1
|
Bahreyni Toosi MT, Azimian H, Salek R, Tabatabaei SA, Forghani MN, Dolat E. Evaluation of Relationship between Intrinsic Radiosensitivity (Survival Fraction at 2 Gy) and Gamma-H2AX Test and Apoptosis of Lymphocytes in Breast Cancer Patients. JOURNAL OF MEDICAL SIGNALS & SENSORS 2024; 14:17. [PMID: 39100740 PMCID: PMC11296569 DOI: 10.4103/jmss.jmss_40_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/28/2024] [Accepted: 02/19/2024] [Indexed: 08/06/2024]
Abstract
Background Radiotherapy is one of the routine treatment strategies for breast cancer (BC) patients. Different responses of the patient to radiation due to different intrinsic radiosensitivity (RS) were induced to the researcher try to introduce a standard assay for the prediction of RS. Clonogenic assay is recognized as a gold standard method in this subject but because of some of its disadvantages, it is needed for alternative assays. In this study, two assays were evaluated for this reason in ten BC patients with different RSs. Methods The peripheral blood of 10 volunteers with BC was obtained, and the peripheral blood mononuclear cells were extracted. After exposed with 2 Gy, survival fraction at 2 Gy (SF2) was calculated by clonogenic assay. γ-H2AX assay was performed for all patients, and apoptosis assay was evaluated for three represented categorized patients. Results RS of patients showed SF2 and categorized in three groups (high, medium, and low RS). Double-strand breaks (DSBs) were decreased in high radiosensitive patients, but the residual DSBs were clearly higher than other two groups. It is shown that the repair system in these patients is lower active than others. Apoptosis frequency in patient 4 is highly active which could induce the enhancement of her RS. Conclusion γ-H2AX and apoptosis assays could predict the intrinsic RS, but evaluation of them separately is not sufficient for this aim. It is necessary to consider all the parameters together and consideration of the combination of assays could fit a better prediction of intrinsic RS.
Collapse
Affiliation(s)
| | - Hossein Azimian
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Roham Salek
- Cancer Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Elham Dolat
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Biswas G, Mathew JG, Kaur A, Panchal KB. Utilizing a Second Flap to Address the Effect of Postradiotherapy Soft Tissue Fibrosis in Head and Neck Malignancy. Indian J Plast Surg 2024; 57:31-38. [PMID: 38450016 PMCID: PMC10914542 DOI: 10.1055/s-0044-1779476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
Abstract
Background Late effects of adjuvant radiation therapy (RT) on soft tissues can lead to hair loss, pigmentary changes, loss of tissue volume, and fibrosis, which appear months to years after the treatment. These changes are often progressive and are because of tissue hypoxia due to radiation-induced capillary endothelial damage. Tissue hypoxia may be compounded by subclinical infection following minor trauma, exposed hardware, or associated osteoradionecrosis. The combined effect of these factors causes significant deformities in soft tissue, affecting both function and appearance. Such changes are also seen in primarily transferred flaps, which have been radiated, resulting in severe, progressive soft tissue fibrosis, compromising function and aesthetics. In selected cases, a second flap may be needed to restore function and volume. Methods Data of patients who underwent secondary soft tissue transfers for postradiotherapy-related soft tissue changes were collected from the hospital electronic medical records, from January 2019 to 2023. Details regarding the primary surgery, dose, duration of adjuvant RT, time interval between adjuvant RT and secondary soft tissue transfer, indications, and the choice of the second flap were analyzed. Results Twenty-one patients had undergone secondary soft tissue transfer for extensive soft tissue fibrosis. In addition, associated compounding features like exposed implant and volume loss were observed. Two patients with osteoradionecrosis also had associated extensive soft tissue fibrosis necessitating replacement. Out of these 21 patients, 13 had undergone free tissue transfers, while 7 locoregional tissue transfers. Conclusion Late sequelae of adjuvant RT changes usually present from 6 months onwards. The radiated hypoxic tissue, due to capillary damage, leads to a chronic progressive fibrotic stage, causing loss of soft tissue volume and fibrosis. Replacing this tissue with a vascularized flap helps to restore volume and correct these secondary changes, improving overall quality of life.
Collapse
Affiliation(s)
- Gautam Biswas
- Department of Plastic Reconstructive and Microsurgery, Tata Medical Centre, Kolkata, West Bengal, India
| | - Jovin George Mathew
- Department of Plastic Reconstructive and Microsurgery, Tata Medical Centre, Kolkata, West Bengal, India
| | - Amrita Kaur
- Department of Plastic Reconstructive and Microsurgery, Tata Medical Centre, Kolkata, West Bengal, India
| | - Karnav Bharat Panchal
- Department of Plastic Reconstructive and Microsurgery, Tata Medical Centre, Kolkata, West Bengal, India
| |
Collapse
|
3
|
The Normal, the Radiosensitive, and the Ataxic in the Era of Precision Radiotherapy: A Narrative Review. Cancers (Basel) 2022; 14:cancers14246252. [PMID: 36551737 PMCID: PMC9776433 DOI: 10.3390/cancers14246252] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
(1) Background: radiotherapy is a cornerstone of cancer treatment. When delivering a tumoricidal dose, the risk of severe late toxicities is usually kept below 5% using dose-volume constraints. However, individual radiation sensitivity (iRS) is responsible (with other technical factors) for unexpected toxicities after exposure to a dose that induces no toxicity in the general population. Diagnosing iRS before radiotherapy could avoid unnecessary toxicities in patients with a grossly normal phenotype. Thus, we reviewed iRS diagnostic data and their impact on decision-making processes and the RT workflow; (2) Methods: following a description of radiation toxicities, we conducted a critical review of the current state of the knowledge on individual determinants of cellular/tissue radiation; (3) Results: tremendous advances in technology now allow minimally-invasive genomic, epigenetic and functional testing and a better understanding of iRS. Ongoing large translational studies implement various tests and enriched NTCP models designed to improve the prediction of toxicities. iRS testing could better support informed radiotherapy decisions for individuals with a normal phenotype who experience unusual toxicities. Ethics of medical decisions with an accurate prediction of personalized radiotherapy's risk/benefits and its health economics impact are at stake; (4) Conclusions: iRS testing represents a critical unmet need to design personalized radiotherapy protocols relying on extended NTCP models integrating iRS.
Collapse
|
4
|
Kopčalić K, Matić IZ, Besu I, Stanković V, Bukumirić Z, Stanojković TP, Stepanović A, Nikitović M. Circulating levels of IL-6 and TGF-β1 in patients with prostate cancer undergoing radiotherapy: associations with acute radiotoxicity and fatigue symptoms. BMC Cancer 2022; 22:1167. [DOI: 10.1186/s12885-022-10255-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Background
The goal of research was to investigate the possible relations between serum concentrations of IL-6 and TGF-β1, individual and clinical characteristics, and adverse effects of radiotherapy in patients with prostate cancer: acute and late genitourinary and gastrointestinal toxicity, and fatigue.
Methods
Thirty-nine patients with localized or locally advanced prostate cancer who were treated with radiotherapy were enrolled in this study. The acute radiotoxicity grades and fatigue levels were assessed during the radiotherapy and 1 month after the radiotherapy. Estimation of the late radiotoxicity was performed every three months in the first year, every four months in the second year, and then every six months. Serum levels of IL-6 and TGF-β1 were determined before radiotherapy and after the 25th radiotherapy fraction by ELISA.
Results
The significant positive association between diabetes mellitus and changes in acute genitourinary toxicity grades during the radiotherapy was observed in prostate cancer patients. In addition, patients who were smokers had significantly higher maximum fatigue levels in comparison with patients who were non-smokers. The circulating IL-6 levels were significantly higher after the 25th radiotherapy fraction in comparison with levels determined before radiotherapy. The significant positive correlations between pretreatment TGF-β1 levels and maximum genitourinary toxicity grades and between TGF-β1 levels after the 25th fraction and genitourinary toxicity grades after the 25th fraction, were found. The pretreatment IL-6 concentrations and TGF-β1 concentrations after the 25th fraction were positively correlated with maximum genitourinary toxicity grades. The IL-6 levels after the 25th fraction were positively associated with genitourinary toxicity grades after this fraction. The pretreatment IL-6 concentrations were significantly positively correlated with maximum fatigue scores. The significant positive correlation between IL-6 concentrations and fatigue scores after the 25th fraction was determined. The positive correlations between IL-6 and TGF-β1 concentrations measured after the 25th fraction and maximum fatigue scores were observed.
Conclusions
Our results suggest that serum levels of IL-6 and TGF-β1 might influence the severity of acute genitourinary radiotoxicity and fatigue in patients with prostate cancer. Combining clinical parameters and circulating cytokine levels might be useful for the prediction of adverse reactions to radiotherapy.
Collapse
|
5
|
Córdoba EE, Lacunza E, Güerci AM. Clinical factors affecting the determination of radiotherapy-induced skin toxicity in breast cancer. Radiat Oncol J 2022; 39:315-323. [PMID: 34986553 PMCID: PMC8743461 DOI: 10.3857/roj.2020.00395] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/19/2021] [Indexed: 12/03/2022] Open
Abstract
Purpose Radiotherapy is essential for the treatment of breast cancer (BC). However, adverse effects may occur in healthy tissue, during treatment and even after several months. Although it is known that this clinical radiosensitivity is multifactorial, the factors involved are unknown yet. In this study, we evaluated the effect of these factors on the development of radiodermatitis in patients undergoing radiotherapy. Materials and Methods Demographic and lifestyle data collected during face-to-face interviews of 122 BC patients and data from clinical records were investigated. Most patients underwent conventional three-dimensional radiotherapy treatment. A total dose of 50 Gy was administered (2 Gy/day), followed by a boost in a tumor bed with a total dose of 18 Gy (2 Gy/day). Radiotoxicity was evaluated weekly using the Radiation Therapy Oncology Group classification system (range, 0 to 4, according to the severity). Results In the present study, 75.4% of patients presented acute skin toxic effects with different degrees of severity. In 25% of cases, these effects manifested at the end of the fourth week at a cumulative dose of 40 Gy. The association of grade ≥2 acute skin reactions with body mass index (BMI) and breast size and between grade 3–4 and age was positive compared with controls. However, the role of the other factors could not be confirmed. Conclusion Analysis of the factors related to individual radiosensitivity suggests that age, BMI and breast size play an important role in the development of acute skin toxicity during treatment. Particular attention to patients who present these characteristics would help to control treatment effectiveness and therefore optimize their quality of life.
Collapse
Affiliation(s)
- Elisa Eugenia Córdoba
- Department of Physics, School of Exact Sciences, National University of La Plata, Argentina.,Veterinary Genetics Institute (National Scientific and Technical Research Council-National University of La Plata) School of Veterinary Sciences, La Plata, Argentina
| | - Ezequiel Lacunza
- Basic and Applied Immunological Research Center, School of Medicine, National University of La Plata, Argentina
| | - Alba Mabel Güerci
- Department of Physics, School of Exact Sciences, National University of La Plata, Argentina.,Veterinary Genetics Institute (National Scientific and Technical Research Council-National University of La Plata) School of Veterinary Sciences, La Plata, Argentina
| |
Collapse
|
6
|
Perez-Gelvez YNC, Camus AC, Bridger R, Wells L, Rhodes OE, Bergmann CW. Effects of chronic exposure to low levels of IR on Medaka ( Oryzias latipes): a proteomic and bioinformatic approach. Int J Radiat Biol 2021; 97:1485-1501. [PMID: 34355643 DOI: 10.1080/09553002.2021.1962570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE Chronic exposure to ionizing radiation (IR) at low doses (<100 mGy) has been insufficiently studied to understand fully the risk to health. Relatively little knowledge exists regarding how species and healthy tissues respond at the protein level to chronic exposure to low doses of IR, and mass spectrometric-based profiling of protein expression is a powerful tool for studying changes in protein abundance. MATERIALS AND METHODS SDS gel electrophoresis, LC-MS/MS mass spectrometry-based approaches and bioinformatic data analytics were used to detect proteomic changes following chronic exposure to moderate/low doses of radiation in adults and normally developed Medaka fish (Oryzias latipes). RESULTS Significant variations in the abundance of proteins involved in thyroid hormone signaling and lipid metabolism were detected, which could be related to the gonadal regression phenotype observed after 21.04 mGy and 204.3 mGy/day exposure. The global proteomic change was towards overexpression of proteins in muscle and skin, while the opposite effect was observed in internal organs. CONCLUSION The present study provides information on the impacts of biologically relevant low doses of IR, which will be useful in future research for the identification of potential biomarkers of IR exposure and allow for a better assessment of radiation biosafety regulations.
