1
|
Li Z, Song G, Zhu J, Mu J, Sun Y, Hong X, Choi T, Cui X, Chen HF. Excited-Ground-State Transition of the RNA Strand Slippage Mechanism Captured by the Base-Specific Force Field. J Chem Theory Comput 2024; 20:6082-6097. [PMID: 38980289 DOI: 10.1021/acs.jctc.4c00497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Excited-ground-state transition and strand slippage of RNA play key roles in transcription and translation of central dogma. Due to limitation of current experimental techniques, the dynamic structure ensembles of RNA remain inadequately understood. Molecular dynamics simulations offer a promising complementary approach, whose accuracy depends on the force field. Here, we develop the new version of RNA base-specific force field (BSFF2) to address underestimation of base pairing stability and artificial backbone conformations. Extensive evaluations on typical RNA systems have comprehensively confirmed the accuracy of BSFF2. Furthermore, BSFF2 demonstrates exceptional efficiency in de novo folding of tetraloops and reproducing base pair reshuffling transition between RNA excited and ground states. Then, we explored the RNA strand slippage mechanism with BSFF2. We conducted a comprehensive three-dimensional structural investigation into the strand slippage of the most complex r(G4C2)9 repeat element and presented the molecular details in the dynamic transition along with the underlying mechanism. Our results of capturing the strand slippage, excited-ground transition, de novo folding, and simulations for various typical RNA motifs indicate that BSFF2 should be one of valuable tools for dynamic conformation research and structure prediction of RNA, and a future contribution to RNA-targeted drug design as well as RNA therapy development.
Collapse
Affiliation(s)
- Zhengxin Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic Developmental Sciences, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ge Song
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic Developmental Sciences, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junjie Zhu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic Developmental Sciences, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junxi Mu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic Developmental Sciences, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yutong Sun
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic Developmental Sciences, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaokun Hong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic Developmental Sciences, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Taeyoung Choi
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic Developmental Sciences, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaochen Cui
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic Developmental Sciences, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic Developmental Sciences, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Peralta-Moreno MN, Mena Y, Ortega-Alarcon D, Jimenez-Alesanco A, Vega S, Abian O, Velazquez-Campoy A, Thomson TM, Pinto M, Granadino-Roldán JM, Santos Tomas M, Perez JJ, Rubio-Martinez J. Shedding Light on Dark Chemical Matter: The Discovery of a SARS-CoV-2 M pro Main Protease Inhibitor through Intensive Virtual Screening and In Vitro Evaluation. Int J Mol Sci 2024; 25:6119. [PMID: 38892306 PMCID: PMC11172690 DOI: 10.3390/ijms25116119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The development of specific antiviral therapies targeting SARS-CoV-2 remains fundamental because of the continued high incidence of COVID-19 and limited accessibility to antivirals in some countries. In this context, dark chemical matter (DCM), a set of drug-like compounds with outstanding selectivity profiles that have never shown bioactivity despite being extensively assayed, appears to be an excellent starting point for drug development. Accordingly, in this study, we performed a high-throughput screening to identify inhibitors of the SARS-CoV-2 main protease (Mpro) using DCM compounds as ligands. Multiple receptors and two different docking scoring functions were employed to identify the best molecular docking poses. The selected structures were subjected to extensive conventional and Gaussian accelerated molecular dynamics. From the results, four compounds with the best molecular behavior and binding energy were selected for experimental testing, one of which presented inhibitory activity with a Ki value of 48 ± 5 μM. Through virtual screening, we identified a significant starting point for drug development, shedding new light on DCM compounds.
Collapse
Affiliation(s)
- Maria Nuria Peralta-Moreno
- Department of Materials Science and Physical Chemistry, Institut de Recerca en Quimica Teòrica i Computacional (IQTCUB), University of Barcelona (UB), 08028 Barcelona, Spain; (M.N.P.-M.); (Y.M.)
| | - Yago Mena
- Department of Materials Science and Physical Chemistry, Institut de Recerca en Quimica Teòrica i Computacional (IQTCUB), University of Barcelona (UB), 08028 Barcelona, Spain; (M.N.P.-M.); (Y.M.)
| | - David Ortega-Alarcon
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain; (D.O.-A.); (A.J.-A.); (S.V.); (O.A.); (A.V.-C.)
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Ana Jimenez-Alesanco
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain; (D.O.-A.); (A.J.-A.); (S.V.); (O.A.); (A.V.-C.)
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Sonia Vega
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain; (D.O.-A.); (A.J.-A.); (S.V.); (O.A.); (A.V.-C.)
| | - Olga Abian
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain; (D.O.-A.); (A.J.-A.); (S.V.); (O.A.); (A.V.-C.)
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón (IIS Aragon), 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas Digestivas (CIBERehd), 28029 Madrid, Spain;
| | - Adrian Velazquez-Campoy
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain; (D.O.-A.); (A.J.-A.); (S.V.); (O.A.); (A.V.-C.)
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón (IIS Aragon), 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas Digestivas (CIBERehd), 28029 Madrid, Spain;
| | - Timothy M. Thomson
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas Digestivas (CIBERehd), 28029 Madrid, Spain;
- Institute of Molecular Biology of Barcelona (IBMB-CSIC), 08028 Barcelona, Spain
- Instituto de investigaciones de la Altura, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, Lima 15102, Peru
| | - Marta Pinto
- AbbVie Deutschland GmbH & Co. KG, Computational Drug Discovery, Knollstrasse, 67061 Ludwigshafen, Germany;
| | - José M. Granadino-Roldán
- Departamento de Química Física y Analítica, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus “Las Lagunillas” s/n, 23071 Jaén, Spain;
| | - Maria Santos Tomas
- Department of Architecture Technology, Universitat Politecnica de Catalunya (UPC), Av. Diagonal 649, 08028 Barcelona, Spain;
| | - Juan J. Perez
- Department of Chemical Engineering, Universitat Politecnica de Catalunya (UPC), Barcelona Tech. Av. Diagonal, 647, 08028 Barcelona, Spain;
| | - Jaime Rubio-Martinez
- Department of Materials Science and Physical Chemistry, Institut de Recerca en Quimica Teòrica i Computacional (IQTCUB), University of Barcelona (UB), 08028 Barcelona, Spain; (M.N.P.-M.); (Y.M.)
| |
Collapse
|
3
|
Avilés-Alía AI, Zulaica J, Perez JJ, Rubio-Martínez J, Geller R, Granadino-Roldán JM. The Discovery of inhibitors of the SARS-CoV-2 S protein through computational drug repurposing. Comput Biol Med 2024; 171:108163. [PMID: 38417382 DOI: 10.1016/j.compbiomed.2024.108163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/08/2024] [Accepted: 02/13/2024] [Indexed: 03/01/2024]
Abstract
SARS-CoV-2 must bind its principal receptor, ACE2, on the target cell to initiate infection. This interaction is largely driven by the receptor binding domain (RBD) of the viral Spike (S) protein. Accordingly, antiviral compounds that can block RBD/ACE2 interactions can constitute promising antiviral agents. To identify such molecules, we performed a virtual screening of the Selleck FDA approved drugs and the Selleck database of Natural Products using a multistep computational procedure. An initial set of candidates was identified from an ensemble docking process using representative structures determined from the analysis of four 3 μ s molecular dynamics trajectories of the RBD/ACE2 complex. Two procedures were used to construct an initial set of candidates including a standard and a pharmacophore guided docking procedure. The initial set was subsequently subjected to a multistep sieving process to reduce the number of candidates to be tested experimentally, using increasingly demanding computational procedures, including the calculation of the binding free energy computed using the MMPBSA and MMGBSA methods. After the sieving process, a final list of 10 candidates was proposed, compounds which were subsequently purchased and tested ex-vivo. The results identified estradiol cypionate and telmisartan as inhibitors of SARS-CoV-2 entry into cells. Our findings demonstrate that the methodology presented here enables the discovery of inhibitors targeting viruses for which high-resolution structures are available.
Collapse
Affiliation(s)
- Ana Isabel Avilés-Alía
- Institute for Integrative Systems Biology (I2SysBio, UV-CSIC), C/ Catedrático José Beltrán, 2, 46980, Paterna, Valencia, Spain
| | - Joao Zulaica
- Institute for Integrative Systems Biology (I2SysBio, UV-CSIC), C/ Catedrático José Beltrán, 2, 46980, Paterna, Valencia, Spain
| | - Juan J Perez
- Department of Chemical Engineering, Universitat Politecnica de Catalunya- Barcelona Tech, 08028, Barcelona, Spain
| | - Jaime Rubio-Martínez
- Department of Materials Science and Physical Chemistry, University of Barcelona and the Institut de Recerca en Quimica Teorica i Computacional (IQTCUB), 08028, Barcelona, Spain
| | - Ron Geller
- Institute for Integrative Systems Biology (I2SysBio, UV-CSIC), C/ Catedrático José Beltrán, 2, 46980, Paterna, Valencia, Spain.
| | - José M Granadino-Roldán
- Departamento de Química Física y Analítica. Universidad de Jaén, Campus "Las Lagunillas" s/n, 23071, Jaén, Spain.
| |
Collapse
|
4
|
Meng T, Wang Z, Zhang H, Zhao Z, Huang W, Xu L, Liu M, Li J, Yan H. In Silico Investigations on the Synergistic Binding Mechanism of Functional Compounds with Beta-Lactoglobulin. Molecules 2024; 29:956. [PMID: 38474468 DOI: 10.3390/molecules29050956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/03/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Piceatannol (PIC) and epigallocatechin gallate (EGCG) are polyphenolic compounds with applications in the treatment of various diseases such as cancer, but their stability is poor. β-lactoglobulin (β-LG) is a natural carrier that provides a protective effect to small molecule compounds and thus improves their stability. To elucidate the mechanism of action of EGCG, PIC, and palmitate (PLM) in binding to β-LG individually and jointly, this study applied molecular docking and molecular dynamics simulations combined with in-depth analyses including noncovalent interaction (NCI) and binding free energy to investigate the binding characteristics between β-LG and compounds of PIC, EGCG, and PLM. Simulations on the binary complexes of β-LG + PIC, β-LG + EGCG, and β-LG + PLM and ternary complexes of (β-LG + PLM) + PIC, (β-LG + PLM) + EGCG, β-LG + PIC) + EGCG, and (β-LG + EGCG) + PIC were performed for comparison and characterizing the interactions between binding compounds. The results demonstrated that the co-bound PIC and EGCG showed non-beneficial effects on each other. However, the centrally located PLM was revealed to be able to adjust the binding conformation of PIC, which led to the increase in binding affinity with β-LG, thus showing a synergistic effect on the co-bound PIC. The current study of β-LG co-encapsulated PLM and PIC provides a theoretical basis and research suggestions for improving the stability of polyphenols.
Collapse
Affiliation(s)
- Tong Meng
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China
| | - Zhiguo Wang
- Institute of Ageing Research, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Hao Zhang
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China
| | - Zhen Zhao
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China
| | - Wanlin Huang
- School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Liucheng Xu
- School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Min Liu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Jun Li
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China
| | - Hui Yan
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
5
|
Vila-Julià G, Rubio-Martinez J, Perez JJ. Assessment of the bound conformation of bombesin to the BB1 and BB2 receptors. Int J Biol Macromol 2024; 255:127843. [PMID: 37956803 DOI: 10.1016/j.ijbiomac.2023.127843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
Bombesin is an endogenous peptide involved in a wide spectrum of physiological activities ranging from satiety, control of circadian rhythm and thermoregulation in the central nervous system, to stimulation of gastrointestinal hormone release, activation of macrophages and effects on development in peripheral tissues. Actions of the peptide are mediated through the two high affinity G-protein coupled receptors BB1R and BB2R. Under pathophysiological conditions, these receptors are overexpressed in many different types of tumors, such as prostate cancer, breast cancer, small and non-small cell lung cancer and pancreatic cancer. This observation has been used for designing cell markers, but it has not been yet exploited for therapeutical purposes. Despite the enormous biological interest of the peptide, little is known about the stereochemical features that contribute to their activity. On the one hand, mutagenesis studies identified a few receptor residues important for high bombesin affinity and on the other, a few studies focused on the relevance of diverse residues of the peptide for receptor activation. Models of the peptide bound to BB1R and BB2R can be helpful to improve our understanding of the stereochemical features granting bombesin activity. Accordingly, the present study describes the computational process followed to construct such models by means of Steered Molecular Dynamics, using models of the peptide and its receptors. Present results provide new insights into the structure-activity relationships of bombesin and its receptors, as well as render an explanation for the differential binding affinity observed towards BB1R and BB2R. Finally, these models can be further exploited to help for designing novel small molecule peptidomimetics with improved pharmacokinetics profile.
