1
|
Lim JS, Shi Y, Park SH, Jeon SM, Zhang C, Park YY, Liu R, Li J, Cho WS, Du L, Lee JH. Mutual regulation between phosphofructokinase 1 platelet isoform and VEGF promotes glioblastoma tumor growth. Cell Death Dis 2022; 13:1002. [PMID: 36435833 PMCID: PMC9701207 DOI: 10.1038/s41419-022-05449-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/28/2022]
Abstract
Glioblastoma (GBM) is a highly vascular malignant brain tumor that overexpresses vascular endothelial growth factor (VEGF) and phosphofructokinase 1 platelet isoform (PFKP), which catalyzes a rate-limiting reaction in glycolysis. However, whether PFKP and VEGF are reciprocally regulated during GBM tumor growth remains unknown. Here, we show that PFKP can promote EGFR activation-induced VEGF expression in HIF-1α-dependent and -independent manners in GBM cells. Importantly, we demonstrate that EGFR-phosphorylated PFKP Y64 has critical roles in both AKT/SP1-mediated transcriptional expression of HIF-1α and in the AKT-mediated β-catenin S552 phosphorylation, to fully enhance VEGF transcription, subsequently promoting blood vessel formation and brain tumor growth. Levels of PFKP Y64 phosphorylation in human GBM specimens are positively correlated with HIF-1α expression, β-catenin S552 phosphorylation, and VEGF expression. Conversely, VEGF upregulates PFKP expression in a PFKP S386 phosphorylation-dependent manner, leading to increased PFK enzyme activity, aerobic glycolysis, and proliferation in GBM cells. These findings highlight a novel mechanism underlying the mutual regulation that occurs between PFKP and VEGF for promoting GBM tumor growth and also suggest that targeting the PFKP/VEGF regulatory loop might show therapeutic potential for treating GBM patients.
Collapse
Affiliation(s)
- Je Sun Lim
- grid.255166.30000 0001 2218 7142Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315 Republic of Korea
| | - YuJie Shi
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041 P.R. China
| | - Su Hwan Park
- grid.255166.30000 0001 2218 7142Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315 Republic of Korea
| | - So Mi Jeon
- grid.255166.30000 0001 2218 7142Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315 Republic of Korea
| | - Chuanbao Zhang
- grid.24696.3f0000 0004 0369 153XDepartment of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070 P.R. China
| | - Yun-Yong Park
- grid.254224.70000 0001 0789 9563Department of life Science, Chung-Ang University, Seoul, 06974 Republic of Korea
| | - Rui Liu
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041 P.R. China
| | - Jing Li
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041 P.R. China
| | - Wan-Seob Cho
- grid.255166.30000 0001 2218 7142Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315 Republic of Korea
| | - Linyong Du
- grid.268099.c0000 0001 0348 3990Key Laboratory of Laboratory of Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000 P.R. China
| | - Jong-Ho Lee
- grid.255166.30000 0001 2218 7142Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315 Republic of Korea ,grid.255166.30000 0001 2218 7142Department of Biomedical Sciences, Dong-A University, Busan, 49315 Republic of Korea
| |
Collapse
|
2
|
Yuan B, Shimada R, Xu K, Han L, Si N, Zhao H, Bian B, Hayashi H, Okazaki M, Takagi N. Multiple cytotoxic effects of gamabufotalin against human glioblastoma cell line U-87. Chem Biol Interact 2019; 314:108849. [DOI: 10.1016/j.cbi.2019.108849] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/06/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022]
|
3
|
Chou SY, Yen SL, Huang CC, Huang EY. Galectin-1 is a poor prognostic factor in patients with glioblastoma multiforme after radiotherapy. BMC Cancer 2018; 18:105. [PMID: 29378529 PMCID: PMC5789739 DOI: 10.1186/s12885-018-4025-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 01/23/2018] [Indexed: 01/03/2023] Open
Abstract
Background Galectin-1, a radioresistance marker, was found in our previous study to be a prognostic factor for cervical cancer. The aim of current study is to determine the prognostic significance of the galectin-1 expression level in patients with glioblastoma multiforme (GBM) undergoing adjuvant radiotherapy (RT). Methods We included 45 patients with GBM who were treated with maximal safe surgical resection or biopsy alone followed by adjuvant RT of EQD2 (equivalent dose in 2-Gy fractions) > or = 60 Gy for homogeneous treatment. Paraffin-embedded tissues acquired from the Department of Pathology were analyzed using immunohistochemical staining for galectin-1 expression. The primary endpoint was overall survival (OS). Results Patients with weak expression had a better median survival (27.9 months) than did those with strong expression (10.7 months; p = 0.009). We compared characteristics between weak and strong galectin-1 expression, and only the expression level of galectin-3 showed a correlation. The group with weak galectin-1 expression displayed a 3-year OS of 27.3% and a 3-year cancer-specific survival (CSS) of 27.3%; these values were only 5.9% and 7.6%, respectively, in the group with strong galectin-1 expression (p = 0.009 and 0.020, respectively). Cox regression was used to confirm that the expression level of galectin-1 (weak vs. strong) is a significant factor of OS (p = 0.020) and CSS (p = 0.022). Other parameters, such as the expression level of galectin-3, Eastern Cooperative Oncology Group (ECOG) performance, gender, surgical method, age ≥ 50 years, tumor size, or radiation field were not significant factors. Conclusion The expression level of galectin-1 affects survival in patients with GBM treated with adjuvant RT. Future studies are required to analyze the effect of other factors, such as O(6)-methylguanine-DNA methyltransferase (MGMT)-promoter methylation status, in patients with weak and strong galectin-1 expression. Electronic supplementary material The online version of this article (10.1186/s12885-018-4025-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shang-Yu Chou
- Departments of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, 123 Ta-Pei Road, Niao-Song Dist, Kaohsiung City, 83301, Taiwan
| | - Shao-Lun Yen
- Department of Pathology, An Nan Hospital, China Medical University, No. 66, Sec.2, Changhe Road, Annan Dist, Tainan City, 709, Taiwan
| | - Chao-Cheng Huang
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Hospital, 123 Ta-Pei Road, Niao-Song Dist, Kaohsiung City, 83301, Taiwan.,School of Traditional Chinese Medicine, Chang Gung University College of Medicine, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, Taiwan
| | - Eng-Yen Huang
- Departments of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, 123 Ta-Pei Road, Niao-Song Dist, Kaohsiung City, 83301, Taiwan. .,Department of Radiation Oncology, Xiamen Chang Gung Hospital, No. 123, Xiafei Rd., Haicang District, Fujian, China. .,School of Traditional Chinese Medicine, Chang Gung University College of Medicine, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, Taiwan. .,Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, 123 Ta-Pei Road, Niao-Song Dist, Kaohsiung City, 83301, Taiwan.
| |
Collapse
|
4
|
Lin M, Zhang X, Jia B, Guan S. Suppression of glioblastoma growth and angiogenesis through molecular targeting of methionine aminopeptidase-2. J Neurooncol 2017; 136:243-254. [PMID: 29116484 DOI: 10.1007/s11060-017-2663-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/30/2017] [Indexed: 12/16/2022]
Abstract
Methionine aminopeptidases (MetAPs) have been pharmacologically linked to cell growth, angiogenesis, and tumor progression, which make it an attractive target for cancer therapy. We investigated MetAP2's biological role in glioblastoma (GBM), an aggressive tumor characterized by massive neovascularization. We examined the effect of anti-MetAP2 RNA interference on proliferation and angiogenesis in GBM cell line. The biological effects of MetAP2 knockdown were assessed by comparing the proliferation, tumorigenecity, and angiogenesis of parental cells and MetAP2 knockdown cells. We generated MetAP2 knockdown cells using lentiviral short hairpin RNAs against MetAP2 in SNB19 GBM cells, which normally express high levels of MetAP2. MetAP2 knockdown cells were less proliferative and less tumorigenic when compared to the parental cells. MetAP2 knockdown decreased vascular endothelial growth factor (VEGF) secretion and expression at the mRNA and protein levels. Decreased VEGF expression in MetAP2 knockdown cells correlated very well with decreased vessel formation in a tube formation assay. We showed that VEGF suppression in MetAP2 knockdown cells was mediated by the von Hippel-Lindau protein. In in vivo animal studies using an intracranial SNB19 tumor model, MetAP2 knockdown also reduced the tumor growth rate and angiogenesis, which in turn prolonged the survival of mice in xenograft model. Our results show that MetAP2 regulates angiogenesis in GBM and identify MetAP2-specific substrates that may serve as candidates for clinical assay development.
Collapse
Affiliation(s)
- Ming Lin
- Department of Anesthesiology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, People's Republic of China
| | - Xuyu Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510089, People's Republic of China
| | - Bingjie Jia
- School of Biology and Biological Engineering, South China University of Technology, 382 Wai Huan Dong Road, Guangzhou, 510006, People's Republic of China
| | - Su Guan
- School of Biology and Biological Engineering, South China University of Technology, 382 Wai Huan Dong Road, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
5
|
Sangpairoj K, Vivithanaporn P, Apisawetakan S, Chongthammakun S, Sobhon P, Chaithirayanon K. RUNX1 Regulates Migration, Invasion, and Angiogenesis via p38 MAPK Pathway in Human Glioblastoma. Cell Mol Neurobiol 2017; 37:1243-1255. [PMID: 28012022 DOI: 10.1007/s10571-016-0456-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/16/2016] [Indexed: 12/12/2022]
Abstract
Runt-related transcription factor 1 (RUNX1) is essential for the establishment of fetal and adult hematopoiesis and neuronal development. Aberrant expression of RUNX1 led to proliferation and metastasis of several cancers. The aim of the present study was to investigate the role of RUNX1 in migration, invasion, and angiogenesis of human glioblastoma using IL-1β-treated U-87 MG human glioblastoma cells as a model. IL-1β at 10 ng/ml stimulated translocation of RUNX1 into the nucleus with increased expressions of RUNX1, MMP-1, MMP-2, MMP-9, MMP-19, and VEGFA in U-87 MG cells. In addition, silencing of RUNX1 gene significantly suppressed U-87 MG cell migration and invasion abilities. Moreover, knockdown of RUNX1 mRNA in U-87 MG cells reduced the tube formation of human umbilical vein endothelial cells. Further investigation revealed that IL-1β-induced RUNX1 expression might be mediated via the p38 mitogen-activated protein kinase (MAPK) signaling molecule for the expression of these invasion- and angiogenic-related molecules. Together with an inhibitor of p38 MAPK (SB203580) could decrease RUNX1 mRNA expression. Thus, RUNX1 may be one of the putative molecular targeted therapies against glioma metastasis and angiogenesis through the activation of p38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Kant Sangpairoj
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
| | - Pornpun Vivithanaporn
- Department of Pharmacology, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
| | - Somjai Apisawetakan
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Wattana, Bangkok, 10110, Thailand
| | - Sukumal Chongthammakun
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
- Faculty of Allied Health Sciences, Burapha University, Mueang District, Chonburi, 20131, Thailand
| | - Kulathida Chaithirayanon
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand.
| |
Collapse
|
6
|
Annibali D, Whitfield JR, Favuzzi E, Jauset T, Serrano E, Cuartas I, Redondo-Campos S, Folch G, Gonzàlez-Juncà A, Sodir NM, Massó-Vallés D, Beaulieu ME, Swigart LB, Mc Gee MM, Somma MP, Nasi S, Seoane J, Evan GI, Soucek L. Myc inhibition is effective against glioma and reveals a role for Myc in proficient mitosis. Nat Commun 2014; 5:4632. [PMID: 25130259 PMCID: PMC4143920 DOI: 10.1038/ncomms5632] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 07/09/2014] [Indexed: 12/21/2022] Open
Abstract
Gliomas are the most common primary tumours affecting the adult central nervous system and respond poorly to standard therapy. Myc is causally implicated in most human tumours and the majority of glioblastomas have elevated Myc levels. Using the Myc dominant negative Omomyc, we previously showed that Myc inhibition is a promising strategy for cancer therapy. Here, we preclinically validate Myc inhibition as a therapeutic strategy in mouse and human glioma, using a mouse model of spontaneous multifocal invasive astrocytoma and its derived neuroprogenitors, human glioblastoma cell lines, and patient-derived tumours both in vitro and in orthotopic xenografts. Across all these experimental models we find that Myc inhibition reduces proliferation, increases apoptosis and remarkably, elicits the formation of multinucleated cells that then arrest or die by mitotic catastrophe, revealing a new role for Myc in the proficient division of glioma cells. Myc has been implicated in the development of multiple types of cancer. Here, the authors explore the therapeutic potential and mechanism of action of Myc inhibition in mouse and human models of glioblastoma, an aggressive type of tumour that is often resistant to conventional therapy.