Collapse
Affiliation(s)
- Yeni Natalia C Perez-Gelvez
- Carbohydrate Complex Research Center, Biochemistry and Molecular Biology, The University of Georgia, Athens, GA, USA
| | - Alvin C Camus
- College of Veterinary Medicine, Department of Pathology, The University of Georgia, Athens, GA, USA
| | - Robert Bridger
- Carbohydrate Complex Research Center, The University of Georgia, Athens, GA, USA
| | - Lance Wells
- Carbohydrate Complex Research Center, The University of Georgia, Athens, GA, USA
| | - Olin E Rhodes
- Savannah River Ecology Laboratory, Odum School of Ecology, The University of Georgia, Athens, GA, USA
| | - Carl W Bergmann
- Carbohydrate Complex Research Center, The University of Georgia, Athens, GA, USA
| |
Collapse
|
7
|
Hoeller U, Borgmann K, Oertel M, Haverkamp U, Budach V, Eich HT. Late Sequelae of Radiotherapy—The Effect of Technical and Conceptual Innovations in Radiation Oncology. DEUTSCHES ARZTEBLATT INTERNATIONAL 2021; 118:205-211. [PMID: 34024324 PMCID: PMC8278127 DOI: 10.3238/arztebl.m2021.0024] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 03/25/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Approximately half of all patients with tumors need radiotherapy. Long-term survivors may suffer from late sequelae of the treatment. The existing radiotherapeutic techniques are being refined so that radiation can be applied more precisely, with the goal of limiting the radiation exposure of normal tissue and reducing late sequelae. METHODS This review is based on the findings of a selective search in PubMed for publications on late sequelae of conventional percutaneous radiotherapy, January 2000 to May 2020. Late sequelae affecting the central nervous system, lungs, and heart and the development of second tumors are presented, and radiobiological mechanisms and the relevant technical and conceptual considerations are discussed. RESULTS The current standard of treatment involves the use of linear accelerators, intensity-modulated radiotherapy (IMRT), image-guided and respiratory-gated radiotherapy, and the integration of positron emission tomography combined with computed tomography (PET-CT) in radiation treatment planning. Cardiotoxicity has been reduced with regard to the risk of coronary heart disease after radiotherapy for Hodgkin's lymphoma (hazard ratio [HR] 0.44 [0.23; 0.85]). It was also found that the rate of radiation- induced pneumonitis dropped from 7.9% with conformal treatment to 3.5% with IMRT in a phase III lung cancer trial. It is hoped that neurocognitive functional impairment will be reduced by hippocampal avoidance in modern treatment planning: an initial phase III trial yielded a hazard ratio of 0.74 [0.58; 0.94]. It is estimated that 8% of second solid tumors in adults are induced by radiotherapy (3 additional tumors per 1000 patients at 10 years). CONCLUSION Special challenges for research in this field arise from the long latency of radiation sequelae and the need for largescale, well-documented patient collectives in order to discern dose-effect relationships, and take account of cofactors, when the overall number of events is small. It is hoped that further technical and conceptual advances will be made in the areas of adaptive radiotherapy, proton and heavy-ion therapy, and personalized therapy.
Collapse
|
8
|
El-Shehaby AMN, Reda WA, Abdel Karim KM, Nabeel AM, Emad Eldin RM, Tawadros SR. Single-Session Stereotactic Radiosurgery for Large Benign Meningiomas: Medium-to Long-Term Results. World Neurosurg 2021; 150:e324-e336. [PMID: 33727203 DOI: 10.1016/j.wneu.2021.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND The use of stereotactic radiosurgery for the treatment of intracranial meningiomas has been established as an effective and safe treatment modality. Larger meningiomas typically are managed by surgery followed by radiosurgery. Treatment of large meningiomas (usually defined as >10 cc) by stereotactic radiosurgery has been investigated in some recent reports, either by single-session, volume-staged, or the hypofractionation technique. We sought to assess the long-term efficacy and safety of single-session stereotactic radiosurgery for large (10 cc or more) intracranial benign meningiomas. PATIENTS AND METHODS In this retrospective study, we included 273 patients with large benign meningiomas (≥10 cc) who were treated by single-session SRS and followed up for more than 2 years. Tumors were in a basal location in 228 patients (84%). There were 161 tumors (59%) in the perioptic location. The median tumor volume was 15.5 (10-57.3 cc [interquartile range {IQR} 12.3 cc]). The median prescription dose was 12 Gy (9-15 Gy [IQR 1 Gy]). RESULTS The median follow-up period was 6.1 years (2-18 years [IQR 5.5 years]). The tumor control rate was 90%. The progression-free survival at 5 and 10 years was 96% and 81%, respectively, for the whole cohort. Among 161 patients with perioptic meningiomas, favorable (better/stable) visual outcome was reported in 155 patients (96%) and unfavorable (worse) outcome in 6 patients (4%). Temporary adverse radiation effects were observed in 41 patients (15%) but only 16 (6%) were symptomatic. CONCLUSIONS Stereotactic radiosurgery provides an effective and safe treatment option for large meningiomas.
Collapse
Affiliation(s)
- Amr M N El-Shehaby
- Gamma Knife Center Cairo, Nasser Institute for Research and Treatment, Cairo, Egypt; Neurosurgery Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Wael A Reda
- Gamma Knife Center Cairo, Nasser Institute for Research and Treatment, Cairo, Egypt; Neurosurgery Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Khaled M Abdel Karim
- Gamma Knife Center Cairo, Nasser Institute for Research and Treatment, Cairo, Egypt; Clinical Oncology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ahmed M Nabeel
- Gamma Knife Center Cairo, Nasser Institute for Research and Treatment, Cairo, Egypt; Neurosurgery Department, Faculty of Medicine, Benha University, Qalubya, Egypt
| | - Reem M Emad Eldin
- Gamma Knife Center Cairo, Nasser Institute for Research and Treatment, Cairo, Egypt; Radiation Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Sameh R Tawadros
- Gamma Knife Center Cairo, Nasser Institute for Research and Treatment, Cairo, Egypt; Neurosurgery Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
9
|
Vinnikov V, Hande MP, Wilkins R, Wojcik A, Zubizarreta E, Belyakov O. Prediction of the Acute or Late Radiation Toxicity Effects in Radiotherapy Patients Using Ex Vivo Induced Biodosimetric Markers: A Review. J Pers Med 2020; 10:E285. [PMID: 33339312 PMCID: PMC7766345 DOI: 10.3390/jpm10040285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/02/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022] Open
Abstract
A search for effective methods for the assessment of patients' individual response to radiation is one of the important tasks of clinical radiobiology. This review summarizes available data on the use of ex vivo cytogenetic markers, typically used for biodosimetry, for the prediction of individual clinical radiosensitivity (normal tissue toxicity, NTT) in cells of cancer patients undergoing therapeutic irradiation. In approximately 50% of the relevant reports, selected for the analysis in peer-reviewed international journals, the average ex vivo induced yield of these biodosimetric markers was higher in patients with severe reactions than in patients with a lower grade of NTT. Also, a significant correlation was sometimes found between the biodosimetric marker yield and the severity of acute or late NTT reactions at an individual level, but this observation was not unequivocally proven. A similar controversy of published results was found regarding the attempts to apply G2- and γH2AX foci assays for NTT prediction. A correlation between ex vivo cytogenetic biomarker yields and NTT occurred most frequently when chromosome aberrations (not micronuclei) were measured in lymphocytes (not fibroblasts) irradiated to relatively high doses (4-6 Gy, not 2 Gy) in patients with various grades of late (not early) radiotherapy (RT) morbidity. The limitations of existing approaches are discussed, and recommendations on the improvement of the ex vivo cytogenetic testing for NTT prediction are provided. However, the efficiency of these methods still needs to be validated in properly organized clinical trials involving large and verified patient cohorts.
Collapse
Affiliation(s)
- Volodymyr Vinnikov
- S.P. Grigoriev Institute for Medical Radiology and Oncology, National Academy of Medical Science of Ukraine, 61024 Kharkiv, Ukraine
| | - Manoor Prakash Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, MD9, 2 Medical Drive, Singapore 117593, Singapore;
| | - Ruth Wilkins
- Consumer and Clinical Radiation Protection Bureau, Health Canada, 775 Brookfield Road, Ottawa, ON K1A 1C1, Canada;
| | - Andrzej Wojcik
- Centre for Radiation Protection Research, MBW Department, Stockholm University, Svante Arrhenius väg 20C, Room 515, 10691 Stockholm, Sweden;
| | - Eduardo Zubizarreta
- Section of Applied Radiation Biology and Radiotherapy, Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria;
| | - Oleg Belyakov
- Section of Applied Radiation Biology and Radiotherapy, Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria;
| |
Collapse
|
10
|
Shumway DA, Kapadia N, Walker EM, Griffith KA, Do TT, Feng M, Boike T, Helfrich Y, DePalma B, Gillespie EF, Miller A, Hayman J, Jagsi R, Pierce LJ. Development of an Illustrated Scale for Acute Radiation Dermatitis in Breast Cancer Patients. Pract Radiat Oncol 2020; 11:168-176. [PMID: 32947041 DOI: 10.1016/j.prro.2020.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/21/2020] [Accepted: 09/04/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE Scales for rating acute radiation dermatitis (ARD) have not been validated despite decades of clinical use, and little is known regarding the relationship between toxicity scores and patient-reported symptoms. Skin tone also complicates assessment of ARD, and as such we sought to design an illustrated scale to consistently describe ARD across several skin tone types in breast cancer patients undergoing radiation (RT). METHODS AND MATERIALS Patients undergoing RT for breast cancer were enrolled on a prospective study with photographs obtained at 2-week intervals. Photographs were clustered according to the apparent severity of acute radiation dermatitis and a descriptive photonumeric scale was developed. Four clinically experienced raters used both the illustrated photonumeric scale and the Common Terminology Criteria for Adverse Events to independently score the collection of photographs in 2 independent sessions. RESULTS Among 80 unique patients with 192 photographs, 47 patients (59%) completed questionnaires about their symptoms during RT. Physicians completed toxicity forms at the point-of-care for 52 patients (65%). Photonumeric ratings compared against patient reports of dry and moist desquamation demonstrated high specificity (95% and 93%, respectively) and negative predictive value (84% and 92%), indicating correct identification of patients who did not report dry or moist desquamation. The sensitivity and positive predictive value for separate measures of dry and moist desquamation were considerably lower. A combined measure of any desquamation (dry or moist) portrayed higher diagnostic accuracy, resulting in 72% sensitivity, 93% specificity, 75% positive predictive value, and 92% negative predictive value. Photonumeric ratings of dry or moist desquamation were significantly associated with patient reports of itching, burning or stinging, hurting, and swelling. CONCLUSIONS The Michigan scale for acute radiation dermatitis is a simple grading rubric that is distinguished by characterization of its intra- and interrater reliability and diagnostic accuracy, correlation with patient-reported symptoms of bother and pain, and applicability across the spectrum of skin pigmentation.
Collapse
Affiliation(s)
- Dean A Shumway
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan.
| | - Nirav Kapadia
- Department of Radiation Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Eleanor M Walker
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, Michigan
| | - Kent A Griffith
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Thy Thy Do
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan
| | - Mary Feng
- Department of Radiation Oncology, University of California, San Francisco, California
| | - Thomas Boike
- MHP Radiation Oncology Institute/21st Century Oncology, Detroit, Michigan
| | - Yolanda Helfrich
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan
| | - Bonnie DePalma
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, Michigan
| | - Erin F Gillespie
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alexandria Miller
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - James Hayman
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Reshma Jagsi
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Lori J Pierce
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
11
|
Chargari C, Supiot S, Hennequin C, Chapel A, Simon JM. [Treatment of radiation-induced late effects: What's new?]. Cancer Radiother 2020; 24:602-611. [PMID: 32855027 DOI: 10.1016/j.canrad.2020.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/29/2020] [Accepted: 06/07/2020] [Indexed: 02/06/2023]
Abstract
Mechanisms of late radio-induced lesions are the result of multiple and complex phenomena, with many entangled cellular and tissue factors. The biological continuum between acute and late radio-induced effects will be described, with firstly a break in homeostasis that leads to cellular redistributions. New insights into late toxicity will finally be addressed. Individual radiosensitivity is a primary factor for the development of late toxicity, and clinicians urgently need predictive tests to offer truly personalized radiation therapy. An update will be made on the various functional and genetic tests currently being validated. The management of radio-induced side effects remains a frequent issue for radiation oncologists, and an update will be made for certain specific clinical situations. Finally, an innovative management for patients with significant side effects after pelvic radiotherapy will be developed, involved mesenchymal stem cell transplantation, with the presentation of the "PRISME" protocol currently open to patients recruitment.