Collapse
Affiliation(s)
- Guillem Vila-Julià
- Department of Materials Science and Physical Chemistry, University of Barcelona and the Institut de Recerca en Quimica Teorica i Computacional (IQTCUB), Barcelona, Spain; Department of Chemical Engineering, Universitat Politecnica de Catalunya- Barcelona Tech., Av. Diagonal, 647, 08028 Barcelona, Spain
| | - Jaime Rubio-Martinez
- Department of Materials Science and Physical Chemistry, University of Barcelona and the Institut de Recerca en Quimica Teorica i Computacional (IQTCUB), Barcelona, Spain
| | - Juan J Perez
- Department of Chemical Engineering, Universitat Politecnica de Catalunya- Barcelona Tech., Av. Diagonal, 647, 08028 Barcelona, Spain.
| |
Collapse
|
6
|
Zhang X, Xin J, Wang Z, Wu W, Liu Y, Min Z, Xin Y, Liu B, He J, Zhang X, Xu X. Structural basis of a bi-functional malonyl-CoA reductase (MCR) from the photosynthetic green non-sulfur bacterium Roseiflexus castenholzii. mBio 2023; 14:e0323322. [PMID: 37278533 PMCID: PMC10470521 DOI: 10.1128/mbio.03233-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/10/2023] [Indexed: 06/07/2023] Open
Abstract
Malonyl-CoA reductase (MCR) is a NADPH-dependent bi-functional enzyme that performs alcohol dehydrogenase and aldehyde dehydrogenase (CoA-acylating) activities in the N- and C-terminal fragments, respectively. It catalyzes the two-step reduction of malonyl-CoA to 3-hydroxypropionate (3-HP), a key reaction in the autotrophic CO2 fixation cycles of Chloroflexaceae green non-sulfur bacteria and the archaea Crenarchaeota. However, the structural basis underlying substrate selection, coordination, and the subsequent catalytic reactions of full-length MCR is largely unknown. For the first time, we here determined the structure of full-length MCR from the photosynthetic green non-sulfur bacterium Roseiflexus castenholzii (RfxMCR) at 3.35 Å resolution. Furthermore, we determined the crystal structures of the N- and C-terminal fragments bound with reaction intermediates NADP+ and malonate semialdehyde (MSA) at 2.0 Å and 2.3 Å, respectively, and elucidated the catalytic mechanisms using a combination of molecular dynamics simulations and enzymatic analyses. Full-length RfxMCR was a homodimer of two cross-interlocked subunits, each containing four tandemly arranged short-chain dehydrogenase/reductase (SDR) domains. Only the catalytic domains SDR1 and SDR3 incorporated additional secondary structures that changed with NADP+-MSA binding. The substrate, malonyl-CoA, was immobilized in the substrate-binding pocket of SDR3 through coordination with Arg1164 and Arg799 of SDR4 and the extra domain, respectively. Malonyl-CoA was successively reduced through protonation by the Tyr743-Arg746 pair in SDR3 and the catalytic triad (Thr165-Tyr178-Lys182) in SDR1 after nucleophilic attack from NADPH hydrides. IMPORTANCE The bi-functional MCR catalyzes NADPH-dependent reduction of malonyl-CoA to 3-HP, an important metabolic intermediate and platform chemical, from biomass. The individual MCR-N and MCR-C fragments, which contain the alcohol dehydrogenase and aldehyde dehydrogenase (CoA-acylating) activities, respectively, have previously been structurally investigated and reconstructed into a malonyl-CoA pathway for the biosynthetic production of 3-HP. However, no structural information for full-length MCR has been available to illustrate the catalytic mechanism of this enzyme, which greatly limits our capacity to increase the 3-HP yield of recombinant strains. Here, we report the cryo-electron microscopy structure of full-length MCR for the first time and elucidate the mechanisms underlying substrate selection, coordination, and catalysis in the bi-functional MCR. These findings provide a structural and mechanistic basis for enzyme engineering and biosynthetic applications of the 3-HP carbon fixation pathways.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and the Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
- Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Jiyu Xin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and the Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Zhiguo Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and the Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Wenping Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and the Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Yutong Liu
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zhenzhen Min
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and the Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Yueyong Xin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and the Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Bing Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and the Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Jun He
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xingwei Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and the Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Xiaoling Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and the Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
- Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
7
|
Jain P, Satija J, Sudandiradoss C. Discovery of andrographolide hit analog as a potent cyclooxygenase-2 inhibitor through consensus MD-simulation, electrostatic potential energy simulation and ligand efficiency metrics. Sci Rep 2023; 13:8147. [PMID: 37208387 PMCID: PMC10199084 DOI: 10.1038/s41598-023-35192-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 05/14/2023] [Indexed: 05/21/2023] Open
Abstract
Cyclooxygenase-2 (COX-2) is the key enzyme responsible for the conversion of arachidonic acid to prostaglandins that display pro-inflammatory properties and thus, it is a potential target protein to develop anti-inflammatory drugs. In this study, chemical and bio-informatics approaches have been employed to find a novel potent andrographolide (AGP) analog as a COX-2 inhibitor having better pharmacological properties than aspirin and rofecoxib (controls). The full amino acid sequenced human Alpha fold (AF) COX-2 protein (604AA) was selected and validated for its accuracy against the reported COX-2 protein structures (PDB ID: 5F19, 5KIR, 5F1A, 5IKQ and 1V0X) followed by multiple sequence alignment analysis to establish the sequence conservation. The systematic virtual screening of 237 AGP analogs against AF-COX-2 protein yielded 22 lead compounds based on the binding energy score (< - 8.0 kcal/mol). These were further screened out to 7 analogs by molecular docking analysis and investigated further for ADMET prediction, ligand efficiency metrics calculations, quantum mechanical analysis, MD simulation, electrostatic potential energy (EPE) docking simulation, and MM/GBSA. In-depth analysis revealed that AGP analog A3 (3-[2-[(1R,4aR,5R,6R,8aR)-6-hydroxy-5,6,8a-trimethyl-2-methylidene-3,4,4a,5,7,8-hexahydro-1H-naphthalen-1-yl]ethylidene]-4-hydroxyoxolan-2-one) forms the most stable complex with the AF-COX-2 showing the least RMSD value (0.37 ± 0.03 nm), a good number of hydrogen bonds (protein-ligand H-bond = 11, and protein H-bond = 525), minimum EPE score (- 53.81 kcal/mol), and lowest MM-GBSA before and after simulation (- 55.37 and - 56.25 kcal/mol, respectively) value compared to other analogs and controls. Thus, we suggest that the identified A3 AGP analog could be developed as a promising plant-based anti-inflammatory drug by inhibiting COX-2.
Collapse
Affiliation(s)
- Priyanka Jain
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Jitendra Satija
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - C Sudandiradoss
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
8
|
Peralta-Moreno MN, Anton-Muñoz V, Ortega-Alarcon D, Jimenez-Alesanco A, Vega S, Abian O, Velazquez-Campoy A, Thomson TM, Granadino-Roldán JM, Machicado C, Rubio-Martinez J. Autochthonous Peruvian Natural Plants as Potential SARS-CoV-2 M pro Main Protease Inhibitors. Pharmaceuticals (Basel) 2023; 16:ph16040585. [PMID: 37111342 PMCID: PMC10146424 DOI: 10.3390/ph16040585] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Over 750 million cases of COVID-19, caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), have been reported since the onset of the global outbreak. The need for effective treatments has spurred intensive research for therapeutic agents based on pharmaceutical repositioning or natural products. In light of prior studies asserting the bioactivity of natural compounds of the autochthonous Peruvian flora, the present study focuses on the identification SARS-CoV-2 Mpro main protease dimer inhibitors. To this end, a target-based virtual screening was performed over a representative set of Peruvian flora-derived natural compounds. The best poses obtained from the ensemble molecular docking process were selected. These structures were subjected to extensive molecular dynamics steps for the computation of binding free energies along the trajectory and evaluation of the stability of the complexes. The compounds exhibiting the best free energy behaviors were selected for in vitro testing, confirming the inhibitory activity of Hyperoside against Mpro, with a Ki value lower than 20 µM, presumably through allosteric modulation.
Collapse
Affiliation(s)
- Maria Nuria Peralta-Moreno
- Department of Materials Science and Physical Chemistry, University of Barcelona, and the Institut de Recerca en Quimica Teorica i Computacional (IQTCUB), 08028 Barcelona, Spain
| | - Vanessa Anton-Muñoz
- Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Jr. Puno 1002, Lima 15001, Peru
| | - David Ortega-Alarcon
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Ana Jimenez-Alesanco
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Sonia Vega
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Olga Abian
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón (IIS Aragon), 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Adrian Velazquez-Campoy
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón (IIS Aragon), 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Timothy M Thomson
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas Digestivas (CIBERehd), 28029 Madrid, Spain
- Institute of Molecular Biology of Barcelona (IBMB-CSIC), 08028 Barcelona, Spain
- Laboratorio de Investigación Traslacional y Biología Computacional, Facultad de Ciencias y Filosofía-LID, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, Lima 15102, Peru
| | - José Manuel Granadino-Roldán
- Departamento de Química Física y Analítica, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus "Las Lagunillas" s/n, 23071 Jaén, Spain
| | - Claudia Machicado
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain
- Laboratorio de Investigación Traslacional y Biología Computacional, Facultad de Ciencias y Filosofía-LID, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, Lima 15102, Peru
| | - Jaime Rubio-Martinez
- Department of Materials Science and Physical Chemistry, University of Barcelona, and the Institut de Recerca en Quimica Teorica i Computacional (IQTCUB), 08028 Barcelona, Spain
| |
Collapse
|
9
|
Song G, Zhong B, Zhang B, Rehman AU, Chen HF. Phosphorylation Modification Force Field FB18CMAP Improving Conformation Sampling of Phosphoproteins. J Chem Inf Model 2023; 63:1602-1614. [PMID: 36800279 DOI: 10.1021/acs.jcim.3c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Phosphorylation of proteins plays an important regulatory role at almost all levels of cellular organization. Molecular dynamics (MD) simulation is a promising tool to reveal the mechanism of how phosphorylation regulates many key biological processes at the atomistic level. MD simulation accuracy depends on force field precision, while the current force fields for phospho-amino acids have resulted in notable inconsistency with experimental data. Here, a new force field parameter (named FB18CMAP) is generated by fitting against quantum mechanics (QM) energy in aqueous solution with φ/ψ dihedral potential-energy surfaces optimized using CMAP parameters. MD simulations of phosphorylated dipeptides, intrinsically disordered proteins (IDPs), and ordered (folded) proteins show that FB18CMAP can mimic NMR observables and structural characteristics of phosphorylated dipeptides and proteins more accurately than the FB18 force field. These findings suggest that FB18CMAP performs well in both the simulation of ordered and disordered states of phosphorylated proteins.
Collapse
Affiliation(s)
- Ge Song
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bozitao Zhong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bo Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ashfaq Ur Rehman
- Departments of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Shanghai Center for Bioinformation Technology, Shanghai 200240, China
| |
Collapse
|
10
|
A Combined in Silico and Structural Study Opens New Perspectives on Aliphatic Sulfonamides, a Still Poorly Investigated Class of CA Inhibitors. BIOLOGY 2023; 12:biology12020281. [PMID: 36829558 PMCID: PMC9953064 DOI: 10.3390/biology12020281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Aliphatic sulfonamides are an interesting class of carbonic anhydrase inhibitors (CAIs) proven to be effective for several carbonic anhydrase (CA) isoforms involved in pathologic states. Here we report the crystallographic structures of hCA II in complex with two aliphatic sulfonamides incorporating coumarin rings, which showed a good inhibition and selectivity for this isoform. Although these two molecules have a very similar chemical structure, differing only in the substitution of the two aliphatic hydrogen atoms with two fluorine atoms, they adopt a significantly different binding mode within the enzyme active site. Theoretical binding free energy calculations, performed to rationalize these data, showed that a delicate balance of electrostatic and steric effects modulate the protein-ligand interactions. Data presented here can be fruitfully used for the rational design of novel and effective isozyme-specific inhibitor molecules.
