1
|
Justyn NM, Heine KB, Hood WR, Peteya JA, Vanthournout B, Debruyn G, Shawkey MD, Weaver RJ, Hill GE. A combination of red structural and pigmentary coloration in the eyespot of a copepod. J R Soc Interface 2022; 19:20220169. [PMID: 35611618 DOI: 10.1098/rsif.2022.0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
While the specific mechanisms of colour production in biological systems are diverse, the mechanics of colour production are straightforward and universal. Colour is produced through the selective absorption of light by pigments, the scattering of light by nanostructures or a combination of both. When Tigriopus californicus copepods were fed a carotenoid-limited diet of yeast, their orange-red body coloration became faint, but their eyespots remained unexpectedly bright red. Raman spectroscopy indicated a clear signature of the red carotenoid pigment astaxanthin in eyespots; however, refractive index matching experiments showed that eyespot colour disappeared when placed in ethyl cinnamate, suggesting a structural origin for the red coloration. We used transmission electron microscopy to identify consecutive nanolayers of spherical air pockets that, when modelled as a single thin film layer, possess the correct periodicity to coherently scatter red light. We then performed microspectrophotometry to quantify eyespot coloration and confirmed a distinct colour difference between the eyespot and the body. The observed spectral reflectance from the eyespot matched the reflectance predicted from our models when considering the additional absorption by astaxanthin. Together, this evidence suggests the persistence of red eyespots in copepods is the result of a combination of structural and pigmentary coloration.
Collapse
Affiliation(s)
- Nicholas M Justyn
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Kyle B Heine
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Wendy R Hood
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Jennifer A Peteya
- Department of Biology and Integrated Bioscience Program, The University of Akron, Akron, OH 44325, USA
| | - Bram Vanthournout
- Department of Biology, Evolution and Optics of Nanostructures Group, University of Ghent, Ghent, Belgium
| | - Gerben Debruyn
- Department of Biology, Evolution and Optics of Nanostructures Group, University of Ghent, Ghent, Belgium
| | - Matthew D Shawkey
- Department of Biology, Evolution and Optics of Nanostructures Group, University of Ghent, Ghent, Belgium
| | - Ryan J Weaver
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Geoffrey E Hill
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
2
|
Thorn RG, Banwell A, Pham TH, Vidal NP, Manful CF, Nadeem M, Ivanov AG, Szyszka Mroz B, Bonneville MB, Hüner NPA, Piercey-Normore MD, Thomas R. Identification and analyses of the chemical composition of a naturally occurring albino mutant chanterelle. Sci Rep 2021; 11:20590. [PMID: 34663853 PMCID: PMC8523663 DOI: 10.1038/s41598-021-99787-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 09/28/2021] [Indexed: 11/09/2022] Open
Abstract
White chanterelles (Basidiomycota), lacking the orange pigments and apricot-like odour of typical chanterelles, were found recently in the Canadian provinces of Québec (QC) and Newfoundland & Labrador (NL). Our phylogenetic analyses confirmed the identification of all white chanterelles from NL and QC as Cantharellus enelensis; we name these forma acolodorus. We characterized carotenoid pigments, lipids, phenolics, and volatile compounds in these and related chanterelles. White mutants of C. enelensis lacked detectable β-carotene, confirmed to be the primary pigment of wild-type, golden-orange individuals, and could also be distinguished by their profiles of fatty acids and phenolic acids, and by the ketone and terpene composition of their volatiles. We detected single base substitutions in the phytoene desaturase (Al-1) and phytoene synthase (Al-2) genes of the white mutant, which are predicted to result in altered amino acids in their gene products and may be responsible for the loss of β-carotene synthesis in that form.