Collapse
Affiliation(s)
- C Chargari
- Département de radiothérapie, Gustave-Roussy Cancer Campus, 114, rue Édouard-Vaillant, 94800 Villejuif France
| | - S Supiot
- Département d'oncologie radiothérapie, institut de cancérologie de l'ouest - centre René-Gauducheau, boulevard Jacques-Monod, 44805 Saint-Herblain cedex, France; Institut de recherche en santé de l'université de Nantes, université de Nantes, 8, quai Moncousu, BP 70721, 44007 Nantes cedex 1, France; Inserm, U1232 Centre de recherche en cancérologie et immunologie de Nantes - Angers (CRCINA), 8, quai Moncousu, BP 70721, 44007 Nantes cedex 1, France; CNRS, ERL 6001, 8, quai Moncousu, BP 70721, 44007 Nantes cedex 1, France
| | - C Hennequin
- Service de cancérologie-radiothérapie, hôpital Saint-Louis, 1, avenue Claude-Vellefeaux, 75475 Paris, France
| | - A Chapel
- Service de recherche en radiobiologie et en médecine régénérative, laboratoire de radiobiologie des expositions médicales, Institut de radioprotection et de sûreté nucléaire (IRSN), 31, avenue de la Division-Leclerc, 92260 Fontenay-aux-Roses, France
| | - J-M Simon
- Sorbonne université, 21, rue de l'École-de-Médecine, 75006 Paris, France; Service d'oncologie radiothérapie, hôpital Pitié-Salpêtrière, AP-HP, 47-83, boulevard de l'Hôpital, 75651 Paris cedex 13, France.
| |
Collapse
|
12
|
De Courcy L, Bezak E, Marcu LG. Gender-dependent radiotherapy: The next step in personalised medicine? Crit Rev Oncol Hematol 2020; 147:102881. [PMID: 31991224 DOI: 10.1016/j.critrevonc.2020.102881] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/03/2019] [Accepted: 01/17/2020] [Indexed: 12/11/2022] Open
Abstract
Individuals do not react to radiation in a homogeneous manner. Recent radiogenomic research has proven that individual polymorphisms can correlate with treatment response most likely due to variation in the ability to recognise and repair DNA breaks. The difference in radiosensitivity between genders has been well documented, yet most radiotherapeutic guidelines are based solely on population averages rather than demographic subgroups such as age, race and gender. This paper is a review of the burgeoning literature available on the differences in efficacy and outcome of radiotherapy between genders. The work examines the effect of radiation on gender both from a tumour control as well as normal tissue toxicity perspective. While the literature reporting such findings is limited, the results show a small but significant difference in response to radiotherapy between sexes. Prospective and retrospective studies for evaluating these gender-specific differences are encouraged as a next step in personalised medicine.
Collapse
Affiliation(s)
- Louis De Courcy
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Eva Bezak
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide, SA, 5001, Australia; Department of Physics, University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Loredana G Marcu
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide, SA, 5001, Australia; Faculty of Informatics & Science, University of Oradea, Oradea, 410087, Romania.
| |
Collapse
|
13
|
Farias VDA, Tovar I, del Moral R, O'Valle F, Expósito J, Oliver FJ, Ruiz de Almodóvar JM. Enhancing the Bystander and Abscopal Effects to Improve Radiotherapy Outcomes. Front Oncol 2020; 9:1381. [PMID: 31970082 PMCID: PMC6960107 DOI: 10.3389/fonc.2019.01381] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/22/2019] [Indexed: 12/12/2022] Open
Abstract
In this paper, we summarize published articles and experiences related to the attempt to improve radiotherapy outcomes and, thus, to personalize the radiation treatment according to the individual characteristics of each patient. The evolution of ideas and the study of successively published data have led us to envisage new biophysical models for the interpretation of tumor and healthy normal tissue response to radiation. In the development of the model, we have shown that when mesenchymal stem cells (MSCs) and radiotherapy are administered simultaneously in experimental radiotherapy on xenotumors implanted in a murine model, the results of the treatment show the existence of a synergic mechanism that is able to enhance the local and systemic actions of the radiation both on the treated tumor and on its possible metastasis. We are convinced that, due to the physical hallmarks that characterize the neoplastic tissues, the physical-chemical tropism of MSCs, and the widespread functions of macromolecules, proteins, and exosomes released from activated MSCs, the combination of radiotherapy plus MSCs used intratumorally has the effect of counteracting the pro-tumorigenic and pro-metastatic signals that contribute to the growth, spread, and resistance of the tumor cells. Therefore, we have concluded that MSCs are appropriate for therapeutic use in a clinical trial for rectal cancer combined with radiotherapy, which we are going to start in the near future.
Collapse
Affiliation(s)
- Virgínea de Araújo Farias
- Centro de Investigación Biomédica, Instituto Universitario de Investigación en Biopatología y Medicina Regenerativa, PTS Granada, Granada, Spain
- CIBERONC (Instituto de Salud Carlos III), Granada, Spain
- Instituto de Parasitología y Biomedicina “López Neyra”, Consejo Superior de Investigaciones Científicas, PTS Granada, Granada, Spain
| | - Isabel Tovar
- Complejo Hospitalario de Granada, Servicio Andaluz de Salud, PTS Granada, Granada, Spain
| | - Rosario del Moral
- Complejo Hospitalario de Granada, Servicio Andaluz de Salud, PTS Granada, Granada, Spain
| | - Francisco O'Valle
- Centro de Investigación Biomédica, Instituto Universitario de Investigación en Biopatología y Medicina Regenerativa, PTS Granada, Granada, Spain
- CIBERONC (Instituto de Salud Carlos III), Granada, Spain
- Instituto de Parasitología y Biomedicina “López Neyra”, Consejo Superior de Investigaciones Científicas, PTS Granada, Granada, Spain
- Departamento de Anatomía Patológica, Facultad de Medicina, Universidad de Granada, PTS Granada, Granada, Spain
| | - José Expósito
- Complejo Hospitalario de Granada, Servicio Andaluz de Salud, PTS Granada, Granada, Spain
| | - Francisco Javier Oliver
- CIBERONC (Instituto de Salud Carlos III), Granada, Spain
- Instituto de Parasitología y Biomedicina “López Neyra”, Consejo Superior de Investigaciones Científicas, PTS Granada, Granada, Spain
| | - José Mariano Ruiz de Almodóvar
- Centro de Investigación Biomédica, Instituto Universitario de Investigación en Biopatología y Medicina Regenerativa, PTS Granada, Granada, Spain
- CIBERONC (Instituto de Salud Carlos III), Granada, Spain
| |
Collapse
|
14
|
Palumbo E, Piotto C, Calura E, Fasanaro E, Groff E, Busato F, El Khouzai B, Rigo M, Baggio L, Romualdi C, Zafiropoulos D, Russo A, Mognato M, Corti L. Individual Radiosensitivity in Oncological Patients: Linking Adverse Normal Tissue Reactions and Genetic Features. Front Oncol 2019; 9:987. [PMID: 31632918 PMCID: PMC6779824 DOI: 10.3389/fonc.2019.00987] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/16/2019] [Indexed: 11/16/2022] Open
Abstract
Introduction: Adverse effects of radiotherapy (RT) significantly affect patient's quality of life (QOL). The possibility to identify patient-related factors that are associated with individual radiosensitivity would optimize adjuvant RT treatment, limiting the severity of normal tissue reactions, and improving patient's QOL. In this study, we analyzed the relationships between genetic features and toxicity grading manifested by RT patients looking for possible biomarkers of individual radiosensitivity. Methods: Early radiation toxicity was evaluated on 143 oncological patients according to the Common Terminology Criteria for Adverse Events (CTCAE). An individual radiosensitivity (IRS) index defining four classes of radiosensitivity (highly radiosensitive, radiosensitive, normal, and radioresistant) was determined by a G2-chromosomal assay on ex vivo irradiated, patient-derived blood samples. The expression level of 15 radioresponsive genes has been measured by quantitative real-time PCR at 24 h after the first RT fraction, in blood samples of a subset of 57 patients, representing the four IRS classes. Results: By applying univariate and multivariate statistical analyses, we found that fatigue was significantly associated with IRS index. Interestingly, associations were detected between clinical radiation toxicity and gene expression (ATM, CDKN1A, FDXR, SESN1, XPC, ZMAT3, and BCL2/BAX ratio) and between IRS index and gene expression (BBC3, FDXR, GADD45A, and BCL2/BAX). Conclusions: In this prospective cohort study we found that associations exist between normal tissue reactions and genetic features in RT-treated patients. Overall, our findings can contribute to the identification of biological markers to predict RT toxicity in normal tissues.
Collapse
Affiliation(s)
- Elisa Palumbo
- Department of Radiotherapy, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Celeste Piotto
- Department of Radiotherapy, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Enrica Calura
- Department of Biology, University of Padua, Padua, Italy
| | - Elena Fasanaro
- Department of Radiotherapy, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Elena Groff
- Department of Radiotherapy, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Fabio Busato
- Department of Radiotherapy, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Badr El Khouzai
- Department of Radiotherapy, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Michele Rigo
- Department of Radiotherapy, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Laura Baggio
- Department of Radiotherapy, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | | | - Demetre Zafiropoulos
- National Laboratories of Legnaro, Italian Institute of Nuclear Physics (LNL-INFN), Padua, Italy
| | - Antonella Russo
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | | - Luigi Corti
- Department of Radiotherapy, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| |
Collapse
|
15
|
Morton LM, Kerns SL, Dolan ME. Role of Germline Genetics in Identifying Survivors at Risk for Adverse Effects of Cancer Treatment. Am Soc Clin Oncol Educ Book 2018; 38:775-786. [PMID: 30231410 DOI: 10.1200/edbk_201391] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The growing population of cancer survivors often faces adverse effects of treatment, which have a substantial impact on morbidity and mortality. Although certain adverse effects are thought to have a significant heritable component, much work remains to be done to understand the role of germline genetic factors in the development of treatment-related toxicities. In this article, we review current understanding of genetic susceptibility to a range of adverse outcomes among cancer survivors (e.g., fibrosis, urinary and rectal toxicities, ototoxicity, chemotherapy-induced peripheral neuropathy, subsequent malignancies). Most previous research has been narrowly focused, investigating variation in candidate genes and pathways such as drug metabolism, DNA damage and repair, and inflammation. Few of the findings from these earlier candidate gene studies have been replicated in independent populations. Advances in understanding of the genome, improvements in technology, and reduction in laboratory costs have led to recent genome-wide studies, which agnostically interrogate common and/or rare variants across the entire genome. Larger cohorts of patients with homogeneous treatment exposures and systematic ascertainment of well-defined outcomes as well as replication in independent study populations are essential aspects of the study design and are increasingly leading to the discovery of variants associated with each of the adverse outcomes considered in this review. In the long-term, validated germline genetic associations hold tremendous promise for more precisely identifying patients at highest risk for developing adverse treatment effects, with implications for frontline therapy decision-making, personalization of long-term follow-up guidelines, and potential identification of targets for prevention or treatment of the toxicity.
Collapse
Affiliation(s)
- Lindsay M Morton
- From the Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute at the National Institutes of Health, Bethesda, MD; Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY; Department of Medicine, University of Chicago, Chicago, IL
| | - Sarah L Kerns
- From the Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute at the National Institutes of Health, Bethesda, MD; Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY; Department of Medicine, University of Chicago, Chicago, IL
| | - M Eileen Dolan
- From the Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute at the National Institutes of Health, Bethesda, MD; Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY; Department of Medicine, University of Chicago, Chicago, IL
| |
Collapse
|
16
|
Kerns SL, Chuang KH, Hall W, Werner Z, Chen Y, Ostrer H, West C, Rosenstein B. Radiation biology and oncology in the genomic era. Br J Radiol 2018; 91:20170949. [PMID: 29888979 PMCID: PMC6475928 DOI: 10.1259/bjr.20170949] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 12/25/2022] Open
Abstract
Radiobiology research is building the foundation for applying genomics in precision radiation oncology. Advances in high-throughput approaches will underpin increased understanding of radiosensitivity and the development of future predictive assays for clinical application. There is an established contribution of genetics as a risk factor for radiotherapy side effects. An individual's radiosensitivity is an inherited polygenic trait with an architecture that includes rare mutations in a few genes that confer large effects and common variants in many genes with small effects. Current thinking is that some will be tissue specific, and future tests will be tailored to the normal tissues at risk. The relationship between normal and tumor cell radiosensitivity is poorly understood. Data are emerging suggesting interplay between germline genetic variation and epigenetic modification with growing evidence that changes in DNA methylation regulate the radiosensitivity of cancer cells and histone acetyltransferase inhibitors have radiosensitizing effects. Changes in histone methylation can also impair DNA damage response signaling and alter radiosensitivity. An important effort to advance radiobiology in the genomic era was establishment of the Radiogenomics Consortium to enable the creation of the large radiotherapy cohorts required to exploit advances in genomics. To address challenges in harmonizing data from multiple cohorts, the consortium established the REQUITE project to collect standardized data and genotyping for ~5,000 patients. The collection of detailed dosimetric data is important to produce validated multivariable models. Continued efforts will identify new genes that impact on radiosensitivity to generate new knowledge on toxicity pathogenesis and tests to incorporate into the clinical decision-making process.