Collapse
Affiliation(s)
- Daniela Annibali
- 1] Department of Pathology, Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California 94143, USA [2] Istituto di Biologia, Medicina Molecolare e NanoBiotecnologie, C.N.R., Dipartimento di Biologia e Biotecnologie, Università La Sapienza, 00185 Rome, Italy [3]
| | - Jonathan R Whitfield
- 1] Vall d'Hebron Institute of Oncology (VHIO), Edifici Mediterrània, Hospital Vall d'Hebron, 08035 Barcelona, Spain [2] Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Spain [3]
| | - Emilia Favuzzi
- Istituto di Biologia, Medicina Molecolare e NanoBiotecnologie, C.N.R., Dipartimento di Biologia e Biotecnologie, Università La Sapienza, 00185 Rome, Italy
| | - Toni Jauset
- 1] Vall d'Hebron Institute of Oncology (VHIO), Edifici Mediterrània, Hospital Vall d'Hebron, 08035 Barcelona, Spain [2] Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Spain
| | - Erika Serrano
- 1] Vall d'Hebron Institute of Oncology (VHIO), Edifici Mediterrània, Hospital Vall d'Hebron, 08035 Barcelona, Spain [2] Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Spain
| | - Isabel Cuartas
- 1] Vall d'Hebron Institute of Oncology (VHIO), Edifici Mediterrània, Hospital Vall d'Hebron, 08035 Barcelona, Spain [2] Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Spain
| | - Sara Redondo-Campos
- 1] Vall d'Hebron Institute of Oncology (VHIO), Edifici Mediterrània, Hospital Vall d'Hebron, 08035 Barcelona, Spain [2] Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Spain
| | - Gerard Folch
- 1] Vall d'Hebron Institute of Oncology (VHIO), Edifici Mediterrània, Hospital Vall d'Hebron, 08035 Barcelona, Spain [2] Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Spain
| | - Alba Gonzàlez-Juncà
- 1] Vall d'Hebron Institute of Oncology (VHIO), Edifici Mediterrània, Hospital Vall d'Hebron, 08035 Barcelona, Spain [2] Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Spain
| | - Nicole M Sodir
- 1] Department of Pathology, Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California 94143, USA [2] Department of Biochemistry, Sanger Building, University of Cambridge, Cambridge CB2 1QW, UK
| | - Daniel Massó-Vallés
- 1] Vall d'Hebron Institute of Oncology (VHIO), Edifici Mediterrània, Hospital Vall d'Hebron, 08035 Barcelona, Spain [2] Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Spain
| | - Marie-Eve Beaulieu
- 1] Vall d'Hebron Institute of Oncology (VHIO), Edifici Mediterrània, Hospital Vall d'Hebron, 08035 Barcelona, Spain [2] Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Spain
| | - Lamorna B Swigart
- Department of Pathology, Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California 94143, USA
| | - Margaret M Mc Gee
- UCD School of Biomolecular &Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Maria Patrizia Somma
- Istituto di Biologia, Medicina Molecolare e NanoBiotecnologie, C.N.R., Dipartimento di Biologia e Biotecnologie, Università La Sapienza, 00185 Rome, Italy
| | - Sergio Nasi
- Istituto di Biologia, Medicina Molecolare e NanoBiotecnologie, C.N.R., Dipartimento di Biologia e Biotecnologie, Università La Sapienza, 00185 Rome, Italy
| | - Joan Seoane
- 1] Vall d'Hebron Institute of Oncology (VHIO), Edifici Mediterrània, Hospital Vall d'Hebron, 08035 Barcelona, Spain [2] Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Spain [3] Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Gerard I Evan
- Department of Biochemistry, Sanger Building, University of Cambridge, Cambridge CB2 1QW, UK
| | - Laura Soucek
- 1] Vall d'Hebron Institute of Oncology (VHIO), Edifici Mediterrània, Hospital Vall d'Hebron, 08035 Barcelona, Spain [2] Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Spain
| |
Collapse
|
7
|
Gan HK, Cvrljevic AN, Johns TG. The epidermal growth factor receptor variant III (EGFRvIII): where wild things are altered. FEBS J 2013; 280:5350-70. [DOI: 10.1111/febs.12393] [Citation(s) in RCA: 219] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/10/2013] [Accepted: 06/13/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Hui K. Gan
- Tumour Targeting Program; Ludwig Institute for Cancer Research; Heidelberg Victoria Australia
| | - Anna N. Cvrljevic
- Oncogenic Signaling Laboratory; Monash University; Clayton Victoria Australia
| | - Terrance G. Johns
- Oncogenic Signaling Laboratory; Monash University; Clayton Victoria Australia
| |
Collapse
|
8
|
Waters JD, Sanchez C, Sahin A, Futalan D, Gonda DD, Scheer JK, Akers J, Palanichamy K, Waterman P, Chakravarti A, Weissleder R, Morse B, Marsh N, Furfine E, Chen CC, Carvajal I, Carter BS. CT322, a VEGFR-2 antagonist, demonstrates anti-glioma efficacy in orthotopic brain tumor model as a single agent or in combination with temozolomide and radiation therapy. J Neurooncol 2012; 110:37-48. [PMID: 22875706 DOI: 10.1007/s11060-012-0948-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Accepted: 07/24/2012] [Indexed: 11/24/2022]
Abstract
Glioblastomas are among the most aggressive human cancers, and prognosis remains poor despite presently available therapies. Angiogenesis is a hallmark of glioblastoma, and the resultant vascularity is associated with poor prognosis. The proteins that mediate angiogenesis, including vascular endothelial growth factor (VEGF) signaling proteins, have emerged as attractive targets for therapeutic development. Since VEGF receptor-2 (VEGFR-2) is thought to be the primary receptor mediating angiogenesis, direct inhibition of this receptor may produce an ideal therapeutic effect. In this context, we tested the therapeutic effect of CT322, a selective inhibitor of VEGFR-2. Using an intracranial murine xenograft model (U87-EGFRvIII-luciferase), we demonstrate that CT322 inhibited glioblastoma growth in vivo and prolonged survival. Of note, the anti-neoplastic effect of CT322 is augmented by the incorporation of temozolomide or temozolomide with radiation therapy. Immunohistochemical analysis of CT322 treated tumors revealed decreased CD31 staining, suggesting that the tumoricidal effect is mediated by inhibition of angiogenesis. These pre-clinical results provide the foundation to further understand long term response and tumor escape mechanisms to anti-angiogenic treatments on EGFR over-expressing glioblastomas.
Collapse
Affiliation(s)
- J Dawn Waters
- Division of Neurosurgery, University of California-San Diego, La Jolla, CA 92093, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
EGFRvIII promotes glioma angiogenesis and growth through the NF-κB, interleukin-8 pathway. Oncogene 2011; 31:4054-66. [PMID: 22139077 DOI: 10.1038/onc.2011.563] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Sustaining a high growth rate requires tumors to exploit resources in their microenvironment. One example of this is the extensive angiogenesis that is a typical feature of high-grade gliomas. Here, we show that expression of the constitutively active mutant epidermal growth factor receptor, ΔEGFR (EGFRvIII, EGFR*, de2-7EGFR) is associated with significantly higher expression levels of the pro-angiogenic factor interleukin (IL)-8 in human glioma specimens and glioma stem cells. Furthermore, the ectopic expression of ΔEGFR in different glioma cell lines caused up to 60-fold increases in the secretion of IL-8. Xenografts of these cells exhibit increased neovascularization, which is not elicited by cells overexpressing wild-type (wt)EGFR or ΔEGFR with an additional kinase domain mutation. Analysis of the regulation of IL-8 by site-directed mutagenesis of its promoter showed that ΔEGFR regulates its expression through the transcription factors nuclear factor (NF)-κB, activator protein 1 (AP-1) and CCAAT/enhancer binding protein (C/EBP). Glioma cells overexpressing ΔEGFR showed constitutive activation and DNA binding of NF-κB, overexpression of c-Jun and activation of its upstream kinase c-Jun N-terminal kinase (JNK) and overexpression of C/EBPβ. Selective pharmacological or genetic targeting of the NF-κB or AP-1 pathways efficiently blocked promoter activity and secretion of IL-8. Moreover, RNA interference-mediated knock-down of either IL-8 or the NF-κB subunit p65, in ΔEGFR-expressing cells attenuated their ability to form tumors and to induce angiogenesis when injected subcutaneously into nude mice. On the contrary, the overexpression of IL-8 in glioma cells lacking ΔEGFR potently enhanced their tumorigenicity and produced highly vascularized tumors, suggesting the importance of this cytokine and its transcription regulators in promoting glioma angiogenesis and tumor growth.
Collapse
|
10
|
Woo JK, Choi Y, Oh SH, Jeong JH, Choi DH, Seo HS, Kim CW. Mucin 1 enhances the tumor angiogenic response by activation of the AKT signaling pathway. Oncogene 2011; 31:2187-98. [PMID: 21927028 DOI: 10.1038/onc.2011.410] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Although the hyper-glycosylated transmembrane protein Mucin 1 (MUC1) is aberrantly overexpressed in human breast carcinoma, the biological significance of MUC1 overexpression is unclear. This study showed that MUC1 expression promoted the synthesis and secretion of vascular endothelial growth factor (VEGF) through the AKT signaling pathway. Increase VEGF production through MUC1 expression had a number of effect. First, MUC1 transfection increased expression of VEGF in breast cancer cells. Second, MUC1-mediated VEGF induction was attenuated by a chemical inhibitor of AKT or MUC1 knock-down by MUC1 siRNA. Third, MUC1 expression led to the activation of insulin-like growth factor-1 receptor, which correlated with VEGF expression. In addition, when MDA-MB-231 human breast cancer cells were directly injected into NOD/SCID mice, MUC1 expression accelerated xenograft tumor growth in vivo. Finally, MUC1 expression enhanced tumor growth and angiogenesis in a PyMT-MMTV/hMUC1 transgenic mouse model. Concurrent with these results, analysis of a human tissue microarray identified a high correlation between MUC1 and VEGF expression in human breast carcinoma. The current report is the first to demonstrate that MUC1 expression promotes angiogenesis in human breast cancer in vivo and in vitro.