Collapse
Affiliation(s)
- R Greg Thorn
- Department of Biology, University of Western Ontario, 1151 Richmond St. N., London, ON, N6A 5B7, Canada.
| | - Alicia Banwell
- Department of Biology, University of Western Ontario, 1151 Richmond St. N., London, ON, N6A 5B7, Canada
| | - Thu Huong Pham
- School of Science and the Environment, Grenfell Campus, Memorial University, 20 University Drive, Corner Brook, NL, A2H 5G4, Canada
| | - Natalia P Vidal
- School of Science and the Environment, Grenfell Campus, Memorial University, 20 University Drive, Corner Brook, NL, A2H 5G4, Canada.,Department of Food Science, iFOOD Multidisciplinary Center, Aarhus University, Agro Food Park 48, 8200, Aarhus N, Denmark
| | - Charles Felix Manful
- School of Science and the Environment, Grenfell Campus, Memorial University, 20 University Drive, Corner Brook, NL, A2H 5G4, Canada
| | - Muhammad Nadeem
- School of Science and the Environment, Grenfell Campus, Memorial University, 20 University Drive, Corner Brook, NL, A2H 5G4, Canada
| | - Alexander G Ivanov
- Department of Biology, University of Western Ontario, 1151 Richmond St. N., London, ON, N6A 5B7, Canada.,Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev str. Bl. 21, 1113, Sofia, Bulgaria
| | - Beth Szyszka Mroz
- Department of Biology, University of Western Ontario, 1151 Richmond St. N., London, ON, N6A 5B7, Canada
| | - Michael B Bonneville
- Department of Biology, University of Western Ontario, 1151 Richmond St. N., London, ON, N6A 5B7, Canada
| | - Norman Peter Andrew Hüner
- Department of Biology, University of Western Ontario, 1151 Richmond St. N., London, ON, N6A 5B7, Canada
| | - Michele D Piercey-Normore
- School of Science and the Environment, Grenfell Campus, Memorial University, 20 University Drive, Corner Brook, NL, A2H 5G4, Canada
| | - Raymond Thomas
- School of Science and the Environment, Grenfell Campus, Memorial University, 20 University Drive, Corner Brook, NL, A2H 5G4, Canada
| |
Collapse
|
3
|
Dzurendová S, Shapaval V, Tafintseva V, Kohler A, Byrtusová D, Szotkowski M, Márová I, Zimmermann B. Assessment of Biotechnologically Important Filamentous Fungal Biomass by Fourier Transform Raman Spectroscopy. Int J Mol Sci 2021; 22:6710. [PMID: 34201486 PMCID: PMC8269384 DOI: 10.3390/ijms22136710] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/11/2022] Open
Abstract
Oleaginous filamentous fungi can accumulate large amount of cellular lipids and biopolymers and pigments and potentially serve as a major source of biochemicals for food, feed, chemical, pharmaceutical, and transport industries. We assessed suitability of Fourier transform (FT) Raman spectroscopy for screening and process monitoring of filamentous fungi in biotechnology. Six Mucoromycota strains were cultivated in microbioreactors under six growth conditions (three phosphate concentrations in the presence and absence of calcium). FT-Raman and FT-infrared (FTIR) spectroscopic data was assessed in respect to reference analyses of lipids, phosphorus, and carotenoids by using principal component analysis (PCA), multiblock or consensus PCA, partial least square regression (PLSR), and analysis of spectral variation due to different design factors by an ANOVA model. All main chemical biomass constituents were detected by FT-Raman spectroscopy, including lipids, proteins, cell wall carbohydrates, and polyphosphates, and carotenoids. FT-Raman spectra clearly show the effect of growth conditions on fungal biomass. PLSR models with high coefficients of determination (0.83-0.94) and low error (approximately 8%) for quantitative determination of total lipids, phosphates, and carotenoids were established. FT-Raman spectroscopy showed great potential for chemical analysis of biomass of oleaginous filamentous fungi. The study demonstrates that FT-Raman and FTIR spectroscopies provide complementary information on main fungal biomass constituents.