Collapse
Affiliation(s)
| | - Kuang-Hsiang Chuang
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | - William Hall
- Department of Radiation Oncology, Medical College of Wisconsin and Clement J Zablocki VA Medical Center Milwaukee, Milwaukee, WI, USA
| | | | - Yuhchyau Chen
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | - Harry Ostrer
- Departments of Pathology and Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Catharine West
- Division of Cancer Sciences, University of Manchester, Christie Hospital, Manchester, UK
| | - Barry Rosenstein
- Departments of Radiation Oncology, Genetics and Genomic Sciences, and Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
17
|
Vogin G, Merlin JL, Rousseau A, Peiffert D, Harlé A, Husson M, Hajj LE, Levitchi M, Simon T, Simon JM. Absence of correlation between radiation-induced CD8 T-lymphocyte apoptosis and sequelae in patients with prostate cancer accidentally overexposed to radiation. Oncotarget 2018; 9:32680-32689. [PMID: 30220974 PMCID: PMC6135683 DOI: 10.18632/oncotarget.26001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 08/04/2018] [Indexed: 01/16/2023] Open
Abstract
Purpose 454 patients with prostate adenocarcinoma were accidentally overexposed to radiation in Epinal hospital, France, between August 1999 and January 2007. We aimed toevaluate whether radiation-induced CD4 or CD8 T-lymphocyte apoptosis (RILA) correlates with the severity of radiation toxicity. Methods Between 2007 and 2013, all patients who received more than 108% of the prescribed radiation dose, after correction of the treatment plan, were convened, and blood was sampled at 6-months follow-up. Maximal Digestive toxicity (MDT) and maximal urinary toxicity (MUT) were graded using the Common Terminology Criteria for Adverse Events (NCI-CTCAE) v3.0 scale. RILA was assessed using flow cytometry. Results 245 patients were included in our study. After a median follow-up of 4.8 years, the MDT and MUT reached grade 3-4 in 37 patients and 56 patients, respectively. Patients with prostatectomy exhibited a statistically higher grade of MUT compared with those treated with definitive radiotherapy (p=0.03). The median RILA values were 11.8% and 15.3% for CD4 and CD8 T-lymphocytes, respectively. We found no significant correlation between CD4 or CD8 RILA and either MDT or MUT. Conclusion RILA does not correlate with the inter-individual variation in MDT or MUT in the largest cohort of patients overexposed to radiation. The magnitude of the overdosage probably overrides biological predictors of toxicity, including individual radiosensitivity.
Collapse
Affiliation(s)
- Guillaume Vogin
- Institut de Cancérologie de Lorraine, Département de Radiothérapie, 54500 Vandœuvre-lès-Nancy, France.,UMR 7365 CNRS-Université de Lorraine, 54500 Vandœuvre-lès-Nancy, France
| | - Jean-Louis Merlin
- Université de Lorraine, Faculté de Pharmacie, 54000 Nancy, France.,CNRS UMR 7039 CRAN Université de Lorraine, 54500 Vandœuvre-lès-Nancy, France.,Institut de Cancérologie de Lorraine, Service de Biopathologie, 54500 Vandœuvre-lès-Nancy, France
| | - Alexandra Rousseau
- APHP, Unité de Recherche Clinique de l'Est Parisien (URC-Est), Hôpital Saint Antoine, 75012 Paris, France
| | - Didier Peiffert
- CNRS UMR 7039 CRAN Université de Lorraine, 54500 Vandœuvre-lès-Nancy, France
| | - Alexandre Harlé
- Institut de Cancérologie de Lorraine, Département de Radiothérapie, 54500 Vandœuvre-lès-Nancy, France.,UMR 7365 CNRS-Université de Lorraine, 54500 Vandœuvre-lès-Nancy, France.,Université de Lorraine, Faculté de Pharmacie, 54000 Nancy, France
| | - Marie Husson
- Université de Lorraine, Faculté de Pharmacie, 54000 Nancy, France
| | - Labib El Hajj
- CNRS UMR 7039 CRAN Université de Lorraine, 54500 Vandœuvre-lès-Nancy, France
| | - Mihai Levitchi
- CNRS UMR 7039 CRAN Université de Lorraine, 54500 Vandœuvre-lès-Nancy, France
| | - Tabassome Simon
- APHP, Unité de Recherche Clinique de l'Est Parisien (URC-Est), Hôpital Saint Antoine, 75012 Paris, France
| | - Jean-Marc Simon
- APHP, Hôpital Universitaire de la Pitié Salpêtrière, Service de Radiothérapie, 75013 Paris, France
| |
Collapse
|
18
|
Azria D, Lapierre A, Gourgou S, De Ruysscher D, Colinge J, Lambin P, Brengues M, Ward T, Bentzen SM, Thierens H, Rancati T, Talbot CJ, Vega A, Kerns SL, Andreassen CN, Chang-Claude J, West CML, Gill CM, Rosenstein BS. Data-Based Radiation Oncology: Design of Clinical Trials in the Toxicity Biomarkers Era. Front Oncol 2017; 7:83. [PMID: 28497027 PMCID: PMC5406456 DOI: 10.3389/fonc.2017.00083] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/13/2017] [Indexed: 12/15/2022] Open
Abstract
The ability to stratify patients using a set of biomarkers, which predict that toxicity risk would allow for radiotherapy (RT) modulation and serve as a valuable tool for precision medicine and personalized RT. For patients presenting with tumors with a low risk of recurrence, modifying RT schedules to avoid toxicity would be clinically advantageous. Indeed, for the patient at low risk of developing radiation-associated toxicity, use of a hypofractionated protocol could be proposed leading to treatment time reduction and a cost-utility advantage. Conversely, for patients predicted to be at high risk for toxicity, either a more conformal form or a new technique of RT, or a multidisciplinary approach employing surgery could be included in the trial design to avoid or mitigate RT when the potential toxicity risk may be higher than the risk of disease recurrence. In addition, for patients at high risk of recurrence and low risk of toxicity, dose escalation, such as a greater boost dose, or irradiation field extensions could be considered to improve local control without severe toxicities, providing enhanced clinical benefit. In cases of high risk of toxicity, tumor control should be prioritized. In this review, toxicity biomarkers with sufficient evidence for clinical testing are presented. In addition, clinical trial designs and predictive models are described for different clinical situations.
Collapse
Affiliation(s)
- David Azria
- Department of Radiation Oncology, Radiobiology Unit, Biometric and Bio-informatic Divisions, Montpellier Cancer Institute (ICM), IRCM, INSERM U1194, Montpellier, France
| | - Ariane Lapierre
- Department of Radiation Oncology, Radiobiology Unit, Biometric and Bio-informatic Divisions, Montpellier Cancer Institute (ICM), IRCM, INSERM U1194, Montpellier, France
| | - Sophie Gourgou
- Department of Radiation Oncology, Radiobiology Unit, Biometric and Bio-informatic Divisions, Montpellier Cancer Institute (ICM), IRCM, INSERM U1194, Montpellier, France
| | - Dirk De Ruysscher
- Department of Radiation Oncology, Maastricht University Medical Centre, MAASTRO Clinic, Maastricht, Netherlands
- Radiation Oncology, KU Leuven, Leuven, Belgium
| | - Jacques Colinge
- Department of Radiation Oncology, Radiobiology Unit, Biometric and Bio-informatic Divisions, Montpellier Cancer Institute (ICM), IRCM, INSERM U1194, Montpellier, France
| | - Philippe Lambin
- Department of Radiation Oncology, Maastricht University Medical Centre, MAASTRO Clinic, Maastricht, Netherlands
| | - Muriel Brengues
- Department of Radiation Oncology, Radiobiology Unit, Biometric and Bio-informatic Divisions, Montpellier Cancer Institute (ICM), IRCM, INSERM U1194, Montpellier, France
| | - Tim Ward
- Patient Advocate, Manchester, UK
| | - Søren M. Bentzen
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hubert Thierens
- Department of Basic Medical Sciences, Ghent University, Ghent, Belgium
| | - Tiziana Rancati
- Prostate Cancer Program, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Ana Vega
- Fundacion Publica Galega de Medicina Xenomica-SERGAS, Grupo de Medicina Xenomica-USC, IDIS, CIBERER, Santiago de Compostela, Spain
| | - Sarah L. Kerns
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Catharine M. L. West
- Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital NHS Trust, Manchester, UK
| | - Corey M. Gill
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Barry S. Rosenstein
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
19
|
McKay MJ, Maneerat J, McKay TM, McKay JN, Masoud-Rahbari R. In vitro prediction of breast cancer therapy toxicity. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:94. [PMID: 28361059 DOI: 10.21037/atm.2017.02.27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Understanding the basis of clinical radiosensitivity is a key goal of radiation research. In this study, we used the limiting dilution assay (LDA) to analyze in vitro radiosensitivity of cell lines from individuals with breast and other cancers, who had been treated with ionizing radiation, and who either had a non-radiosensitive (RS) radiation response or who were clinically RS. METHODS Lymphoblastoid cell lines (LCLs) were created from 29 cancer patients including 19 RS patients, 10 controls who had not developed severe normal tissue reactions, and 1 ataxia telangiectasia RS control cell line. The clinically RS patients had grade 3 or grade 4 reactions; one had a grade 2 reaction. All cells were exposed to graded doses of gamma-radiation in vitro and cell survival assessed via LDA. Cell survival was expressed on non-linear regression analysis-fitted survival curves and also as the surviving fraction at 2 Gray (Gy) (SF2). RESULTS Our LDA analysis yielded two notable positive results. Firstly, it could distinguish control cells from cells from pooled breast cancer cases with severe reactions of all types (acute reactors, consequential late reactors and late reactors). Secondly, two radiosensitivity outliers were detected on the fitted curves, corresponding clinically to grade 3 and 4 late radiation reactions in breast and head and neck cancer cases respectively. The assay showed considerable cell survival heterogeneity. CONCLUSIONS The LDA as used here may provide unique clinical utility in detecting potential RS breast cancer patients prior to radiotherapy (RT), a form of personalized medicine. The assay may be especially useful in situations where its results can be temporally available prior to therapy initiation (e.g., those patients not undergoing RT until some months after surgery, typically those having adjuvant chemotherapy prior to RT). Two LCLs from RS outliers could potentially yield insight into the cellular and/or genetic basis of radiosensitivity, for example by undertaking genomic analyses on these cell lines.
Collapse
Affiliation(s)
- Michael J McKay
- Department of Medicine, University of Sydney, Camperdown, 2050 NSW, Australia
| | | | | | | | | |
Collapse
|
20
|
van Oorschot B, Uitterhoeve L, Oomen I, Ten Cate R, Medema JP, Vrieling H, Stalpers LJA, Moerland PD, Franken NAP. Prostate Cancer Patients with Late Radiation Toxicity Exhibit Reduced Expression of Genes Involved in DNA Double-Strand Break Repair and Homologous Recombination. Cancer Res 2017; 77:1485-1491. [PMID: 28108515 DOI: 10.1158/0008-5472.can-16-1966] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/17/2016] [Accepted: 11/18/2016] [Indexed: 11/16/2022]
Abstract
Severe late damage to normal tissue is a major limitation of cancer radiotherapy in prostate cancer patients. In a recent retrospective study, late radiation toxicity was found to relate to a decreased decay of γ-H2AX foci and reduced induction of DNA double-strand break repair genes. Here, we report evidence of prognostic utility in prostate cancer for γ-H2AX foci decay ratios and gene expression profiles derived from ex vivo-irradiated patient lymphocytes. Patients were followed ≥2 years after radiotherapy. Clinical characteristics were assembled, and toxicity was recorded using the Common Terminology Criteria (CTCAE) v4.0. No clinical factor was correlated with late radiation toxicity. The γ-H2AX foci decay ratio correlated negatively with toxicity grade, with a significant difference between grade ≥3 and grade 0 patients (P = 0.02). A threshold foci decay ratio, determined in our retrospective study, correctly classified 23 of 28 patients with grade ≥3 toxicity (sensitivity 82%) and 9 of 14 patients with grade 0 toxicity (specificity 64%). Induction of homologous recombination (HR) repair genes was reduced with increasing toxicity grade. The difference in fold induction of the HR gene set was most pronounced between grade 0 and grade ≥3 toxicity (P = 0.008). Notably, reduced responsiveness of HR repair genes to irradiation and inefficient double-strand break repair correlated with severe late radiation toxicity. Using a decay ratio classifier, we correctly classified 82% of patients with grade ≥3 toxicity, suggesting a prognostic biomarker for cancer patients with a genetically enhanced risk for late radiation toxicity to normal tissues after radiotherapy. Cancer Res; 77(6); 1485-91. ©2017 AACR.
