1
|
Hand AR, Abramson CXG, Dressler KA. Tlx1 regulates acinar and duct development in mouse salivary glands. J Anat 2024; 244:343-357. [PMID: 37837237 PMCID: PMC10780161 DOI: 10.1111/joa.13964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
Tlx1 encodes a transcription factor expressed in several craniofacial structures of developing mice. The role of Tlx1 in salivary gland development was examined using morphological and immunohistochemical analyses of Tlx1 null mice. Tlx1 is expressed in submandibular and sublingual glands but not parotid glands of neonatal and adult male and female C57Bl/6J (Tlx1+/+ ) mice. TLX1 protein was localized to the nuclei of terminal tubule cells, developing duct cells and mesenchymal cells in neonatal submandibular and sublingual glands, and to nuclei of duct cells and connective tissue cells in adult glands. Occasionally, TLX1 was observed in nuclei of epithelial cells in or adjacent to the acini. Submandibular glands were smaller and sublingual glands were larger in size in mutant mice (Tlx1-/- ) compared to wild-type mice. Differentiation of terminal tubule and proacinar cells of neonatal Tlx1-/- submandibular glands was abnormal; expression of their characteristic products, submandibular gland protein C and parotid secretory protein, respectively, was reduced. At 3 weeks postnatally, terminal tubule cells at the acinar-intercalated duct junction were poorly developed or absent in Tlx1-/- mice. Granular convoluted ducts in adult mutant mice were decreased, and epidermal growth factor and nerve growth factor expression were reduced. Along with normal acinar cell proteins, adult acinar cells of Tlx1-/- mice continued to express neonatal proteins and expressed parotid proteins not normally present in submandibular glands. Sublingual gland mucous acinar and serous demilune cell differentiation were altered. Tlx1 is necessary for proper differentiation of submandibular and sublingual gland acinar cells, and granular convoluted ducts. The mechanism(s) underlying Tlx1 regulation of salivary gland development and differentiation remains unknown.
Collapse
Affiliation(s)
- Arthur R Hand
- Department of Craniofacial Sciences, University of Connecticut School of Dental Medicine, Farmington, Connecticut, USA
| | - Cailyn X G Abramson
- Department of Craniofacial Sciences, University of Connecticut School of Dental Medicine, Farmington, Connecticut, USA
| | - Keith A Dressler
- Department of Craniofacial Sciences, University of Connecticut School of Dental Medicine, Farmington, Connecticut, USA
| |
Collapse
|
2
|
Rheinheimer BA, Pasquale MC, Limesand KH, Hoffman MP, Chibly AM. Evaluating the transcriptional landscape and cell-cell communication networks in chronically irradiated parotid glands. iScience 2023; 26:106660. [PMID: 37168562 PMCID: PMC10165028 DOI: 10.1016/j.isci.2023.106660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 03/21/2023] [Accepted: 04/07/2023] [Indexed: 05/13/2023] Open
Abstract
Understanding the transcriptional landscape that results in chronic salivary hypofunction after irradiation will help identify injury mechanisms and develop regenerative therapies. We present scRNA-seq analysis from control and irradiated murine parotid glands collected 10 months after irradiation. We identify a population of secretory cells defined by specific expression of Etv1, which may be an acinar cell precursor. Acinar and Etv1+ secretory express Ntrk2 and Erbb3, respectively while the ligands for these receptors are expressed in myoepithelial and stromal cells. Furthermore, our data suggests that secretory cells and CD4+CD8+T-cells are the most transcriptionally affected during chronic injury with radiation, suggesting active immune involvement. Lastly, evaluation of cell-cell communication networks predicts that neurotrophin, neuregulin, ECM, and immune signaling are dysregulated after irradiation, and thus may play a role in the lack of repair. This resource will be helpful to understand cell-specific pathways that may be targeted to repair chronic damage in irradiated glands.