Collapse
Affiliation(s)
- Simona Dzurendová
- Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway; (S.D.); (V.S.); (V.T.); (A.K.); (D.B.)
| | - Volha Shapaval
- Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway; (S.D.); (V.S.); (V.T.); (A.K.); (D.B.)
| | - Valeria Tafintseva
- Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway; (S.D.); (V.S.); (V.T.); (A.K.); (D.B.)
| | - Achim Kohler
- Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway; (S.D.); (V.S.); (V.T.); (A.K.); (D.B.)
| | - Dana Byrtusová
- Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway; (S.D.); (V.S.); (V.T.); (A.K.); (D.B.)
- Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 61200 Brno, Czech Republic; (M.S.); (I.M.)
| | - Martin Szotkowski
- Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 61200 Brno, Czech Republic; (M.S.); (I.M.)
| | - Ivana Márová
- Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 61200 Brno, Czech Republic; (M.S.); (I.M.)
| | - Boris Zimmermann
- Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway; (S.D.); (V.S.); (V.T.); (A.K.); (D.B.)
| |
Collapse
|
4
|
Teixeira TR, Rangel KC, Tavares RSN, Kawakami CM, Dos Santos GS, Maria-Engler SS, Colepicolo P, Gaspar LR, Debonsi HM. In Vitro Evaluation of the Photoprotective Potential of Quinolinic Alkaloids Isolated from the Antarctic Marine Fungus Penicillium echinulatum for Topical Use. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:357-372. [PMID: 33811268 DOI: 10.1007/s10126-021-10030-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Marine-derived fungi proved to be a rich source of biologically active compounds. The genus Penicillium has been extensively studied regarding their secondary metabolites and biological applications. However, the photoprotective effects of these metabolites remain underexplored. Herein, the photoprotective potential of Penicillium echinulatum, an Antarctic alga-associated fungus, was assessed by UV absorption, photostability study, and protection from UVA-induced ROS generation assay on human immortalized keratinocytes (HaCaT) and reconstructed human skin (RHS). The photosafety was evaluated by the photoreactivity (OECD TG 495) and phototoxicity assays, performed by 3T3 neutral red uptake (3T3 NRU PT, OECD TG 432) and by the RHS model. Through a bio-guided purification approach, four known alkaloids, (-)-cyclopenin (1), dehydrocyclopeptine (2), viridicatin (3), and viridicatol (4), were isolated. Compounds 3 and 4 presented absorption in UVB and UVA-II regions and were considered photostable after UVA irradiation. Despite compounds 3 and 4 showed phototoxic potential in 3T3 NRU PT, no phototoxicity was observed in the RHS model (reduction of cell viability < 30%), which indicates their very low acute photoirritation and high photosafety potential in humans. Viridicatin was considered weakly photoreactive, while viridicatol showed no photoreactivity; both compounds inhibited UVA-induced ROS generation in HaCaT cells, although viridicatol was not able to protect the RHS model against UVA-induced ROS production. Thus, the results highlighted the photoprotective and antioxidant potential of metabolites produced by P. echinulatum which can be considered a new class of molecules for photoprotection, since their photosafety and non-cytotoxicity were predicted using recommended in vitro methods for topical use.