Collapse
Affiliation(s)
- Bregje van Oorschot
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Molecular Medicine (CEMM), Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.
| | - Lon Uitterhoeve
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Molecular Medicine (CEMM), Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Ilja Oomen
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Molecular Medicine (CEMM), Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Rosemarie Ten Cate
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Molecular Medicine (CEMM), Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Molecular Medicine (CEMM), Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Harry Vrieling
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Lukas J A Stalpers
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Molecular Medicine (CEMM), Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Perry D Moerland
- Bioinformatics Laboratory, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Nicolaas A P Franken
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Molecular Medicine (CEMM), Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
21
|
Herskind C, Talbot CJ, Kerns SL, Veldwijk MR, Rosenstein BS, West CML. Radiogenomics: A systems biology approach to understanding genetic risk factors for radiotherapy toxicity? Cancer Lett 2016; 382:95-109. [PMID: 26944314 PMCID: PMC5016239 DOI: 10.1016/j.canlet.2016.02.035] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/17/2016] [Accepted: 02/19/2016] [Indexed: 02/06/2023]
Abstract
Adverse reactions in normal tissue after radiotherapy (RT) limit the dose that can be given to tumour cells. Since 80% of individual variation in clinical response is estimated to be caused by patient-related factors, identifying these factors might allow prediction of patients with increased risk of developing severe reactions. While inactivation of cell renewal is considered a major cause of toxicity in early-reacting normal tissues, complex interactions involving multiple cell types, cytokines, and hypoxia seem important for late reactions. Here, we review 'omics' approaches such as screening of genetic polymorphisms or gene expression analysis, and assess the potential of epigenetic factors, posttranslational modification, signal transduction, and metabolism. Furthermore, functional assays have suggested possible associations with clinical risk of adverse reaction. Pathway analysis incorporating different 'omics' approaches may be more efficient in identifying critical pathways than pathway analysis based on single 'omics' data sets. Integrating these pathways with functional assays may be powerful in identifying multiple subgroups of RT patients characterised by different mechanisms. Thus 'omics' and functional approaches may synergise if they are integrated into radiogenomics 'systems biology' to facilitate the goal of individualised radiotherapy.
Collapse
Affiliation(s)
- Carsten Herskind
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany.
| | | | - Sarah L Kerns
- Department of Radiation Oncology, Mount Sinai School of Medicine, New York, USA; Department of Radiation Oncology, University of Rochester Medical Center, Rochester, USA
| | - Marlon R Veldwijk
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Barry S Rosenstein
- Department of Radiation Oncology, Mount Sinai School of Medicine, New York, USA; Department of Radiation Oncology, New York University School of Medicine, USA; Department of Dermatology, Mount Sinai School of Medicine, New York, USA
| | - Catharine M L West
- Institute of Cancer Sciences, University of Manchester, Christie Hospital, Manchester, UK
| |
Collapse
|
22
|
Vandevoorde C, Depuydt J, Veldeman L, De Neve W, Sebastià N, Wieme G, Baert A, De Langhe S, Philippé J, Thierens H, Vral A. In vitro cellular radiosensitivity in relationship to late normal tissue reactions in breast cancer patients: a multi-endpoint case-control study. Int J Radiat Biol 2016; 92:823-836. [PMID: 27586010 DOI: 10.1080/09553002.2016.1230238] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE A minority of patients exhibits severe late normal tissue toxicity after radiotherapy (RT), possibly related to their inherent individual radiation sensitivity. This study aimed to evaluate four different candidate in vitro cellular radiosensitivity assays for prediction of late normal tissue reactions, in a retrospective matched case-control set-up of breast cancer patients. METHODS The study population consists of breast cancer patients expressing severe radiation toxicity (12 cases) and no or minimal reactions (12 controls), with a follow-up for at least 3 years. Late adverse reactions were evaluated by comparing standardized photographs pre- and post-RT resulting in an overall cosmetic score and by clinical examination using the LENT-SOMA scale. Four cellular assays on peripheral blood lymphocytes reported to be associated with normal tissue reactions were performed after in vitro irradiation of patient blood samples to compare case and control radiation responses: radiation-induced CD8+ late apoptosis, residual DNA double-strand breaks, G0 and G2 micronucleus assay. RESULTS A significant difference was observed for all cellular endpoints when matched cases and controls were compared both pairwise and grouped. However, it is important to point out that most case-control pairs showed a substantial overlap in standard deviations, which questions the predictive value of the individual assays. The apoptosis assay performed best, with less apoptosis seen in CD8+ lymphocytes of the cases (average: 14.45%) than in their matched controls (average: 30.64%) for 11 out of 12 patient pairs (p < .01). The number of residual DNA DSB was higher in cases (average: 9.92 foci/cell) compared to their matched control patients (average: 9.17 foci/cell) (p < .01). The average dose response curve of the G0 MN assay for cases lies above the average dose response curve of the controls. Finally, a pairwise comparison of the G2 MN results showed a higher MN yield for cases (average: 351 MN/1000BN) compared to controls (average: 219 MN/1000BN) in 9 out of 10 pairs (p < .01). CONCLUSION This matched case-control study in breast cancer patients, using different endpoints for in vitro cellular radiosensitivity related to DNA repair and apoptosis, suggests that patients' intrinsic radiosensitivity is involved in the development of late normal tissue reactions after RT. Larger prospective studies are warranted to validate the retrospective findings and to use in vitro cellular assays in the future to predict late normal tissue radiosensitivity and discriminate individuals with marked RT responses.
Collapse
Affiliation(s)
- Charlot Vandevoorde
- a Ghent University , Department of Basic Medical Sciences , Ghent , Belgium.,b National Research Foundation (NRF) , iThemba LABS , Somerset West , South Africa
| | - Julie Depuydt
- a Ghent University , Department of Basic Medical Sciences , Ghent , Belgium
| | - Liv Veldeman
- c Department of Radiotherapy , Ghent University Hospital , Ghent , Belgium
| | - Wilfried De Neve
- c Department of Radiotherapy , Ghent University Hospital , Ghent , Belgium
| | - Natividad Sebastià
- d Radiation Protection Service , IISLAFE , Valencia , Spain.,e Grupo de Investigación Biomédica en Imagen GIBI230 , IISLAFE , Valencia , Spain
| | - Greet Wieme
- a Ghent University , Department of Basic Medical Sciences , Ghent , Belgium.,f Department of Pediatrics and Medical Genetics , Ghent University , Ghent , Belgium
| | - Annelot Baert
- a Ghent University , Department of Basic Medical Sciences , Ghent , Belgium
| | - Sofie De Langhe
- a Ghent University , Department of Basic Medical Sciences , Ghent , Belgium
| | - Jan Philippé
- g Department of Clinical Chemistry, Microbiology and Immunology , Ghent University , Ghent , Belgium
| | - Hubert Thierens
- a Ghent University , Department of Basic Medical Sciences , Ghent , Belgium
| | - Anne Vral
- a Ghent University , Department of Basic Medical Sciences , Ghent , Belgium
| |
Collapse
|
23
|
Differences in DNA Repair Capacity, Cell Death and Transcriptional Response after Irradiation between a Radiosensitive and a Radioresistant Cell Line. Sci Rep 2016; 6:27043. [PMID: 27245205 PMCID: PMC4887990 DOI: 10.1038/srep27043] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/13/2016] [Indexed: 12/14/2022] Open
Abstract
Normal tissue toxicity after radiotherapy shows variability between patients, indicating inter-individual differences in radiosensitivity. Genetic variation probably contributes to these differences. The aim of the present study was to determine if two cell lines, one radiosensitive (RS) and another radioresistant (RR), showed differences in DNA repair capacity, cell viability, cell cycle progression and, in turn, if this response could be characterised by a differential gene expression profile at different post-irradiation times. After irradiation, the RS cell line showed a slower rate of γ-H2AX foci disappearance, a higher frequency of incomplete chromosomal aberrations, a reduced cell viability and a longer disturbance of the cell cycle when compared to the RR cell line. Moreover, a greater and prolonged transcriptional response after irradiation was induced in the RS cell line. Functional analysis showed that 24 h after irradiation genes involved in “DNA damage response”, “direct p53 effectors” and apoptosis were still differentially up-regulated in the RS cell line but not in the RR cell line. The two cell lines showed different response to IR and can be distinguished with cell-based assays and differential gene expression analysis. The results emphasise the importance to identify biomarkers of radiosensitivity for tailoring individualized radiotherapy protocols.
Collapse
|
24
|
Barnett GC, Kerns SL, Noble DJ, Dunning AM, West CML, Burnet NG. Incorporating Genetic Biomarkers into Predictive Models of Normal Tissue Toxicity. Clin Oncol (R Coll Radiol) 2015; 27:579-87. [PMID: 26166774 DOI: 10.1016/j.clon.2015.06.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/08/2015] [Accepted: 06/12/2015] [Indexed: 12/25/2022]
Abstract
There is considerable variation in the level of toxicity patients experience for a given dose of radiotherapy, which is associated with differences in underlying individual normal tissue radiosensitivity. A number of syndromes have a large effect on clinical radiosensitivity, but these are rare. Among non-syndromic patients, variation is less extreme, but equivalent to a ±20% variation in dose. Thus, if individual normal tissue radiosensitivity could be measured, it should be possible to optimise schedules for individual patients. Early investigations of in vitro cellular radiosensitivity supported a link with tissue response, but individual studies were equivocal. A lymphocyte apoptosis assay has potential, and is currently under prospective validation. The investigation of underlying genetic variation also has potential. Although early candidate gene studies were inconclusive, more recent genome-wide association studies are revealing definite associations between genotype and toxicity and highlighting the potential for future genetic testing. Genetic testing and individualised dose prescriptions could reduce toxicity in radiosensitive patients, and permit isotoxic dose escalation to increase local control in radioresistant individuals. The approach could improve outcomes for half the patients requiring radical radiotherapy. As a number of patient- and treatment-related factors also affect the risk of toxicity for a given dose, genetic testing data will need to be incorporated into models that combine patient, treatment and genetic data.
Collapse
Affiliation(s)
- G C Barnett
- Oncology Centre, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| | - S L Kerns
- Rubin Center for Cancer Survivorship, Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | - D J Noble
- Oncology Centre, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - A M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
| | - C M L West
- Institute of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, UK
| | - N G Burnet
- University of Cambridge Department of Oncology, Cambridge Biomedical Campus, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
25
|
Scaife JE, Barnett GC, Noble DJ, Jena R, Thomas SJ, West CML, Burnet NG. Exploiting biological and physical determinants of radiotherapy toxicity to individualize treatment. Br J Radiol 2015; 88:20150172. [PMID: 26084351 PMCID: PMC4628540 DOI: 10.1259/bjr.20150172] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/07/2015] [Accepted: 05/21/2015] [Indexed: 12/16/2022] Open
Abstract
The recent advances in radiation delivery can improve tumour control probability (TCP) and reduce treatment-related toxicity. The use of intensity-modulated radiotherapy (IMRT) in particular can reduce normal tissue toxicity, an objective in its own right, and can allow safe dose escalation in selected cases. Ideally, IMRT should be combined with image guidance to verify the position of the target, since patients, target and organs at risk can move day to day. Daily image guidance scans can be used to identify the position of normal tissue structures and potentially to compute the daily delivered dose. Fundamentally, it is still the tolerance of the normal tissues that limits radiotherapy (RT) dose and therefore tumour control. However, the dose-response relationships for both tumour and normal tissues are relatively steep, meaning that small dose differences can translate into clinically relevant improvements. Differences exist between individuals in the severity of toxicity experienced for a given dose of RT. Some of this difference may be the result of differences between the planned dose and the accumulated dose (DA). However, some may be owing to intrinsic differences in radiosensitivity of the normal tissues between individuals. This field has been developing rapidly, with the demonstration of definite associations between genetic polymorphisms and variation in toxicity recently described. It might be possible to identify more resistant patients who would be suitable for dose escalation, as well as more sensitive patients for whom toxicity could be reduced or avoided. Daily differences in delivered dose have been investigated within the VoxTox research programme, using the rectum as an example organ at risk. In patients with prostate cancer receiving curative RT, considerable daily variation in rectal position and dose can be demonstrated, although the median position matches the planning scan well. Overall, in 10 patients, the mean difference between planned and accumulated rectal equivalent uniform doses was -2.7 Gy (5%), and a dose reduction was seen in 7 of the 10 cases. If dose escalation was performed to take rectal dose back to the planned level, this should increase the mean TCP (as biochemical progression-free survival) by 5%. Combining radiogenomics with individual estimates of DA might identify almost half of patients undergoing radical RT who might benefit from either dose escalation, suggesting improved tumour cure or reduced toxicity or both.