Collapse
Affiliation(s)
| | - Mary C. Pasquale
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Kirsten H. Limesand
- Nutritional Sciences Department, University of Arizona, Tucson, AZ 85721, USA
| | - Matthew P. Hoffman
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alejandro M. Chibly
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Liu Y, Liu Z, Hu L, He L, Yang L, Qin Z, Xie Y, Peng X, Dai L. Function of stem cells in radiation-induced damage. Int J Radiat Biol 2023; 99:1483-1494. [PMID: 36912588 DOI: 10.1080/09553002.2023.2188935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/27/2023] [Indexed: 03/14/2023]
Abstract
PURPOSE The aim of this review is to discuss previous studies on the function of stem cells in radiation-induced damage, and the factors affecting these processes, in the hope of improving our understanding of the different stem cells and the communication networks surrounding them. This is essential for the development of effective stem cell-based therapies to regenerate or replace normal tissues damaged by radiation. CONCLUSION In salivary glands, senescence-associated cytokines and inflammation-associated cells have a greater effect on stem cells. In the intestinal glands, Paneth cells strongly affect stem cell-mediated tissue regeneration after radiation treatment. In the pancreas, β-cells as well as protein C receptor positive (Procr) cells are expected to be key cells in the treatment of diabetes. In the bone marrow, a variety of cytokines such as CXC-chemokine ligand 12 (CXCL12) and stem cell factor (SCF), contribute to the functional recovery of hematopoietic stem cells after irradiation.
Collapse
Affiliation(s)
- Yingtong Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, and Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Zheran Liu
- Department of Biotherapy, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Liqiang Hu
- West China-California Research Center for Predictive Intervention Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ling He
- Department of Biotherapy, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Lianlian Yang
- Department of Biotherapy, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Zijian Qin
- Department of Biotherapy, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yuping Xie
- Department of Oncology, Chengdu First People's Hospital, Chengdu, Sichuan, China
| | - Xingchen Peng
- Department of Biotherapy, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Lei Dai
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Rawangwong A, Watanabe M, Kondo H, Hipkaeo W. Expression and localization of endogenous phospholipase Cβ3 confined to basal cells in situ of immature ducts and adult excretory ducts of submandibular gland of mice. Acta Histochem 2020; 122:151497. [PMID: 31898936 DOI: 10.1016/j.acthis.2019.151497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/14/2019] [Accepted: 12/16/2019] [Indexed: 12/16/2022]
Abstract
Our previous study demonstrated that, different from the parotid and sublingual glands, the submandibular glands of adult mice did not show an immunoblot band for PLCβ3 which is critical in the secretion mechanism by muscarinic cholinergic signaling. Therefore, the submandibular glands of mice at various stages of postnatal development were examined for this enzyme molecule in immunoblot and immunohistochemistry. In immunoblot, a weak band for PLCβ3-expression was detected only at early postnatal stages. In immunohistochemistry, PLCβ3-immunoreactivity was distinctly found in most basally located cells of immature ducts, while the immunoreactivity was weakly seen in terminal tubule cells without significant immunoreactivity in adjacent acinar cells. In contrast, the immunoreactivity was distinctly found in some basal cells of adult excretory ducts, and it was ultrastructurally localized densely in close association with bundles of tonofilaments in the cells. The present finding suggests the possibility that Ca2+ signaling governed by phospholipase Cβ3 is involved in the differentiation of ductal basal cells into apical cells through control of keratin molecule(s) in the cells.
Collapse
Affiliation(s)
- Atsara Rawangwong
- Department of Anatomy, Faculty of Veterinary Science, Prince of Songkla, University, Songkhla, Thailand
| | - Masahiko Watanabe
- Department of Anatomy, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hisatake Kondo
- Department of Anatomy, Graduate School of Medicine, Tohoku University, Sendai, Japan; Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Wiphawi Hipkaeo
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
5
|
Immunohistochemical localization of keratin 5 in the submandibular gland in adult and postnatal developing mice. Histochem Cell Biol 2015; 145:327-39. [PMID: 26671786 DOI: 10.1007/s00418-015-1392-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2015] [Indexed: 10/22/2022]
Abstract
Keratin 5 (K5) is a marker of basal progenitor cells in the epithelia of a number of organs. During prenatal development of the submandibular gland (SMG) in mice, K5(+) progenitor cells in the developing epithelia play important roles in its organogenesis. Although K5(+) cells are also present in the adult mouse SMG and may function in tissue regeneration, their histological localization has not yet investigated in detail. In the present study, we examined the immunohistochemical localization of K5 in the SMG in adult and postnatal developing mice. At birth, K5 immunoreactivity was detected in the entire duct system, in which it was localized in the basal cells of a double-layered epithelium, but was not detected in the terminal tubule or myoepithelial cells. At postnatal weeks 1-3, with the development of intercalated ducts (ID), striated ducts (SD), and excretory ducts (ED), K5-immunoreactive basal cells were gradually restricted to the ED and the proximal double-layered portions of the ID connecting to the SD. At the same time, K5 immunoreactivity appeared in myoepithelial cells, in which its positive ratio gradually increased. In adults, K5 immunoreactivity was localized to most myoepithelial cells, most basal cells in the ED, and a small number of ID cells at the boundary between the ID and SD in the female SMG or between the ID and granular convoluted tubules in the male SMG. These results suggest that K5 is a marker of differentiated myoepithelial cells and duct progenitor cells in the mouse SMG.
