature. In the heart at ED 17.5, coronary vasculature was well developed and connected with coronary ostia near the aorta. However, poor epicardial-mesenchymal transformation and subsequent differentiation was revealed in bis-diamine-treated embryos at EDs 16.5 and 17.5, causing abnormal development of the coronary vasculature and incomplete connections with coronary ostia of the aorta. CONCLUSIONS Anomalous coronary arteries in the bis-diamine-treated embryos are induced by the disruption of epicardial-mesenchymal transformation and subsequent poor development of coronary vasculature. Incomplete hatching of the coronary ostium is associated with abnormal truncal division.
Collapse
Affiliation(s)
- Takashi Hanato
- Department of Pediatrics, Shiga University of Medical Science, Otsu, Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
van Wijk B, van den Hoff M. Epicardium and myocardium originate from a common cardiogenic precursor pool. Trends Cardiovasc Med 2010; 20:1-7. [PMID: 20685570 DOI: 10.1016/j.tcm.2010.02.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
During development, the epicardium, an epithelial layer that covers the heart, gives rise to a large portion of the nonmyocardial cells present in the heart. The epicardium arises from a structure, called the proepicardium, which forms at the inflow of the developing heart. By epithelial-to-mesenchymal transformation, mesenchymal cells are formed that will subsequently populate the stroma of the proepicardium and the subepicardium. Based on labeling analysis, the proepicardium and part of the myocardium have been shown to be derived from a common cardiogenic precursor population. In this review, we will discuss the common cardiogenic origin of proepicardial and myocardial cells, the underlying processes and factors that play a role in the separation of the lineages, and their potential role in cardiac regenerative approaches.
Collapse
Affiliation(s)
- Bram van Wijk
- Heart Failure Research Center, Academic Medical Center, 1105AZ Amsterdam, The Netherlands
| | | |
Collapse
|
35
|
Norris RA, Moreno-Rodriguez R, Wessels A, Merot J, Bruneval P, Chester AH, Yacoub MH, Hagège A, Slaugenhaupt SA, Aikawa E, Schott JJ, Lardeux A, Harris BS, Williams LK, Richards A, Levine RA, Markwald RR. Expression of the familial cardiac valvular dystrophy gene, filamin-A, during heart morphogenesis. Dev Dyn 2010; 239:2118-27. [PMID: 20549728 DOI: 10.1002/dvdy.22346] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Myxoid degeneration of the cardiac valves is a common feature in a heterogeneous group of disorders that includes Marfan syndrome and isolated valvular diseases. Mitral valve prolapse is the most common outcome of these and remains one of the most common indications for valvular surgery. While the etiology of the disease is unknown, recent genetic studies have demonstrated that an X-linked form of familial cardiac valvular dystrophy can be attributed to mutations in the Filamin-A gene. Since these inheritable mutations are present from conception, we hypothesize that filamin-A mutations present at the time of valve morphogenesis lead to dysfunction that progresses postnatally to clinically relevant disease. Therefore, by carefully evaluating genetic factors (such as filamin-A) that play a substantial role in MVP, we can elucidate relevant developmental pathways that contribute to its pathogenesis. In order to understand how developmental expression of a mutant protein can lead to valve disease, the spatio-temporal distribution of filamin-A during cardiac morphogenesis must first be characterized. Although previously thought of as a ubiquitously expressed gene, we demonstrate that filamin-A is robustly expressed in non-myocyte cells throughout cardiac morphogenesis including epicardial and endocardial cells, and mesenchymal cells derived by EMT from these two epithelia, as well as mesenchyme of neural crest origin. In postnatal hearts, expression of filamin-A is significantly decreased in the atrioventricular and outflow tract valve leaflets and their suspensory apparatus. Characterization of the temporal and spatial expression pattern of filamin-A during cardiac morphogenesis is a crucial first step in our understanding of how mutations in filamin-A result in clinically relevant valve disease.