Collapse
Affiliation(s)
- J E Scaife
- University of Cambridge Department of Oncology, Cambridge Biomedical Campus, Addenbrooke's Hospital, Cambridge, UK
- Cancer Research UK VoxTox Research Group, University of Cambridge Department of Oncology, Addenbrooke's Hospital, Cambridge, UK
| | - G C Barnett
- Cancer Research UK VoxTox Research Group, University of Cambridge Department of Oncology, Addenbrooke's Hospital, Cambridge, UK
- Oncology Centre, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - D J Noble
- Oncology Centre, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - R Jena
- University of Cambridge Department of Oncology, Cambridge Biomedical Campus, Addenbrooke's Hospital, Cambridge, UK
- Cancer Research UK VoxTox Research Group, University of Cambridge Department of Oncology, Addenbrooke's Hospital, Cambridge, UK
| | - S J Thomas
- Cancer Research UK VoxTox Research Group, University of Cambridge Department of Oncology, Addenbrooke's Hospital, Cambridge, UK
- Medical Physics Department, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - C M L West
- Institute of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, UK
| | - N G Burnet
- University of Cambridge Department of Oncology, Cambridge Biomedical Campus, Addenbrooke's Hospital, Cambridge, UK
- Cancer Research UK VoxTox Research Group, University of Cambridge Department of Oncology, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
26
|
Kerns SL, West CML, Andreassen CN, Barnett GC, Bentzen SM, Burnet NG, Dekker A, De Ruysscher D, Dunning A, Parliament M, Talbot C, Vega A, Rosenstein BS. Radiogenomics: the search for genetic predictors of radiotherapy response. Future Oncol 2014; 10:2391-406. [PMID: 25525847 DOI: 10.2217/fon.14.173] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
'Radiogenomics' is the study of genetic variation associated with response to radiotherapy. Radiogenomics aims to uncover the genes and biologic pathways responsible for radiotherapy toxicity that could be targeted with radioprotective agents and; identify genetic markers that can be used in risk prediction models in the clinic. The long-term goal of the field is to develop single nucleotide polymorphism-based risk models that can be used to stratify patients to more precisely tailored radiotherapy protocols. The field has evolved over the last two decades in parallel with advances in genomics, moving from narrowly focused candidate gene studies to large, collaborative genome-wide association studies. Several confirmed genetic variants have been identified and the field is making progress toward clinical translation.
Collapse
Affiliation(s)
- Sarah L Kerns
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Gürtler A, Hauptmann M, Pautz S, Kulka U, Friedl AA, Lehr S, Hornhardt S, Gomolka M. The inter-individual variability outperforms the intra-individual variability of differentially expressed proteins prior and post irradiation in lymphoblastoid cell lines. Arch Physiol Biochem 2014; 120:198-207. [PMID: 25174346 DOI: 10.3109/13813455.2014.953548] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
CONTEXT Radio-sensitivity in normal tissue is characterized by heterogeneity throughout the population and the absence of pre-diagnostic biomarkers. OBJECTIVE We conducted a proteomic approach to search for radiation characteristic protein regulation. MATERIALS AND METHODS Cell lines were 10 Gy irradiated and analysed by 2D-DIGE after 24 h. RESULTS were analysed intra- and inter-individually. The principal component analysis and hierarchical clustering was applied to all datasets. RESULTS Differences in intra-individual spot abundance prior and post irradiation exactly show the separation of sample classes in two groups: sham-irradiated and irradiated. The inter-individual datasets clustered according to the cell line. The intra-individual differences on protein level after gamma-irradiation are very low, compared with the inter-individual differences among cell lines derived from the same tissue. CONCLUSION The application of 2-D DIGE may offer a realistic chance for a better molecular characterization of radio-sensitivity and for the discovery of candidate biomarkers.
Collapse
Affiliation(s)
- A Gürtler
- Federal Office for Radiation Protection, Department SG Radiation Protection and Health , Neuherberg , Germany
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Jakubovic R, Sahgal A, Ruschin M, Pejovic-Milic A, Milwid R, Aviv RI. Non Tumor Perfusion Changes Following Stereotactic Radiosurgery to Brain Metastases. Technol Cancer Res Treat 2014; 14:tcrtexpress.201. [PMID: 24749999 PMCID: PMC4639904 DOI: 10.7785/tcrtexpress.2013.600279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 02/13/2014] [Accepted: 03/11/2014] [Indexed: 12/03/2022] Open
Abstract
Purpose: To evaluate early perfusion changes in normal tissue following stereotactic radiosurgery (SRS). Methods: Nineteen patients harboring twenty-two brain metastases treated with SRS were imaged with dynamic susceptibility magnetic resonance imaging (DSC MRI) at baseline, 1 week and 1 month post SRS. Relative cerebral blood volume and flow (rCBV and rCBF) ratios were evaluated outside of tumor within a combined region of interest (ROI) and separately within gray matter (GM) and white matter (WM) ROIs. Three-dimensional dose distribution from each SRS plan was divided into six regions: (1) <2 Gy; (2) 2-5 Gy; (3) 5-10 Gy; (4) 10-12 Gy; (5) 12-16 Gy; and (6) >16 Gy. rCBV and rCBF ratio differences between baseline, 1 week and 1 month were compared. Best linear fit plots quantified normal tissue dose-dependency. Results: Significant rCBV ratio increases were present between baseline and 1 month for all ROIs and dose ranges except for WM ROI receiving <2 Gy. rCBV ratio for all ROIs was maximally increased from baseline to 1 month with the greatest changes occurring within the 5-10 Gy dose range (53.1%). rCBF ratio was maximally increased from baseline to 1 month for all ROIs within the 5-10 Gy dose range (33.9-45.0%). Both rCBV and rCBF ratios were most elevated within GM ROIs. A weak, positive but not significant association between dose, rCBV and rCBF ratio was demonstrated. Progressive rCBV and rCBF ratio increased with dose up to 10 Gy at 1 month. Conclusion: Normal tissue response following SRS can be characterized by dose, tissue, and time specific increases in rCBV and rCBF ratio.
Collapse
Affiliation(s)
- R Jakubovic
- Department of Medical Imaging, Division of Neuroradiology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
29
|
Fowler TL, Fulkerson RK, Micka JA, Kimple RJ, Bednarz BP. A novel high-throughput irradiator for in vitro radiation sensitivity bioassays. Phys Med Biol 2014; 59:1459-70. [PMID: 24584120 PMCID: PMC4036445 DOI: 10.1088/0031-9155/59/6/1459] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This paper describes the development and characterization of a fully automated in vitro cell irradiator using an electronic brachytherapy source to perform radiation sensitivity bioassays. This novel irradiator allows complex variable dose and dose rate schemes to be delivered to multiple wells of 96-well culture plates used in standard biological assays. The Xoft Axxent® eBx™ was chosen as the x-ray source due to its ability to vary tube current up to 300 µA for a 50 kVp spectrum using clinical surface applicators. Translation of the multiwell plate across the fixed radiation field is achieved using a precision motor driven computer controlled positioning system. A series of measurements was performed to characterize dosimetric performance of the system. Measurements have shown that the radiation output measured with an end window ionization chamber is stable between operating currents of 50-300 µA. In addition, radiochromic film was used to characterize the field flatness and symmetry. The average field flatness in the in-plane and cross-plane direction was 2.9 ± 1.0% and 4.0 ± 1.7%, respectively. The average symmetry in the in-plane and cross-plane direction was 1.8 ± 0.9% and 1.6 ± 0.5%, respectively. The optimal focal spot resolution at the cellular plane was determined by measuring sequential irradiations on radiochromic film for three different well spacing schemes. It was determined that the current system can irradiate every other well with negligible impact on the radiation field characteristics. Finally, a performance comparison between this system and a common cabinet irradiator is presented.
Collapse
Affiliation(s)
- Tyler L. Fowler
- Department of Medical Physics, University of Wisconsin Madison, WI 53705, USA
| | - Regina K. Fulkerson
- Medical Radiation Research Center, University of Wisconsin Madison, WI 53705, USA
| | - John A. Micka
- Medical Radiation Research Center, University of Wisconsin Madison, WI 53705, USA
| | - Randall J. Kimple
- Department of Human Oncology, University of Wisconsin Madison, WI 53705, USA
| | - Bryan P. Bednarz
- Department of Medical Physics, University of Wisconsin Madison, WI 53705, USA
| |
Collapse
|
30
|
Chua M, Rothkamm K. Biomarkers of Radiation Exposure: Can They Predict Normal Tissue Radiosensitivity? Clin Oncol (R Coll Radiol) 2013; 25:610-6. [DOI: 10.1016/j.clon.2013.06.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/23/2013] [Accepted: 06/26/2013] [Indexed: 11/29/2022]
|
31
|
Lara PC, López-Peñalver JJ, Farias VDA, Ruiz-Ruiz MC, Oliver FJ, Ruiz de Almodóvar JM. Direct and bystander radiation effects: a biophysical model and clinical perspectives. Cancer Lett 2013; 356:5-16. [PMID: 24045041 DOI: 10.1016/j.canlet.2013.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 09/03/2013] [Accepted: 09/08/2013] [Indexed: 12/12/2022]
Abstract
In planning treatment for each new patient, radiation oncologists pay attention to the aspects that they control. Thus their attention is usually focused on volume and dose. The dilemma for the physician is how to protract the treatment in a way that maximizes control of the tumor and minimizes normal tissue injury. The initial radiation-induced damage to DNA may be a biological indicator of the quantity of energy transferred to the DNA. However, until now the biophysical models proposed cannot explain either the early or the late adverse effects of radiation, and a more general theory appears to be required. The bystander component of tumor cell death after radiotherapy measured in many experimental works highlights the importance of confirming these observations in a clinical situation.
Collapse
Affiliation(s)
- Pedro Carlos Lara
- Radiation Oncology Department, Hospital Universitario de Gran Canaria Dr Negrín, Barranco de La Ballena s/n, Las Palmas de Gran Canaria, CP 35010, Spain
| | - Jesús Joaquín López-Peñalver
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Avda. Conocimiento 2, 18016 Granada, Spain
| | - Virgínea de Araújo Farias
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Avda. Conocimiento 2, 18016 Granada, Spain
| | - M Carmen Ruiz-Ruiz
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Avda. Conocimiento 2, 18016 Granada, Spain
| | - Francisco Javier Oliver
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, Avda. Conocimiento 4, 18016 Granada, Spain
| | - José Mariano Ruiz de Almodóvar
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Avda. Conocimiento 2, 18016 Granada, Spain; Hospital Universitario San Cecilio, Avda. Dr. Olóriz s/n, 18012 Granada, Spain.
| |
Collapse
|
32
|
Burnet NG, Barnett GC, Elliott RM, Dearnaley DP, Pharoah PDP, Dunning AM, West CML. RAPPER: the radiogenomics of radiation toxicity. Clin Oncol (R Coll Radiol) 2013; 25:431-4. [PMID: 23642504 DOI: 10.1016/j.clon.2013.04.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 02/26/2013] [Indexed: 02/07/2023]
|
33
|
Story M, Ding LH, Brock WA, Ang KK, Alsbeih G, Minna J, Park S, Das A. Defining molecular and cellular responses after low and high linear energy transfer radiations to develop biomarkers of carcinogenic risk or therapeutic outcome. HEALTH PHYSICS 2012; 103:596-606. [PMID: 23032890 PMCID: PMC4492459 DOI: 10.1097/hp.0b013e3182692085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The variability in radiosensitivity across the human population is governed in part by genetic factors. The ability to predict therapeutic response, identify individuals at greatest risk for adverse clinical responses after therapeutic radiation doses, or identify individuals at high risk for carcinogenesis from environmental or medical radiation exposures has a medical and economic impact on both the individual and society at large. As radiotherapy incorporates particles, particularly particles larger than protons, into therapy, the need for such discriminators, (i.e., biomarkers) will become ever more important. Cellular assays for survival, DNA repair, or chromatid/chromosomal analysis have been used to identify at-risk individuals, but they are not clinically applicable. Newer approaches, such as genome-wide analysis of gene expression or single nucleotide polymorphisms and small copy number variations within chromosomes, are examples of technologies being applied to the discovery process. Gene expression analysis of primary or immortalized human cells suggests that there are distinct gene expression patterns associated with radiation exposure to both low and high linear energy transfer radiations and that those most radiosensitive are discernible by their basal gene expression patterns. However, because the genetic alterations that drive radio response may be subtle and cumulative, the need for large sample sizes of specific cell or tissue types is required. A systems biology approach will ultimately be necessary. Potential biomarkers from cell lines or animal models will require validation in a human setting where possible and before being considered as a credible biomarker some understanding of the molecular mechanism is necessary.
Collapse
Affiliation(s)
- Michael Story
- Department of Radiation Oncology, Division of Molecular Radiation Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Adams G, Martin OA, Roos DE, Lobachevsky PN, Potter AE, Zacest AC, Bezak E, Bonner WM, Martin RF, Leong T. Enhanced intrinsic radiosensitivity after treatment with stereotactic radiosurgery for an acoustic neuroma. Radiother Oncol 2012; 103:410-4. [PMID: 22560711 PMCID: PMC7418889 DOI: 10.1016/j.radonc.2012.03.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 03/23/2012] [Accepted: 03/26/2012] [Indexed: 02/01/2023]
Abstract
Enhanced radiosensitivity is an uncommon phenomenon attributable to deficient DNA repair after radiotherapy which can be assessed with the γ-H2AX assay. Reports of radiosensitivity after stereotactic radiosurgery (SRS) are uncommon. We describe a case where the clinical, radiological and laboratory findings suggest enhanced radiosensitivity after SRS for an acoustic neuroma.