Collapse
|
11
|
Chen Y, Gan Y, Yu J, Ye X, Yu W. Key ingredients in Verbena officinalis and determination of their anti-atherosclerotic effect using a computer-aided drug design approach. FRONTIERS IN PLANT SCIENCE 2023; 14:1154266. [PMID: 37077636 PMCID: PMC10106644 DOI: 10.3389/fpls.2023.1154266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/16/2023] [Indexed: 05/03/2023]
Abstract
Lipid metabolism disorders may considerably contribute to the formation and development of atherosclerosis (AS). Traditional Chinese medicine has received considerable attention in recent years owing to its ability to treat lipid metabolism disorders using multiple components and targets. Verbena officinalis (VO), a Chinese herbal medicine, exhibits anti-inflammatory, analgesic, immunomodulatory, and neuroprotective effects. Evidence suggests that VO regulates lipid metabolism; however, its role in AS remains unclear. In the present study, an integrated network pharmacology approach, molecular docking, and molecular dynamics simulation (MDS) were applied to examine the mechanism of VO against AS. Analysis revealed 209 potential targets for the 11 main ingredients in VO. Further, 2698 mechanistic targets for AS were identified, including 147 intersection targets between VO and AS. Quercetin, luteolin, and kaempferol were considered key ingredients for the treatment of AS based on a potential ingredient target-AS target network. GO analysis revealed that biological processes were primarily associated with responses to xenobiotic stimuli, cellular responses to lipids, and responses to hormones. Cell components were predominantly focused on the membrane microdomain, membrane raft, and caveola nucleus. Molecular functions were mainly focused on DNA-binding transcription factor binding, RNA polymerase II-specific DNA-binding transcription factor binding, and transcription factor binding. KEGG pathway enrichment analysis identified pathways in cancer, fluid shear stress, and atherosclerosis, with lipid and atherosclerosis being the most significantly enriched pathways. Molecular docking revealed that three key ingredients in VO (i.e., quercetin, luteolin, and kaempferol) strongly interacted with three potential targets (i.e., AKT1, IL-6, and TNF-α). Further, MDS revealed that quercetin had a stronger binding affinity for AKT1. These findings suggest that VO has beneficial effects on AS via these potential targets that are closely related to the lipid and atherosclerosis pathways. Our study utilized a new computer-aided drug design to identify key ingredients, potential targets, various biological processes, and multiple pathways associated with the clinical roles of VO in AS, which provides a comprehensive and systemic pharmacological explanation for the anti-atherosclerotic activity of VO.
Collapse
Affiliation(s)
- Yuting Chen
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Yuanyuan Gan
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Jingxuan Yu
- Clinical Medical College, Changsha Medical University, Changsha, Hunan, China
| | - Xiao Ye
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Wei Yu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Xianning, Hubei, China
- *Correspondence: Wei Yu,
| |
Collapse
|
12
|
Origin of the Unexpected Enantioselectivity in the Enzymatic Reductions of 5-Membered-Ring Heterocyclic Ketones Catalyzed by Candida parapsilosis Carbonyl Reductases. Catalysts 2022. [DOI: 10.3390/catal12101086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Candida parapsilosis carbonyl reductases (CpRCR) have been widely used for the reductive conversion of ketone precursors and chiral alcohol products in pharmaceutical industries. The enzymatic enantioselectivity is believed to be related to the shape complementation between the cavities in the enzymes and the substitutions of the ketone substrates. In this work, we reported an unexpected enantioselectivity in the enzyme reductions of dihydrofuran-3(2H)-one (DHF) to (S)-tetrahydrofuran-3-ol (DHF-ol, enantiomeric excess: 96.4%), while dihydrothiophen-3(2H)-one substrate (DHT) was unproductive under the same experimental conditions. To rationalize the exclusive S-configuration and the specific reactivity of DHF, we carried out molecular dynamics simulations for the reacting complexations of DHF with CpRCR, and DHT with CpRCR. Our calculations indicate that DHF preferentially binds to the small cavity near L119, F285, and W286, while the large cavity near the α1 helix was mainly occupied by solvent water molecules. Moreover, the pre-reaction state analysis suggests that the pro-S conformations were more abundant than the pro-R, in particular for DHF. This suggests that the non-polar interaction of substrate C4-C5 methylene contacting the hydrophobic side-chains of L119-F285-W286, and the polar interaction of funanyl oxygen exposing the solvent environment play important roles in the enantioselectivity and reactivity. The phylogenetic tree of CpRCR homologues implies that a variety of amino acid combinations at positions 285 and 286 were available and thereby potentially useful for redesigning enantioselective reductions of 5-membered-ring heterocyclic ketones.
Collapse
|
13
|
Fernández-Sainz J, Pacheco-Liñán PJ, Granadino-Roldán JM, Bravo I, Rubio-Martínez J, Albaladejo J, Garzón-Ruiz A. Shedding light on the binding mechanism of kinase inhibitors BI-2536, Volasetib and Ro-3280 with their pharmacological target PLK1. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 232:112477. [PMID: 35644070 DOI: 10.1016/j.jphotobiol.2022.112477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 03/01/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
In the present work, the interactions of the novel kinase inhibitors BI-2536, Volasetib (BI-6727) and Ro-3280 with the pharmacological target PLK1 have been studied by fluorescence spectroscopy and molecular dynamics calculations. High Stern-Volmer constants were found in fluorescence experiments suggesting the formation of stable protein-ligand complexes. In addition, it was observed that the binding constant between BI-2536 and PLK1 increases about 100-fold in presence of the phosphopeptide Cdc25C-p that docks to the polo box domain of the protein and releases the kinase domain. All the determined binding constants are higher for the kinase inhibitors than for their competitor for the active center (ATP) being BI-2536 and Volasertib the inhibitors that showed more affinity for PLK1. Calculated binding free energies confirmed the higher affinity of PLK1 for BI-2536 and Volasertib than for ATP. The higher affinity of the inhibitors to PLK1 compared to ATP was mainly attributed to stronger van der Waals interactions. Results may help with the challenge of designing and developing new kinase inhibitors more effective in clinical cancer therapy.
Collapse
Affiliation(s)
- Jesús Fernández-Sainz
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Cronista Ballesteros Gómez, 1, 02071 Albacete, Spain
| | - Pedro J Pacheco-Liñán
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Cronista Ballesteros Gómez, 1, 02071 Albacete, Spain
| | - José M Granadino-Roldán
- Departamento de Química Física y Analítica, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus "Las Lagunillas" s/n, 23071 Jaén, Spain
| | - Iván Bravo
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Cronista Ballesteros Gómez, 1, 02071 Albacete, Spain
| | - Jaime Rubio-Martínez
- Departament de Ciència dels Materials i Química Física, Universitat de Barcelona (UB), Institut de Recerca en Quimica Teorica i Computacional (IQTCUB), Martí i Franqués 1, 08028 Barcelona, Spain
| | - José Albaladejo
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad de Castilla-La Mancha, Avenida Camilo José Cela, 10, 13071 Ciudad Real, Spain
| | - Andrés Garzón-Ruiz
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Cronista Ballesteros Gómez, 1, 02071 Albacete, Spain.
| |
Collapse
|
14
|
Chen J. A Specific pSer/Thr-Pro Motif Generates Interdomain Communication Bifurcations of Two Modes of Pin1 in Solution Nuclear Magnetic Resonance. Biochemistry 2022; 61:1167-1180. [PMID: 35648841 DOI: 10.1021/acs.biochem.2c00255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Peptides mediate the interdomain communication of Pin1 (peptidyl-prolyl cis-trans isomerase) and can regulate its conformation and biochemical functions, providing an idea for drug design using Pin1. Two template peptide sequences have been widely used in the extended or compact state of Pin1 (Cdc25C, E-Q-P-L-pT-P-V-T-D-L; Pintide, W-F-Y-pS-P-R). The way in which specific pSer/Thr-Pro peptides regulate interdomain communication to achieve the opposite state is not clear. In this study, we subdivided the sequence composition of eight types of modified peptides and investigated the interaction with Pin1 by solution nuclear magnetic resonance and molecular dynamics. Demonstrating sequence dependence on the pSer-Pro or pThr-Pro motif and different residues in anchoring the WW domain, the Pin peptide (Pintide, PintideT, Pin25C, and Pin25CT) transmits this concentration accumulation to the PPIase domain, thus exhibiting two anchoring tendencies. However, the Cdc peptide (Cdc25C, Cdc25CS, Cdctide, and CdctideS) has a low binding energy that makes it difficult for the conformation to reach a steady state. In addition, Pin1 is influenced by both compact and extended states, regulated precisely by the sequence as well as by threonine or serine. These results provide new insight into the interdomain communication of Pin1 via pSer/Thr-Pro peptide binding.
Collapse
Affiliation(s)
- Jingqiu Chen
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima 739-8526, Japan
| |
Collapse
|
15
|
Xu W, Chen Y, Li D, Wang Z, Xu J, Wu Q. Rational design of fatty acid photodecarboxylase enables the efficient decarboxylation of medium- and short-chain fatty acids for the production of gasoline bio-alkanes. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112261] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Suárez D, Díaz N. Amphiphilic cyclodextrins: Dimerization and diazepam binding explored by molecular dynamics simulations. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Rubio-Martínez J, Jiménez-Alesanco A, Ceballos-Laita L, Ortega-Alarcón D, Vega S, Calvo C, Benítez C, Abian O, Velázquez-Campoy A, Thomson TM, Granadino-Roldán JM, Gómez-Gutiérrez P, Pérez JJ. Discovery of Diverse Natural Products as Inhibitors of SARS-CoV-2 M pro Protease through Virtual Screening. J Chem Inf Model 2021; 61:6094-6106. [PMID: 34806382 PMCID: PMC9931176 DOI: 10.1021/acs.jcim.1c00951] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
SARS-CoV-2 is a type of coronavirus responsible for the international outbreak of respiratory illness termed COVID-19 that forced the World Health Organization to declare a pandemic infectious disease situation of international concern at the beginning of 2020. The need for a swift response against COVID-19 prompted to consider different sources to identify bioactive compounds that can be used as therapeutic agents, including available drugs and natural products. Accordingly, this work reports the results of a virtual screening process aimed at identifying antiviral natural product inhibitors of the SARS-CoV-2 Mpro viral protease. For this purpose, ca. 2000 compounds of the Selleck database of Natural Compounds were the subject of an ensemble docking process targeting the Mpro protease. Molecules that showed binding to most of the protein conformations were retained for a further step that involved the computation of the binding free energy of the ligand-Mpro complex along a molecular dynamics trajectory. The compounds that showed a smooth binding free energy behavior were selected for in vitro testing. From the resulting set of compounds, five compounds exhibited an antiviral profile, and they are disclosed in the present work.