Collapse
|
6
|
Hipkaeo W, Chomphoo S, Pakkarato S, Sakaew W, Sawatpanich T, Hozumi Y, Polsan Y, Hipkaeo D, Goto K, Kondo H. Selective localization of diacylglycerol kinase (DGK)ζ in the terminal tubule cells in the submandibular glands of early postnatal mice. Histochem Cell Biol 2015; 144:185-93. [PMID: 25952157 DOI: 10.1007/s00418-015-1328-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2015] [Indexed: 12/16/2022]
Abstract
The present immunohistochemical study was attempted to localize in the submandibular glands of mice at various postnatal stages a diacylglycerol kinase (DGK) isoform termed DGKζ which is characterized by a nuclear localization signal and a nuclear export signal. This attempt was based on following facts: the continuous postnatal differentiation of glandular cells in the rodent submandibular gland, the regulatory role of DGK in the activity of protein kinase C (PKC) through attenuation of diacylglycerol (DAG), and the possible involvement of PKC in various cellular activities including the saliva secretion as well as the cell differentiation. As a result, a selective localization of immunoreactivity for DGKζ was detected in terminal tubule (TT) cells which comprise a majority of the newborn acinar structure and differentiate into the intercalated duct cells and/or the acinar cells. The immunoreactivity was deposited in portions of the cytoplasm lateral and basal to the nucleus, but not in the nuclei themselves. Although the immunoreactive TT cells remained until later stages in female specimen than in male, they eventually disappeared in both sexes by young adult stages. The present finding suggests that the regulatory involvement of DGKζ in PKC functions via control of DAG is exerted in the differentiation of the TT cells. In addition, another possible involvement of DGKζ in the regulation of secretion of the TT cells as well as its functional significance of its nuclear localization in the submandibular ganglion cells was also discussed.
Collapse
Affiliation(s)
- Wiphawi Hipkaeo
- Nanomorphology-Based Apply Research Group and Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Aure MH, Konieczny SF, Ovitt CE. Salivary gland homeostasis is maintained through acinar cell self-duplication. Dev Cell 2015; 33:231-7. [PMID: 25843887 DOI: 10.1016/j.devcel.2015.02.013] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 12/31/2014] [Accepted: 02/13/2015] [Indexed: 11/28/2022]
Abstract
Current dogma suggests that salivary gland homeostasis is stem cell dependent. However, the extent of stem cell contribution to salivary gland maintenance has not been determined. We investigated acinar cell replacement during homeostasis, growth, and regeneration, using an inducible CreER(T2) expressed under the control of the Mist1 gene locus. Genetic labeling, followed by a chase period, showed that acinar cell replacement is not driven by the differentiation of unlabeled stem cells. Analysis using R26(Brainbow2.1) reporter revealed continued proliferation and clonal expansion of terminally differentiated acinar cells in all major salivary glands. Induced injury also demonstrated the regenerative potential of pre-labeled acinar cells. Our results support a revised model for salivary gland homeostasis based predominantly on self-duplication of acinar cells, rather than on differentiation of stem cells. The proliferative capacity of differentiated acinar cells may prove critical in the implementation of cell-based strategies to restore the salivary glands.
Collapse
Affiliation(s)
- Marit H Aure
- Center for Oral Biology, Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Stephen F Konieczny
- Department of Biological Sciences, Purdue Center for Cancer Research, Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
| | - Catherine E Ovitt
- Center for Oral Biology, Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| |
Collapse
|
8
|
The contribution of specific cell subpopulations to submandibular salivary gland branching morphogenesis. Curr Opin Genet Dev 2015; 32:47-54. [PMID: 25706196 DOI: 10.1016/j.gde.2015.01.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/25/2015] [Accepted: 01/27/2015] [Indexed: 11/23/2022]
Abstract
Branching morphogenesis is the developmental program responsible for generating a large surface to volume ratio in many secretory and absorptive organs. To accomplish branching morphogenesis, spatiotemporal regulation of specific cell subpopulations is required. Here, we review recent studies that define the contributions of distinct cell subpopulations to specific cellular processes during branching morphogenesis in the mammalian submandibular salivary gland, including the initiation of the gland, the coordination of cleft formation, and the contribution of stem/progenitor cells to morphogenesis. In conclusion, we provide an overview of technological advances that have opened opportunities to further probe the contributions of specific cell subpopulations and to define the integration of events required for branching morphogenesis.