Collapse
Affiliation(s)
- J K Woo
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
11
|
Desjardins A, Reardon DA, Peters KB, Threatt S, Coan AD, Herndon JE, Friedman AH, Friedman HS, Vredenburgh JJ. A phase I trial of the farnesyl transferase inhibitor, SCH 66336, with temozolomide for patients with malignant glioma. J Neurooncol 2011; 105:601-6. [PMID: 21735117 DOI: 10.1007/s11060-011-0627-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 06/17/2011] [Indexed: 11/27/2022]
Abstract
We conducted a phase I clinical trial of the combination of SCH 66336 with temozolomide administered on the standard 5-day dosing schedule. The primary objective was to determine the maximum tolerated dose and dose limiting toxicity (DLT) of twice daily SCH 66336 when administered with temozolomide to adults with malignant glioma previously treated with radiation therapy. Patients were enrolled to two strata: stratum A, patients not on enzyme-inducing antiepileptic drugs (EIAEDs); stratum B, patients receiving EIAEDs. Temozolomide was administered at a dose of 150 mg/m(2) daily for five days for the first 28-day cycle and escalated to 200 mg/m(2), during subsequent cycles. SCH 66336 was administered twice daily on a continuous daily dosing schedule. The starting dose of SCH 66336 was 75 mg twice daily for stratum A and 125 mg twice daily for stratum B. Cohorts of 3-6 patients were treated per dose level until DLT was observed. Thirty six patients were enrolled on study, including 21 patients on stratum A and 15 on stratum B. All DLTs were grade 3 events and included hepatic, gastrointestinal, renal, thrombotic and constitutional events. No grade 4 or 5 toxicities were observed. The phase II dose of SCH 66336 when combined with temozolomide is 150 mg twice daily for patients not on EIAEDs and 175 mg twice daily for patients on EIAEDs.
Collapse
Affiliation(s)
- Annick Desjardins
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Ray A, Dhar S, Ray BK. Control of VEGF expression in triple-negative breast carcinoma cells by suppression of SAF-1 transcription factor activity. Mol Cancer Res 2011; 9:1030-41. [PMID: 21665940 DOI: 10.1158/1541-7786.mcr-10-0598] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Angiogenesis plays a significant role in cancer by providing increased blood supply to the affected tissues and thus bringing in growth factors, cytokines, and various nutrients for tumor growth. VEGF is the most prominent angiogenic agent that is markedly induced in cancer. Induction of VEGF has been widely studied but as cancer cells are quite adept at acquiring new alternative processes to circumvent surrounding environmental pressures, our understanding of the molecular mechanisms regulating VEGF expression in cancer, especially in triple-negative breast cancer cells, remains incomplete. Here, we present evidence of a novel mode of VEGF induction in triple-negative MDA-MB-231 breast cancer cells that is regulated by serum amyloid A activating factor 1 (SAF-1) transcription factor. Inhibition of SAF-1 by antisense short hairpin RNA profoundly reduces VEGF expression along with reduction in endothelial cell proliferation and migration. By both in vitro and in vivo molecular studies, we show that the effect of SAF-1 is mediated through its direct interaction with the VEGF promoter. In correlation, DNA-binding activity of SAF-1 is found to be significantly higher in MDA-MB-231 breast cancer cells. Examination of several breast cancer samples further revealed that SAF-1 is overexpressed in clinical breast cancer tissues. Taken together, these findings reveal that SAF-1 is a hitherto unrecognized participant in inducing VEGF expression in triple-negative breast cancer cells, an aggressive form of breast cancer that currently lacks effective treatment options. Suppression of SAF-1 activity in these cells can inhibit VEGF expression, providing a possible new method to control angiogenesis.
Collapse
Affiliation(s)
- Alpana Ray
- Department of Veterinary Pathobiology, University of Missouri, 124 Connaway Hall, Columbia, MO 65211, USA.
| | | | | |
Collapse
|
13
|
Nghiemphu PL, Wen PY, Lamborn KR, Drappatz J, Robins HI, Fink K, Malkin MG, Lieberman FS, DeAngelis LM, Torres-Trejo A, Chang SM, Abrey L, Fine HA, Demopoulos A, Lassman AB, Kesari S, Mehta MP, Prados MD, Cloughesy TF. A phase I trial of tipifarnib with radiation therapy, with and without temozolomide, for patients with newly diagnosed glioblastoma. Int J Radiat Oncol Biol Phys 2010; 81:1422-7. [PMID: 20934264 DOI: 10.1016/j.ijrobp.2010.07.1997] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 07/14/2010] [Accepted: 07/16/2010] [Indexed: 10/19/2022]
Abstract
PURPOSE To determine the maximum tolerated dose (MTD) of tipifarnib in combination with conventional radiotherapy for patients with newly diagnosed glioblastoma. The MTD was evaluated in three patient cohorts, stratified based on concurrent use of enzyme-inducing antiepileptic drugs (EIAED) or concurrent treatment with temozolomide (TMZ): Group A: patients not receiving EIAED and not receiving TMZ; Group A-TMZ: patients not receiving EIAED and receiving treatment with TMZ; Group B: any patients receiving EIAED but not TMZ. PATIENTS AND METHODS After diagnostic surgery or biopsy, treatment with tipifarnib started 5 to 9 days before initiating radiotherapy, twice daily, in 4-week cycles using discontinuous dosing (21 out of 28 days), until toxicity or progression. For Group A-TMZ, patients also received TMZ daily during radiotherapy and then standard 5/28 days dosing after radiotherapy. Dose-limiting toxicity (DLT) was determined over the first 10 weeks of therapy for all cohorts. RESULTS Fifty-one patients were enrolled for MTD determination: 10 patients in Group A, 21 patients in Group A-TMZ, and 20 patients in Group B. In the Group A and Group A-TMZ cohorts, patients achieved the intended MTD of 300 mg twice daily (bid) with DLTs including rash and fatigue. For Group B, the MTD was determined as 300 mg bid, half the expected dose. The DLTs included rash and one intracranial hemorrhage. Thirteen of the 20 patients evaluated in Group A-TMZ were alive at 1 year. CONCLUSION Tipifarnib is well tolerated at 300 mg bid given discontinuously (21/28 days) in 4-week cycles, concurrently with standard chemo/radiotherapy. A Phase II study should evaluate the efficacy of tipifarnib with radiation and TMZ in patients with newly diagnosed glioblastoma and not receiving EIAED.
Collapse
|
14
|
Ras regulates interleukin-1β-induced HIF-1α transcriptional activity in glioblastoma. J Mol Med (Berl) 2010; 89:123-36. [PMID: 20865400 DOI: 10.1007/s00109-010-0683-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 08/18/2010] [Accepted: 09/08/2010] [Indexed: 10/19/2022]
Abstract
We observed elevated levels of pro-inflammatory cytokine IL-1β in glioblastoma multiforme tumor samples. Since hypoxia-inducible factor-1α (HIF-1α) plays a crucial role in linking inflammatory and oncogenic pathways, we investigated the effect of IL-1β on HIF-1α expression in glioma cells under normoxia. IL-1β-mediated elevation of HIF-1α transcriptional activity was dependent on Ras-induced NF-κB activation, as IL-1β failed to induce NF-κB and HIF-1α activity in cells transfected with dominant negative RasN17. Increased Ras expression was accompanied by increased phosphorylation of Ras effectors AKT, ERK, JNK, and p38MAPK. While inhibition of these effectors individually failed to block the IL-1β-mediated increase in HIF-1α induction, co-inhibition of both AKT and ERK resulted in a significant decrease in IL-1β-induced HIF-1α activation. Interestingly, IL-1β elevated Wnt-1 expression in a Ras-dependent manner, and small interfering RNA (siRNA)-mediated knockdown of Wnt-1 decreased HIF-1α activity. Although Wnt-1-mediated HIF-1α was independent of the canonical Wnt/β-catenin signaling pathway, it regulated HIF-1α through NF-κB. siRNA-mediated HIF-1α knockdown attenuated elevated IL-1β mRNA levels induced upon IL-1β treatment. This was accompanied by increased interaction of HIF-1α with HIF responsive element on the IL-1β promoter upon IL-1β treatment, under normoxia. Our studies highlights for first time that (1) Ras is a key mediator of IL-1β-induced NF-κB and HIF-1α activation, under normoxia; (2) Wnt-1 regulates IL-1β-mediated HIF-1α induction via NF-κB; (3) Ras and Wnt-1 are intermediaries in the canonical IL-1β-NF-κB signaling pathway downstream of MyD88; and (4) IL-1β-induced HIF-1α drives a HIF-1α-IL-1β autocrine loop to maintain persistently elevated IL-1β level.
Collapse
|
15
|
Wong MLH, Prawira A, Kaye AH, Hovens CM. Tumour angiogenesis: its mechanism and therapeutic implications in malignant gliomas. J Clin Neurosci 2009; 16:1119-30. [PMID: 19556134 DOI: 10.1016/j.jocn.2009.02.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 01/31/2009] [Accepted: 02/03/2009] [Indexed: 12/15/2022]
Abstract
Angiogenesis is a key event in the progression of malignant gliomas. The presence of microvascular proliferation leads to the histological diagnosis of glioblastoma multiforme. Tumour angiogenesis involves multiple cellular processes including endothelial cell proliferation, migration, reorganisation of extracellular matrix and tube formation. These processes are regulated by numerous pro-angiogenic and anti-angiogenic growth factors. Angiogenesis inhibitors have been developed to interrupt the angiogenic process at the growth factor, receptor tyrosine kinase and intracellular kinase levels. Other anti-angiogenic therapies alter the immune response and endogeneous angiogenesis inhibitor levels. Most anti-angiogenic therapies for malignant gliomas are in Phase I/II trials and only modest efficacies are reported for monotherapies. The greatest potential for angiogenesis inhibitors may lie in their ability to combine safely with chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Michael L H Wong
- Department of Surgery, University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | |
Collapse
|
16
|
Zhang Y, Zhang N, Dai B, Liu M, Sawaya R, Xie K, Huang S. FoxM1B transcriptionally regulates vascular endothelial growth factor expression and promotes the angiogenesis and growth of glioma cells. Cancer Res 2008; 68:8733-42. [PMID: 18974115 DOI: 10.1158/0008-5472.can-08-1968] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We previously found that FoxM1B is overexpressed in human glioblastomas and that forced FoxM1B expression in anaplastic astrocytoma cells leads to the formation of highly angiogenic glioblastoma in nude mice. However, the molecular mechanisms by which FoxM1B enhances glioma angiogenesis are currently unknown. In this study, we found that vascular endothelial growth factor (VEGF) is a direct transcriptional target of FoxM1B. FoxM1B overexpression increased VEGF expression, whereas blockade of FoxM1 expression suppressed VEGF expression in glioma cells. Transfection of FoxM1 into glioma cells directly activated the VEGF promoter, and inhibition of FoxM1 expression by FoxM1 siRNA suppressed VEGF promoter activation. We identified two FoxM1-binding sites in the VEGF promoter that specifically bound to the FoxM1 protein. Mutation of these FoxM1-binding sites significantly attenuated VEGF promoter activity. Furthermore, FoxM1 overexpression increased and inhibition of FoxM1 expression suppressed the angiogenic ability of glioma cells. Finally, an immunohistochemical analysis of 59 human glioblastoma specimens also showed a significant correlation between FoxM1 overexpression and elevated VEGF expression. Our findings provide both clinical and mechanistic evidence that FoxM1 contributes to glioma progression by enhancing VEGF gene transcription and thus tumor angiogenesis.