Collapse
Affiliation(s)
- Jaime Rubio-Martínez
- Department
of Materials Science and Physical Chemistry, University of Barcelona and the Institut de Recerca en Quimica Teorica
i Computacional (IQTCUB), 08028 Barcelona, Spain,. Phone: (+34) 93
4039263. Fax: (+34) 93 4021231
| | - Ana Jiménez-Alesanco
- Institute
for Biocomputation and Physics of Complex Systems (BIFI), Joint Units
IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad
de Zaragoza, 50018 Zaragoza, Spain,Departamento
de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Laura Ceballos-Laita
- Institute
for Biocomputation and Physics of Complex Systems (BIFI), Joint Units
IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad
de Zaragoza, 50018 Zaragoza, Spain,Instituto
de Investigación Sanitaria de Aragón (IIS Aragon), 50009 Zaragoza, Spain
| | - David Ortega-Alarcón
- Institute
for Biocomputation and Physics of Complex Systems (BIFI), Joint Units
IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad
de Zaragoza, 50018 Zaragoza, Spain,Departamento
de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Sonia Vega
- Institute
for Biocomputation and Physics of Complex Systems (BIFI), Joint Units
IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad
de Zaragoza, 50018 Zaragoza, Spain
| | - Cristina Calvo
- Centro
de Investigación Biomédica en Red en el Área
Temática de Enfermedades Hepáticas Digestivas (CIBERehd), 28029 Madrid, Spain,Institute
of Molecular Biology of Barcelona (IBMB-CSIC), 08028 Barcelona, Spain
| | - Cristina Benítez
- Centro
de Investigación Biomédica en Red en el Área
Temática de Enfermedades Hepáticas Digestivas (CIBERehd), 28029 Madrid, Spain,Institute
of Molecular Biology of Barcelona (IBMB-CSIC), 08028 Barcelona, Spain
| | - Olga Abian
- Institute
for Biocomputation and Physics of Complex Systems (BIFI), Joint Units
IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad
de Zaragoza, 50018 Zaragoza, Spain,Departamento
de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50018 Zaragoza, Spain,Instituto
de Investigación Sanitaria de Aragón (IIS Aragon), 50009 Zaragoza, Spain,Centro
de Investigación Biomédica en Red en el Área
Temática de Enfermedades Hepáticas Digestivas (CIBERehd), 28029 Madrid, Spain,Instituto
Aragonés de Ciencias de la Salud (IACS), 50018 Zaragoza, Spain
| | - Adrián Velázquez-Campoy
- Institute
for Biocomputation and Physics of Complex Systems (BIFI), Joint Units
IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad
de Zaragoza, 50018 Zaragoza, Spain,Departamento
de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50018 Zaragoza, Spain,Instituto
de Investigación Sanitaria de Aragón (IIS Aragon), 50009 Zaragoza, Spain,Centro
de Investigación Biomédica en Red en el Área
Temática de Enfermedades Hepáticas Digestivas (CIBERehd), 28029 Madrid, Spain,Fundación
ARAID, Gobierno de Aragón, 50018 Zaragoza, Spain
| | - Timothy M. Thomson
- Centro
de Investigación Biomédica en Red en el Área
Temática de Enfermedades Hepáticas Digestivas (CIBERehd), 28029 Madrid, Spain,Institute
of Molecular Biology of Barcelona (IBMB-CSIC), 08028 Barcelona, Spain,Universidad
Peruana Cayetano Heredia, San Martín
de Porres 15102, Perú
| | - José Manuel Granadino-Roldán
- Departamento
de Química Física y Analítica, Facultad de Ciencias
Experimentales, Universidad de Jaén, Campus “Las Lagunillas”
s/n, 23071, Jaén, Spain
| | - Patricia Gómez-Gutiérrez
- Department
of Chemical Engineering, Universitat Politecnica
de Catalunya- Barcelona Tech, Av. Diagonal, 647, 08028 Barcelona, Spain
| | - Juan J. Pérez
- Department
of Chemical Engineering, Universitat Politecnica
de Catalunya- Barcelona Tech, Av. Diagonal, 647, 08028 Barcelona, Spain
| |
Collapse
|
18
|
Liu X, Xue Q, Zhang H, Fu J, Zhang A. Structural basis for molecular recognition of G protein-coupled estrogen receptor by selected bisphenols. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148558. [PMID: 34328988 DOI: 10.1016/j.scitotenv.2021.148558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Complicated ligand-dependent signaling pathways of bisphenol A (BPA) and its analogues involve not only intranuclear estrogen receptor but also membrane receptor G protein-coupled estrogen receptor (GPER). However, the structural basis for molecular recognition of GPER by the environmental chemicals remains unknown. To reveal the structural dependence of GPER recognition by bisphenols, a systematic molecular dynamics simulation study was performed for selected bisphenols with different electron hybrid orbitals and substituents on their C atoms connecting two phenol rings. BPA was used as a control, bisphenol C(BPC) as an example for a connecting C with sp2 hybrid orbitals to provide more ligand rigidity, bisphenol E(BPE) and bisphenol F(BPF) for decreased steric hindrance and hydrophobicity around the connecting C, and bisphenol B(BPB) and bisphenol AF(BPAF) for increased hydrophobicity and steric hindrance. All the tested bisphenols can bind with GPER at its classic orthosteric site to obtain GPER-ligand complexes, while van der Waals interactions and direct inter-molecular electrostatic energies provide the driving forces for ligand binding. Bulky substituents and structural rigidity of the connecting C dramatically impair hydrogen bonding between GPER and the bisphenols, which results in decreased contribution of both favorable intermolecular hydrogen bonds and unfavorable polar solvation effect to complex stability of BPB and BPC since decreased number of key residues is expected. Increase in substituent lipophilicity enhances the van der Waals interactions and favorable non-polar solvation effect. The six bisphenols of high structural similarity shared two key recognition residues, Leu137TM3 and Trp272TM6, the latter of which was in the highly conserved CWxP motif of TM6 and has been reported as key residue for G protein-coupled receptor activation. Based on the obtained knowledge, GPER affinity and relevant toxicity of BPA alternatives can be easily predicted, and the calculated binding free energies are consistent with the available experimental observations.
Collapse
Affiliation(s)
- Xiuchang Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, PR China
| | - Qiao Xue
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Huazhou Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, PR China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310012, PR China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, PR China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310012, PR China.
| |
Collapse
|
19
|
Effects of Curcumin and Ferulic Acid on the Folding of Amyloid-β Peptide. Molecules 2021; 26:molecules26092815. [PMID: 34068636 PMCID: PMC8126156 DOI: 10.3390/molecules26092815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 11/17/2022] Open
Abstract
The polyphenols curcumin (CU) and ferulic acid (FA) are able to inhibit the aggregation of amyloid-β (Aβ) peptide with different strengths. CU is a strong inhibitor while FA is a weaker one. In the present study, we examine the effects of CU and FA on the folding process of an Aβ monomer by 1 µs molecular dynamics (MD) simulations. We found that both inhibitors increase the helical propensity and decrease the non-helical propensity of Aβ peptide. They prevent the formation of a dense bulk core and shorten the average lifetime of intramolecular hydrogen bonds in Aβ. CU makes more and longer-lived hydrogen bonds, hydrophobic, π–π, and cation–π interactions with Aβ peptide than FA does, which is in a good agreement with the observed stronger inhibitory activity of CU on Aβ aggregation.
Collapse
|
20
|
Golosov AA, Flyer AN, Amin J, Babu C, Gampe C, Li J, Liu E, Nakajima K, Nettleton D, Patel TJ, Reid PC, Yang L, Monovich LG. Design of Thioether Cyclic Peptide Scaffolds with Passive Permeability and Oral Exposure. J Med Chem 2021; 64:2622-2633. [PMID: 33629858 DOI: 10.1021/acs.jmedchem.0c01505] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Advances in the design of permeable peptides and in the synthesis of large arrays of macrocyclic peptides with diverse amino acids have evolved on parallel but independent tracks. Less precedent combines their respective attributes, thereby limiting the potential to identify permeable peptide ligands for key targets. Herein, we present novel 6-, 7-, and 8-mer cyclic peptides (MW 774-1076 g·mol-1) with passive permeability and oral exposure that feature the amino acids and thioether ring-closing common to large array formats, including DNA- and RNA-templated synthesis. Each oral peptide herein, selected from virtual libraries of partially N-methylated peptides using in silico methods, reflects the subset consistent with low energy conformations, low desolvation penalties, and passive permeability. We envision that, by retaining the backbone N-methylation pattern and consequent bias toward permeability, one can generate large peptide arrays with sufficient side chain diversity to identify permeability-biased ligands to a variety of protein targets.
Collapse
Affiliation(s)
- Andrei A Golosov
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Alec N Flyer
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jakal Amin
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Charles Babu
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Christian Gampe
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jingzhou Li
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Eugene Liu
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Katsumasa Nakajima
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - David Nettleton
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Tajesh J Patel
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Patrick C Reid
- PeptiDream, Inc., 3-25-23 Tonomachi, Kawasaki-Ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Lihua Yang
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Lauren G Monovich
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
21
|
Yu H, Li J, Liu G, Zhao G, Wang Y, Hu W, Deng Z, Wu G, Gan J, Zhao YL, He X. DNA backbone interactions impact the sequence specificity of DNA sulfur-binding domains: revelations from structural analyses. Nucleic Acids Res 2020; 48:8755-8766. [PMID: 32621606 PMCID: PMC7470945 DOI: 10.1093/nar/gkaa574] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/04/2022] Open
Abstract
The sulfur atom of phosphorothioated DNA (PT-DNA) is coordinated by a surface cavity in the conserved sulfur-binding domain (SBD) of type IV restriction enzymes. However, some SBDs cannot recognize the sulfur atom in some sequence contexts. To illustrate the structural determinants for sequence specificity, we resolved the structure of SBDSpr, from endonuclease SprMcrA, in complex with DNA of GPSGCC, GPSATC and GPSAAC contexts. Structural and computational analyses explained why it binds the above PT-DNAs with an affinity in a decreasing order. The structural analysis of SBDSpr–GPSGCC and SBDSco–GPSGCC, the latter only recognizes DNA of GPSGCC, revealed that a positively charged loop above the sulfur-coordination cavity electrostatically interacts with the neighboring DNA phosphate linkage. The structural analysis indicated that the DNA–protein hydrogen bonding pattern and weak non-bonded interaction played important roles in sequence specificity of SBD protein. Exchanges of the positively-charged amino acid residues with the negatively-charged residues in the loop would enable SBDSco to extend recognization for more PT-DNA sequences, implying that type IV endonucleases can be engineered to recognize PT-DNA in novel target sequences.
Collapse
Affiliation(s)
- Hao Yu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Jiayi Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Guang Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Gong Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Yuli Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Wenyue Hu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Geng Wu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Jianhua Gan
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200433, People's Republic of China
| | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Xinyi He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| |
Collapse
|
22
|
Vassetti D, Civalleri B, Labat F. Analytical calculation of the solvent-accessible surface area and its nuclear gradients by stereographic projection: A general approach for molecules, polymers, nanotubes, helices, and surfaces. J Comput Chem 2020; 41:1464-1479. [PMID: 32212337 DOI: 10.1002/jcc.26191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 01/19/2023]
Abstract
In this article, we explore an alternative to the analytical Gauss-Bonnet approach for computing the solvent-accessible surface area (SASA) and its nuclear gradients. These two key quantities are required to evaluate the nonelectrostatic contribution to the solvation energy and its nuclear gradients in implicit solvation models. We extend a previously proposed analytical approach for finite systems based on the stereographic projection technique to infinite periodic systems such as polymers, nanotubes, helices, or surfaces and detail its implementation in the Crystal code. We provide the full derivation of the SASA nuclear gradients, and introduce an iterative perturbation scheme of the atomic coordinates to stabilize the gradients calculation for certain difficult symmetric systems. An excellent agreement of computed SASA with reference analytical values is found for finite systems, while the SASA size-extensivity is verified for infinite periodic systems. In addition, correctness of the analytical gradients is confirmed by the excellent agreement obtained with numerical gradients and by the translational invariance achieved, both for finite and infinite periodic systems. Overall therefore, the stereographic projection approach appears as a general, simple, and efficient technique to compute the key quantities required for the calculation of the nonelectrostatic contribution to the solvation energy and its nuclear gradients in implicit solvation models applicable to both finite and infinite periodic systems.
Collapse
Affiliation(s)
- Dario Vassetti
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Chemical Theory and Modelling Group, F-75005 Paris, France
| | - Bartolomeo Civalleri
- Department of Chemistry, NIS and INSTM Reference Centre, University of Turin, Via P. Giuria 7, I-10125 Torino, Italy
| | - Frédéric Labat
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Chemical Theory and Modelling Group, F-75005 Paris, France
| |
Collapse
|
23
|
Vila-Julià G, Granadino-Roldán JM, Perez JJ, Rubio-Martinez J. Molecular Determinants for the Activation/Inhibition of Bak Protein by BH3 Peptides. J Chem Inf Model 2020; 60:1632-1643. [PMID: 31944696 DOI: 10.1021/acs.jcim.9b01047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Apoptosis is a key cell death pathway in mammalian cells. Understanding this process and its regulation has been a subject of study in the last three decades. Members of the Bcl-2 family of proteins are involved in the regulation of apoptosis through mitochondrial poration with the subsequent initiation of apoptosis. Deregulation of proapoptotic proteins contributes to the progression of many tumor processes. Understanding how these pore-forming Bcl-2 proteins Bak and Bax are activated is key to find new anticancer treatments. As no drug capable of activating Bak has been disclosed yet, the study of the structural features of BH3 peptides-known as Bak activators-relevant for binding along with its binding energy decomposition analysis, becomes essential for designing novel small-molecule mimics of BH3. Interestingly, a BH3 Bim analogue-inactivating Bak has recently been discovered, opening a question on the molecular features that determine the functions of BH3 peptides. Therefore, the present work is aimed at understanding the way BH3 peptides activate or inactivate Bak in order to identify differential structural features that can be used in drug design. For this purpose, complexes of Bak with an activator and an inhibitor have been subjected to a molecular dynamics study. Structural differences were assessed by means of the fluctuations of the corresponding principal components. Moreover, the MMPB/GBSA approach was used to compute the binding free energy of the diverse complexes to identify those residues of the BH3 peptide that exhibit the larger contributions to complex formation. The results obtained in this work show differences between activators and inhibitors, both in structural and energetic terms, which can be used in the design of new molecules that can activate or inactivate proapoptotic Bak.