Collapse
|
9
|
Benderitter M, Caviggioli F, Chapel A, Coppes RP, Guha C, Klinger M, Malard O, Stewart F, Tamarat R, van Luijk P, Limoli CL. Stem cell therapies for the treatment of radiation-induced normal tissue side effects. Antioxid Redox Signal 2014; 21:338-55. [PMID: 24147585 PMCID: PMC4060814 DOI: 10.1089/ars.2013.5652] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Targeted irradiation is an effective cancer therapy but damage inflicted to normal tissues surrounding the tumor may cause severe complications. While certain pharmacologic strategies can temper the adverse effects of irradiation, stem cell therapies provide unique opportunities for restoring functionality to the irradiated tissue bed. RECENT ADVANCES Preclinical studies presented in this review provide encouraging proof of concept regarding the therapeutic potential of stem cells for treating the adverse side effects associated with radiotherapy in different organs. Early-stage clinical data for radiation-induced lung, bone, and skin complications are promising and highlight the importance of selecting the appropriate stem cell type to stimulate tissue regeneration. CRITICAL ISSUES While therapeutic efficacy has been demonstrated in a variety of animal models and human trials, a range of additional concerns regarding stem cell transplantation for ameliorating radiation-induced normal tissue sequelae remain. Safety issues regarding teratoma formation, disease progression, and genomic stability along with technical issues impacting disease targeting, immunorejection, and clinical scale-up are factors bearing on the eventual translation of stem cell therapies into routine clinical practice. FUTURE DIRECTIONS Follow-up studies will need to identify the best possible stem cell types for the treatment of early and late radiation-induced normal tissue injury. Additional work should seek to optimize cellular dosing regimes, identify the best routes of administration, elucidate optimal transplantation windows for introducing cells into more receptive host tissues, and improve immune tolerance for longer-term engrafted cell survival into the irradiated microenvironment.
Collapse
Affiliation(s)
- Marc Benderitter
- 1 Laboratory of Radiopathology and Experimental Therapies, IRSN , PRP-HOM, SRBE, Fontenay-aux-Roses, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Knosp WM, Knox SM, Hoffman MP. Salivary gland organogenesis. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2011; 1:69-82. [PMID: 23801668 DOI: 10.1002/wdev.4] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Our understanding of vertebrate salivary gland organogenesis has been largely informed by the study of the developing mouse submandibular gland (SMG), which will be the major focus of this review. The mouse SMG has been historically used as a model system to study epithelial-mesenchymal interactions, growth factor-extracellular matrix (ECM) interactions, and branching morphogenesis. SMG organogenesis involves interactions between a variety of cell types and their stem/progenitor cells, including the epithelial, neuronal, and mesenchymal cells, and their ECM microenvironment, or niche. Here, we will review recent literature that provides conceptual advances in understanding the molecular mechanisms of salivary gland development. We will describe SMG organogenesis, introduce the model systems used to study development, and outline the key signaling pathways and cellular processes involved. We will also review recent research focusing on the identification of stem/progenitor cells in the SMG and how they are directed along a series of cell fate decisions to form a functional gland. The mechanisms that drive SMG organogenesis provide a template to regenerate functional salivary glands in patients who suffer from salivary hypofunction due to irreversible glandular damage after irradiation or removal of tumors. Additionally, these mechanisms may also control growth and development of other organ systems.