Collapse
Affiliation(s)
- Thaiz Rodrigues Teixeira
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Karen Cristina Rangel
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Renata Spagolla Napoleão Tavares
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Camila Martins Kawakami
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Gustavo Souza Dos Santos
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Silvya Stuchi Maria-Engler
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Pio Colepicolo
- Department of Biochemistry, Chemistry Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Lorena Rigo Gaspar
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Hosana Maria Debonsi
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
5
|
Hekmatara M, Heidari Baladehi M, Ji Y, Xu J. D 2O-Probed Raman Microspectroscopy Distinguishes the Metabolic Dynamics of Macromolecules in Organellar Anticancer Drug Response. Anal Chem 2021; 93:2125-2134. [PMID: 33435684 DOI: 10.1021/acs.analchem.0c03925] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
To profile the metabolic dynamics responding to drugs at the single-cell/organelle resolution, rapid and economical mechanism-revealing methods are required. Here, we introduced D2O-probed Raman microspectroscopy in combination with the multivariate curve resolution-alternating least squares (MCR-ALS or MCR) algorithm. Exploiting MCR to deconvolute each macromolecular component specifically, the method is able to track and distinguish changes in lipid and protein metabolic activities in a human cancer cell line (MCF-7) and in Saccharomyces cerevisiae, in response to the metabolism-inhibitory effect of rapamycin, which inhibits the mammalian/mechanistic target of rapamycin (mTOR) signaling. Under rapamycin, in the lipid bodies of cancer cells, metabolic activities of both protein and lipid are suppressed; in the nucleus, protein synthesis remains active, whereas lipid synthesis is inhibited; in the cytoplasm, syntheses of protein and lipid are both dose- and duration-dependent. Thus, rapamycin differentially influences protein and lipid synthesis in mTOR signaling. Moreover, the strong correlation between macromolecular-specific components of yeast and those in MCF-7 cytoplasm, nucleus, and lipid bodies revealed similarity in rapamycin response. Notably, highly metabolically active cancer cells after high-dosage rapamycin exposure (500 or 5000 × IC50) were revealed, which escape detection by population-level cytotoxicity tests. Thus, by unveiling macromolecule-specific metabolic dynamics at the organelle level, the method is valuable to mechanism-based rapid screening and dissection of drug response.
Collapse
Affiliation(s)
- Maryam Hekmatara
- Single-Cell Center, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, Shandong, China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Mohammadhadi Heidari Baladehi
- Single-Cell Center, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, Shandong, China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Yuetong Ji
- Single-Cell Center, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, Shandong, China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Jian Xu
- Single-Cell Center, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, Shandong, China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| |
Collapse
|
6
|
Sajjad W, Din G, Rafiq M, Iqbal A, Khan S, Zada S, Ali B, Kang S. Pigment production by cold-adapted bacteria and fungi: colorful tale of cryosphere with wide range applications. Extremophiles 2020; 24:447-473. [PMID: 32488508 PMCID: PMC7266124 DOI: 10.1007/s00792-020-01180-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/18/2020] [Indexed: 12/18/2022]
Abstract
Pigments are an essential part of everyday life on Earth with rapidly growing industrial and biomedical applications. Synthetic pigments account for a major portion of these pigments that in turn have deleterious effects on public health and environment. Such drawbacks of synthetic pigments have shifted the trend to use natural pigments that are considered as the best alternative to synthetic pigments due to their significant properties. Natural pigments from microorganisms are of great interest due to their broader applications in the pharmaceutical, food, and textile industry with increasing demand among the consumers opting for natural pigments. To fulfill the market demand of natural pigments new sources should be explored. Cold-adapted bacteria and fungi in the cryosphere produce a variety of pigments as a protective strategy against ecological stresses such as low temperature, oxidative stresses, and ultraviolet radiation making them a potential source for natural pigment production. This review highlights the protective strategies and pigment production by cold-adapted bacteria and fungi, their industrial and biomedical applications, condition optimization for maximum pigment extraction as well as the challenges facing in the exploitation of cryospheric microorganisms for pigment extraction that hopefully will provide valuable information, direction, and progress in forthcoming studies.
Collapse
Affiliation(s)
- Wasim Sajjad
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Ghufranud Din
- Department of Microbiology, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Rafiq
- Department of Microbiology, Faculty of Life Sciences and Informatics, Balochistan University of IT, Engineering and Management Sciences, Quetta, Pakistan
| | - Awais Iqbal
- School of Life Sciences, State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, People's Republic of China
| | - Suliman Khan
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sahib Zada
- Department of Biology, College of Science, Shantou University, Shantou, China
| | - Barkat Ali
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China.