Collapse
Affiliation(s)
- Guillem Vila-Julià
- Department of Materials Science and Physical Chemistry, University of Barcelona and the Institut de Recerca en Quimica Teorica i Computacional (IQTCUB), 08028 Barcelona, Spain.,Department of Chemical Engineering, Universitat Politecnica de Catalunya- Barcelona Tech., Av. Diagonal, 647, 08028 Barcelona, Spain
| | - José M Granadino-Roldán
- Departamento de Química Física y Analítica, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus "Las Lagunillas" s/n, 23071 Jaén, Spain
| | - Juan J Perez
- Department of Chemical Engineering, Universitat Politecnica de Catalunya- Barcelona Tech., Av. Diagonal, 647, 08028 Barcelona, Spain
| | - Jaime Rubio-Martinez
- Department of Materials Science and Physical Chemistry, University of Barcelona and the Institut de Recerca en Quimica Teorica i Computacional (IQTCUB), 08028 Barcelona, Spain
| |
Collapse
|
24
|
Wang Z, Li J, Liu J, Wang L, Lu Y, Liu JP. Molecular insight into the selective binding between human telomere G-quadruplex and a negatively charged stabilizer. Clin Exp Pharmacol Physiol 2020; 47:892-902. [PMID: 31894867 DOI: 10.1111/1440-1681.13249] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 12/30/2019] [Indexed: 12/13/2022]
Abstract
The single-strand human telomere overhang forms intramolecular high-order structures named G-quadruplex (G4) under physiological conditions. Telomere G4 stabilization prevents telomere lengthening by telomerase in cancer cells representing a promising strategy in cancer therapy. Using molecular docking and molecular dynamics (MD) simulations, specific binding of the anionic phthalocyanine 3,4',4'',4'''-tetrasulfonic acid (APC) to the human hybrid (3 + 1) G4s was investigated at the atomic level. We found that APC preferred the end-stacking binding with the telomere hybrid type II (hybrid-II) G4 as compared to the groove binding with the hybrid type I (hybrid-I) G4 remarkable stabilizing effect and more favourable binding free energies. Analysis of non-covalent interaction and decomposition of the binding free energy revealed that van der Waals interaction played a leading role in the binding of APC and telomere hybrid G4s. These findings provide evidence for the first time to shed light on the designs of selective telomere G4 stabilizers.
Collapse
Affiliation(s)
- Zhiguo Wang
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Jianfeng Li
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Jun Liu
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Lihui Wang
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Yanhua Lu
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Jun-Ping Liu
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, China.,Department of Immunology, Central Eastern Clinical School, Monash University, Melbourne, Australia.,Hudson Institute of Medical Research, Clayton, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Australia
| |
Collapse
|
25
|
Tam HK, Malviya VN, Foong WE, Herrmann A, Malloci G, Ruggerone P, Vargiu AV, Pos KM. Binding and Transport of Carboxylated Drugs by the Multidrug Transporter AcrB. J Mol Biol 2019; 432:861-877. [PMID: 31881208 DOI: 10.1016/j.jmb.2019.12.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 12/13/2022]
Abstract
AcrAB(Z)-TolC is the main drug efflux transporter complex in Escherichia coli. The extrusion of various toxic compounds depends on several drug binding sites within the trimeric AcrB transporter. Membrane-localized carboxylated substrates, such as fusidic acid and hydrophobic β-lactams, access the pump via a groove between the transmembrane helices TM1 and TM2. In this article, the transport route from the initial TM1/TM2 groove binding site toward the deep binding pocket located in the periplasmic part has been addressed via molecular modeling studies followed by functional and structural characterization of several AcrB variants. We propose that membrane-embedded drugs bind initially to the TM1/TM2 groove, are oriented by the AcrB PN2 subdomain, and are subsequently transported via a PN2/PC1 interface pathway directly toward the deep binding pocket. Our work emphasizes the exploitation of multiple transport pathways by AcrB tuned to substrate physicochemical properties related to the polyspecificity of the pump.
Collapse
Affiliation(s)
- Heng-Keat Tam
- Institute of Biochemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt Am Main, Germany
| | - Viveka N Malviya
- Institute of Biochemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt Am Main, Germany
| | - Wuen-Ee Foong
- Institute of Biochemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt Am Main, Germany
| | - Andrea Herrmann
- Institute of Biochemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt Am Main, Germany
| | - Giuliano Malloci
- Department of Physics, University of Cagliari, S.P. 8 Km 0.700, 09042 Monserrato (CA), Italy
| | - Paolo Ruggerone
- Department of Physics, University of Cagliari, S.P. 8 Km 0.700, 09042 Monserrato (CA), Italy
| | - Attilio V Vargiu
- Department of Physics, University of Cagliari, S.P. 8 Km 0.700, 09042 Monserrato (CA), Italy.
| | - Klaas M Pos
- Institute of Biochemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt Am Main, Germany.
| |
Collapse
|
26
|
Tian C, Kasavajhala K, Belfon KAA, Raguette L, Huang H, Migues AN, Bickel J, Wang Y, Pincay J, Wu Q, Simmerling C. ff19SB: Amino-Acid-Specific Protein Backbone Parameters Trained against Quantum Mechanics Energy Surfaces in Solution. J Chem Theory Comput 2019; 16:528-552. [PMID: 31714766 DOI: 10.1021/acs.jctc.9b00591] [Citation(s) in RCA: 989] [Impact Index Per Article: 197.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Molecular dynamics (MD) simulations have become increasingly popular in studying the motions and functions of biomolecules. The accuracy of the simulation, however, is highly determined by the molecular mechanics (MM) force field (FF), a set of functions with adjustable parameters to compute the potential energies from atomic positions. However, the overall quality of the FF, such as our previously published ff99SB and ff14SB, can be limited by assumptions that were made years ago. In the updated model presented here (ff19SB), we have significantly improved the backbone profiles for all 20 amino acids. We fit coupled φ/ψ parameters using 2D φ/ψ conformational scans for multiple amino acids, using as reference data the entire 2D quantum mechanics (QM) energy surface. We address the polarization inconsistency during dihedral parameter fitting by using both QM and MM in aqueous solution. Finally, we examine possible dependency of the backbone fitting on side chain rotamer. To extensively validate ff19SB parameters, and to compare to results using other Amber models, we have performed a total of ∼5 ms MD simulations in explicit solvent. Our results show that after amino-acid-specific training against QM data with solvent polarization, ff19SB not only reproduces the differences in amino-acid-specific Protein Data Bank (PDB) Ramachandran maps better but also shows significantly improved capability to differentiate amino-acid-dependent properties such as helical propensities. We also conclude that an inherent underestimation of helicity is present in ff14SB, which is (inexactly) compensated for by an increase in helical content driven by the TIP3P bias toward overly compact structures. In summary, ff19SB, when combined with a more accurate water model such as OPC, should have better predictive power for modeling sequence-specific behavior, protein mutations, and also rational protein design. Of the explicit water models tested here, we recommend use of OPC with ff19SB.
Collapse
Affiliation(s)
- Chuan Tian
- Department of Chemistry , Stony Brook University , Stony Brook , New York 11794 , United States.,Laufer Center for Physical and Quantitative Biology , Stony Brook University , Stony Brook , New York 11794 , United States
| | - Koushik Kasavajhala
- Department of Chemistry , Stony Brook University , Stony Brook , New York 11794 , United States.,Laufer Center for Physical and Quantitative Biology , Stony Brook University , Stony Brook , New York 11794 , United States
| | - Kellon A A Belfon
- Department of Chemistry , Stony Brook University , Stony Brook , New York 11794 , United States.,Laufer Center for Physical and Quantitative Biology , Stony Brook University , Stony Brook , New York 11794 , United States
| | - Lauren Raguette
- Department of Chemistry , Stony Brook University , Stony Brook , New York 11794 , United States.,Laufer Center for Physical and Quantitative Biology , Stony Brook University , Stony Brook , New York 11794 , United States
| | - He Huang
- Department of Chemistry , Stony Brook University , Stony Brook , New York 11794 , United States.,Laufer Center for Physical and Quantitative Biology , Stony Brook University , Stony Brook , New York 11794 , United States
| | - Angela N Migues
- Laufer Center for Physical and Quantitative Biology , Stony Brook University , Stony Brook , New York 11794 , United States
| | - John Bickel
- Department of Chemistry , Stony Brook University , Stony Brook , New York 11794 , United States
| | - Yuzhang Wang
- Department of Chemistry , Stony Brook University , Stony Brook , New York 11794 , United States.,Laufer Center for Physical and Quantitative Biology , Stony Brook University , Stony Brook , New York 11794 , United States
| | - Jorge Pincay
- Department of Chemistry , Stony Brook University , Stony Brook , New York 11794 , United States
| | - Qin Wu
- Center for Functional Nanomaterials , Brookhaven National Laboratory , Upton , New York 11973 , United States
| | - Carlos Simmerling
- Department of Chemistry , Stony Brook University , Stony Brook , New York 11794 , United States.,Laufer Center for Physical and Quantitative Biology , Stony Brook University , Stony Brook , New York 11794 , United States
| |
Collapse
|
27
|
Langella E, Alterio V, D’Ambrosio K, Cadoni R, Winum JY, Supuran CT, Monti SM, De Simone G, Di Fiore A. Exploring benzoxaborole derivatives as carbonic anhydrase inhibitors: a structural and computational analysis reveals their conformational variability as a tool to increase enzyme selectivity. J Enzyme Inhib Med Chem 2019; 34:1498-1505. [PMID: 31423863 PMCID: PMC6713116 DOI: 10.1080/14756366.2019.1653291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 12/22/2022] Open
Abstract
Recent studies identified the benzoxaborole moiety as a new zinc-binding group able to interact with carbonic anhydrase (CA) active site. Here, we report a structural analysis of benzoxaboroles containing urea/thiourea groups, showing that these molecules are very versatile since they can bind the enzyme assuming different binding conformations and coordination geometries of the catalytic zinc ion. In addition, theoretical calculations of binding free energy were performed highlighting the key role of specific residues for protein-inhibitor recognition. Overall, these data are very useful for the development of new inhibitors with higher selectivity and efficacy for various CAs.
Collapse
Affiliation(s)
- Emma Langella
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Vincenzo Alterio
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Katia D’Ambrosio
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Roberta Cadoni
- Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS, ENSCM, Université de Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier, Montpellier, France
- Dipartimento di Chimica e Farmacia, Università Degli Studi di Sassari, Sassari, Italy
| | - Jean-Yves Winum
- Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS, ENSCM, Université de Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier, Montpellier, France
| | - Claudiu T. Supuran
- Neurofarba Department, Section of Pharmaceutical and Nutriceutical Sciences, Università Degli Studi di Firenze, Florence, Italy
| | - Simona Maria Monti
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Giuseppina De Simone
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Anna Di Fiore
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Naples, Italy
| |
Collapse
|
28
|
Zhang C, Min Z, Liu X, Wang C, Wang Z, Shen J, Tang W, Zhang X, Liu D, Xu X. Tolrestat acts atypically as a competitive inhibitor of the thermostable aldo-keto reductase Tm1743 from Thermotoga maritima. FEBS Lett 2019; 594:564-580. [PMID: 31573681 DOI: 10.1002/1873-3468.13630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/17/2019] [Accepted: 09/29/2019] [Indexed: 12/28/2022]
Abstract
Tolrestat and epalrestat have been characterized as noncompetitive inhibitors of aldo-ketone reductase 1B1 (AKR1B1), a leading drug target for the treatment of type 2 diabetes complications. However, clinical applications are limited for most AKR1B1 inhibitors due to adverse effects of cross-inhibition with other AKRs. Here, we report an atypical competitive binding and inhibitory effect of tolrestat on the thermostable AKR Tm1743 from Thermotoga maritima. Analysis of the Tm1743 crystal structure in complex with tolrestat alone and epalrestat-NADP+ shows that tolrestat, but not epalrestat, binding triggers dramatic conformational changes in the anionic site and cofactor binding pocket that prevents accommodation of NADP+ . Enzymatic and molecular dynamics simulation analyses further confirm tolrestat as a competitive inhibitor of Tm1743.