Collapse
Affiliation(s)
- R A Norris
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, Children's Research Institute, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Azambuja AP, Portillo-Sánchez V, Rodrigues MV, Omae SV, Schechtman D, Strauss BE, Costanzi-Strauss E, Krieger JE, Perez-Pomares JM, Xavier-Neto J. Retinoic Acid and VEGF Delay Smooth Muscle Relative to Endothelial Differentiation to Coordinate Inner and Outer Coronary Vessel Wall Morphogenesis. Circ Res 2010; 107:204-16. [DOI: 10.1161/circresaha.109.214650] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Ana P. Azambuja
- From the Laboratory of Genetics and Molecular Cardiology (A.P.A., M.V.R., S.V.O., B.E.S., J.E.K., J.X.-N.), Heart Institute; Department of Development and Cell Biology (A.P.A., E.C.-S.); and Department of Biochemistry (D.S.), Chemistry Institute, University of São Paulo, Brazil; and Department of Animal Biology (V.P.-S., J.M.P.-P.), University of Málaga, Spain
| | - Victor Portillo-Sánchez
- From the Laboratory of Genetics and Molecular Cardiology (A.P.A., M.V.R., S.V.O., B.E.S., J.E.K., J.X.-N.), Heart Institute; Department of Development and Cell Biology (A.P.A., E.C.-S.); and Department of Biochemistry (D.S.), Chemistry Institute, University of São Paulo, Brazil; and Department of Animal Biology (V.P.-S., J.M.P.-P.), University of Málaga, Spain
| | - Mariliza V. Rodrigues
- From the Laboratory of Genetics and Molecular Cardiology (A.P.A., M.V.R., S.V.O., B.E.S., J.E.K., J.X.-N.), Heart Institute; Department of Development and Cell Biology (A.P.A., E.C.-S.); and Department of Biochemistry (D.S.), Chemistry Institute, University of São Paulo, Brazil; and Department of Animal Biology (V.P.-S., J.M.P.-P.), University of Málaga, Spain
| | - Samantha V. Omae
- From the Laboratory of Genetics and Molecular Cardiology (A.P.A., M.V.R., S.V.O., B.E.S., J.E.K., J.X.-N.), Heart Institute; Department of Development and Cell Biology (A.P.A., E.C.-S.); and Department of Biochemistry (D.S.), Chemistry Institute, University of São Paulo, Brazil; and Department of Animal Biology (V.P.-S., J.M.P.-P.), University of Málaga, Spain
| | - Deborah Schechtman
- From the Laboratory of Genetics and Molecular Cardiology (A.P.A., M.V.R., S.V.O., B.E.S., J.E.K., J.X.-N.), Heart Institute; Department of Development and Cell Biology (A.P.A., E.C.-S.); and Department of Biochemistry (D.S.), Chemistry Institute, University of São Paulo, Brazil; and Department of Animal Biology (V.P.-S., J.M.P.-P.), University of Málaga, Spain
| | - Bryan E. Strauss
- From the Laboratory of Genetics and Molecular Cardiology (A.P.A., M.V.R., S.V.O., B.E.S., J.E.K., J.X.-N.), Heart Institute; Department of Development and Cell Biology (A.P.A., E.C.-S.); and Department of Biochemistry (D.S.), Chemistry Institute, University of São Paulo, Brazil; and Department of Animal Biology (V.P.-S., J.M.P.-P.), University of Málaga, Spain
| | - Eugenia Costanzi-Strauss
- From the Laboratory of Genetics and Molecular Cardiology (A.P.A., M.V.R., S.V.O., B.E.S., J.E.K., J.X.-N.), Heart Institute; Department of Development and Cell Biology (A.P.A., E.C.-S.); and Department of Biochemistry (D.S.), Chemistry Institute, University of São Paulo, Brazil; and Department of Animal Biology (V.P.-S., J.M.P.-P.), University of Málaga, Spain