| |
Collapse
|
7
|
Flieger K, Knabe N, Toepel J. Development of an Improved Carotenoid Extraction Method to Characterize the Carotenoid Composition under Oxidative Stress and Cold Temperature in the Rock Inhabiting Fungus Knufia petricola A95. J Fungi (Basel) 2018; 4:E124. [PMID: 30424015 PMCID: PMC6308947 DOI: 10.3390/jof4040124] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 11/21/2022] Open
Abstract
Black yeasts are a highly specified group of fungi, which are characterized by a high resistance against stress factors. There are several factors enabling the cells to survive harsh environmental conditions. One aspect is the pigmentation, the melanin black yeasts often display a highly diverse carotenoid spectrum. Determination and characterization of carotenoids depend on an efficient extraction and separation, especially for black yeast, which is characterized by thick cell walls. Therefore, specific protocols are needed to ensure reliable analyses regarding stress responses in these fungi. Here we present both. First, we present a method to extract and analyze carotenoids and secondly we present the unusual carotenoid composition of the black yeast Knufia petricola A95. Mechanical treatment combined with an acetonitrile extraction gave us very good extraction rates with a high reproducibility. The presented extraction and elution protocol separates the main carotenoids (7) in K. petricola A95 and can be extended for the detection of additional carotenoids in other species. K. petricola A95 displays an unusual carotenoid composition, with mainly didehydrolycopene, torulene, and lycopene. The pigment composition varied in dependency to oxidative stress but remained relatively constant if the cells were cultivated under low temperature. Future experiments have to be carried out to determine if didehydrolycopene functions as a protective agent itself or if it serves as a precursor for antioxidative pigments like torulene and torularhodin, which could be produced after induction under stress conditions. Black yeasts are a promising source for carotenoid production and other substances. To unravel the potential of these fungi, new methods and studies are needed. The established protocol allows the determination of carotenoid composition in black yeasts.
Collapse
Affiliation(s)
- Kerstin Flieger
- Department of Plant Physiology, Institute of Biology, Leipzig University, Johannisallee 21-23, 04103 Leipzig, Germany.
| | - Nicole Knabe
- Department of Materials & Environment, Bundesanstalt für Material-forschung und-prüfung, BAM, Unter den Eichen 87, 12205 Berlin, Germany.
| | - Jörg Toepel
- Department of Solar Materials, Applied Biocatalytics, Helmholtz Centre for Environmental Research, Permoser Strasse 15, 04318 Leipzig, Germany.
| |
Collapse
|
8
|
Avalos J, Carmen Limón M. Biological roles of fungal carotenoids. Curr Genet 2014; 61:309-24. [PMID: 25284291 DOI: 10.1007/s00294-014-0454-x] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/12/2014] [Accepted: 09/12/2014] [Indexed: 01/28/2023]
Abstract
Carotenoids are terpenoid pigments widespread in nature, produced by bacteria, fungi, algae and plants. They are also found in animals, which usually obtain them through the diet. Carotenoids in plants provide striking yellow, orange or red colors to fruits and flowers, and play important metabolic and physiological functions, especially relevant in photosynthesis. Their functions are less clear in non-photosynthetic microorganisms. Different fungi produce diverse carotenoids, but the mutants unable to produce them do not exhibit phenotypic alterations in the laboratory, apart of lack of pigmentation. This review summarizes the current knowledge on the functional basis for carotenoid production in fungi. Different lines of evidence support a protective role of carotenoids against oxidative stress and exposure to visible light or UV irradiation. In addition, the carotenoids are intermediary products in the biosynthesis of physiologically active apocarotenoids or derived compounds. This is the case of retinal, obtained from the symmetrical oxidative cleavage of β-carotene. Retinal is the light-absorbing prosthetic group of the rhodopsins, membrane-bound photoreceptors present also in many fungal species. In Mucorales, β-carotene is an intermediary in the synthesis of trisporoids, apocarotenoid derivatives that include the sexual hormones the trisporic acids, and they are also presumably used in the synthesis of sporopollenin polymers. In conclusion, fungi have adapted their ability to produce carotenoids for different non-essential functions, related with stress tolerance or with the synthesis of physiologically active by-products.