Collapse
Affiliation(s)
- Yujian Zhang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Retinoblastoma loss modulates DNA damage response favoring tumor progression. PLoS One 2008; 3:e3632. [PMID: 18985151 PMCID: PMC2573954 DOI: 10.1371/journal.pone.0003632] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Accepted: 10/16/2008] [Indexed: 01/07/2023] Open
Abstract
Senescence is one of the main barriers against tumor progression. Oncogenic signals in primary cells result in oncogene-induced senescence (OIS), crucial for protection against cancer development. It has been described in premalignant lesions that OIS requires DNA damage response (DDR) activation, safeguard of the integrity of the genome. Here we demonstrate how the cellular mechanisms involved in oncogenic transformation in a model of glioma uncouple OIS and DDR. We use this tumor type as a paradigm of oncogenic transformation. In human gliomas most of the genetic alterations that have been previously identified result in abnormal activation of cell growth signaling pathways and deregulation of cell cycle, features recapitulated in our model by oncogenic Ras expression and retinoblastoma (Rb) inactivation respectively. In this scenario, the absence of pRb confers a proliferative advantage and activates DDR to a greater extent in a DNA lesion-independent fashion than cells that express only HRas(V12). Moreover, Rb loss inactivates the stress kinase DDR-associated p38MAPK by specific Wip1-dependent dephosphorylation. Thus, Rb loss acts as a switch mediating the transition between premalignant lesions and cancer through DDR modulation. These findings may have important implications for the understanding the biology of gliomas and anticipate a new target, Wip1 phosphatase, for novel therapeutic strategies.
Collapse
|
18
|
Dewhirst MW, Cao Y, Moeller B. Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nat Rev Cancer 2008; 8:425-37. [PMID: 18500244 PMCID: PMC3943205 DOI: 10.1038/nrc2397] [Citation(s) in RCA: 757] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hypoxia and free radicals, such as reactive oxygen and nitrogen species, can alter the function and/or activity of the transcription factor hypoxia-inducible factor 1 (HIF1). Interplay between free radicals, hypoxia and HIF1 activity is complex and can influence the earliest stages of tumour development. The hypoxic environment of tumours is heterogeneous, both spatially and temporally, and can change in response to cytotoxic therapy. Free radicals created by hypoxia, hypoxia-reoxygenation cycling and immune cell infiltration after cytotoxic therapy strongly influence HIF1 activity. HIF1 can then promote endothelial and tumour cell survival. As discussed here, a constant theme emerges: inhibition of HIF1 activity will have therapeutic benefit.
Collapse
Affiliation(s)
- Mark W Dewhirst
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
19
|
Sandström M, Johansson M, Bergström P, Bergenheim AT, Henriksson R. Effects of the VEGFR inhibitor ZD6474 in combination with radiotherapy and temozolomide in an orthotopic glioma model. J Neurooncol 2008; 88:1-9. [DOI: 10.1007/s11060-008-9527-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Accepted: 01/03/2008] [Indexed: 11/29/2022]
|
20
|
Morokoff AP, Novak U. Targeted therapy for malignant gliomas. J Clin Neurosci 2008; 11:807-18. [PMID: 15519855 DOI: 10.1016/j.jocn.2004.03.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2003] [Accepted: 03/01/2004] [Indexed: 12/31/2022]
Abstract
The identification of markers that are associated with tumour but not normal tissue has allowed the development of highly-specific targeted therapies. Monoclonal antibodies, either alone or linked to radioisotopes or toxins, have provided a powerful tool for research, as well as the basis for promising therapeutic agents with less side effects than standard radiotherapy or chemotherapy. A new class of drugs, the tyrosine kinase inhibitors, which interfere with the function of key molecules in cancer-promoting pathways, have had a dramatic effect in haematological malignancy and are being trialled in solid tumours, including glioma. Although the problem of achieving specific, high-level delivery of these various agents to tumours in the brain remains a major issue, encouraging early results with some targeted agents support the attractive theoretical principles of this new paradigm. Further work to identify new molecular targets and to develop agents exploiting them, is needed, as well as confirmation of their safety and efficacy by clinical trials.
Collapse
Affiliation(s)
- Andrew P Morokoff
- Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia.
| | | |
Collapse
|
21
|
Yeh WL, Lin CJ, Fu WM. Enhancement of glucose transporter expression of brain endothelial cells by vascular endothelial growth factor derived from glioma exposed to hypoxia. Mol Pharmacol 2007; 73:170-7. [PMID: 17942749 DOI: 10.1124/mol.107.038851] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Increased need for glycolysis and glucose uptake for ATP production is observed in tumor cells, particularly in cells lacking of oxygen supply. Because glucose is transported from blood to tumor, glucose molecules must be delivered across glucose transporters of the vascular endothelium and tumor cells. Here we found that glioma suffered from hypoxic insults can secrete factor(s) to regulate glucose transporter expression in brain endothelium. It was found that conditioned medium from rat C6 glioma cells under hypoxia up-regulated glucose transporter type 1 (GLUT1) expression in rat brain endothelial cells, whereas conditioned medium from C6 cells under normoxia caused no significant effect. We further investigated whether the observed potentiating effect was caused by vascular endothelial growth factor (VEGF) production from C6 cells, because secreted VEGF was markedly increased under hypoxic condition. By transfection of C6 cells with VEGF small interfering RNA, it was found that conditioned medium from transfected cells under hypoxia no longer up-regulated GLUT1 expression of endothelial cells. Moreover, the addition of VEGF-neutralizing antibody to the hypoxic conditioned medium could also exert similar inhibitory effects. Furthermore, it was found that the VEGF-induced increase of GLUT1 expression in endothelial cells was mediated by the phosphoinositide-3 kinase/Akt pathway. Our results indicate that hypoxic brain glioma may secrete VEGF to increase glucose transport across blood-brain barrier.
Collapse
Affiliation(s)
- Wei-Lan Yeh
- Department of pharmacology, College of Medicine, National Taiwan University, 1, Section 1, Jen-Ai Road, Taipei, Taiwan
| | | | | |
Collapse
|
22
|
Liang Z, Brooks J, Willard M, Liang K, Yoon Y, Kang S, Shim H. CXCR4/CXCL12 axis promotes VEGF-mediated tumor angiogenesis through Akt signaling pathway. Biochem Biophys Res Commun 2007; 359:716-22. [PMID: 17559806 PMCID: PMC1986788 DOI: 10.1016/j.bbrc.2007.05.182] [Citation(s) in RCA: 238] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Accepted: 05/24/2007] [Indexed: 01/08/2023]
Abstract
CXC chemokine receptor 4 (CXCR4) has been shown to play a critical role in chemotaxis and homing, which are key steps in cancer metastasis. There is also increasing evidence that links this receptor to angiogenesis; however, its molecular basis remains elusive. Vascular endothelial growth factor (VEGF), one of the major angiogenic factors, promotes the formation of leaky tumor vasculatures that are the hallmarks of tumor progression. Here, we investigated whether CXCR4 induces the expression of VEGF through the PI3K/Akt pathway. Our results showed that CXCR4/CXCL12 induced Akt phosphorylation, which resulted in upregulation of VEGF at both the mRNA and protein levels. Conversely, blocking the activation of Akt signaling led to a decrease in VEGF protein levels; blocking CXCR4/CXCL12 interaction with a CXCR4 antagonist suppressed tumor angiogenesis and growth in vivo. Furthermore, VEGF mRNA levels correlated well with CXCR4 mRNA levels in patient tumor samples. In summary, our study demonstrates that the CXCR4/CXCL12 signaling axis can induce angiogenesis and progression of tumors by increasing expression of VEGF through the activation of PI3K/Akt pathway. Our findings suggest that targeting CXCR4 could provide a potential new anti-angiogenic therapy to suppress the formation of both primary and metastatic tumors.
Collapse
Affiliation(s)
- Zhongxing Liang
- Department of Hematology/Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgina 30322
| | - Joann Brooks
- Department of Hematology/Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgina 30322
| | - Margaret Willard
- Department of Hematology/Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgina 30322
| | - Ke Liang
- Department of Hematology/Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgina 30322
| | - Younghyoun Yoon
- Department of Hematology/Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgina 30322
| | - Seunghee Kang
- Department of Hematology/Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgina 30322
| | - Hyunsuk Shim
- Department of Hematology/Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgina 30322
- Department of Radiology, Emory University, Atlanta, Georgina 30322
- *To whom requests for reprints should be addressed, at Winship Cancer Institute, 1365C Clifton Road, N.E., Clinic C5008, Atlanta, GA 30322. Phone: 404-778-4564, Fax: 404-778-5550, E-mail:
| |
Collapse
|
23
|
Nicholas MK, Lukas RV, Jafri NF, Faoro L, Salgia R. Epidermal Growth Factor Receptor–Mediated Signal Transduction in the Development and Therapy of Gliomas. Clin Cancer Res 2006; 12:7261-70. [PMID: 17189397 DOI: 10.1158/1078-0432.ccr-06-0874] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The epidermal growth factor receptor (EGFR) and its ligands figure prominently in the biology of gliomas, the most common tumors of the central nervous system (CNS). Although their histologic classification seems to be straightforward, these tumors constitute a heterogeneous class of related neoplasms. They are associated with a variety of molecular abnormalities affecting signal transduction, transcription factors, apoptosis, angiogensesis, and the extracellular matrix. Under normal conditions, these same interacting factors drive CNS growth and development. We are now recognizing the diverse molecular genetic heterogeneity that underlies tumors classified histologically into three distinct grades. This recognition is leading to new therapeutic strategies targeted directly at specific molecular subtypes. In this article, we will review the role of EGFR and related molecular pathways in the genesis of the normal CNS and their relationship to glial tumorigenesis. We will discuss barriers to effective treatment as they relate to anatomic specialization of the CNS. We will also consider the ways in which specific EGFR alterations common to glioma reflect outcomes following treatment with targeted therapies, all with an eye towards applying this understanding to improved patient outcomes.
Collapse
|
24
|
Aghi M, Cohen KS, Klein RJ, Scadden DT, Chiocca EA. Tumor stromal-derived factor-1 recruits vascular progenitors to mitotic neovasculature, where microenvironment influences their differentiated phenotypes. Cancer Res 2006; 66:9054-64. [PMID: 16982747 DOI: 10.1158/0008-5472.can-05-3759] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mechanisms underlying tumor vasculogenesis, the homing and engraftment of bone marrow-derived vascular progenitors, remain undefined. We hypothesized that tumor cell-secreted factors regulate vasculogenesis. We studied vasculogenic and nonvasculogenic intracranial murine gliomas. A PCR screen identified stromal-derived factor-1 (SDF-1/CXCL12) and vascular endothelial growth factor (VEGF) expression by vasculogenic glioma cells and spontaneously arising vasculogenic tumors in NF1+/-:Trp53+/- mice, but not by nonvasculogenic glioma cells. Enforced SDF-1, not VEGF, expression in nonvasculogenic cells caused vasculogenesis. Combined SDF-1 and VEGF expression augmented vasculogenesis over SDF-1 expression alone. Blocking SDF-1 receptor CXCR4 reduced short-term homing and long-term engraftment of vascular progenitors. Implanting tumor cells secreting SDF-1 was therefore necessary and sufficient to incorporate marrow-derived precursors into tumor endothelium. SDF-1 seemed to exert these effects by acting locally intratumorally and did not cause an efflux of marrow-derived progenitors into circulation. Tumor microenvironment determined additional fates of marrow-derived cells. Hypoxia, observed with ectopic s.c. murine tumors at levels approximating that of intracranial human glioblastoma, interacted with tumor-secreted SDF-1 to expand engrafted vascular progenitor differentiated phenotypes to include pericytes as well as endothelium. In contrast, less hypoxic orthotopic intracranial murine gliomas contained only marrow-derived endothelium without marrow-derived pericytes. Furthermore, we found that vasculogenesis is significant for tumors because it generates endothelium with a higher mitotic index than endothelium derived from local sources. Although CXCR4 blockade selectively targeted endothelium generated by vasculogenesis, completely inhibiting vessel formation may require combination therapy targeting locally derived and marrow-derived endothelium.