| | - José E. Krieger
- From the Laboratory of Genetics and Molecular Cardiology (A.P.A., M.V.R., S.V.O., B.E.S., J.E.K., J.X.-N.), Heart Institute; Department of Development and Cell Biology (A.P.A., E.C.-S.); and Department of Biochemistry (D.S.), Chemistry Institute, University of São Paulo, Brazil; and Department of Animal Biology (V.P.-S., J.M.P.-P.), University of Málaga, Spain
| | - José M. Perez-Pomares
- From the Laboratory of Genetics and Molecular Cardiology (A.P.A., M.V.R., S.V.O., B.E.S., J.E.K., J.X.-N.), Heart Institute; Department of Development and Cell Biology (A.P.A., E.C.-S.); and Department of Biochemistry (D.S.), Chemistry Institute, University of São Paulo, Brazil; and Department of Animal Biology (V.P.-S., J.M.P.-P.), University of Málaga, Spain
| | - José Xavier-Neto
- From the Laboratory of Genetics and Molecular Cardiology (A.P.A., M.V.R., S.V.O., B.E.S., J.E.K., J.X.-N.), Heart Institute; Department of Development and Cell Biology (A.P.A., E.C.-S.); and Department of Biochemistry (D.S.), Chemistry Institute, University of São Paulo, Brazil; and Department of Animal Biology (V.P.-S., J.M.P.-P.), University of Málaga, Spain
| |
Collapse
|
37
|
Craig EA, Austin AF, Vaillancourt RR, Barnett JV, Camenisch TD. TGFβ2-mediated production of hyaluronan is important for the induction of epicardial cell differentiation and invasion. Exp Cell Res 2010; 316:3397-405. [PMID: 20633555 DOI: 10.1016/j.yexcr.2010.07.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 06/27/2010] [Accepted: 07/03/2010] [Indexed: 01/02/2023]
Abstract
In the developing heart, the epicardium is a major source of progenitor cells that contribute to the formation of the coronary vessel system. These epicardial progenitors give rise to the different cellular components of the coronary vasculature by undergoing a number of morphological and physiological changes collectively known as epithelial to mesenchymal transformation (EMT). However, the specific signaling mechanisms that regulate epicardial EMT are yet to be delineated. In this study we investigated the role of TGFβ2 and hyaluronan (HA) during epicardial EMT and how signals from these two molecules are integrated during this important process. Here we show that TGFβ2 induces MEKK3 activation, which in turn promotes ERK1/2 and ERK5 phosphorylation. TGFβ2 also increases Has2 expression and subsequent HA production. Nevertheless, inhibition of MEKK3 kinase activity, silencing of ERK5 or pharmacological disruption of ERK1/2 activation significantly abrogates this response. Thus, TGFβ2 promotes Has2 expression and HA production through a MEKK3/ERK1/2/5-dependent cascade. Furthermore, TGFβ2 is able to induce epicardial cell invasion and differentiation but not proliferation. However, inhibition of MEKK3-dependent pathways, degradation of HA by hyaluronidases or blockade of CD44, significantly impairs the biological response to TGFβ2. Taken together, these findings demonstrate that TGFβ2 activation of MEKK3/ERK1/2/5 signaling modulates Has2 expression and HA production leading to the induction of EMT events. This is an important and novel mechanism showing how TGFβ2 and HA signals are integrated to regulate changes in epicardial cell behavior.