Collapse
Affiliation(s)
- Chenyun Zhang
- School of Medicine, Hangzhou Normal University, China
| | - Zhenzhen Min
- School of Medicine, Hangzhou Normal University, China
| | - Xuemeng Liu
- School of Medicine, Hangzhou Normal University, China
| | - Chao Wang
- School of Medicine, Hangzhou Normal University, China
| | - Zhiguo Wang
- School of Medicine, Hangzhou Normal University, China
| | - Jiejie Shen
- School of Medicine, Hangzhou Normal University, China
| | - Wanrong Tang
- School of Medicine, Hangzhou Normal University, China
| | - Xin Zhang
- School of Medicine, Hangzhou Normal University, China
| | - Dan Liu
- School of Medicine, Hangzhou Normal University, China
| | - Xiaoling Xu
- School of Medicine, Hangzhou Normal University, China.,Institute of Cardiovascular Disease Research, The Affiliated Hospital of Hangzhou Normal University, China
| |
Collapse
|
29
|
Chakravorty A, Gallicchio E, Alexov E. A grid-based algorithm in conjunction with a gaussian-based model of atoms for describing molecular geometry. J Comput Chem 2019; 40:1290-1304. [PMID: 30698861 PMCID: PMC6506848 DOI: 10.1002/jcc.25786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/12/2018] [Accepted: 01/06/2019] [Indexed: 11/06/2022]
Abstract
A novel grid-based method is presented, which in conjunction with a smooth Gaussian-based model of atoms, is used to compute molecular volume (MV) and surface area (MSA). The MV and MSA are essential for computing nonpolar component of free energies. The objective of our grid-based approach is to identify solute atom pairs that share overlapping volumes in space. Once completed, this information is used to construct a rooted tree using depth-first method to yield the final volume and SA by using the formulations of the Gaussian model described by Grant and Pickup (J. Phys Chem, 1995, 99, 3503). The method is designed to function uninterruptedly with the grid-based finite-difference method implemented in Delphi, a popular and open-source package used for solving the Poisson-Boltzmann equation (PBE). We demonstrate the time efficacy of the method while also validating its performance in terms of the effect of grid-resolution, positioning of the solute within the grid-map and accuracy in identification of overlapping atom pairs. We also explore and discuss different aspects of the Gaussian model with key emphasis on its physical meaningfulness. This development and its future release with the Delphi package are intended to provide a physically meaningful, fast, robust and comprehensive tool for MM/PBSA based free energy calculations. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Arghya Chakravorty
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634
| | | | - Emil Alexov
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634
| |
Collapse
|
30
|
Xue Y, Li J, Wu Z, Liu G, Tang Y, Li W. Computational insights into the different catalytic activities of CYP3A4 and CYP3A5 toward schisantherin E. Chem Biol Drug Des 2019; 93:854-864. [PMID: 30637977 DOI: 10.1111/cbdd.13475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/24/2018] [Accepted: 12/30/2018] [Indexed: 12/11/2022]
Abstract
The cytochromes CYP3A4 and CYP3A5 share 84% sequence identity, but they exhibit different catalytic activities toward some substrates. Schisantherin E (SE) was recently identified as a selective substrate of CYP3A5, which exhibited catalytic efficiency that was more than 23 times higher than CYP3A4. At present, however, the structural determinants responsible for the different catalytic activities of the two enzymes toward SE have not been fully understood. In this study, a combination of molecular docking, molecular dynamic simulations, and binding free energy calculation was performed on the CYP3A4/CYP3A5-SE systems to investigate the issue. The results demonstrate that Ser119 in CYP3A4 and Glu374 in CYP3A5 formed direct hydrogen bonding with SE, respectively. Additionally, one water molecule located between the B-C loop and the I helix mediated different hydrogen-bonding networks between CYP3A4/3A5 and SE. The residue differences (Phe/Leu108 and Leu/Phe210) triggered the distinct conformational changes of the Phe-cluster residues, especially Phe213 and Phe215, which formed stronger hydrophobic interactions with SE in CYP3A5. The calculated binding free energies were consistent with the experimental results.
Collapse
Affiliation(s)
- Yuhan Xue
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Junhao Li
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology, Stockholm, Sweden
| | - Zengrui Wu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Guixia Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Weihua Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
31
|
Dimerization misalignment in human glutamate-oxaloacetate transaminase variants is the primary factor for PLP release. PLoS One 2018; 13:e0203889. [PMID: 30208107 PMCID: PMC6135512 DOI: 10.1371/journal.pone.0203889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/29/2018] [Indexed: 11/30/2022] Open
Abstract
The active form of vitamin B6, pyridoxal 5’-phosphate (PLP), plays an essential role in the catalytic mechanism of various proteins, including human glutamate-oxaloacetate transaminase (hGOT1), an important enzyme in amino acid metabolism. A recent molecular and genetic study showed that the E266K, R267H, and P300L substitutions in aspartate aminotransferase, the Arabidopsis analog of hGOT1, genetically suppress a developmentally arrested Arabidopsis RUS mutant. Furthermore, CD analyses suggested that the variants exist as apo proteins and implicated a possible role of PLP in the regulation of PLP homeostasis and metabolic pathways. In this work, we assessed the stability of PLP bound to hGOT1 for the three variant and wildtype (WT) proteins using a combined 6 μs of molecular dynamics (MD) simulation. For the variants and WT in the holo form, the MD simulations reproduced the “closed-open” transition needed for substrate binding. This conformational transition was associated with the rearrangement of the P15-R32 small domain loop providing substrate access to the R387/R293 binding motif. We also showed that formation of the dimer interface is essential for PLP affinity to the active site. The position of PLP in the WT binding site was stabilized by a unique hydrogen bond network of the phosphate binding cup, which placed the cofactor for formation of the covalent Schiff base linkage with K259 for catalysis. The amino acid substitutions at positions 266, 267, and 300 reduced the structural correlation between PLP and the protein active site and/or integrity of the dimer interface. Principal component analysis and energy decomposition clearly suggested dimer misalignment and dissociation for the three variants tested in our work. The low affinity of PLP in the hGOT1 variants observed in our computational work provided structural rationale for the possible role of vitamin B6 in regulating metabolic pathways.
Collapse
|
32
|
Liu N, Zhou W, Guo Y, Wang J, Fu W, Sun H, Li D, Duan M, Hou T. Molecular Dynamics Simulations Revealed the Regulation of Ligands to the Interactions between Androgen Receptor and Its Coactivator. J Chem Inf Model 2018; 58:1652-1661. [PMID: 29993249 DOI: 10.1021/acs.jcim.8b00283] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The androgen receptor (AR) plays important roles in gene expression regulation, sexual phenotype maintenance, and prostate cancer (PCa) development. The communications between the AR ligand-binding domain (LBD) and its coactivator are critical to the activation of AR. It is still unclear how the ligand binding would affect the AR-coactivator interactions. In this work, the effects of the ligand binding on the AR-coactivator communications were explored by molecular dynamics (MD) simulations. The results showed that the ligand binding regulates the residue interactions in the function site AF-2. The ligand-to-coactivator allosteric pathway, which involves the coactivator, helix 3 (H3), helix 4 (H4), the loop between H3 and H4 (L3), and helix 12 (H12), and ligands, was characterized. In addition, the interactions of residues on the function site BF-3, especially on the boundary of AF-2 and BF-3, are also affected by the ligands. The MM/GBSA free energy calculations demonstrated that the binding affinity between the coactivator and apo-AR is roughly weaker than those between the coactivator and antagonistic ARs but stronger than those between the coactivator and agonistic ARs. The results indicated that the long-range electrostatic interactions and the conformational entropies are the main factors affecting the binding free energies. In addition, the F876L mutation on AR-LBD affects the ligand-to-coactivator allosteric pathway, which could be the reason for point mutation induced tolerance for the antagonistic drugs such as enzalutamide. Our study would help to develop novel drug candidates against PCa.
Collapse
Affiliation(s)
- Na Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan , Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071 , China.,University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Wenfang Zhou
- College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , Zhejiang 310058 , People's Republic of China
| | - Yue Guo
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan , Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071 , China.,University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Junmei Wang
- Department of Pharmaceutical Sciences , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States
| | - Weitao Fu
- College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , Zhejiang 310058 , People's Republic of China
| | - Huiyong Sun
- College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , Zhejiang 310058 , People's Republic of China
| | - Dan Li
- College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , Zhejiang 310058 , People's Republic of China
| | - Mojie Duan
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan , Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071 , China
| | - Tingjun Hou
- College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , Zhejiang 310058 , People's Republic of China
| |
Collapse
|
33
|
Sanjeev A, Mattaparthi VSK. Computational investigation on the effects of H50Q and G51D mutations on the α-Synuclein aggregation propensity. J Biomol Struct Dyn 2017. [PMID: 28650719 DOI: 10.1080/07391102.2017.1347060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The aggregation of α-synuclein is linked directly to the histopathology of Parkinson's disease (PD). However, several missense mutations present in the α-synuclein gene (SNCA) have been known to be associated with PD. Several studies have highlighted the effect of SNCA mutations on the α-synuclein aggregation, but their pathological roles are not completely established. In this study, we have focused on the effects of the recently discovered α-synuclein missense mutants (H50Q and G51D) on the aggregation using computational approaches. We performed all atom molecular dynamics (MD) simulation on these mutants and compared their conformational dynamics with Wild-Type (WT) α-synuclein. We noticed the solvent accessible surface area (SASA), radius of gyration, atomic fluctuations, and beta strand content to be higher in H50Q than G51D and WT. Using PDBSum online server; we analyzed the inter-molecular interactions that drive the association of monomeric units of H50Q, WT, and G51D in forming the respective homo-dimer. We noticed the interface area, number of interacting residues and binding free energy to be higher for H50Q homo-dimer than the WT and G51D homo-dimers. Our findings in this study suggest that in comparison to WT and G51D, H50Q mutation to have a positive effect on increasing the α-synuclein aggregation propensity. Hence, we see that H50Q and G51D mutation show conflicting effect on the aggregation propensity of α-synuclein.
Collapse
Affiliation(s)
- Airy Sanjeev
- a Molecular Modelling and Simulation Laboratory, Department of Molecular Biology and Biotechnology , Tezpur University , Tezpur , Assam 784 028 , India
| | - Venkata Satish Kumar Mattaparthi
- a Molecular Modelling and Simulation Laboratory, Department of Molecular Biology and Biotechnology , Tezpur University , Tezpur , Assam 784 028 , India
| |
Collapse
|
34
|
Zhang YL, Han ZF. Rational design of an orthogonal noncovalent interaction system at the MUPP1 PDZ11 complex interface with CaMKIIα-derived peptides in human fertilization. MOLECULAR BIOSYSTEMS 2017; 13:2145-2151. [PMID: 28832060 DOI: 10.1039/c7mb00379j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An orthogonal noncovalent interaction (ONI) system between a native hydrogen bond and a designed halogen bond across the complex interface of the MUPP1 PDZ11 domain with the CaMKIIαsia[Asn-1Phe] peptide mutant is introduced using a structure-based rational approach.
Collapse
Affiliation(s)
- Yi-Le Zhang
- Reproductive Medical Center
- the First Affiliated Hospital of Zhengzhou University
- Zhengzhou 450052
- China
| | - Zhao-Feng Han
- Department of Burn and Reconstruction Surgery
- the First Affiliated Hospital of Zhengzhou University
- Zhengzhou 450052
- China
| |
Collapse
|
35
|
pH-controlled doxorubicin anticancer loading and release from carbon nanotube noncovalently modified by chitosan: MD simulations. J Mol Graph Model 2016; 70:70-76. [PMID: 27677150 DOI: 10.1016/j.jmgm.2016.09.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/16/2016] [Accepted: 09/20/2016] [Indexed: 12/25/2022]
Abstract
In the present study, we describe here the pH condition activating doxorubicin (DOX) anticancer drugs loading and release over single-wall carbon nanotube (SWNT) non-covalently wrapped with chitosan (CS). The possibility of drug displacement on DOX/CS/SWNT nanocarrier was investigated using molecular dynamics simulations. The drug loading and release were monitored via displacement analysis and binding energy calculations. The simulated results clearly showed that the drugs well interacted with the CS/SWNT at physiological pH (pH 7.4), where CS was in the deprotonated form. Contrastingly, in weakly acidic environments (pH 5.0-6.5) which is a pH characteristics of certain cancer environments, the protonated CS became loosen wrapped around the SWNT and triggered drugs release as a result of charge-charge repulsion between CS and drug molecules. The obtained data fulfil the understanding at atomic level of drug loading and release controlled by pH-sensitive polymer, which might be useful for further cancer therapy researches.
Collapse
|
36
|
Yuan J, Ren J, Wang Y, He X, Zhao Y. Acteoside Binds to Caspase-3 and Exerts Neuroprotection in the Rotenone Rat Model of Parkinson's Disease. PLoS One 2016; 11:e0162696. [PMID: 27632381 PMCID: PMC5025188 DOI: 10.1371/journal.pone.0162696] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 08/26/2016] [Indexed: 01/07/2023] Open
Abstract
Parkinson’s disease (PD) is characterized by the progressive degeneration of the dopaminergic neurons in the substantia nigra (SN) region. Acteoside has displayed multiple biological functions. Its potential role against PD and the underlying signaling mechanisms are largely unknown. Here, we showed that oral administration of acteoside significantly attenuated parkinsonism symptoms in rotenone-induced PD rats. Further, acteoside inhibited rotenone-induced α-synuclein, caspase-3 upregulation and microtubule-associated protein 2 (MAP2) downregulation in PD rats. The molecular docking and molecular dynamics (MD) simulation results indicated that acteoside may directly bind to and inhibit caspase-3. Acteoside formed hydrogen bonds with at least six residues of caspase-3: ThrA177, SerA178, GlyA238, SerB339, ArgB341 and TrpB348. In addition, a pi-pi interaction was formed between acteoside and caspase-3’s HisA237, which might further stabilize the complex. MD simulation results demonstrated that the binding affinity of the caspase-3-acteoside complex was higher than that of caspase-3 and its native ligand inhibitor. Together, we show that acteoside binds to caspase-3 and exerts neuroprotection in the rotenone rat model of PD.