Collapse
Affiliation(s)
- Manish Aghi
- Program in Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | | | | |
Collapse
|
25
|
Cloughesy TF, Wen PY, Robins HI, Chang SM, Groves MD, Fink KL, Junck L, Schiff D, Abrey L, Gilbert MR, Lieberman F, Kuhn J, DeAngelis LM, Mehta M, Raizer JJ, Yung WKA, Aldape K, Wright J, Lamborn KR, Prados MD. Phase II Trial of Tipifarnib in Patients With Recurrent Malignant Glioma Either Receiving or Not Receiving Enzyme-Inducing Antiepileptic Drugs: A North American Brain Tumor Consortium Study. J Clin Oncol 2006; 24:3651-6. [PMID: 16877733 DOI: 10.1200/jco.2006.06.2323] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Purpose A phase II study was undertaken in patients with recurrent malignant glioma to determine the efficacy and safety of tipifarnib, a farnesyltransferase inhibitor, dosed at the respective maximum-tolerated dose (MTD) for patients receiving and not receiving enzyme-inducing antiepileptic drugs (EIAEDs). Because tipifarnib undergoes extensive hepatic metabolism, MTD is doubled in patients on EIAEDs. The population included 67 patients with glioblastoma multiforme (GBM) and an exploratory group of 22 patients with anaplastic glioma (AG). Patients and Methods Patients received tipifarnib (300 and 600 mg bid for 21 days every 4 weeks in non-EIAED and EIAED patients, respectively). All patients were assessable for efficacy and safety. Results Two AG patients (9.1%) and eight GBM patients (11.9%) had progression-free survival (PFS) more than 6 months. Among the latter eight GBM patients, six of 36 patients (16.7%; 95% CI, 7% to 32%) were not receiving EIAEDs and two of 31 patients (6.5%; 95% CI, 1% to 20%) were receiving EIAEDs. Four patients had partial responses in group A GBM and one patient had a partial response group B GBM. An exploratory comparison of PFS between GBM groups A and B was statistically significant (P = .01). Patients not receiving EIAEDs had a higher incidence and increased severity of hematologic events. However, the incidence and severity of rash (the previously determined dose-limiting toxicity in patients receiving EIAEDs) seemed similar in EIAED and non-EIAED subgroups. Conclusion Tipifarnib (300 mg bid for 21 days every 4 weeks) shows modest evidence of activity in patients with recurrent GBM who are not receiving EIAEDs and is generally well tolerated in this population.
Collapse
Affiliation(s)
- Timothy F Cloughesy
- UCLA Neuro-Oncology Program, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kargiotis O, Rao JS, Kyritsis AP. Mechanisms of angiogenesis in gliomas. J Neurooncol 2006; 78:281-93. [PMID: 16554966 DOI: 10.1007/s11060-005-9097-6] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Accepted: 12/06/2005] [Indexed: 12/18/2022]
Abstract
Gliomas are the most frequent primary tumors of the central nervous system in adults. Glioblastoma multiforme, the most aggressive form of astrocytic tumors, displays a rapid progression that is accompanied by particular poor prognosis of patients. Intense angiogenesis is a distinguishing pathologic characteristic of these tumors and in fact, glioblastomas are of the most highly vascularized malignant tumors. For this reason, research and therapy strategies have focused on understanding the mechanisms leading to the origin of tumor angiogenic blood vessels in order to develop new approaches that effectively block angiogenesis and cause tumor regression. We discuss here some important features of glioma angiogenesis and we present molecules and factors and their possible functions and interactions that play a role in neovascularization. In spite of the great progress that molecular biology has achieved on investigating tumor angiogenesis, many aspects remain obscure and the complexity of the angiogenic process stands for an obstacle in identifying the exact and complete molecular pathways orchestrating new blood vessels formation, which are necessary for the survival and expansion of these tumors.
Collapse
Affiliation(s)
- O Kargiotis
- Neurosurgical Institute, University of Ioannina Medical School, Ioannina, Greece
| | | | | |
Collapse
|
27
|
Harper J, Moses MA. Molecular regulation of tumor angiogenesis: mechanisms and therapeutic implications. EXS 2006:223-68. [PMID: 16383021 DOI: 10.1007/3-7643-7378-4_10] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Angiogenesis, the process of new capillary formation from a pre-existing vessel plays an essential role in both embryonic and postnatal development, in the remodeling of various organ systems, and in several pathologies, particularly cancer. In the last 20 years of angiogenesis research, a variety of angiogenic regulators, both positive and negative, have been identified. The discovery of several anti-angiogenic factors has led to the development of novel cancer therapies based on targeting a tumor's vascular supply. A number of these new therapies are currently being tested in clinical trials in the U.S.A. and elsewhere. A major advance in the field of anti-angiogenic therapy occurred recently when the FDA approved Avastin (bevacizumab), the first solely anti-angiogenesis therapy approved for treatment of human cancer. While it has long been appreciated that tumor growth and progression are dependent on angiogenesis, it is only recently that progress has been made in elucidating the molecular mechanisms that regulate the earliest stage in the angiogenic program, the angiogenic switch. This checkpoint is characterized by the transition of a dormant, avascular tumor into an active, vascular one. Anti-angiogenic therapies to date have essentially been designed to suppress the neovasculature in established tumors. However, identifying the mechanisms that cause a tumor to acquire an angiogenic phenotype may lead to the discovery of new therapeutic modalities and complementary diagnostics that could be used to block the angiogenic switch, thereby preventing subsequent tumor progression. In this chapter on the role of angiogenesis in cancer, we (1) provide an overview of the process of angiogenesis with special regard to the molecules and physiological conditions that regulate this process, (2) review recent studies describing the use of anti-angiogenic approaches in the treatment of a variety of human cancers, and (3) discuss the recent literature focused on the study of the molecules and molecular mechanisms that may be regulating the initiation of the angiogenic phenotype in tumors, and the clinical impact that this knowledge may have in the future.
Collapse
Affiliation(s)
- Jay Harper
- Vascular Biology Program, Children's Hospital Boston, Karp Research Building 12.214, 300 Longwood Avenue, Boston, MA 02115, USA.
| | | |
Collapse
|
28
|
Stoeltzing O, Ellis LM. Regulators of Vascular Endothelial Growth Factor Expression in Cancer. MOLECULAR TARGETING AND SIGNAL TRANSDUCTION 2006; 119:33-58. [PMID: 15164872 DOI: 10.1007/1-4020-7847-1_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Oliver Stoeltzing
- Department of Cancer Biology, The University of Texas M. D. Anderson Cancer Center, Houston, USA
| | | |
Collapse
|
29
|
Das B, Yeger H, Tsuchida R, Torkin R, Gee MFW, Thorner PS, Shibuya M, Malkin D, Baruchel S. A hypoxia-driven vascular endothelial growth factor/Flt1 autocrine loop interacts with hypoxia-inducible factor-1alpha through mitogen-activated protein kinase/extracellular signal-regulated kinase 1/2 pathway in neuroblastoma. Cancer Res 2005; 65:7267-75. [PMID: 16103078 DOI: 10.1158/0008-5472.can-04-4575] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Flt1, an "fms-like tyrosine kinase" receptor, has been suggested to play an active role in vascular endothelial growth factor (VEGF)-mediated autocrine signaling of tumor growth and angiogenesis. Here, we used a neuroblastoma model to investigate the role of VEGF/Flt1 signaling in hypoxia-mediated tumor cell survival, drug resistance, and in vivo angiogenesis. SK-N-BE2, a highly malignant neuroblastoma cell line resistant to hypoxia-induced apoptosis expresses active Flt1 but lacks VEGFR2 expression. We found that 24-hour hypoxia (<0.1% O2) alone (no serum deprivation) showed sustained activation of extracellular signal-regulated kinase 1/2 (ERK1/2) associated with bcl-2 up-regulation and resistance to etoposide-induced (5 mumol/L) apoptosis. Treatment with anti-VEGF and anti-Flt1 antibodies inhibited ERK1/2 activation, down-regulated bcl-2, and reversed the hypoxia-mediated drug resistance to etoposide. Similar results were obtained with U0126 and ursolic acid, specific and nonspecific inhibitors of ERK1/2, respectively. We confirmed the protective role of Flt1 receptor by small interfering RNA knockout and Flt1 overexpression studies. Subsequently, we found that inhibition of VEGF/Flt1 autocrine signaling led to reduced hypoxia-inducible factor-1alpha (HIF-1alpha) phosphorylation. Furthermore, the reduced phosphorylation was associated with down-regulation of basic fibroblast growth factor, a downstream target of the HIF-1alpha and VEGF pathways. Our findings suggested an expanded autocrine loop between VEGF/Flt1 signaling and HIF-1alpha. We investigated the angiogenic activity of the loop in an in vivo Matrigel plug assay. The hypoxia-treated conditioned medium induced a strong angiogenic response, as well as the cooption of surrounding vessels into the plugs; ursolic acid inhibited the angiogenesis process. We also found that three other Flt1-expressing neuroblastoma cell lines show hypoxia-mediated drug resistance to etoposide, melphalan, doxorubicin, and cyclophosphamide. Taken together, we conclude that a hypoxia-driven VEGF/Flt1 autocrine loop interacts with HIF-1alpha through a mitogen-activated protein kinase/ERK1/2 pathway in neuroblastoma. The interaction, in the form of an autocrine loop, is required for the hypoxia-driven cell survival, drug resistance, and angiogenesis in neuroblastoma.