Collapse
Affiliation(s)
- Evisabel A Craig
- Department of Pharmacology and Toxicology, The University of Arizona, Tucson, AZ 85721, USA
| | | | | | | | | |
Collapse
|
38
|
González-Rosa JM, Padrón-Barthe L, Torres M, Mercader N. [Lineage tracing of epicardial cells during development and regeneration]. Rev Esp Cardiol 2010; 63 Suppl 2:36-48. [PMID: 20540899 DOI: 10.1016/s0300-8932(10)70151-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Tracing the history of individual cells during embryonic morphogenesis in a structure as complex as the cardiovascular system is one of the major challenges of developmental biology. It involves determining the relationships between the various lineages of cells forming an organ at different stages, describing the topological rearrangements tissues undergo during morphogenesis, and characterizing the interactions between cells in different structures. However, despite the great expectations raised in the field of regenerative medicine, only limited progress has been made in using regenerative therapy to repair the cardiovascular system. Recent research has highlighted the role of the epicardium during cardiac regeneration, but it is still unclear whether it is important for molecular signaling or acts as a source of progenitor cells during this process. Consequently, increasing knowledge about the origin, diversification and potential of epicardial cells during development and homeostasis and under pathological conditions is of fundamental importance both for basic research and for the development of effective cellular therapies. The aims of this article were to provide a general overview of the classical techniques used for tracing cell lineages, including their potential and limitations, and to describe novel techniques for studying the origin and differentiation of the epicardium and its role in cardiac regeneration.
Collapse
Affiliation(s)
- Juan Manuel González-Rosa
- Departamento de Biología del Desarrollo Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares, Instituto de Salud Carlos III, Madrid, España
| | | | | | | |
Collapse
|
39
|
Craig EA, Parker P, Austin AF, Barnett JV, Camenisch TD. Involvement of the MEKK1 signaling pathway in the regulation of epicardial cell behavior by hyaluronan. Cell Signal 2010; 22:968-76. [PMID: 20159036 PMCID: PMC2846756 DOI: 10.1016/j.cellsig.2010.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 02/09/2010] [Accepted: 02/09/2010] [Indexed: 01/04/2023]
Abstract
During embryonic development, cells comprising the outermost layer of the heart or epicardium play a critical role in the formation of the coronary vasculature. Thus, uncovering the molecular mechanisms that govern epicardial cell behavior is imperative to better understand the etiology of cardiovascular diseases. In this study, we investigated the function of hyaluronan (HA), a major component of the extracellular matrix, in the modulation of epicardial signaling. We show that stimulation of epicardial cells with high molecular weight HA (HMW-HA) promotes the association of MEKK1 with the HA receptor CD44 and induces MEKK1 phosphorylation. This leads to the activation of two distinct pathways, one ERK-dependent and another NFkappaB-dependent. Furthermore, HMW-HA stimulates epicardial cells to differentiate and invade, as suggested by increased vimentin expression and enhanced invasion through a collagen matrix. Blockade of CD44, transfection with a kinase-inactive MEKK1 construct or the use of ERK1/2 and NFkappaB inhibitors significantly abrogates the invasive response to HMW-HA. Together, these findings suggest an important role for HA in the regulation of epicardial cell fate via activation of MEKK1 signaling cascades.
Collapse
Affiliation(s)
- Evisabel A. Craig
- Department of Pharmacology and Toxicology, The University of Arizona, Tucson, Arizona
| | - Patti Parker
- Department of Pharmacology and Toxicology, The University of Arizona, Tucson, Arizona
| | - Anita F. Austin
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Joey V. Barnett
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Todd D. Camenisch
- Department of Pharmacology and Toxicology, The University of Arizona, Tucson, Arizona
- Steele Children’s Research Center and Bio5 Institute, The University of Arizona, Tucson, Arizona
| |
Collapse
|
40
|
Abstract
The establishment of the coronary circulation is critical for the development of the embryonic heart. Over the last several years, there has been tremendous progress in elucidating the pathways that control coronary development. Interestingly, many of the pathways that regulate the development of the coronary vasculature are distinct from those governing vasculogenesis in the rest of the embryo. It is becoming increasingly clear that coronary development depends on a complex communication between the epicardium, the subepicardial mesenchyme, and the myocardium mediated in part by secreted growth factors. This communication coordinates the growth of the myocardium with the formation of the coronary vasculature. This review summarizes our present understanding of the role of these growth factors in the regulation of coronary development. Continued progress in this field holds the potential to lead to novel therapeutics for the treatment of patients with coronary artery disease.
