1
|
Nanashima N, Norikura T, Nakano M, Hata C, Horie K. Silencing of ERRα gene represses cell proliferation and induces apoptosis in human skin fibroblasts. Mol Med Rep 2025; 31:6. [PMID: 39450559 PMCID: PMC11529168 DOI: 10.3892/mmr.2024.13370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/08/2024] [Indexed: 10/26/2024] Open
Abstract
Estrogen‑related receptor (ERR) is an orphan nuclear receptor structurally akin to the estrogen receptor. ERR is expressed in tissues with active energy metabolism and regulates intracellular metabolic functions. Additionally, ERRs are known to be strongly expressed in the epidermis of skin tissue, but their functions are unknown. The present study investigated the function of ERRα in human skin fibroblasts. ERRα expressed in human dermal fibroblast TIG113 was knocked down using small interfering (si)RNA and gene expression was comprehensively analyzed using microarrays 48 h later. Pathway analysis was performed using Wikipathways on genes exhibiting expression changes of ≥1.5‑fold. Expression of cell cycle‑related and apoptosis‑related genes was compared using reverse transcription‑quantitative PCR. After treating TIG113 cells with siERRα for 72 h, cell proliferation was assessed using the Cell Counting Kit‑8 or a scratch wound healing assay and apoptotic cells were measured using the Poly Caspase Assay Kit. Cell cycle analysis was performed using flow cytometry. The expression of the ERRα gene was suppressed by siRNA. The expression of genes associated with cell cycle‑related pathways were decreased while that of those associated with apoptosis‑related pathways increased. Furthermore, the expression of cell cycle‑related genes such as cell division cycle 25C, cyclin E and cyclin B1 was decreased and the expression of apoptosis‑related genes such as caspase3 and Fas cell surface death receptor was increased. Cell proliferation was suppressed and the number of apoptotic cells increased ~2‑fold in ERRα‑knockdown TIG113 cells. Cell cycle analysis revealed that the number of cells in the Sub‑G1 phase increased and that in the S and G2/M phases decreased. The present study suggested that ERRα is an essential for the survival of human skin fibroblasts.
Collapse
Affiliation(s)
- Naoki Nanashima
- Department of Nutrition, Faculty of Health Science, Aomori University of Health and Welfare, Aomori 030-8505, Japan
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori 036-8564, Japan
| | - Toshio Norikura
- Department of Nutrition, Faculty of Health Science, Aomori University of Health and Welfare, Aomori 030-8505, Japan
| | - Manabu Nakano
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori 036-8564, Japan
| | - Chie Hata
- Department of Biomedical Data Intelligence, Graduate School of Medicine, Kyoto University, Kyoto 606-8397, Japan
| | - Kayo Horie
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori 036-8564, Japan
| |
Collapse
|
2
|
Zhra M, Qasem RJ, Aldossari F, Saleem R, Aljada A. A Comprehensive Exploration of Caspase Detection Methods: From Classical Approaches to Cutting-Edge Innovations. Int J Mol Sci 2024; 25:5460. [PMID: 38791499 PMCID: PMC11121653 DOI: 10.3390/ijms25105460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The activation of caspases is a crucial event and an indicator of programmed cell death, also known as apoptosis. These enzymes play a central role in cancer biology and are considered one promising target for current and future advancements in therapeutic interventions. Traditional methods of measuring caspase activity such as antibody-based methods provide fundamental insights into their biological functions, and are considered essential tools in the fields of cell and cancer biology, pharmacology and toxicology, and drug discovery. However, traditional methods, though extensively used, are now recognized as having various shortcomings. In addition, these methods fall short of providing solutions to and matching the needs of the rapid and expansive progress achieved in studying caspases. For these reasons, there has been a continuous improvement in detection methods for caspases and the network of pathways involved in their activation and downstream signaling. Over the past decade, newer methods based on cutting-edge state-of-the-art technologies have been introduced to the biomedical community. These methods enable both the temporal and spatial monitoring of the activity of caspases and their downstream substrates, and with enhanced accuracy and precision. These include fluorescent-labeled inhibitors (FLIs) for live imaging, single-cell live imaging, fluorescence resonance energy transfer (FRET) sensors, and activatable multifunctional probes for in vivo imaging. Recently, the recruitment of mass spectrometry (MS) techniques in the investigation of these enzymes expanded the repertoire of tools available for the identification and quantification of caspase substrates, cleavage products, and post-translational modifications in addition to unveiling the complex regulatory networks implicated. Collectively, these methods are enabling researchers to unravel much of the complex cellular processes involved in apoptosis, and are helping generate a clearer and comprehensive understanding of caspase-mediated proteolysis during apoptosis. Herein, we provide a comprehensive review of various assays and detection methods as they have evolved over the years, so to encourage further exploration of these enzymes, which should have direct implications for the advancement of therapeutics for cancer and other diseases.