Collapse
Affiliation(s)
- Javier Avalos
- Departamento de Genética, Universidad de Sevilla, Apartado 1095, 41080, Seville, Spain,
| | | |
Collapse
|
9
|
Cockell CS, Rettberg P, Rabbow E, Olsson-Francis K. Exposure of phototrophs to 548 days in low Earth orbit: microbial selection pressures in outer space and on early earth. ISME JOURNAL 2011; 5:1671-82. [PMID: 21593797 DOI: 10.1038/ismej.2011.46] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An epilithic microbial community was launched into low Earth orbit, and exposed to conditions in outer space for 548 days on the European Space Agency EXPOSE-E facility outside the International Space Station. The natural phototroph biofilm was augmented with akinetes of Anabaena cylindrica and vegetative cells of Nostoc commune and Chroococcidiopsis. In space-exposed dark controls, two algae (Chlorella and Rosenvingiella spp.), a cyanobacterium (Gloeocapsa sp.) and two bacteria associated with the natural community survived. Of the augmented organisms, cells of A. cylindrica and Chroococcidiopsis survived, but no cells of N. commune. Only cells of Chroococcidiopsis were cultured from samples exposed to the unattenuated extraterrestrial ultraviolet (UV) spectrum (>110 nm or 200 nm). Raman spectroscopy and bright-field microscopy showed that under these conditions the surface cells were bleached and their carotenoids were destroyed, although cell morphology was preserved. These experiments demonstrate that outer space can act as a selection pressure on the composition of microbial communities. The results obtained from samples exposed to >200 nm UV (simulating the putative worst-case UV exposure on the early Earth) demonstrate the potential for epilithic colonization of land masses during that time, but that UV radiation on anoxic planets can act as a strong selection pressure on surface-dwelling organisms. Finally, these experiments have yielded new phototrophic organisms of potential use in biomass and oxygen production in space exploration.
Collapse
|
10
|
Stress induced cross-protection against environmental challenges on prokaryotic and eukaryotic microbes. World J Microbiol Biotechnol 2010; 27:1281-96. [PMID: 25187127 DOI: 10.1007/s11274-010-0584-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 09/20/2010] [Indexed: 02/07/2023]
Abstract
Prokaryotic and eukaryotic microbes thrive successfully in stressful environments such as high osmolarity, acidic or alkali, solar heat and u.v. radiation, nutrient starvation, oxidative stress, and several others. To live under these continuous stress conditions, these microbes must have mechanisms to protect their proteins, membranes, and nucleic acids, as well as other mechanisms that repair nucleic acids. The stress responses in bacteria are controlled by master regulators, which include alternative sigma factors, such as RpoS and RpoH. The sigma factor RpoS integrates multiple signals, such as the general stress response regulators and the sigma factor RpoH regulates the heat shock proteins. These response pathways extensively overlap and are induced to various extents by the same environmental stresses. In eukaryotes, two major pathways regulate the stress responses: stress proteins, termed heat shock proteins (HSP), which appear to be required only for growth during moderate stress, and stress response elements (STRE), which are induced by different stress conditions and these elements result in the acquisition of a tolerant state towards any stress condition. In this review, the mechanisms of stress resistance between prokaryotic and eukaryotic microbes will be described and compared.