Collapse
Affiliation(s)
- Jiawen Yuan
- Department of Neurology, Shanghai Sixth People's Hospital affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Jinpeng Ren
- Department of Neurology, Shanghai Sixth People's Hospital affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Ying Wang
- State Key Laboratory of Precision Spectroscopy and Department of Physics, East China Normal University, Shanghai, China
| | - Xiao He
- State Key Laboratory of Precision Spectroscopy and Department of Physics, East China Normal University, Shanghai, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, China
| | - Yuwu Zhao
- Department of Neurology, Shanghai Sixth People's Hospital affiliated to Shanghai Jiao Tong University, Shanghai, China
- * E-mail: ;
| |
Collapse
|
37
|
Memczak H, Lauster D, Kar P, Di Lella S, Volkmer R, Knecht V, Herrmann A, Ehrentreich-Förster E, Bier FF, Stöcklein WFM. Anti-Hemagglutinin Antibody Derived Lead Peptides for Inhibitors of Influenza Virus Binding. PLoS One 2016; 11:e0159074. [PMID: 27415624 PMCID: PMC4944999 DOI: 10.1371/journal.pone.0159074] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/27/2016] [Indexed: 12/23/2022] Open
Abstract
Antibodies against spike proteins of influenza are used as a tool for characterization of viruses and therapeutic approaches. However, development, production and quality control of antibodies is expensive and time consuming. To circumvent these difficulties, three peptides were derived from complementarity determining regions of an antibody heavy chain against influenza A spike glycoprotein. Their binding properties were studied experimentally, and by molecular dynamics simulations. Two peptide candidates showed binding to influenza A/Aichi/2/68 H3N2. One of them, termed PeB, with the highest affinity prevented binding to and infection of target cells in the micromolar region without any cytotoxic effect. PeB matches best the conserved receptor binding site of hemagglutinin. PeB bound also to other medical relevant influenza strains, such as human-pathogenic A/California/7/2009 H1N1, and avian-pathogenic A/Mute Swan/Rostock/R901/2006 H7N1. Strategies to improve the affinity and to adapt specificity are discussed and exemplified by a double amino acid substituted peptide, obtained by substitutional analysis. The peptides and their derivatives are of great potential for drug development as well as biosensing.
Collapse
Affiliation(s)
- Henry Memczak
- Department of Bioanalytics and Biosensorics, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Potsdam, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Daniel Lauster
- Department of Biology, Humboldt Universität zu Berlin, Berlin, Germany
| | - Parimal Kar
- Department of Theory and Bio-Systems, Max-Planck-Institute of Colloids and Interfaces, Potsdam, Germany
| | - Santiago Di Lella
- Department of Biology, Humboldt Universität zu Berlin, Berlin, Germany
- Departamento de Química Biológica e IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Volker Knecht
- Department of Theory and Bio-Systems, Max-Planck-Institute of Colloids and Interfaces, Potsdam, Germany
| | - Andreas Herrmann
- Department of Biology, Humboldt Universität zu Berlin, Berlin, Germany
| | - Eva Ehrentreich-Förster
- Department of Bioanalytics and Biosensorics, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Potsdam, Germany
| | - Frank F. Bier
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Department of Biosystem Integration and Automation, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Potsdam, Germany
| | - Walter F. M. Stöcklein
- Department of Bioanalytics and Biosensorics, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Potsdam, Germany
- * E-mail:
| |
Collapse
|
38
|
Watts KS, Dalal P, Tebben AJ, Cheney DL, Shelley JC. Macrocycle Conformational Sampling with MacroModel. J Chem Inf Model 2014; 54:2680-96. [DOI: 10.1021/ci5001696] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- K. Shawn Watts
- Schrödinger, Inc., 101 SW Main Street,
Suite 1300, Portland, Oregon 97204, United States
| | - Pranav Dalal
- D. E. Shaw India Software, Private Limited, Sanali Infopark, 8-2-120/113, Road No. 2, Banjara
Hills, Hyderabad 500 034, Andhra Pradesh, India
| | - Andrew J. Tebben
- Bristol-Myers Squibb, 3551 Lawrenceville
Road, Princeton, Lawrence Township, New Jersey 08648, United States
| | - Daniel L. Cheney
- Bristol-Myers Squibb, 311 Pennington−Rocky
Hill Road, Pennington, New
Jersey 08543, United States
| | - John C. Shelley
- Schrödinger, Inc., 101 SW Main Street,
Suite 1300, Portland, Oregon 97204, United States
| |
Collapse
|
39
|
Sonar M, Wampole ME, Jin YY, Chen CP, Thakur ML, Wickstrom E. Fluorescence detection of KRAS2 mRNA hybridization in lung cancer cells with PNA-peptides containing an internal thiazole orange. Bioconjug Chem 2014; 25:1697-708. [PMID: 25180641 PMCID: PMC4166030 DOI: 10.1021/bc500304m] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/14/2014] [Indexed: 12/12/2022]
Abstract
We previously developed reporter-peptide nucleic acid (PNA)-peptides for sequence-specific radioimaging and fluorescence imaging of particular mRNAs in cells and tumors. However, a direct test for PNA-peptide hybridization with RNA in the cytoplasm would be desirable. Thiazole orange (TO) dye at the 5' end of a hybridization agent shows a strong increase in fluorescence quantum yield when stacked upon a 5' terminal base pair, in solution and in cells. We hypothesized that hybridization agents with an internal TO could distinguish a single base mutation in RNA. Thus, we designed KRAS2 PNA-IGF1 tetrapeptide agents with an internal TO adjacent to the middle base of the 12th codon, a frequent site of cancer-initiating mutations. Our molecular dynamics calculations predicted a disordered bulge with weaker hybridization resulting from a single RNA mismatch. We observed that single-stranded PNA-IGF1 tetrapeptide agents with an internal TO showed low fluorescence, but fluorescence escalated 5-6-fold upon hybridization with KRAS2 RNA. Circular dichroism melting curves showed ∼10 °C higher Tm for fully complementary vs single base mismatch TO-PNA-peptide agent duplexes with KRAS2 RNA. Fluorescence measurements of treated human lung cancer cells similarly showed elevated cytoplasmic fluorescence intensity with fully complementary vs single base mismatch agents. Sequence-specific elevation of internal TO fluorescence is consistent with our hypothesis of detecting cytoplasmic PNA-peptide:RNA hybridization if a mutant agent encounters the corresponding mutant mRNA.
Collapse
Affiliation(s)
- Mahesh
V. Sonar
- Biochemistry & Molecular Biology, Radiology, and Kimmel Cancer
Center Thomas Jefferson University, Philadelphia, Pennsylvania 19107, United States
| | - Matthew E. Wampole
- Biochemistry & Molecular Biology, Radiology, and Kimmel Cancer
Center Thomas Jefferson University, Philadelphia, Pennsylvania 19107, United States
| | - Yuan-Yuan Jin
- Biochemistry & Molecular Biology, Radiology, and Kimmel Cancer
Center Thomas Jefferson University, Philadelphia, Pennsylvania 19107, United States
| | - Chang-Po Chen
- Biochemistry & Molecular Biology, Radiology, and Kimmel Cancer
Center Thomas Jefferson University, Philadelphia, Pennsylvania 19107, United States
- School
of Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang, Henan 453007, China
| | - Mathew L. Thakur
- Biochemistry & Molecular Biology, Radiology, and Kimmel Cancer
Center Thomas Jefferson University, Philadelphia, Pennsylvania 19107, United States
| | - Eric Wickstrom
- Biochemistry & Molecular Biology, Radiology, and Kimmel Cancer
Center Thomas Jefferson University, Philadelphia, Pennsylvania 19107, United States
| |
Collapse
|
40
|
Sanders JM, Wampole ME, Chen CP, Sethi D, Singh A, Dupradeau FY, Wang F, Gray BD, Thakur ML, Wickstrom E. Effects of hypoxanthine substitution in peptide nucleic acids targeting KRAS2 oncogenic mRNA molecules: theory and experiment. J Phys Chem B 2013; 117:11584-95. [PMID: 23972113 DOI: 10.1021/jp4064966] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Genetic disorders can arise from single base substitutions in a single gene. A single base substitution for wild type guanine in the twelfth codon of KRAS2 mRNA occurs frequently to initiate lung, pancreatic, and colon cancer. We have observed single base mismatch specificity in radioimaging of mutant KRAS2 mRNA in tumors in mice by in vivo hybridization with radiolabeled peptide nucleic acid (PNA) dodecamers. We hypothesized that multimutant specificity could be achieved with a PNA dodecamer incorporating hypoxanthine, which can form Watson-Crick base pairs with adenine, cytosine, thymine, and uracil. Using molecular dynamics simulations and free energy calculations, we show that hypoxanthine substitutions in PNAs are tolerated in KRAS2 RNA:PNA duplexes where wild type guanine is replaced by mutant uracil or adenine in RNA. To validate our predictions, we synthesized PNA dodecamers with hypoxanthine, and then measured the thermal stability of RNA:PNA duplexes. Circular dichroism thermal melting results showed that hypoxanthine-containing PNAs are more stable in duplexes where hypoxanthine-adenine and hypoxanthine-uracil base pairs are formed than single mismatch duplexes or duplexes containing hypoxanthine-guanine opposition.
Collapse
Affiliation(s)
- Jeffrey M Sanders
- Departments of Biochemistry & Molecular Biology and ∥Radiology, and ⊥Kimmel Cancer Center, Thomas Jefferson University , Philadelphia, Pennsylvania 19107, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Li N, Stein RSL, He W, Komives E, Wang W. Identification of methyllysine peptides binding to chromobox protein homolog 6 chromodomain in the human proteome. Mol Cell Proteomics 2013; 12:2750-60. [PMID: 23842000 DOI: 10.1074/mcp.o112.025015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Methylation is one of the important post-translational modifications that play critical roles in regulating protein functions. Proteomic identification of this post-translational modification and understanding how it affects protein activity remain great challenges. We tackled this problem from the aspect of methylation mediating protein-protein interaction. Using the chromodomain of human chromobox protein homolog 6 as a model system, we developed a systematic approach that integrates structure modeling, bioinformatics analysis, and peptide microarray experiments to identify lysine residues that are methylated and recognized by the chromodomain in the human proteome. Given the important role of chromobox protein homolog 6 as a reader of histone modifications, it was interesting to find that the majority of its interacting partners identified via this approach function in chromatin remodeling and transcriptional regulation. Our study not only illustrates a novel angle for identifying methyllysines on a proteome-wide scale and elucidating their potential roles in regulating protein function, but also suggests possible strategies for engineering the chromodomain-peptide interface to enhance the recognition of and manipulate the signal transduction mediated by such interactions.
Collapse
Affiliation(s)
- Nan Li
- Department of Chemistry and Biochemistry, 9500 Gilman Drive, University of California, San Diego, La Jolla, California 92093-0359
| | | | | | | | | |
Collapse
|
42
|
Stein RSL, Li N, He W, Komives E, Wang W. Recognition of methylated peptides by Drosophila melanogaster polycomb chromodomain. J Proteome Res 2013; 12:1467-77. [PMID: 23320494 DOI: 10.1021/pr3011205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lysine methylation is one of the important post-translational modifications (PTMs) that regulate protein functions. Up to now, proteomic identification of this PTM remains a challenge due to the lack of effective enrichment methods in mass spectrometry experiments. To address this challenge, we present here a systematic approach to predicting peptides in which lysine residues may be methylated to mediate protein-protein interactions. We used the chromodomain of the polycomb protein in Drosophila melanogaster as a model system to illustrate the success of this approach. We started with molecular dynamics simulations and free energy analyses on the histone peptides complexed with the polycomb chromodomain to understand how the binding specificity is achieved. We next conducted virtual mutagenesis to quantify each domain and peptide residue's contribution to the domain-peptide recognition, based on which scoring scheme was developed to evaluate the possibility of any lysine-containing peptides to be methylated and recognized by the chromodomain. A peptide microarray experiment on a panel of conserved histone peptides showed a satisfactory prediction accuracy of the scoring scheme. Next, we implemented a bioinformatics pipeline that integrates multiple lines of evidence including conservation, subcellular localization, and mass spectrometry data to scan the fly proteome for a systematic identification of possible methyllysine-containing peptides. These putative chromodomain-binding peptides suggest unknown functions of the important regulator protein polycomb and provide a list of candidate methylation events for follow-up investigations.