Collapse
Affiliation(s)
- Wendy M Knosp
- Matrix and Morphogenesis Section, LCDB, NIDCR, NIH, Bethesda, MD, USA
| | | | | |
Collapse
|
11
|
Nanduri LSY, Maimets M, Pringle SA, van der Zwaag M, van Os RP, Coppes RP. Regeneration of irradiated salivary glands with stem cell marker expressing cells. Radiother Oncol 2011; 99:367-72. [PMID: 21719134 DOI: 10.1016/j.radonc.2011.05.085] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 05/18/2011] [Accepted: 05/18/2011] [Indexed: 11/18/2022]
Abstract
BACKGROUND Stem cell therapy could be a potential way for reducing radiation-induced hyposalivation and improving the patient's quality of life. However, the identification and purification of salivary gland stem cells have not been accomplished. This study aims to better characterize the stem/progenitor cell population with regenerative potential residing in the mouse salivary gland. METHODS Mouse submandibular gland tissue, isolated cells and cultured 3 day old salispheres were tested for their expression of stem cell markers c-Kit, CD133, CD49f, and CD24 using immunohistochemistry for tissue and flow cytometry for cells. Mice were locally irradiated with a single dose of 15 Gy and transplanted with cells expressing defined markers. RESULTS Cells expressing known stem cell markers are localized in the larger ducts of the mouse salivary gland. Isolated cells and cells from day 3 salispheres also express these markers: c-Kit (0.058% vs. 0.65%), CD133 (6% vs. 5%), CD49f (78% vs. 51%), and CD24 (60% vs. 60%, respectively). Intraglandular transplantation of these cells into irradiated salivary glands of mice resulted in stem cell marker-specific recovery of salivary gland function. CONCLUSIONS Different stem cell-associated markers are expressed in mouse salivary gland cells, which upon transplantation are able to regenerate the irradiation damaged salivary gland.
Collapse
Affiliation(s)
- Lalitha S Y Nanduri
- Department of Cell Biology, Section Radiation and Stress Cell Biology, University of Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
12
|
Lombaert IMA, Hoffman MP. Epithelial stem/progenitor cells in the embryonic mouse submandibular gland. FRONTIERS OF ORAL BIOLOGY 2010; 14:90-106. [PMID: 20428013 PMCID: PMC3375329 DOI: 10.1159/000313709] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Salivary gland organogenesis involves the specification, maintenance, lineage commitment, and differentiation of epithelial stem/progenitor cells. Identifying how stem/progenitor cells are directed along a series of cell fate decisions to form a functional salivary gland will be necessary for future stem cell regenerative therapy. The identification of stem/progenitor cells within the salivary gland has focused on their role in postnatal glands and little is known about them in embryonic glands. Here, we have reviewed the information available for other developing organ systems and used it to determine whether similar cell populations exist in the mouse submandibular gland. Additionally, using growth factors that influence salivary gland epithelial morphogenesis during development, we have taken a simple experimental approach asking whether any of these growth factors influence early developmental lineages within the salivary epithelium on a transcriptional level. These preliminary findings show that salivary epithelial stem/progenitor populations exist within the gland, and that growth factors that are reported to control epithelial morphogenesis may also impact cell fate decisions. Further investigation of the signaling networks that influence stem/progenitor cell behavior will allow us to hypothesize how we might induce autologous stem cells to regenerate damaged salivary tissue in a therapeutic context.
Collapse
|
13
|
Keattikunpairoj S, Wakayama T, Yamamoto M, Nakaya MA, Nakata H, Hipkaeo W, Sakulsak N, Iseki S. Expression of cAMP response element-binding protein in the duct system of the mouse submandibular gland. Histochem Cell Biol 2009; 132:647-57. [DOI: 10.1007/s00418-009-0649-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2009] [Indexed: 12/16/2022]
|
14
|
Szlávik V, Szabó B, Vicsek T, Barabás J, Bogdán S, Gresz V, Varga G, O'Connell B, Vág J. Differentiation of primary human submandibular gland cells cultured on basement membrane extract. Tissue Eng Part A 2009; 14:1915-26. [PMID: 18721074 DOI: 10.1089/ten.tea.2007.0208] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
There is no effective treatment for the loss of functional salivary tissue after irradiation for head and neck cancer or the autoimmune disease Sjögren's syndrome. One possible approach is the regeneration of salivary glands from stem cells. The present study aimed to investigate whether small pieces of human submandiblar gland tissue contain elements necessary for the reconstruction of salivary rudiments in vitro via acinar and ductal cell differentiation. Primary submandibular gland (primary total human salivary gland; PTHSG) cells were isolated from human tissue and cultured in vitro using a new method in which single cells form an expanding epithelial monolayer on plastic substrates. Differentiation, morphology, number, and organization of these cells were then followed on basement membrane extract (BME) using RNA quantitation (amylase, claudin-1 (CLN1), CLN3, kallikrein, vimentin), immunohistochemistry (amylase and occludin), viability assay, and videomicroscopy. On the surface of BME, PTHSG cells formed acinotubular structures within 24 h, did not proliferate, and stained for amylase. In cultures derived from half of the donors, the acinar markers amylase and CLN3 were upregulated. The PTHSG culture model suggests that human salivary gland may be capable of regeneration via reorganization and differentiation and that basement membrane components play a crucial role in the morphological and functional differentiation of salivary cells.