Collapse
Affiliation(s)
- Harold E Olivey
- Section of Cardiology, Department of Medicine, University of Chicago, 5841 S Maryland Ave, Chicago, IL 60637, USA
| | | |
Collapse
|
41
|
Misra RP. The role of serum response factor in early coronary vasculogenesis. Pediatr Cardiol 2010; 31:400-7. [PMID: 20091302 PMCID: PMC3866703 DOI: 10.1007/s00246-009-9614-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 12/08/2009] [Indexed: 11/24/2022]
Affiliation(s)
- Ravi P. Misra
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA,
| |
Collapse
|
42
|
Wengerhoff SM, Weiss AR, Dwyer KL, Dettman RW. A migratory role for EphrinB ligands in avian epicardial mesothelial cells. Dev Dyn 2009; 239:598-609. [DOI: 10.1002/dvdy.22163] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
43
|
Nesbitt TL, Roberts A, Tan H, Junor L, Yost MJ, Potts JD, Dettman RW, Goodwin RL. Coronary endothelial proliferation and morphogenesis are regulated by a VEGF-mediated pathway. Dev Dyn 2009; 238:423-30. [PMID: 19161222 DOI: 10.1002/dvdy.21847] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Though development of the coronary vasculature is a critical event during embryogenesis, the molecular mechanisms that regulate its formation are not well characterized. Two unique approaches were used to investigate interactions between cardiac myocytes and proepicardial (PE) cells, which are the coronary anlagen. One of these experimental approaches used a 3-D collagen scaffold system on which specific cell-cell and cell-matrix interactions were studied. The other approach used a whole heart culture system that allowed for the analysis of epicardial to mesenchymal transformation (EMT). The VEGF signaling system has been implicated previously as an important regulator of coronary development. Our results demonstrated that a specific isoform of VEGF-A, VEGF(164), increased PE-derived endothelial cell proliferation and also increased EMT. However, VEGF-stimulated endothelial cells did not robustly coalesce into endothelial tubes as they did when cocultured with cardiac myocytes. Interestingly, blocking VEGF signaling via flk-1 inhibition reduced endothelial tube formation despite the presence of cardiac myocytes. These results indicate that VEGF signaling is complex during coronary development and that combinatorial signaling by other VEGF-A isoforms or other flk-1-binding VEGFs are likely to regulate endothelial tube formation.
Collapse
Affiliation(s)
- Tresa L Nesbitt
- Departments of Cell and Developmental Biology and Surgery, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Smart N, Dubé KN, Riley PR. Coronary vessel development and insight towards neovascular therapy. Int J Exp Pathol 2009; 90:262-83. [PMID: 19563610 PMCID: PMC2697550 DOI: 10.1111/j.1365-2613.2009.00646.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Accepted: 12/21/2008] [Indexed: 12/20/2022] Open
Abstract
Formation of the coronary arteries consists of a precisely orchestrated series of morphogenetic and molecular events which can be divided into three distinct processes: vasculogenesis, angiogenesis and arteriogenesis (Risau 1997; Carmeliet 2000). Even subtle perturbations in this process may lead to congenital coronary artery anomalies, as occur in 0.2-1.2% of the general population (von Kodolitsch et al. 2004). Contrary to the previously held dogma, the process of vasculogenesis is not limited to prenatal development. Both vasculogenesis and angiogenesis are now known to actively occur within the adult heart. When the need for regeneration arises, for example in the setting of coronary artery disease, a reactivation of embryonic processes ensues, redeploying many of the same molecular regulators. Thus, an understanding of the mechanisms of embryonic coronary vasculogenesis and angiogenesis may prove invaluable in developing novel strategies for cardiovascular regeneration and therapeutic coronary angiogenesis.