Collapse
|
11
|
Schulte F, Mäder J, Kroh LW, Panne U, Kneipp J. Characterization of pollen carotenoids with in situ and high-performance thin-layer chromatography supported resonant Raman spectroscopy. Anal Chem 2010; 81:8426-33. [PMID: 19778038 DOI: 10.1021/ac901389p] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Raman signatures of the carotenoid component are studied in individual pollen grains from different species of trees. The information is obtained as differences in the strong pre-resonant Raman spectra measured before and after photodepletion of the carotenoid molecules. The results provide the first in situ evidence of interspecies differences in pollen carotenoid content, structure, and/or assembly between plant species without prior purification. The analysis of carotenoids in situ is confirmed by high-performance thin-layer chromatography (HPTLC)-supported resonance Raman data measured directly on the HPTLC plates after separation of carotenoids in pollen extracts. Utilization of the in situ, extraction-free procedure in carotenoid analysis will improve sensitivity and structural selectivity and provides insight into carotenoid structure and composition in single pollen grains.
Collapse
Affiliation(s)
- Franziska Schulte
- Chemistry Department, Humboldt Universität zu Berlin, Brook-Taylor-Strasse 2, D-12489 Berlin, Germany
| | | | | | | | | |
Collapse
|
12
|
Mores D, Stavitski E, Kox M, Kornatowski J, Olsbye U, Weckhuysen B. Space- and Time-Resolved In-situ Spectroscopy on the Coke Formation in Molecular Sieves: Methanol-to-Olefin Conversion over H-ZSM-5 and H-SAPO-34. Chemistry 2008; 14:11320-7. [DOI: 10.1002/chem.200801293] [Citation(s) in RCA: 272] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Rangel DEN, Butler MJ, Torabinejad J, Anderson AJ, Braga GUL, Day AW, Roberts DW. Mutants and isolates of Metarhizium anisopliae are diverse in their relationships between conidial pigmentation and stress tolerance. J Invertebr Pathol 2006; 93:170-82. [PMID: 16934287 DOI: 10.1016/j.jip.2006.06.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Revised: 06/21/2006] [Accepted: 06/24/2006] [Indexed: 11/27/2022]
Abstract
Conidial pigmentation is involved in protection against heat and UV radiation in several fungal species. In this study, we compare the tolerance of 17 color mutants of wild-type ARSEF 23 plus 13 color mutants of wild-type ARSEF 2575 of Metarhizium anisopliae var. anisopliae to wet-heat and UV-B or simulated-solar radiation. The stress tolerance of each mutant was compared with that of its wild-type parent, and with the most thermo- and UV-tolerant wild-type Metarhizium we have tested to date, M. anisopliae var. acridum (ARSEF 324). The color of each isolate or mutant was identified with the PANTONE Color Standard book [Eiseman, L., Herbert, L., 1990. The PANTONE((R)) Book of Color: over 1000 color standards: color basics and guidelines for design, fashion, furnishing... and more. Harry N. Abrams, Inc., Publishers, New York]. In addition, the pigments of each mutant or wild-type were extracted and the UV absorbances of the extracts compared to the stress tolerance of those isolates; but no relationships were detected. Color mutants of ARSEF 23, in general, were less UV tolerant than their parent wild-type. With ARSEF 23 and its mutants, conidial pigmentation was important to conidial tolerance to UV-B and simulated-solar radiation; but color had less impact on ARSEF 2575 and its mutants. The ARSEF 2575 color mutants were less variable in UV tolerance than those of ARSEF 23, even though very similar colors occurred in the two groups of mutants. When color mutants of ARSEF 23 reverted to wild-type color they recovered wild-type levels of UV tolerance. Results of UV-B and UV-A exposures of wild-types ARSEF 23 and ARSEF 2575 conidia indicated that they are equally tolerant of UV-A, but differ in UV-B-response. For thermotolerance, several mutants were more heat tolerant than their wild-type parents. Accordingly, darker pigmentation of wild-type isolates was not important to protection against heat.