Collapse
Affiliation(s)
- Vanda Szlávik
- Department of Oral Biology, Semmelweis University and Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Hipkaeo W, Sakulsak N, Wakayama T, Yamamoto M, Nakaya MA, Keattikunpairoj S, Kurobo M, Iseki S. Coexpression of Menin and JunD during the Duct Cell Differentiation in Mouse Submandibular Gland. TOHOKU J EXP MED 2008; 214:231-45. [DOI: 10.1620/tjem.214.231] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Wiphawi Hipkaeo
- Department of Histology and Embryology, Graduate School of Medical Science, Kanazawa University
| | - Natthiya Sakulsak
- Department of Histology and Embryology, Graduate School of Medical Science, Kanazawa University
| | - Tomohiko Wakayama
- Department of Histology and Embryology, Graduate School of Medical Science, Kanazawa University
| | - Miyuki Yamamoto
- Department of Histology and Embryology, Graduate School of Medical Science, Kanazawa University
| | - Masa-Aki Nakaya
- Department of Histology and Embryology, Graduate School of Medical Science, Kanazawa University
| | - Sunisa Keattikunpairoj
- Department of Histology and Embryology, Graduate School of Medical Science, Kanazawa University
| | - Miho Kurobo
- Department of Histology and Embryology, Graduate School of Medical Science, Kanazawa University
| | - Shoichi Iseki
- Department of Histology and Embryology, Graduate School of Medical Science, Kanazawa University
| |
Collapse
|
16
|
Hipkaeo W, Wakayama T, Yamamoto M, Iseki S. Expression and localization of the transcription factor JunD in the duct system of mouse submandibular gland. J Histochem Cytochem 2004; 52:479-90. [PMID: 15033999 DOI: 10.1177/002215540405200406] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We studied the expression and localization of JunD, a component of the transcription factor activator protein-1 (AP-1), in the mouse submandibular gland with immunoblotting and immunohistochemistry. In adult mice, all seven Jun and Fos family members constituting the AP-1 complex were expressed more abundantly in the female gland than in the male gland, and JunD was the most abundant of the members. Immunoreactivity for JunD was localized exclusively in the duct system of the gland, in which it was localized to the nuclei of intercalated duct (ID) cells and a subpopulation of striated duct (SD) cells located adjacent to ID. In contrast, granular convoluted tubule (GCT) cells, which are much more abundant in the male gland, were devoid of JunD. During postnatal development of the male gland, JunD was lost from the duct cells as they differentiated to GCT cells at 3-5 weeks postpartum. When GCT differentiation was induced in adult female gland by testosterone administration, many JunD-negative SD cells were temporarily induced to express JunD after 6-24 hr, but those cells lost JunD as they completely converted to GCT cells by 48 hr. These results suggested that JunD is involved in the differentiation of the duct system of mouse submandibular gland, in which there is crosstalk between the androgen/androgen receptor system and the AP-1 complex.
Collapse
Affiliation(s)
- Wiphawi Hipkaeo
- Department of Histology and Embryology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | | | | | | |
Collapse
|
17
|
Pin CL, Bonvissuto AC, Konieczny SF. Mist1 expression is a common link among serous exocrine cells exhibiting regulated exocytosis. THE ANATOMICAL RECORD 2000; 259:157-67. [PMID: 10820318 DOI: 10.1002/(sici)1097-0185(20000601)259:2<157::aid-ar6>3.0.co;2-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mist1 is a basic helix-loop-helix transcription factor that represses E-box-mediated transcription. Previous studies have suggested that the Mist1 gene is expressed in a wide range of tissues, although a complete characterization of Mist1 protein accumulation in the adult organism has not been described. In an effort to identify specific cell types that contain the Mist1 protein, antibodies specific for Mist1 were generated and used in Western blot and immunohistochemical assays. Our studies show that the Mist1 protein is present in many different tissues but that it is restricted to cell types that are exclusively secretory in nature. Pancreatic acinar cells, serous or seromucous cells of the salivary glands, chief cells of the stomach, and secretory cells of the prostate and seminal vesicle show high levels of Mist1 protein, whereas nonserous exocrine cells, including the mucus-producing cells of the salivary glands, remain Mist1 negative. These results identify Mist1 as the first transcription factor that exhibits this unique serous-specific expression pattern and suggest that Mist1 may have a key role in establishing and maintaining a pathway responsible for the exocytosis of serous secretions.
Collapse
Affiliation(s)
- C L Pin
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392, USA
| | | | | |
Collapse
|