Collapse
Affiliation(s)
- Nicola Smart
- Molecular Medicine Unit, UCL-Institute of Child Health, London, UK
| | | | | |
Collapse
|
45
|
Savolainen SM, Foley JF, Elmore SA. Histology atlas of the developing mouse heart with emphasis on E11.5 to E18.5. Toxicol Pathol 2009; 37:395-414. [PMID: 19359541 DOI: 10.1177/0192623309335060] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In humans, congenital heart diseases are common. Since the rapid progression of transgenic technologies, the mouse has become the major animal model of defective cardiovascular development. Moreover, genetically modified mice frequently die in utero, commonly due to abnormal cardiovascular development. A variety of publications address specific developmental stages or structures of the mouse heart, but a single reference reviewing and describing the anatomy and histology of cardiac developmental events, stage by stage, has not been available. The aim of this color atlas, which demonstrates embryonic/fetal heart development, is to provide a tool for pathologists and biomedical scientists to use for detailed histological evaluation of hematoxylin and eosin (H&E)-stained sections of the developing mouse heart with emphasis on embryonic days (E) 11.5-18.5. The selected images illustrate the main structures and developmental events at each stage and serve as reference material for the confirmation of the chronological age of the embryo/early fetus and assist in the identification of any abnormalities. An extensive review of the literature covering cardiac development pre-E11.5 is summarized in the introduction. Although the focus of this atlas is on the descriptive anatomic and histological development of the normal mouse heart from E11.5 to E18.5, potential embryonic cardiac lesions are discussed with a list of the most common transgenic pre- and perinatal heart defects. Representative images of hearts at E11.5-15.5 and E18.5 are provided in Figures 2-4, 6, 8, and 9. A complete set of labeled images (Figures E11.5-18.5) is available on the CD enclosed in this issue of Toxicologic Pathology. All digital images can be viewed online at https://niehsimages.epl-inc.com with the username "ToxPath" and the password "embryohearts."
Collapse
Affiliation(s)
- Saija M Savolainen
- NIEHS, Cellular and Molecular Pathology Branch, Research Triangle Park, North Carolina 27709, USA
| | | | | |
Collapse
|
46
|
Ratajska A, Czarnowska E, Kołodzińska A, Jabłońska A, Stachurska E. New morphological aspects of blood islands formation in the embryonic mouse hearts. Histochem Cell Biol 2008; 131:297-311. [PMID: 19037654 DOI: 10.1007/s00418-008-0542-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2008] [Indexed: 02/07/2023]
Abstract
Vasculogenesis in embryonic hearts proceeds by formation of aggregates consisting of erythroblasts and endothelial cells. These aggregates are called blood-islands or blood-island-like structures. We aimed to characterize blood islands in mouse embryonic hearts at stages spanning from 11 dpc through 13 dpc, i.e. prior to the establishment of the coronary circulation. Our observations suggested that there are two types of blood islands. One formed by migrating nucleated erythroblasts, which associated with migrating endothelial cell and the second by in situ emergence of two kinds of cells belonging to separate populations: one resembling an erythroblast progenitor and the second resembling an endothelial-cell progenitor. The subepicardial blood islands contain nucleated erythroblasts, undifferentiated mesenchymal cells, platelets, and early lymphocytes. The subepicardial blood islands resemble vesicles with protruding prongs directed toward the myocardium. Ahead of the prongs, angiogenic sprouting and degradation of fibronectin is observed. Vesicles gradually change their shape from spherical to tubular at 13 dpc and grow and extend along the interventricular sulcuses forming vascular tubes. We presume that the vascular tubes located within the interventricular sulcuses are precursors of coronary veins. Our data seems to indicate that embryonic heart vasculogenesis is accompanied by hematopoiesis.