Collapse
Affiliation(s)
- Gerard Adams
- Department of Radiation Oncology, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia 5000, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Tucker SL, Li M, Xu T, Gomez D, Yuan X, Yu J, Liu Z, Yin M, Guan X, Wang LE, Wei Q, Mohan R, Vinogradskiy Y, Martel M, Liao Z. Incorporating single-nucleotide polymorphisms into the Lyman model to improve prediction of radiation pneumonitis. Int J Radiat Oncol Biol Phys 2012; 85:251-7. [PMID: 22541966 DOI: 10.1016/j.ijrobp.2012.02.021] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 01/23/2012] [Accepted: 02/09/2012] [Indexed: 12/25/2022]
Abstract
PURPOSE To determine whether single-nucleotide polymorphisms (SNPs) in genes associated with DNA repair, cell cycle, transforming growth factor-β, tumor necrosis factor and receptor, folic acid metabolism, and angiogenesis can significantly improve the fit of the Lyman-Kutcher-Burman (LKB) normal-tissue complication probability (NTCP) model of radiation pneumonitis (RP) risk among patients with non-small cell lung cancer (NSCLC). METHODS AND MATERIALS Sixteen SNPs from 10 different genes (XRCC1, XRCC3, APEX1, MDM2, TGFβ, TNFα, TNFR, MTHFR, MTRR, and VEGF) were genotyped in 141 NSCLC patients treated with definitive radiation therapy, with or without chemotherapy. The LKB model was used to estimate the risk of severe (grade≥3) RP as a function of mean lung dose (MLD), with SNPs and patient smoking status incorporated into the model as dose-modifying factors. Multivariate analyses were performed by adding significant factors to the MLD model in a forward stepwise procedure, with significance assessed using the likelihood-ratio test. Bootstrap analyses were used to assess the reproducibility of results under variations in the data. RESULTS Five SNPs were selected for inclusion in the multivariate NTCP model based on MLD alone. SNPs associated with an increased risk of severe RP were in genes for TGFβ, VEGF, TNFα, XRCC1 and APEX1. With smoking status included in the multivariate model, the SNPs significantly associated with increased risk of RP were in genes for TGFβ, VEGF, and XRCC3. Bootstrap analyses selected a median of 4 SNPs per model fit, with the 6 genes listed above selected most often. CONCLUSIONS This study provides evidence that SNPs can significantly improve the predictive ability of the Lyman MLD model. With a small number of SNPs, it was possible to distinguish cohorts with >50% risk vs <10% risk of RP when they were exposed to high MLDs.
Collapse
Affiliation(s)
- Susan L Tucker
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77230-1402, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
A standardized G2-assay for the prediction of individual radiosensitivity. Radiother Oncol 2011; 101:28-34. [DOI: 10.1016/j.radonc.2011.09.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 09/16/2011] [Accepted: 09/29/2011] [Indexed: 11/21/2022]
|
37
|
Henríquez-Hernández LA, Carmona-Vigo R, Pinar B, Bordón E, Lloret M, Núñez MI, Rodríguez-Gallego C, Lara PC. Combined low initial DNA damage and high radiation-induced apoptosis confers clinical resistance to long-term toxicity in breast cancer patients treated with high-dose radiotherapy. Radiat Oncol 2011; 6:60. [PMID: 21645372 PMCID: PMC3117708 DOI: 10.1186/1748-717x-6-60] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 06/06/2011] [Indexed: 11/18/2022] Open
Abstract
Background Either higher levels of initial DNA damage or lower levels of radiation-induced apoptosis in peripheral blood lymphocytes have been associated to increased risk for develop late radiation-induced toxicity. It has been recently published that these two predictive tests are inversely related. The aim of the present study was to investigate the combined role of both tests in relation to clinical radiation-induced toxicity in a set of breast cancer patients treated with high dose hyperfractionated radical radiotherapy. Methods Peripheral blood lymphocytes were taken from 26 consecutive patients with locally advanced breast carcinoma treated with high-dose hyperfractioned radical radiotherapy. Acute and late cutaneous and subcutaneous toxicity was evaluated using the Radiation Therapy Oncology Group morbidity scoring schema. The mean follow-up of survivors (n = 13) was 197.23 months. Radiosensitivity of lymphocytes was quantified as the initial number of DNA double-strand breaks induced per Gy and per DNA unit (200 Mbp). Radiation-induced apoptosis (RIA) at 1, 2 and 8 Gy was measured by flow cytometry using annexin V/propidium iodide. Results Mean DSB/Gy/DNA unit obtained was 1.70 ± 0.83 (range 0.63-4.08; median, 1.46). Radiation-induced apoptosis increased with radiation dose (median 12.36, 17.79 and 24.83 for 1, 2, and 8 Gy respectively). We observed that those "expected resistant patients" (DSB values lower than 1.78 DSB/Gy per 200 Mbp and RIA values over 9.58, 14.40 or 24.83 for 1, 2 and 8 Gy respectively) were at low risk of suffer severe subcutaneous late toxicity (HR 0.223, 95%CI 0.073-0.678, P = 0.008; HR 0.206, 95%CI 0.063-0.677, P = 0.009; HR 0.239, 95%CI 0.062-0.929, P = 0.039, for RIA at 1, 2 and 8 Gy respectively) in multivariate analysis. Conclusions A radiation-resistant profile is proposed, where those patients who presented lower levels of initial DNA damage and higher levels of radiation induced apoptosis were at low risk of suffer severe subcutaneous late toxicity after clinical treatment at high radiation doses in our series. However, due to the small sample size, other prospective studies with higher number of patients are needed to validate these results.
Collapse
|
38
|
Bourton EC, Plowman PN, Smith D, Arlett CF, Parris CN. Prolonged expression of the γ-H2AX DNA repair biomarker correlates with excess acute and chronic toxicity from radiotherapy treatment. Int J Cancer 2011; 129:2928-34. [PMID: 21491423 PMCID: PMC3427882 DOI: 10.1002/ijc.25953] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 01/10/2011] [Indexed: 11/29/2022]
Abstract
The normal tissue tolerance levels to fractionated radiotherapy have been appreciated by a century of careful clinical observations and radiobiological studies in animals. During clinical fractionated radiotherapy, these normal tissue tolerance levels are respected, and severe sequelae of radiotherapy are avoided in the majority of patients. Notwithstanding, a minority of patients experience unexpectedly severe normal tissue reactions. The ability to predict which patients might form this minority would be important. We have conducted a study to develop a rapid and reliable diagnostic test to predict excessive normal tissue toxicity (NTT) in radiotherapy patients. A flow cytometric immunocytochemical assay was used to measure DNA damage in peripheral blood lymphocytes (PBL) from cancer patients exposed to 2-Gy gamma radiation. DNA damage and repair was measured by induction of cellular γ-H2AX in unirradiated and exposed cells at specific time points following exposure. In 12 cancer patients that experienced severe atypical NTT following radiotherapy, there was a failure to repair DNA double-strand breaks (DSB) as measured by γ-H2AX induction and persistence. In ten cancer patients that experienced little or no NTT and in seven normal (noncancer controls), efficient repair of DNA DSB was observed in the γ-H2AX assay. We conclude that a flow cytometric assay based on γ-H2AX induction in PBL of radiotherapy patients may represent a robust, rapid and reliable biomarker to predict NTT during radiotherapy. Further research is required with a larger patient cohort to validate this important study.
Collapse
Affiliation(s)
- Emma C Bourton
- Brunel Institute of Cancer Genetics and Pharmacogenomics, Brunel University, Uxbridge, Middlesex, UK
| | | | | | | | | |
Collapse
|
39
|
Tsyusko O, Glenn T, Yi Y, Joice G, Jones K, Aizawa K, Coughlin D, Zimbrick J, Hinton T. Differential genetic responses to ionizing irradiation in individual families of Japanese medaka, Oryzias latipes. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2011; 718:18-23. [DOI: 10.1016/j.mrgentox.2010.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 10/15/2010] [Accepted: 11/07/2010] [Indexed: 10/18/2022]
|
40
|
Liu Y, Appleyard MVCL, Coates PJ, Thompson AM. p53 and gamma radiation in the normal breast. Int J Radiat Biol 2009; 85:1026-31. [PMID: 19895279 DOI: 10.3109/09553000903261271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE With the increasing use of radiation as adjuvant therapy in breast cancer, the effects of gamma radiation on the remaining normal breast are of increasing importance. The complexities of multiple cellular types within breast tissues and the role of the pleiotropic Tumour Protein 53 (TP53, p53) protein with its downstream transcriptional targets and cellular processes may be central to the effects on residual normal breast tissues. CONCLUSION While a detailed understanding of p53 protein-mediated responses in normal breast tissues remains elusive, p53 appears to have a pivotal role in the effects of gamma radiation on normal breast epithelium, but not stromal cells, which may account for the differing clinical effects of gamma radiation in women treated for breast cancer.
Collapse
Affiliation(s)
- Yajing Liu
- Department of Surgery and Molecular Oncology, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | | | | | | |
Collapse
|
41
|
Hümmerich J, Werle-Schneider G, Popanda O, Celebi O, Chang-Claude J, Kropp S, Mayer C, Debus J, Bartsch H, Schmezer P. Constitutive mRNA expression of DNA repair-related genes as a biomarker for clinical radio-resistance: A pilot study in prostate cancer patients receiving radiotherapy. Int J Radiat Biol 2009; 82:593-604. [PMID: 16966187 DOI: 10.1080/09553000600883302] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE Repair of radiation-induced DNA damage is believed to play a critical role in the development of adverse reactions in radiotherapy patients. Constitutive mRNA expression of repair genes was investigated in such patients to analyze whether expression patterns are predictive for therapy-related acute side effects. MATERIALS AND METHODS Prostate cancer patients (n = 406) receiving intensity-modulated radiotherapy were recruited in a prospective epidemiological study. Adverse effects were monitored during therapy using common toxicity criteria. For expression analyses, samples from 58 patients were selected according to their observed grade of clinical side effects to radiotherapy. Expression profiles were generated from peripheral blood lymphocytes using customized cDNA-arrays which carried probes for 143 DNA repair or repair-related genes. In addition, expression of selected genes was confirmed by quantitative real-time reverse transcription PCR (RT-PCR). Constitutive mRNA expression profiles were analyzed for predicting acute clinical radiosensitivity or radio-resistance. RESULTS Cluster analysis identified 19 differentially expressed genes. Many of these genes are involved in DNA double strand break repair. Expression levels of these genes differed up to 7-fold from the mean of all patients whereas expression levels of housekeeping genes varied only up to 2-fold. High expression of the identified genes was associated with a lack of clinical radiation sensitivity thus indicating radio-resistance. CONCLUSIONS Constitutive expression of DNA repair-related genes may affect the development of acute side effects in radiotherapy patients, and high expression levels of these genes seem to support protection from adverse reactions.
Collapse
Affiliation(s)
- Jörg Hümmerich
- Division of Toxicology and Cancer Risk Factors, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Barnett GC, West CML, Dunning AM, Elliott RM, Coles CE, Pharoah PDP, Burnet NG. Normal tissue reactions to radiotherapy: towards tailoring treatment dose by genotype. Nat Rev Cancer 2009; 9:134-42. [PMID: 19148183 PMCID: PMC2670578 DOI: 10.1038/nrc2587] [Citation(s) in RCA: 513] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A key challenge in radiotherapy is to maximize radiation doses to cancer cells while minimizing damage to surrounding healthy tissue. As severe toxicity in a minority of patients limits the doses that can be safely given to the majority, there is interest in developing a test to measure an individual's radiosensitivity before treatment. Variation in sensitivity to radiation is an inherited genetic trait and recent progress in genotyping raises the possibility of genome-wide studies to characterize genetic profiles that predict patient response to radiotherapy.