Collapse
|
14
|
Brehm-Stecher BF, Johnson EA. Single-cell microbiology: tools, technologies, and applications. Microbiol Mol Biol Rev 2004; 68:538-59, table of contents. [PMID: 15353569 PMCID: PMC515252 DOI: 10.1128/mmbr.68.3.538-559.2004] [Citation(s) in RCA: 297] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The field of microbiology has traditionally been concerned with and focused on studies at the population level. Information on how cells respond to their environment, interact with each other, or undergo complex processes such as cellular differentiation or gene expression has been obtained mostly by inference from population-level data. Individual microorganisms, even those in supposedly "clonal" populations, may differ widely from each other in terms of their genetic composition, physiology, biochemistry, or behavior. This genetic and phenotypic heterogeneity has important practical consequences for a number of human interests, including antibiotic or biocide resistance, the productivity and stability of industrial fermentations, the efficacy of food preservatives, and the potential of pathogens to cause disease. New appreciation of the importance of cellular heterogeneity, coupled with recent advances in technology, has driven the development of new tools and techniques for the study of individual microbial cells. Because observations made at the single-cell level are not subject to the "averaging" effects characteristic of bulk-phase, population-level methods, they offer the unique capacity to observe discrete microbiological phenomena unavailable using traditional approaches. As a result, scientists have been able to characterize microorganisms, their activities, and their interactions at unprecedented levels of detail.
Collapse
Affiliation(s)
- Byron F Brehm-Stecher
- Department of Food Microbiology and Toxicology, University of Wisconsin-Madison Food Research Institute, 1925 Willow Drive, Madison, WI 53706, USA
| | | |
Collapse
|
15
|
Abstract
Although the physics of Raman spectroscopy and its application to purely chemical problems is long established, it offers a noninvasive, nondestructive, and water-insensitive probe to problems in the life sciences. Starting from the principles of Raman spectroscopy, its advantages, and methods for signal enhancement, the bulk of the review highlights recent applications. Structural investigations of a hormone receptor, testing the biocompatibility of dental implants, probing soil components and plant tissue alkaloids, and localization of single bacteria are just four problems in which Raman spectroscopy offers a solution or complements existing methods.
Collapse
Affiliation(s)
- Renate Petry
- Institut für Physikalische Chemie Universität Würzburg Am Hubland, 97074 Würzburg, Germany
| | | | | |
Collapse
|
16
|
Holland RJ, Gunasekera TS, Williams KL, Nevalainen KMH. Ultrastructure and properties of Paecilomyces lilacinus spores. Can J Microbiol 2002; 48:879-85. [PMID: 12489777 DOI: 10.1139/w02-083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Strains of the filamentous soil fungus Paecilomyces lilacinus are currently being developed for use as biological control agents against root-knot, cyst, and other plant-parasitic nematodes. The inoculum applied in the field consists mainly of spores. This study was undertaken to examine the size, ultrastructure, and rodlet layers of P. lilacinus spores and the effect of the culture method on structural and functional spore properties. A rodlet layer was identified on aerial spores only. Other differences noted between aerial spores and those produced in submerged culture included the size and appearance of spores and thickness of spore coat layers when examined with transmission electron microscopy. The two spore types differed in UV tolerance, with aerial spores being less sensitive to environmentally relevant UV radiation. Also, viability after drying and storage was better with the aerial spores. Both spore types exhibited similar nematophagous ability.
Collapse
Affiliation(s)
- R J Holland
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | | | | | | |
Collapse
|
17
|
Gessner R, Rösch P, Kiefer W, Popp J. Raman spectroscopy investigation of biological materials by use of etched and silver coated glass fiber tips. Biopolymers 2002; 67:327-30. [PMID: 12012459 DOI: 10.1002/bip.10090] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The results for surface enhanced Raman scattering (SERS) studies on biological samples are reported. Etched and silver coated glass fiber tips were used as a SERS substrate. This method enabled the recording of spectra of biological samples, such as plant tissue or microbiological cells, with a high spatial resolution. Because of the low laser power used with the fiber tips, it was even possible to investigate tissues that are very sensitive toward laser power as it is used in a common micro-Raman setup.
Collapse
Affiliation(s)
- R Gessner
- Institute for Physical Chemistry, Am Hubland, Würzburg D-97074, Germany
| | | | | | | |
Collapse
|