Collapse
Affiliation(s)
- Anna Ratajska
- Department of Pathological Anatomy, Center of Biostructure, Medical University of Warsaw, Warsaw, Poland.
| | | | | | | | | |
Collapse
|
47
|
Abstract
The development of the embryonic heart is dependent upon the generation and incorporation of different mesenchymal subpopulations that derive from intra- and extra-cardiac sources, including the endocardium, epicardium, neural crest, and second heart field. Each of these populations plays a crucial role in cardiovascular development, in particular in the formation of the valvuloseptal apparatus. Notwithstanding shared mechanisms by which these cells are generated, their fate and function differ profoundly by their originating source. While most of our early insights into the origin and fate of the cardiac mesenchyme has come from experimental studies in avian model systems, recent advances in transgenic mouse technology has enhanced our ability to study these cell populations in the mammalian heart. In this article, we will review the current understanding of the role of cardiac mesenchyme in cardiac morphogenesis and discuss several new paradigms based on recent studies in the mouse.
Collapse
Affiliation(s)
- Brian S Snarr
- Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | |
Collapse
|
48
|
Mellgren AM, Smith CL, Olsen GS, Eskiocak B, Zhou B, Kazi MN, Ruiz FR, Pu WT, Tallquist MD. Platelet-derived growth factor receptor beta signaling is required for efficient epicardial cell migration and development of two distinct coronary vascular smooth muscle cell populations. Circ Res 2008; 103:1393-401. [PMID: 18948621 DOI: 10.1161/circresaha.108.176768] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The epicardium plays an essential role in coronary artery formation and myocardial development, but signals controlling the development and differentiation of this tissue are not well understood. To investigate the role of platelet-derived growth factor receptor (PDGFR)beta in development of epicardial-derived vascular smooth muscle cells (VSMCs), we examined PDGFRbeta(-/-) and PDGFRbeta epicardial mutant hearts. We found that PDGFRbeta(-/-) hearts failed to form dominant coronary vessels on the ventral heart surface, had a thinned myocardium, and completely lacked coronary VSMCs (cVSMCs). This constellation of defects was consistent with a primary defect in the epicardium. To verify that these defects were specific to epicardial derivatives, we generated mice with an epicardial deletion of PDGFRbeta that resulted in reduced cVSMCs distal to the aorta. The regional absence of cVSMCs suggested that cVSMCs could arise from 2 sources, epicardial and nonepicardial, and that both were dependent on PDGFRbeta. In the absence of PDGFRbeta signaling, epicardial cells adopted an irregular actin cytoskeleton, leading to aberrant migration of epicardial cells into the myocardium in vivo. In addition, PDGF receptor stimulation promoted epicardial cell migration, and PDGFRbeta-driven phosphoinositide 3'-kinase signaling was critical for this process. Our data demonstrate that PDGFRbeta is required for the formation of 2 distinct cVSMC populations and that loss of PDGFRbeta-PI3K signaling disrupts epicardial cell migration.
Collapse
MESH Headings
- Animals
- Cell Movement/physiology
- Cells, Cultured
- Coronary Vessels/cytology
- Coronary Vessels/metabolism
- Coronary Vessels/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiology
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/physiology
- Pericardium/cytology
- Pericardium/metabolism
- Pericardium/physiology
- Phosphatidylinositol 3-Kinases/deficiency
- Phosphatidylinositol 3-Kinases/physiology
- Receptor, Platelet-Derived Growth Factor beta/deficiency
- Receptor, Platelet-Derived Growth Factor beta/genetics
- Receptor, Platelet-Derived Growth Factor beta/physiology
- Signal Transduction/genetics
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Amy M Mellgren
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Pae SH, Dokic D, Dettman RW. Communication between integrin receptors facilitates epicardial cell adhesion and matrix organization. Dev Dyn 2008; 237:962-78. [DOI: 10.1002/dvdy.21488] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
50
|
Differential growth and multicellular villi direct proepicardial translocation to the developing mouse heart. Dev Dyn 2008; 237:145-52. [DOI: 10.1002/dvdy.21378] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|