Collapse
Affiliation(s)
- Richard S L Stein
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0359, United States
| | | | | | | | | |
Collapse
|
43
|
Sanders JM, Wampole ME, Thakur ML, Wickstrom E. Molecular determinants of epidermal growth factor binding: a molecular dynamics study. PLoS One 2013; 8:e54136. [PMID: 23382875 PMCID: PMC3554757 DOI: 10.1371/journal.pone.0054136] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 12/10/2012] [Indexed: 12/22/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is a member of the receptor tyrosine kinase family that plays a role in multiple cellular processes. Activation of EGFR requires binding of a ligand on the extracellular domain to promote conformational changes leading to dimerization and transphosphorylation of intracellular kinase domains. Seven ligands are known to bind EGFR with affinities ranging from sub-nanomolar to near micromolar dissociation constants. In the case of EGFR, distinct conformational states assumed upon binding a ligand is thought to be a determining factor in activation of a downstream signaling network. Previous biochemical studies suggest the existence of both low affinity and high affinity EGFR ligands. While these studies have identified functional effects of ligand binding, high-resolution structural data are lacking. To gain a better understanding of the molecular basis of EGFR binding affinities, we docked each EGFR ligand to the putative active state extracellular domain dimer and 25.0 ns molecular dynamics simulations were performed. MM-PBSA/GBSA are efficient computational approaches to approximate free energies of protein-protein interactions and decompose the free energy at the amino acid level. We applied these methods to the last 6.0 ns of each ligand-receptor simulation. MM-PBSA calculations were able to successfully rank all seven of the EGFR ligands based on the two affinity classes: EGF>HB-EGF>TGF-α>BTC>EPR>EPG>AR. Results from energy decomposition identified several interactions that are common among binding ligands. These findings reveal that while several residues are conserved among the EGFR ligand family, no single set of residues determines the affinity class. Instead we found heterogeneous sets of interactions that were driven primarily by electrostatic and Van der Waals forces. These results not only illustrate the complexity of EGFR dynamics but also pave the way for structure-based design of therapeutics targeting EGF ligands or the receptor itself.
Collapse
Affiliation(s)
- Jeffrey M. Sanders
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Matthew E. Wampole
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Mathew L. Thakur
- Department of Radiology, Thomas Jefferson Medical College, Philadelphia, Pennsylvania, United States of America
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Eric Wickstrom
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
44
|
Delgado-Soler L, Pinto M, Tanaka-Gil K, Rubio-Martinez J. Molecular determinants of Bim(BH3) peptide binding to pro-survival proteins. J Chem Inf Model 2012; 52:2107-18. [PMID: 22794663 DOI: 10.1021/ci3001666] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Proteins of the Bcl-2 family regulate apoptosis through the formation of heterodimers between antiapoptotic or pro-survival proteins and proapoptotic or pro-death proteins. Overexpression of antiapoptotic proteins not only contributes to the progression of many cancers, but also confers resistance to the chemo- and radiotherapeutic treatments. It has been demonstrated that peptides containing the BH3 domain of proapoptotic Bcl-2 family members are able to bind and inhibit antiapoptotic proteins. For this reason, the design of small molecules mimicking the BH3 domain of proapoptotic proteins has emerged as a promising therapeutic strategy for cancer treatment during the last years. However, BH3 domains exhibit different affinities for binding to antiapoptotic proteins; whereas Bim(BH3) and Puma(BH3) are able to bind all antiapoptotic proteins, others like Bad(BH3) and Bmf(BH3) show preference for some proteins over others. Consequently, the ability of a BH3-mimetic to kill tumor cells will depend on the BH3 peptide used as template and thus will have a selective or pan-inhibition effect. Recently, it has been suggested that this last approach could be interesting. Therefore, the present work is aimed to elucidate how the nonselective peptide Bim(BH3) is able to bind to all of the Bcl-2 family antiapoptotic proteins. To unravel the molecular determinants of this pan-inhibition, we used the MM-PB/GBSA approaches to calculate the binding free energy of the different complexes studied and to determine which residues of the peptide have the largest contribution to complex formation. Results obtained in the present work show that the binding of Bim(BH3) to pro-survival proteins is mainly hydrophobic and that specific interactions are fully distributed along the peptide sequence.
Collapse
Affiliation(s)
- Laura Delgado-Soler
- Department of Physical Chemistry, University of Barcelona and the Institut de Recerca en Quimica Teorica i Computacional, Barcelona, Spain
| | | | | | | |
Collapse
|
45
|
Benson NC, Daggett V. A comparison of multiscale methods for the analysis of molecular dynamics simulations. J Phys Chem B 2012; 116:8722-31. [PMID: 22494262 DOI: 10.1021/jp302103t] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular dynamics (MD) is the only technique available for obtaining dynamic protein data at atomic spatial resolution and picosecond or finer temporal resolution. In recent years, the cost of computational resources has decreased exponentially while the number of known protein structures, many of which are not characterized biochemically, has increased rapidly. These events have led to an increase in the use of MD in biological research, both to examine phenomena that cannot be resolved experimentally and to generate hypotheses that direct further experimental research. In fact, several databases of MD simulations have arisen in recent years. MD simulations, and especially MD simulation databases, contain massive amounts of data, yet interesting phenomena often occur over very short time periods and on the scale of only a few atoms. Analysis of such data must balance these fine-detail events with the global picture they create. Here, we address the multiscale nature of the problem by comparing several MD analysis methods to show their strengths and weaknesses at various scales using the wild-type and R282W mutant forms of the DNA-binding domain of protein p53. By leveraging these techniques together, we are able to pinpoint fine-detail and big picture differences between the protein's variants. Our analyses indicate that the R282W mutation of p53 destabilizes the L1 loop and loosens the H2 helix conformation, but the loosened L1 loop can be rescued by residue H115, preventing the R282W mutation from completely destabilizing the protein or abolishing activity.
Collapse
Affiliation(s)
- Noah C Benson
- Division of Biomedical and Health Informatics, University of Washington, Seattle, Washington 98195-7240, United States
| | | |
Collapse
|
46
|
Cai Q, Ye X, Wang J, Luo R. On-the-fly Numerical Surface Integration for Finite-Difference Poisson-Boltzmann Methods. J Chem Theory Comput 2011; 7:3608-3619. [PMID: 24772042 PMCID: PMC3998210 DOI: 10.1021/ct200389p] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Most implicit solvation models require the definition of a molecular surface as the interface that separates the solute in atomic detail from the solvent approximated as a continuous medium. Commonly used surface definitions include the solvent accessible surface (SAS), the solvent excluded surface (SES), and the van der Waals surface. In this study, we present an efficient numerical algorithm to compute the SES and SAS areas to facilitate the applications of finite-difference Poisson-Boltzmann methods in biomolecular simulations. Different from previous numerical approaches, our algorithm is physics-inspired and intimately coupled to the finite-difference Poisson-Boltzmann methods to fully take advantage of its existing data structures. Our analysis shows that the algorithm can achieve very good agreement with the analytical method in the calculation of the SES and SAS areas. Specifically, in our comprehensive test of 1,555 molecules, the average unsigned relative error is 0.27% in the SES area calculations and 1.05% in the SAS area calculations at the grid spacing of 1/2Å. In addition, a systematic correction analysis can be used to improve the accuracy for the coarse-grid SES area calculations, with the average unsigned relative error in the SES areas reduced to 0.13%. These validation studies indicate that the proposed algorithm can be applied to biomolecules over a broad range of sizes and structures. Finally, the numerical algorithm can also be adapted to evaluate the surface integral of either a vector field or a scalar field defined on the molecular surface for additional solvation energetics and force calculations.
Collapse
Affiliation(s)
- Qin Cai
- Department of Biomedical Engineering, University of California, Irvine, California
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California
| | - Xiang Ye
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California
- Department of Physics, Shanghai Normal University, Shanghai, China
| | - Jun Wang
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California
| | - Ray Luo
- Department of Biomedical Engineering, University of California, Irvine, California
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California
| |
Collapse
|
47
|
Klein T, Henn C, Negri M, Frotscher M. Structural basis for species specific inhibition of 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1): computational study and biological validation. PLoS One 2011; 6:e22990. [PMID: 21857977 PMCID: PMC3153478 DOI: 10.1371/journal.pone.0022990] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 07/07/2011] [Indexed: 11/19/2022] Open
Abstract
17β-Hydroxysteroid dehydrogenase type 1 (17β-HSD1) catalyzes the reduction of estrone to estradiol, which is the most potent estrogen in humans. Inhibition of 17β-HSD1 and thereby reducing the intracellular estradiol concentration is thus a promising approach for the treatment of estrogen dependent diseases. In the past, several steroidal and non-steroidal inhibitors of 17β-HSD1 have been described but so far there is no cocrystal structure of the latter in complex with 17β-HSD1. However, a distinct knowledge of active site topologies and protein-ligand interactions is a prerequisite for structure-based drug design and optimization. An elegant strategy to enhance this knowledge is to compare inhibition values obtained for one compound toward ortholog proteins from various species, which are highly conserved in sequence and differ only in few residues. In this study the inhibitory potencies of selected members of different non-steroidal inhibitor classes toward marmoset 17β-HSD1 were determined and the data were compared with the values obtained for the human enzyme. A species specific inhibition profile was observed in the class of the (hydroxyphenyl)naphthols. Using a combination of computational methods, including homology modelling, molecular docking, MD simulation, and binding energy calculation, a reasonable model of the three-dimensional structure of marmoset 17β-HSD1 was developed and inhibition data were rationalized on the structural basis. In marmoset 17β-HSD1, residues 190 to 196 form a small α-helix, which induces conformational changes compared to the human enzyme. The docking poses suggest these conformational changes as determinants for species specificity and energy decomposition analysis highlighted the outstanding role of Asn152 as interaction partner for inhibitor binding. In summary, this strategy of comparing the biological activities of inhibitors toward highly conserved ortholog proteins might be an alternative to laborious x-ray or site-directed mutagenesis experiments in certain cases. Additionally, it facilitates inhibitor design and optimization by offering new information on protein-ligand interactions.
Collapse
Affiliation(s)
- Tobias Klein
- Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany
| | - Claudia Henn
- Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany
| | - Matthias Negri
- Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany
| | - Martin Frotscher
- Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
| |
Collapse
|
48
|
Klenin KV, Tristram F, Strunk T, Wenzel W. Derivatives of molecular surface area and volume: Simple and exact analytical formulas. J Comput Chem 2011; 32:2647-53. [DOI: 10.1002/jcc.21844] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 04/26/2011] [Accepted: 04/26/2011] [Indexed: 11/06/2022]
|
49
|
Stein RSL, Wang W. The recognition specificity of the CHD1 chromodomain with modified histone H3 peptides. J Mol Biol 2010; 406:527-41. [PMID: 21195088 DOI: 10.1016/j.jmb.2010.12.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Revised: 12/16/2010] [Accepted: 12/21/2010] [Indexed: 12/20/2022]
Abstract
Histone tail peptides comprise the flexible portion of chromatin, the substance which serves as the packaging for the eukaryotic genome. According to the histone code hypothesis, reader protein domains (chromodomains) can recognize modifications of amino acid residues within these peptides, regulating the expression of genes. We have performed simulations on models of chromodomain helicase DNA-binding protein 1 complexed with a variety of histone H3 modifications. Binding free energies for both the overall complexes and the individual residues within the protein and peptides were computed with molecular mechanics-generalized Born surface area. The simulation results agree well with experimental data and identify several chromodomain helicase DNA-binding protein 1 residues that play key roles in the interaction with each of the H3 modifications. We identified one class of protein residues that bind to H3 in all of the complexes (generally interacting hydrophobically), and a second class of residues that bind only to particular H3 modifications (generally interacting electrostatically). Additionally, we found that modifications of H3R2 and H3T3 have a dominant effect on the binding affinity; methylation of H3K4 has little effect on the interaction strength when H3R2 or H3T3 is modified. Our findings with regard to the specificity shown by the latter class of protein residues in their binding affinity to certain modifications of H3 support the histone code hypothesis.
Collapse
|
50
|
Roe DR, Chaka AM. Structural basis of pathway-dependent force profiles in stretched DNA. J Phys Chem B 2010; 113:15364-71. [PMID: 19845321 DOI: 10.1021/jp906749j] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Understanding the mechanical properties that determine the flexibility of DNA is important, as DNA must bend and/or stretch in order to function biologically. Recent single-molecule experiments have shown that above a certain loading rate double-stranded DNA is more stable when stretched from the 3' termini than when stretched from the 5' termini. Unfortunately these experiments cannot provide insight into the structural basis for this behavior. We have used molecular dynamics simulations combined with umbrella sampling to study the stability and structural changes of a 30 bp double-stranded DNA oligomer during stretching from either the 3' termini or the 5' termini. At extensions greater than 1.7x the 3' stretched structure is more stable than the 5' stretched structure due to retention of twice the number (80%) of native hydrogen bonds between base pairs and a higher degree of base stacking. This difference results from greater dissipation of the stretch force via conformational flexibility of the phosphate backbone when pulled from the 3' ends, whereas in the 5' stretch the force is borne more directly by the base pair hydrogen bonds leading to rupture. In addition, stretching from the 5' end produces a greater widening of the major groove that increases solvent exposure and hydrolysis of the base pair hydrogen bonds. These results demonstrate that 3' stretching and 5' stretching in DNA are fundamentally different processes.
Collapse
Affiliation(s)
- Daniel R Roe
- Physics Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Stop 8443, Gaithersburg, Maryland 20878-8443, USA
| | | |
Collapse
|