Collapse
Affiliation(s)
- Gillian C Barnett
- Department of Oncology, University of Cambridge, Oncology Centre, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK.
| | | | | | | | | | | | | |
Collapse
|
43
|
Borgmann K, Hoeller U, Nowack S, Bernhard M, Röper B, Brackrock S, Petersen C, Szymczak S, Ziegler A, Feyer P, Alberti W, Dikomey E. Individual radiosensitivity measured with lymphocytes may predict the risk of acute reaction after radiotherapy. Int J Radiat Oncol Biol Phys 2008; 71:256-64. [PMID: 18406889 DOI: 10.1016/j.ijrobp.2008.01.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 12/18/2007] [Accepted: 01/09/2008] [Indexed: 11/24/2022]
Abstract
PURPOSE We tested whether the chromosomal radiosensitivity of in vitro irradiated lymphocytes could be used to predict the risk of acute reactions after radiotherapy. METHODS AND MATERIALS Two prospective studies were performed: study A with 51 patients included different tumor sites and study B included 87 breast cancer patients. Acute reaction was assessed using the Radiation Therapy Oncology Group score. In both studies, patients were treated with curative radiotherapy, and the mean tumor dose applied was 55 Gy (40-65) +/- boost with 11 Gy (6-31) in study A and 50.4 Gy +/- boost with 10 Gy in study B. Individual radiosensitivity was determined with lymphocytes irradiated in vitro with X-ray doses of either 3 or 6 Gy and scoring the number of chromosomal deletions. RESULTS Acute reactions displayed a typical spectrum with 57% in study A and 53% in study B showing an acute reaction of Grade 2-3. Individual radiosensitivity in both studies was characterized by a substantial variation and the fraction of patients with Grade 2-3 reaction was found to increase with increasing individual radiosensitivity measured at 6 Gy (study A, p = 0.238; study B, p = 0.023). For study B, this fraction increased with breast volume, and the impact of individual radiosensitivity on acute reaction was especially pronounced (p = 0.00025) for lower breast volume. No such clear association with acute reaction was observed when individual radiosensitivity was assessed at 3 Gy. CONCLUSION Individual radiosensitivity determined at 6 Gy seems to be a good predictor for risk of acute effects after curative radiotherapy.
Collapse
Affiliation(s)
- Kerstin Borgmann
- Clinic for Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ferreira BC, Mavroidis P, Adamus-Górka M, Svensson R, Lind BK. The impact of different dose–response parameters on biologically optimized IMRT in breast cancer. Phys Med Biol 2008; 53:2733-52. [DOI: 10.1088/0031-9155/53/10/019] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
45
|
Cadwell KK, Whitehouse CA, Tarone RE, Janet Tawn E. Comparison of in vivo translocation frequencies with in vitro G2 radiosensitivity in radiation workers occupationally exposed to external radiation. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2008; 28:101-106. [PMID: 18309199 DOI: 10.1088/0952-4746/28/1/n01] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A group of retired workers from the British Nuclear Fuels plc facility at Sellafield who had been studied for in vivo translocation frequencies in blood lymphocytes were resampled and analysed for in vitro chromosomal radiosensitivity. Significant variation in response to a dose of 0.5 Gy given at the G(2) stage of the cell cycle was observed between individuals (P < 0.001). In a regression analysis that included age, cumulative occupational radiation dose and in vitro G(2) radiation-induced aberration frequencies as independent variables, only cumulative occupational radiation dose had a significant influence on chromosomal translocation frequency (P = 0.0036). G(2) in vitro radiosensitivity is assumed to be a marker for genetic polymorphic variation in DNA damage recognition and repair genes. Therefore, since in vivo translocation frequencies can be considered a surrogate for cancer risk, this lack of association with G(2) in vitro radiosensitivity suggests that such genetic variation has no impact on the response to low dose chronic exposure.
Collapse
|
46
|
Price SJ, Jena R, Green HAL, Kirkby NF, Lynch AG, Coles CE, Pickard JD, Gillard JH, Burnet NG. Early radiotherapy dose response and lack of hypersensitivity effect in normal brain tissue: a sequential dynamic susceptibility imaging study of cerebral perfusion. Clin Oncol (R Coll Radiol) 2007; 19:577-87. [PMID: 17629467 DOI: 10.1016/j.clon.2007.04.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Revised: 02/15/2007] [Accepted: 04/27/2007] [Indexed: 11/19/2022]
Abstract
AIMS To determine if magnetic resonance perfusion markers can be used as an analytical marker of subclinical normal brain injury after radiotherapy, by looking for a dose-effect relationship. MATERIALS AND METHODS Four patients undergoing conformal radiotherapy to 54Gy in 30 fractions for low-grade gliomas were imaged with conventional T(2)-weighted and fluid attenuated inversion recovery imaging as well as dynamic contrast susceptibility perfusion imaging. Forty regions of interest were determined from the periventricular white matter. All conventional sequences were examined for evidence of radiation-induced changes. Patients were imaged before radiotherapy, after one fraction, at the end of treatment and then at 1 and 3 months from the end of radiotherapy. For each region the relative cerebral blood volume (rCBV), relative cerebral blood flow (rCBF) and mean transit time (MTT) expressed as a ratio of the baseline value, and radiotherapy dose were determined. RESULTS Of the 40 regions, seven occurred within the gross tumour volume and a further four occurred in regions later infiltrated by tumour, and were thus excluded. Regions within the 80% isodose showed a reduction in rCBV and rCBF over the 3 month period. There was no significant alteration in rCBV or rCBF in regions outside the 60% isodose (i.e. <32Gy). MTT did not alter in any region. There seemed to be a threshold effect at 132 days from the end of radiotherapy of 47% (standard error of the mean 11.5, about 25.4Gy) for rCBV and 59% (standard error of the mean 14.2, about 31.9Gy) for rCBF. CONCLUSIONS There was a dose-related reduction in rCBV and rCBF in normal brain after radiotherapy at higher dose levels. Although this study used a limited number of patients, it suggests that magnetic resonance perfusion imaging seems to act as a marker of subclinical response of normal brain and that there is an absence of an early hypersensitivity effect with small doses per fraction. Further studies are required with larger groups of patients to show that these results are statistically robust.
Collapse
Affiliation(s)
- S J Price
- Academic Neurosurgical Unit, Cambridge University and Addenbrooke's Hospital, Cambridge, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Borgmann K, Haeberle D, Doerk T, Busjahn A, Stephan G, Dikomey E. Genetic determination of chromosomal radiosensitivities in G0- and G2-phase human lymphocytes. Radiother Oncol 2007; 83:196-202. [PMID: 17499867 DOI: 10.1016/j.radonc.2007.04.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 04/18/2007] [Accepted: 04/18/2007] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND PURPOSE The radiosensitivity of human lymphocytes measured using a G0- or G2-assay has been linked with an individual's risk of developing normal tissue complications following radiotherapy. This study was performed to increase basic knowledge of the genetics of the human radiation response, and chromosomal aberration induction in particular. MATERIALS AND METHODS The study was carried out with blood samples taken from 15 monozygotic twin pairs. G0-assay was performed for cells irradiated with 6 Gy counting only deletions and G2-assay for cells irradiated with 0.5 Gy scoring only chromatid breaks. RESULTS The mean number of deletions measured at 6 Gy for all 30 samples using the G0-assay amounted to 2.96+/-0.37 (means+/-SD), which corresponds to a coefficient of variation (CV) of 13%. There is a highly significant intra-pair correlation for this number among twins (r(2)=0.911) demonstrating that this parameter is mostly determined by genetic factors. According to the mean number of deletions, a theoretical classification based on the definition < or = MV-SD as resistant, MV+/-SD as normal and > or = MV+SD as sensitive was made, identifying two pairs as sensitive or resistant, respectively, while nine were normal and two pairs are intermediate. For chromatid breaks measured at 0.5 Gy with the G2-assay the mean number was 1.35+/-0.42 (means+/-SD) corresponding to a CV of 31%. There was again a strong intra-pair correlation among twins with r(2)=0.837 showing that this sensitivity is also determined mostly by genetic factors. There was, however, no inter-assay correlation between the G0- and G2-sensitivity (r(2)=0.006) demonstrating that these two sensitivities depend on different genetic factors. CONCLUSION The chromosomal radiosensitivity of lymphocytes as defined by G0- or G2-assay is largely determined by different genetic factors, which may allow the use of genetic profiling as an indicator of the respective individual radiosensitivity.
Collapse
Affiliation(s)
- Kerstin Borgmann
- Laboratory of Radiobiology and Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | | | | | | | | | | |
Collapse
|
48
|
Wiebalk K, Schmezer P, Kropp S, Chang-Claude J, Celebi O, Debus J, Bartsch H, Popanda O. In vitro radiation-induced expression ofXPC mRNA as a possible biomarker for developing adverse reactions during radiotherapy. Int J Cancer 2007; 121:2340-5. [PMID: 17657713 DOI: 10.1002/ijc.22981] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Repair of radiation-induced DNA damage is believed to play a critical role in developing adverse reactions during radiotherapy. Ionizing radiation induces transcription of several DNA repair genes including XPC as a part of the p53-transmitted stress response. XPC gene induction was measured to analyze whether it predicts occurrence of therapy-related acute side effects. Prostate cancer patients (n = 406) receiving radiotherapy were monitored for development of acute adverse effects using common toxicity criteria. For gene induction analysis, lymphocytes from 99 patients were selected according to their observed grade of clinical side effects. Cells were irradiated in vitro with 5 Gy and analyzed after 4 hr for XPC gene induction using reverse transcription and quantitative real-time PCR. Analysis of modulation of XPC induction by personal, clinical or lifestyle factors was included. Inter-individual induction of XPC expression by ionizing radiation varied up to 20-fold (0.29-5.77) and was significantly higher in current or exsmokers than in never-smokers (p value: 0.008). Patients with XPC induction above the 90th percentile compared to those with lower induction levels were at increased risk of suffering from adverse reactions during radiotherapy (odds ratio 5.3, 95% confidence interval 1.2-24.5; adjusted for smoking). In summary, XPC mRNA levels induced by ionizing radiation were shown for the first time to be strongly affected by smoking and to be associated with an approximately 5-fold increased risk for developing acute side effects of radiotherapy. The predictive value of DNA damage-induced XPC levels as a possible biomarker for radiosensitivity has to be further investigated.
Collapse
Affiliation(s)
- Katrin Wiebalk
- Division of Toxicology and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Bartsch H, Dally H, Popanda O, Risch A, Schmezer P. Genetic risk profiles for cancer susceptibility and therapy response. Recent Results Cancer Res 2007; 174:19-36. [PMID: 17302182 DOI: 10.1007/978-3-540-37696-5_2] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Cells in the body are permanently attacked by DNA-reactive species, both from intracellular and environmental sources. Inherited and acquired deficiencies in host defense mechanisms against DNA damage (metabolic and DNA repair enzymes) can modify cancer susceptibility as well as therapy response. Genetic profiles should help to identify high-risk individuals who subsequently can be enrolled in preventive measures or treated by tailored therapy regimens. Some of our attempts to define such risk profiles are presented. Cancer susceptibility: Single nucleotide polymorphisms (SNPs) in metabolic and repair genes were investigated in a hospital-based lung cancer case-control study. When evaluating the risk associated with different genotypes for N-acetyltransferases (Wikman et al. 2001) and glutathione-S-transferases (Risch et al. 2001), it is mandatory to distinguish between the three major histological subtypes of lung tumors. A promoter polymorphism of the myeloperoxidase gene MPO was shown to decrease lung cancer susceptibility mainly in small cell lung cancer (SCLC) (Dally et al. 2002). The CYP3A4*1B allele was also linked to an increased SCLC risk and in smoking women increased the risk of lung cancer eightfold (Dally et al. 2003b). Polymorphisms in DNA repair genes were shown to modulate lung cancer risk in smokers, and reduced DNA repair capacity elevated the disease risk (Rajaee-Behbahani et al. 2001). Investigations of several DNA repair gene variants revealed that lung cancer risk was only moderately affected by a single variant but was enhanced up to approximately threefold by specific risk allele combinations (Popanda et al. 2004). Therapy response: Inter-individual differences in therapy response are consistently observed with cancer chemotherapeutic agents. Initial results from ongoing studies showed that certain polymorphisms in drug transporter genes (ABCB1) differentially affect response outcome in histological subgroups of lung cancer. Stronger beneficial effects were seen in non-small cell lung cancer (NSCLC) patients following gemcitabine and in SCLC patients following etoposide-based treatment. Several DNA repair parameters (polymorphisms, RNA expression, and DNA repair capacity) were measured in vitro in lymphocytes of patients before radiotherapy and correlated with the occurrence of acute side effects (radio-hypersensitivity). Our initial analysis of several repair gene variants in breast cancer patients (n = 446) who received radiotherapy revealed no association of single polymorphisms and the development of side effects (moist desquamation of the irradiated normal skin). The risk for this side effect was, however, strongly reduced in normal weight women carrying a combination of XRCC1 399Gln and APE1 148Glu alleles, indicating that these variants afford some protection against radio-hypersensitivity (Chang-Claude et al. 2005). Based on these data we conclude that specific metabolic and DNA repair gene variants can affect cancer risk and therapy outcome. Predisposition to hereditary cancer syndromes is dominated by the strong effects of some high-penetrance tumor susceptibility genes, while predisposition to sporadic cancer is influenced by the combination of multiple low-penetrance genes, of which as a major challenge, many disease-relevant combinations remain to be identified. Before translating these findings into clinical use and application for public health measures, large population-based studies and validation of the results will be required.
Collapse
Affiliation(s)
- Helmut Bartsch
- Deutsches Krebsforschungszentrum, Toxicology and Cancer Risk Factors, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
50
|
Burnet NG, Elliott RM, Dunning A, West CML. Radiosensitivity, radiogenomics and RAPPER. Clin Oncol (R Coll Radiol) 2006; 18:525-8. [PMID: 16969982 DOI: 10.1016/j.clon.2006.05.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|