Collapse
Affiliation(s)
- Bikul Das
- New Agent and Innovative Therapy Program, Division of Hematology and Oncology, Department of Pediatrics, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Cloughesy TF, Kuhn J, Robins HI, Abrey L, Wen P, Fink K, Lieberman FS, Mehta M, Chang S, Yung A, DeAngelis L, Schiff D, Junck L, Groves M, Paquette S, Wright J, Lamborn K, Sebti SM, Prados M. Phase I Trial of Tipifarnib in Patients With Recurrent Malignant Glioma Taking Enzyme-Inducing Antiepileptic Drugs: A North American Brain Tumor Consortium Study. J Clin Oncol 2005; 23:6647-56. [PMID: 16170172 DOI: 10.1200/jco.2005.10.068] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Purpose To determine the maximum-tolerated dose (MTD), toxicities, and clinical effect of tipifarnib, a farnesyltransferase (FTase) inhibitor, in patients with recurrent malignant glioma taking enzyme-inducing antiepileptic drugs (EIAEDs). This study compares the pharmacokinetics and pharmacodynamics of tipifarnib at MTD in patients on and off EIAEDs. Patients and Methods Recurrent malignant glioma patients were treated with tipifarnib using an interpatient dose-escalation scheme. Pharmacokinetics and pharmacodynamics were assessed. Results Twenty-three assessable patients taking EIAEDs received tipifarnib in escalating doses from 300 to 700 mg bid for 21 of 28 days. The dose-limiting toxicity was rash, and the MTD was 600 mg bid. There were significant differences in pharmacokinetic parameters at 300 mg bid between patients on and not on EIAEDs. When patients on EIAEDs and not on EIAEDs were treated at MTD (600 and 300 mg bid, respectively), the area under the plasma concentration–time curve (AUC)0-12 hours was approximately two-fold lower in patients on EIAEDs. Farnesyltransferase inhibition was noted at all tipifarnib dose levels, as measured in peripheral-blood mononuclear cells (PBMC). Conclusion Toxicities and pharmacokinetics differ significantly when comparing patients on or off EIAEDs. EIAEDs significantly decreased the maximum concentration, AUC0-12 hours, and predose trough concentrations of tipifarnib. Even in the presence of EIAEDs, the levels of tipifarnib were still sufficient to potently inhibit FTase activity in patient PBMCs. The relevance of these important findings to clinical activity will be determined in ongoing studies with larger numbers of patients.
Collapse
Affiliation(s)
- Timothy F Cloughesy
- Henry E. Singleton Brain Cancer Research Program, University of California, Los Angeles, CA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Shannon P, Sabha N, Lau N, Kamnasaran D, Gutmann DH, Guha A. Pathological and molecular progression of astrocytomas in a GFAP:12 V-Ha-Ras mouse astrocytoma model. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 167:859-67. [PMID: 16127163 PMCID: PMC1698742 DOI: 10.1016/s0002-9440(10)62057-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/19/2005] [Indexed: 10/18/2022]
Abstract
We previously characterized a genetically engineered mouse astrocytoma model with embryonic astrocyte-specific, activated (12)V-Ha-RAS (GFAP-RAS) transgenesis. The GFAP-RAS line Ras-B8 appears normal at birth, but 50% of mice die by 4 months from low- and high-grade astrocytomas. We examined the development and progression of astrocytomas in the Ras-B8 genetically engineered mouse. At embryonic day 16.5 (E16.5), there were no pathological differences compared to control littermates, aside from transgene expression. Diffuse astroglial hyperplasia was the first distinguishing feature in the 1-week-old Ras-B8 mice; however, these astrocytes were not transformed in vitro or in vivo. From 3 to 8 weeks the incidence of low-grade astrocytomas progressively increased with 85% of 12-week-old mice harboring low- or high-grade astrocytomas, the latter characterized by increased proliferation, nuclear atypia, and angiogenesis. Tp 53 mutations were detected in both astrocytoma grades, with high-grade astrocytomas expressing elevated levels of epidermal growth factor receptor and vascular endothelial growth factor, plus decreased levels of PTEN and p16, similar to human astrocytomas. We postulate that expression of (12)V-Ha-RAS in astroglial precursors induces astroglial hyperplasia, but transformation and subsequent progression requires additional molecular alterations resulting from aberrant activated p21-RAS. Of interest, many of these acquired alterations occur in human astrocytomas, further validating GFAP-RAS as a useful model for studying astrocytoma development and progression.
Collapse
Affiliation(s)
- Patrick Shannon
- Department of Neuropathology, The University of Toronto, Toronto, Ontario, Canada, M5T-2S8
| | | | | | | | | | | |
Collapse
|
32
|
Loeffler S, Fayard B, Weis J, Weissenberger J. Interleukin-6 induces transcriptional activation of vascular endothelial growth factor (VEGF) in astrocytes in vivo and regulates VEGF promoter activity in glioblastoma cells via direct interaction between STAT3 and Sp1. Int J Cancer 2005; 115:202-13. [PMID: 15688401 DOI: 10.1002/ijc.20871] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Interleukin-6 (IL-6) expression is strongly correlated with the degree of human glioma malignancy and necessary for tumor formation in a mouse model of spontaneous astrocytomas. Yet, exactly how IL-6 contributes to malignant progression of these brain tumors is still unclear. We have scrutinized the mechanism of transcriptional activation of vascular endothelial growth factor (VEGF) expression by IL-6 in the mouse brain and in glioblastoma cells. We demonstrate here that IL-6 drives transcriptional upregulation of VEGF in astrocytes in vivo using glial fibrillary acidic protein (GFAP)-IL-6/VEGF-green fluorescent protein (GFP) double transgenic mice. We further show that IL-6-induced VEGF transcription and VEGF secretion by human glioblastoma cells is dependent on signal transducer and activator of transcription 3 (STAT3). By progressive 5'-deletion analysis we defined the minimal VEGF promoter region for IL-6-responsiveness to nucleotides -88/-50. Surprisingly, this promoter region is rich in GC-boxes and does not contain STAT3 binding elements. Electrophoretic mobility shift and supershift assays revealed binding of Sp1 and Sp3 to the -88/-50 element upon IL-6 stimulation. Interestingly, preincubation with STAT3 antibody prevented the binding of Sp1 and Sp3 to the -88/-50 element, indicating that STAT3 is involved in IL-6-driven Sp1/Sp3 protein-DNA complex formation. Physical interaction of STAT3 and Sp1 was demonstrated by coimmunoprecipitation. The functional relevance of the STAT3/Sp1 association was corroborated by transient transfection experiments, which showed that overexpression of constitutively active STAT3 increased the minimal VEGF promoter activity. Taken together, our study suggests that IL-6 promotes tumor angiogenesis in gliomas and describes a novel transcriptional activation mechanism for STAT3 in the context of a STAT3 binding element (SBE)-free promoter.
Collapse
Affiliation(s)
- Sébastien Loeffler
- Division of Neuropathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | | | | | | |
Collapse
|
33
|
Wikstrand CJ, Sampson JH, Bigner DD. EGFRvIII: an oncogene deletion mutant cell surface receptor target expressed by multiple tumour types. ACTA ACUST UNITED AC 2005. [DOI: 10.1517/14728222.4.4.497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
34
|
Blum R, Jacob-Hirsch J, Amariglio N, Rechavi G, Kloog Y. Ras Inhibition in Glioblastoma Down-regulates Hypoxia-Inducible Factor-1α, Causing Glycolysis Shutdown and Cell Death. Cancer Res 2005. [DOI: 10.1158/0008-5472.999.65.3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Active Ras and phosphatidylinositol-3-kinase–dependent pathways contribute to the malignant phenotype of glioblastoma multiformes (GBM). Here we show that the Ras inhibitor trans-farnesylthiosalicylic acid (FTS) exhibits profound antioncogenic effects in U87 GBM cells. FTS inhibited active Ras and attenuated Ras signaling to extracellular signal-regulated kinase, phosphatidylinositol-3-kinase, and Akt. Concomitantly, hypoxia-inducible factor 1α (HIF-1α) disappeared, expression of key glycolysis pathway enzymes and of other HIF-1α–regulated genes (including vascular endothelial growth factor and the Glut-1 glucose transporter) was down-regulated, and glycolysis was halted. This led to a dramatic reduction in ATP, resulting in a severe energy crisis. In addition, the expression of E2F-regulated genes was down-regulated in the FTS-treated cells. Consequently, U87 cell growth was arrested and the cells died. These results show that FTS is a potent down-regulator of HIF-1α and might therefore block invasiveness, survival, and angiogenesis in GBM.
Collapse
Affiliation(s)
- Roy Blum
- 1Department of Neurobiochemistry, George S. Wise Faculty of Life Sciences and
| | - Jasmine Jacob-Hirsch
- 3Department of Pediatric Hematology-Oncology, Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - Ninette Amariglio
- 3Department of Pediatric Hematology-Oncology, Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - Gideon Rechavi
- 2Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel and
- 3Department of Pediatric Hematology-Oncology, Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - Yoel Kloog
- 1Department of Neurobiochemistry, George S. Wise Faculty of Life Sciences and
| |
Collapse
|
35
|
Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 2004; 23:1011-27. [PMID: 15585754 DOI: 10.1200/jco.2005.06.081] [Citation(s) in RCA: 2123] [Impact Index Per Article: 106.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
New blood vessel formation (angiogenesis) is a fundamental event in the process of tumor growth and metastatic dissemination. Hence, the molecular basis of tumor angiogenesis has been of keen interest in the field of cancer research. The vascular endothelial growth factor (VEGF) pathway is well established as one of the key regulators of this process. The VEGF/VEGF-receptor axis is composed of multiple ligands and receptors with overlapping and distinct ligand-receptor binding specificities, cell-type expression, and function. Activation of the VEGF-receptor pathway triggers a network of signaling processes that promote endothelial cell growth, migration, and survival from pre-existing vasculature. In addition, VEGF mediates vessel permeability, and has been associated with malignant effusions. More recently, an important role for VEGF has emerged in mobilization of endothelial progenitor cells from the bone marrow to distant sites of neovascularization. The well-established role of VEGF in promoting tumor angiogenesis and the pathogenesis of human cancers has led to the rational design and development of agents that selectively target this pathway. Studies with various anti-VEGF/VEGF-receptor therapies have shown that these agents can potently inhibit angiogenesis and tumor growth in preclinical models. Recently, an anti-VEGF antibody (bevacizumab), when used in combination with chemotherapy, was shown to significantly improve survival and response rates in patients with metastatic colorectal cancer and thus, validate VEGF pathway inhibitors as an important new treatment modality in cancer therapy.
Collapse
Affiliation(s)
- Daniel J Hicklin
- Department of Experimental Therapeutics, ImClone Systems Incorporated, New York, NY 10014, USA.
| | | |
Collapse
|
36
|
Thews O, Wolloscheck T, Dillenburg W, Kraus S, Kelleher DK, Konerding MA, Vaupel P. Microenvironmental adaptation of experimental tumours to chronic vs acute hypoxia. Br J Cancer 2004; 91:1181-9. [PMID: 15305198 PMCID: PMC2747687 DOI: 10.1038/sj.bjc.6602066] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This study investigated long-term microenvironmental responses (oxygenation, perfusion, metabolic status, proliferation, vascular endothelial growth factor (VEGF) expression and vascularisation) to chronic hypoxia in experimental tumours. Experiments were performed using s.c.-implanted DS-sarcomas in rats. In order to induce more pronounced tumour hypoxia, one group of animals was housed in a hypoxic atmosphere (8% O2) for the whole period of tumour growth (chronic hypoxia). A second group was acutely exposed to inspiratory hypoxia for only 20 min prior to the measurements (acute hypoxia), whereas animals housed under normal atmospheric conditions served as controls. Acute hypoxia reduced the median oxygen partial pressure (pO2) dramatically (1 vs 10 mmHg in controls), whereas in chronically hypoxic tumours the pO2 was significantly improved (median pO2=4 mmHg), however not reaching the control level. These findings reflect the changes in tumour perfusion where acutely hypoxic tumours show a dramatic reduction of perfused tumour vessels (maybe the result of a simultaneous reduction in arterial blood pressure). In animals under chronic inspiratory hypoxia, the number of perfused vessels increased (compared to acute hypoxia), although the perfusion pattern found in control tumours was not reached. In the chronically hypoxic animals, tumour cell proliferation and tumour growth were significantly reduced, whereas no differences in VEGF expression and vascular density between these groups were observed. These results suggest that long-term adaptation of tumours to chronic hypoxia in vivo, while not affecting vascularity, does influence the functional status of the microvessels in favour of a more homogeneous perfusion.
Collapse
Affiliation(s)
- O Thews
- Institute of Physiology and Pathophysiology, University of Mainz, Duesbergweg 6, 55099 Mainz, Germany.
| | | | | | | | | | | | | |
Collapse
|
37
|
Sandström M, Johansson M, Andersson U, Bergh A, Bergenheim AT, Henriksson R. The tyrosine kinase inhibitor ZD6474 inhibits tumour growth in an intracerebral rat glioma model. Br J Cancer 2004; 91:1174-80. [PMID: 15305185 PMCID: PMC2747688 DOI: 10.1038/sj.bjc.6602108] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Malignant glioma is characterised by extensive neovascularisation, principally influenced by vascular endothelial growth factor (VEGF). ZD6474 is a potent inhibitor of VEGF-R2 tyrosine kinase activity, but with additional inhibitory effects on other growth factors. In this study, we have investigated the effects of ZD6474 with regard to tumour growth, neovascularisation, proliferation and apoptosis in the intracerebral rat glioma model, BT4C. ZD6474 (50 and 100 mg kg(-1)) was given as a daily oral gavage. Animals were killed on day 19 and tumour volume was measured. Sections were stained for factor VIII, Ki-67 and for apoptosis. The ability of ZD6474 to inhibit cell growth directly was examined in vitro, using the glioma cell line BT4C and the transformed rat brain endothelial cell line RBE4. Cell growth was analysed with fluorometric microculture cytotoxicity assay to quantify the cytotoxic effects. ZD6474 significantly decreased tumour volume compared to controls. Microvascular density increased after treatment with ZD6474, and tumour cell proliferation index was reduced. There was also an increase in tumour cell apoptosis. In vitro, the growth of both cell lines was significantly reduced. The results reported justify further experimental investigations concerning the effects of ZD6474 in malignant glioma alone or in combination with other modalities.
Collapse
Affiliation(s)
- M Sandström
- Department of Radiation Sciences, Oncology, Umeå University, S-901 85 Umeå, Sweden.
| | | | | | | | | | | |
Collapse
|
38
|
Yu JL, May L, Lhotak V, Shahrzad S, Shirasawa S, Weitz JI, Coomber BL, Mackman N, Rak JW. Oncogenic events regulate tissue factor expression in colorectal cancer cells: implications for tumor progression and angiogenesis. Blood 2004; 105:1734-41. [PMID: 15494427 DOI: 10.1182/blood-2004-05-2042] [Citation(s) in RCA: 412] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tissue factor (TF) is the primary cellular initiator of blood coagulation and a modulator of angiogenesis and metastasis in cancer. Indeed, systemic hypercoagulability in patients with cancer and TF overexpression by cancer cells are both closely associated with tumor progression, but their causes have been elusive. We now report that in human colorectal cancer cells, TF expression is under control of 2 major transforming events driving disease progression (activation of K-ras oncogene and inactivation of the p53 tumor suppressor), in a manner dependent on MEK/mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3'-kinase (PI3K). Furthermore, the levels of cell-associated as well as circulating (microvesicle-associated) TF activity are linked to the genetic status of cancer cells. Finally, RNA interference experiments suggest that TF expression is an important effector of the K-ras-dependent tumorigenic and angiogenic phenotype in vivo. Thus, this study establishes a causal link between cancer coagulopathy, angiogenesis, and genetic tumor progression.
Collapse
MESH Headings
- Alleles
- Animals
- Cell Line, Tumor
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Colorectal Neoplasms/blood supply
- Colorectal Neoplasms/genetics
- Colorectal Neoplasms/metabolism
- Colorectal Neoplasms/pathology
- Gene Expression Regulation, Neoplastic
- Gene Silencing
- Genes, p53/physiology
- Genes, ras/genetics
- Humans
- Mice
- Mice, SCID
- Mutation
- Neoplasm Transplantation
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/physiopathology
- Thromboplastin/biosynthesis
- Thromboplastin/metabolism
- Thromboplastin/physiology
Collapse
Affiliation(s)
- Joanne L Yu
- Henderson Research Centre, Experimental Thrombosis Research, McMaster University, Hamilton, ON, Canada L8V 1C3
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Parikh AA, Ellis LM. The vascular endothelial growth factor family and its receptors. Hematol Oncol Clin North Am 2004; 18:951-71, vii. [PMID: 15474329 DOI: 10.1016/j.hoc.2004.06.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This article focuses on describing the biology of vascular endothelial growth factor (VEGF) and its receptors as well as the regulation of their expression. A thorough understanding of the VEGF system is paramount in optimizing antiangiogenic therapies as a component of antineoplastic regimens.
Collapse
Affiliation(s)
- Alexander A Parikh
- Department of Surgery-Surgical Oncology, Temple University School of Medicine, Fourth Floor, Parkinson Pavilion, 3401 North Broad Street, Philadelphia, PA 19140, USA.
| | | |
Collapse
|
40
|
Pore N, Liu S, Shu HK, Li B, Haas-Kogan D, Stokoe D, Milanini-Mongiat J, Pages G, O'Rourke DM, Bernhard E, Maity A. Sp1 is involved in Akt-mediated induction of VEGF expression through an HIF-1-independent mechanism. Mol Biol Cell 2004; 15:4841-53. [PMID: 15342781 PMCID: PMC524732 DOI: 10.1091/mbc.e04-05-0374] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Increased expression of vascular endothelial growth factor (VEGF) contributes to the growth of many tumors by increasing angiogenesis. Although hypoxia is a potent inducer of VEGF, we previously showed that epidermal growth factor receptor amplification and loss of PTEN, both of which can increase phosphatidylinositol-3-kinase (PI3K) activity, increase VEGF expression. Using both adenoviral vectors and a cell line permanently expressing constitutively active myristoylated Akt (myrAkt), we show that activation of Akt, which is downstream of PI3K, increases VEGF expression in vitro and increases angiogenesis in a Matrigel plug assay. Transient transfection experiments using reporter constructs containing the VEGF promoter showed that up-regulation of VEGF by Akt is mediated through Sp1 binding sites located in the proximal promoter. Small interfering RNA directed against Sp1 prevented the induction of VEGF mRNA in response to myrAkt but not to hypoxia. Expression of myrAkt is associated with increased phosphorylation of Sp1 and its increased binding to a probe corresponding to the -88/-66 promoter region. In conclusion, our results indicate that Sp1 is required for transactivation of the VEGF by Akt. Others have proposed that the PI3K/Akt pathway can increase VEGF expression via the hypoxia-inducible factor 1 (HIF-1); however, our results suggest an alternative mechanism can also operate.
Collapse
Affiliation(s)
- Nabendu Pore
- Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia, PA 19004, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kranenburg O, Gebbink MFBG, Voest EE. Stimulation of angiogenesis by Ras proteins. Biochim Biophys Acta Rev Cancer 2004; 1654:23-37. [PMID: 14984765 DOI: 10.1016/j.bbcan.2003.09.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2003] [Accepted: 09/03/2003] [Indexed: 12/13/2022]
Abstract
Cells that have acquired a proliferative advantage form islets of hyperplasia during the initial stages of tumor development. Like normal cells, they require oxygen and nutrients to survive and proliferate. The centre of the islets is characterized by low oxygen pressure and low pH, conditions that stimulate the sprouting of new capillaries from nearby vascular beds. It is now well established that neovascularisation (angiogenesis) of the hyperplasias is essential for further development of the tumor. The family of ras oncogenes promotes the initiation of tumor growth by stimulating tumor cell proliferation, but also ensures tumor progression by stimulating tumor-associated angiogenesis. Oncogenic Ras proteins stimulate a number of effector pathways that culminate in the transcriptional activation of genes that control angiogenesis. Moreover, Ras signaling leads to stabilization of the produced mRNAs and, possibly, to enhanced initiation of their translation. In this review we describe the mechanisms that underlie Ras regulation of vascular endothelial growth factor (VEGF), cyclooxygenases (COX-1/-2), thrombospondins (TSP-1/-2), urokinase plasminogen activator (uPA) and matrix metalloproteases-2 and -9 (MMP-2/-9). As a result of these Ras-regulated changes in gene expression, the tumor cells cause stimulation of endothelial cells in nearby vascular beds (directly via VEGF, and indirectly via COX-produced prostaglandins) and promote remodeling of the extracellular matrix (by lowering TSP and increasing uPA/MMPs). The latter effect makes growth factors available for endothelial cell activation and migration. In addition, tumor cell-activated stromal cells also contribute to the stimulation of angiogenesis by further enhancing the production and secretion of pro-angiogenic factors into the tumor stroma.
Collapse
Affiliation(s)
- Onno Kranenburg
- Department of Surgery, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | | | | |
Collapse
|
42
|
Kurzrock R, Albitar M, Cortes JE, Estey EH, Faderl SH, Garcia-Manero G, Thomas DA, Giles FJ, Ryback ME, Thibault A, De Porre P, Kantarjian HM. Phase II study of R115777, a farnesyl transferase inhibitor, in myelodysplastic syndrome. J Clin Oncol 2004; 22:1287-92. [PMID: 15051776 DOI: 10.1200/jco.2004.08.082] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE To perform a phase II study of the farnesyl transferase inhibitor R115777 (Zarnestra; Johnson and Johnson Pharmaceutical Research and Development, Raritan, NJ) in patients with myelodysplastic syndrome (MDS), using doses recommended in a phase I study in relapsed/refractory leukemia. PATIENTS AND METHODS Patients with MDS were treated with R115777 at doses of 600 mg orally (PO) bid in cycles of 4 weeks of therapy followed by a 2-week rest period. Dose reduction rules for toxicity were applied. RESULTS Twenty-seven of the 28 patients treated were assessable. Three patients responded (complete remission, n = 2; partial remission, n = 1). Responders included two patients with refractory anemia with excess blasts and one patient with refractory anemia with excess blasts in transformation. Two of the responders had a diploid karyotype and one had multiple cytogenetic abnormalities including monosomy 5 and 7. The starting dose of 600 mg PO bid resulted in side effects (myelosuppression, fatigue, neurotoxicity, rash, or leg pain) necessitating dose reduction (n = 4) or discontinuation of therapy (n = 7) in 11 (41%) of 27 patients during the induction period (12 weeks). Lower doses of 300 mg PO bid were well tolerated. All responses occurred in patients who had been reduced to this dose level during the initial two cycles. CONCLUSION This study suggests that R115777 has modest activity in MDS patients, but that, in this patient population, 4 weeks of daily doses of 600 mg PO bid is not tolerated. Further exploration of the optimal dose/schedule and correlation with biologic end points are warranted.
Collapse
Affiliation(s)
- Razelle Kurzrock
- Department of Bioimmunotherapy, University of Texas M D Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Among novel promising approaches that have recently entered the scene of anti-cancer therapy angiogenesis inhibition and targeting cancer-causing genes (e.g. oncogenes) are of particular interest as potentially highly synergistic. One reason for this is that transforming genetic lesions driving cancer progression (e.g. mutations of ras and/or p53) are thought to be causative for the onset of tumor angiogenesis and thereby responsible for build up of vascular supply which is essential for cancer cell survival, malignant growth, invasion and metastasis. However, many of the same genetic alterations that emerge during disease progression and repeated rounds of mutagenic and/or apoptosis causing therapy could alter cellular hypoxia-, growth factor- and apoptotic pathways in such a manner, as to also render cancer cells (partially) refractory to the detrimental consequences of poor blood vessel accessibility (density), ischemia, hypoxia and growth factor deprivation. As recent experimental evidence suggests, such cancer cells could therefore display a reduced vascular demand and remain viable even in poorly perfused regions of the tumor as well as possess an overall growth/survival advantage. The latter circumstance may lead to (predict) diminished efficacy of anti-angiogenic agents in certain malignancies. Therefore, we propose that analysis of oncogenic pathways and gene expression profiling of cancer cells may lead to important clues as to potential efficacy of anti-angiogenic therapies, the direct target of which is the host vasculature, but which are ultimately aimed at (indirect) destruction/control of the cancer cells population. We also suggest that oncogene (tumor suppressor)-directed therapies may help reverse diminished vascular demand of highly transformed cancer cells and thereby facilitate (sensitize tumors to) therapies directed against vascular supply of cancers and their metastases.
Collapse
Affiliation(s)
- Janusz Rak
- Henderson Research Centre, McMaster University, 711 Concession Street, Hamilton, Ontario, Canada L8V 1C3.
| | | |
Collapse
|
44
|
Hamma-Kourbali Y, Di Benedetto M, Ledoux D, Oudar O, Leroux Y, Lecouvey M, Kraemer M. A novel non-containing-nitrogen bisphosphonate inhibits both in vitro and in vivo angiogenesis. Biochem Biophys Res Commun 2003; 310:816-23. [PMID: 14550277 DOI: 10.1016/j.bbrc.2003.09.083] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bisphosphonates (BP) are powerful inhibitors of bone resorption and are widely used in the treatment of patients with metastasis-induced osteolysis. In the present study, we show that a novel non-nitrogen-containing BP (BP7033) that exhibits antitumor activity is a potent inhibitor of both in vivo and in vitro angiogenesis. When administered to mice, BP7033 inhibited tumoral angiogenesis (65% at 0.06mg/injection) as well as tumor growth (65% at 0.006mg/injection) in a tumor model of A431 cells xenografted in nude mice, with no sign of toxicity. Additionally, in vivo angiogenesis induced by vascular endothelial growth factor-containing Matrigel implants was reduced by 90% in the presence of BP7033 (0.6mg/plug). In vitro, BP7033 inhibited proliferation of human umbilical vein endothelial cells (HUVEC) (IC(50) value 3x10(-4) M) and completely prevented the formation of capillary-like tubules by HUVEC in Matrigel. Moreover, treatment of A431 cells by BP7033 induced an inhibition of Ras processing and a decrease in the secretion of both vascular endothelial growth factor and matrix metalloproteinase-2, two well-known stimulators of the proliferation and migration of endothelial cells. These findings indicate that this new BP compound has marked antiangiogenic properties and thus represents a promising candidate for treatment of malignant diseases with an angiogenic component.
Collapse
Affiliation(s)
- Yamina Hamma-Kourbali
- Laboratoire d'Oncologie Cellulaire et Moléculaire, UPRES 2360, Université Paris 13, UFR SMBH, Bobigny, France
| | | | | | | | | | | | | |
Collapse
|
45
|
Angibaud P, Bourdrez X, End DW, Freyne E, Janicot M, Lezouret P, Ligny Y, Mannens G, Damsch S, Mevellec L, Meyer C, Muller P, Pilatte I, Poncelet V, Roux B, Smets G, Van Dun J, Van Remoortere P, Venet M, Wouters W. Substituted azoloquinolines and -quinazolines as new potent farnesyl protein transferase inhibitors. Bioorg Med Chem Lett 2003; 13:4365-9. [PMID: 14643327 DOI: 10.1016/j.bmcl.2003.08.080] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A series of (4-chlorophenyl)-alpha-(1-methyl-1H-imidazol-5-yl)azoloquinolines and -quinazolines was prepared. These compounds displayed potent Farnesyl Protein Transferase inhibitory activity and tetrazolo[1,5-a]quinazolines are promising agents for oral in vivo inhibition.
Collapse
Affiliation(s)
- Patrick Angibaud
- Medicinal Chemistry Department Johnson & Johnson Pharmaceutical Research & Development (J&JPRD), Campus de Maigremont BP615, 27106, Val de Reuil, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Angiogenesis is a crucial requirement for embryonal development and new vessel formation during adult life. Various disease processes such as cancer, ischemia, vascular malformations, and inflammatory processes also depend on pathological angiogenesis. A better understanding of the complex and coordinated interactions among various angiogenic pathways involved in pathological angiogenesis is necessary to improve our therapeutic approaches to the various disease processes observed in the central nervous system. This review summarizes the current understanding of the role of principal angiogenic factors relevant to neurosurgical abnormalities.
Collapse
Affiliation(s)
- Gelareh Zadeh
- Arthur & Sonia Labatts Brain Tumor Center, Hospital for Sick Children's Research Institute, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
47
|
Angibaud P, Saha AK, Bourdrez X, End DW, Freyne E, Lezouret P, Mannens G, Mevellec L, Meyer C, Pilatte I, Poncelet V, Roux B, Smets G, Van Dun J, Venet M, Wouters W. 4-Methyl-1,2,4-triazol-3-yl heterocycle as an alternative to the 1-methylimidazol-5-yl moiety in the Farnesyltransferase inhibitor ZARNESTRA ™. Bioorg Med Chem Lett 2003; 13:4361-4. [PMID: 14643326 DOI: 10.1016/j.bmcl.2003.09.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Replacement of the 1-methylimidazol-5-yl moiety in the farnesyltransferase inhibitor ZARNESTRA series by a 4-methyl-1,2,4-triazol-3-yl group gave us compounds with similar structure-activity relationship profiles showing that this triazole is potentially a good surrogate to imidazole for farnesyltransferase inhibition.
Collapse
Affiliation(s)
- Patrick Angibaud
- Medicinal Chemistry Department Johnson & Johnson Pharmaceutical Research & Development (J&JPRD), Campus de Maigremont BP615, 27106, Val de Reuil, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Short M, Nemenoff RA, Zawada WM, Stenmark KR, Das M. Hypoxia induces differentiation of pulmonary artery adventitial fibroblasts into myofibroblasts. Am J Physiol Cell Physiol 2003; 286:C416-25. [PMID: 14561589 DOI: 10.1152/ajpcell.00169.2003] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activation of the alpha-smooth muscle actin (alpha-SMA) gene during the conversion of fibroblasts into myofibroblasts is an essential feature of various fibrotic conditions. Microvascular compromise and thus local environmental hypoxia are important components of the fibrotic response. The present study was thus undertaken to test the hypothesis that hypoxia can induce transdifferentiation of vascular fibroblasts into myofibroblasts and also to evaluate potential signaling mechanisms governing this process. We found that hypoxia significantly upregulates alpha-SMA protein levels in bovine pulmonary artery adventitial fibroblasts. Increased alpha-SMA expression is controlled at the transcriptional level because the alpha-SMA gene promoter activity, assayed via a luciferase reporter, was markedly increased in transfected fibroblasts exposed to hypoxia. Hypoxic induction of the alpha-SMA gene was mimicked by overexpression of constitutively active Galphai2 (alphai2Q205L) but not Galpha16 (alpha-16Q212L). Blockade of hypoxia-induced alpha-SMA expression with pertussis toxin, a Galphai antagonist, confirmed a role for Galphai in the hypoxia-induced transdifferentiation process. c-Jun NH2-terminal kinase (JNK) inhibitor II and SB202190, but not U0126, also attenuated alpha-SMA expression in hypoxic fibroblasts, suggesting the importance of JNK in the differentiation process. Hypoxia-induced increase in bromodeoxyuridine incorporation, which occurred concomitantly with hypoxia-induced differentiation, was blocked by U0126, suggesting that DNA synthesis and alpha-SMA expression take place through simultaneously activated parallel signaling pathways. Neutralizing antibody against transforming growth factor-beta1 blocked only 30% of the hypoxia-induced alpha-SMA promoter activity. Taken together, our results suggest that hypoxia induces differentiation of vascular fibroblasts into myofibroblasts by upregulating the expression of alpha-SMA, and this increase in alpha-SMA level occurs through Galphai- and JNK-dependent signaling pathways.
Collapse
MESH Headings
- Actins/genetics
- Actins/metabolism
- Animals
- Animals, Newborn
- Antibodies/pharmacology
- Bromodeoxyuridine/metabolism
- Cattle
- Cell Differentiation
- Cells, Cultured
- Fibroblasts/pathology
- GTP-Binding Protein alpha Subunit, Gi2
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- Gene Expression Regulation/drug effects
- Hypoxia/pathology
- JNK Mitogen-Activated Protein Kinases
- Mitogen-Activated Protein Kinases/metabolism
- Muscle, Smooth/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/pathology
- Promoter Regions, Genetic
- Proto-Oncogene Proteins/metabolism
- Pulmonary Artery/pathology
- Time Factors
- Transforming Growth Factor beta/immunology
- Transforming Growth Factor beta1
- Up-Regulation
Collapse
Affiliation(s)
- Megan Short
- Department of Pediatrics, Developmental Lung Biology Research Laboratories, University of Colorado Health Sciences Center, 4200 E. 9th Ave., Denver, CO 80262, USA
| | | | | | | | | |
Collapse
|
49
|
Blouw B, Song H, Tihan T, Bosze J, Ferrara N, Gerber HP, Johnson RS, Bergers G. The hypoxic response of tumors is dependent on their microenvironment. Cancer Cell 2003; 4:133-46. [PMID: 12957288 DOI: 10.1016/s1535-6108(03)00194-6] [Citation(s) in RCA: 284] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
To reveal the functional significance of hypoxia and angiogenesis in astrocytoma progression, we created genetically engineered transformed astrocytes from murine primary astrocytes and deleted the hypoxia-responsive transcription factor HIF-1alpha or its target gene, the angiogenic factor VEGF. Growth of HIF-1alpha- and VEGF-deficient transformed astrocytes in the vessel-poor subcutaneous environment results in severe necrosis, reduced growth, and vessel density, whereas when the same cells are placed in the vascular-rich brain parenchyma, the growth of HIF-1alpha knockout, but not VEGF knockout tumors, is reversed: tumors deficient in HIF-1alpha grow faster, and penetrate the brain more rapidly and extensively. These results demonstrate that HIF-1alpha has differential roles in tumor progression, which are greatly dependent on the extant microenvironment of the tumor.
Collapse
Affiliation(s)
- Barbara Blouw
- Molecular Biology Section, Division of Biological Sciences, University of California at San Diego, Pacific Hall Room 1212, MC-0366, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Promising new antiangiogenic strategies are emerging for the treatment of cancer. Numerous candidate drugs that target vascular endothelial growth factor, vascular endothelial growth factor receptors, integrins, matrix metalloproteinases and other blood vessel targets are being developed and tested in clinical trials. This review highlights the numerous drugs in clinical trials and expands on potential new approaches to inhibiting angiogenesis. These approaches include gene therapy, vaccine strategies and antiangiogenic radioligands. New insight has been gained from completed Phase III trials with antiangiogenic drugs and some of the major obstacles include design of trials, dosing, toxicities and resistance. This review will discuss these barriers and methods by which they can be overcome.
Collapse
|