Collapse
Affiliation(s)
- Mahmoud Zhra
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Rani J. Qasem
- Department of Pharmacology and Pharmacy Practice, College of Pharmacy, Middle East University, Amman 11831, Jordan
| | - Fai Aldossari
- Zoology Department, College of Science, King Saud University, Riyadh 12372, Saudi Arabia
| | - Rimah Saleem
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Ahmad Aljada
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
3
|
Mermans F, Mattelin V, Van den Eeckhoudt R, García-Timermans C, Van Landuyt J, Guo Y, Taurino I, Tavernier F, Kraft M, Khan H, Boon N. Opportunities in optical and electrical single-cell technologies to study microbial ecosystems. Front Microbiol 2023; 14:1233705. [PMID: 37692384 PMCID: PMC10486927 DOI: 10.3389/fmicb.2023.1233705] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/03/2023] [Indexed: 09/12/2023] Open
Abstract
New techniques are revolutionizing single-cell research, allowing us to study microbes at unprecedented scales and in unparalleled depth. This review highlights the state-of-the-art technologies in single-cell analysis in microbial ecology applications, with particular attention to both optical tools, i.e., specialized use of flow cytometry and Raman spectroscopy and emerging electrical techniques. The objectives of this review include showcasing the diversity of single-cell optical approaches for studying microbiological phenomena, highlighting successful applications in understanding microbial systems, discussing emerging techniques, and encouraging the combination of established and novel approaches to address research questions. The review aims to answer key questions such as how single-cell approaches have advanced our understanding of individual and interacting cells, how they have been used to study uncultured microbes, which new analysis tools will become widespread, and how they contribute to our knowledge of ecological interactions.
Collapse
Affiliation(s)
- Fabian Mermans
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Ghent, Belgium
- Department of Oral Health Sciences, KU Leuven, Leuven, Belgium
| | - Valérie Mattelin
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Ruben Van den Eeckhoudt
- Micro- and Nanosystems (MNS), Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium
| | - Cristina García-Timermans
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Josefien Van Landuyt
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Yuting Guo
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Irene Taurino
- Micro- and Nanosystems (MNS), Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium
- Semiconductor Physics, Department of Physics and Astronomy, KU Leuven, Leuven, Belgium
| | - Filip Tavernier
- MICAS, Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium
| | - Michael Kraft
- Micro- and Nanosystems (MNS), Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium
- Leuven Institute of Micro- and Nanoscale Integration (LIMNI), KU Leuven, Leuven, Belgium
| | - Hira Khan
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Ghent, Belgium
| |
Collapse
|
4
|
Wlodkowic D, Jansen M. High-throughput screening paradigms in ecotoxicity testing: Emerging prospects and ongoing challenges. CHEMOSPHERE 2022; 307:135929. [PMID: 35944679 DOI: 10.1016/j.chemosphere.2022.135929] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/09/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
The rapidly increasing number of new production chemicals coupled with stringent implementation of global chemical management programs necessities a paradigm shift towards boarder uses of low-cost and high-throughput ecotoxicity testing strategies as well as deeper understanding of cellular and sub-cellular mechanisms of ecotoxicity that can be used in effective risk assessment. The latter will require automated acquisition of biological data, new capabilities for big data analysis as well as computational simulations capable of translating new data into in vivo relevance. However, very few efforts have been so far devoted into the development of automated bioanalytical systems in ecotoxicology. This is in stark contrast to standardized and high-throughput chemical screening and prioritization routines found in modern drug discovery pipelines. As a result, the high-throughput and high-content data acquisition in ecotoxicology is still in its infancy with limited examples focused on cell-free and cell-based assays. In this work we outline recent developments and emerging prospects of high-throughput bioanalytical approaches in ecotoxicology that reach beyond in vitro biotests. We discuss future importance of automated quantitative data acquisition for cell-free, cell-based as well as developments in phytotoxicity and in vivo biotests utilizing small aquatic model organisms. We also discuss recent innovations such as organs-on-a-chip technologies and existing challenges for emerging high-throughput ecotoxicity testing strategies. Lastly, we provide seminal examples of the small number of successful high-throughput implementations that have been employed in prioritization of chemicals and accelerated environmental risk assessment.
Collapse
Affiliation(s)
- Donald Wlodkowic
- The Neurotox Lab, School of Science, RMIT University, Melbourne, VIC, 3083, Australia.
| | - Marcus Jansen
- LemnaTec GmbH, Nerscheider Weg 170, 52076, Aachen, Germany
| |
Collapse
|
5
|
Fu M, Liu F, Abbas G, Zhou S, Ling S, Zhang W, Peng C, Yang J, Zhou B. Cytotoxicity profiling of decabromodiphenyl ethane to earthworm (Eisenia fetida): Abnormity-recovery-dysregulation physiological pattern reflects the coping mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152607. [PMID: 34971680 DOI: 10.1016/j.scitotenv.2021.152607] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/09/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Response of terrestrial invertebrates to decabromodiphenyl ethane (DBDPE) is an emerging field of research nowadays, while cytotoxicity of DBDPE and self-defense strategies of invertebrates are poorly understood. In this study, earthworms (Eisenia fetida) were incubated in the DBDPE-spiked soil system (10, 30, 50, 70, and 100 mg kg-1 dw) for 28-d uptake. The bioaccumulation and distribution of DBDPE, a series of biomarkers associated with lysosomes/mitochondria, and the apoptosis rate of coelomocytes have been evaluated on the 7th, 14th, 21th, and 28th day. At experimental endpoint, the autophagy/apoptosis phenomena have been observed under transmission electron microscopy and the expression levels of six target genes have been explored. Findings in this paper revealed that: bioaccumulation factors decreased with the incremental DBDPE concentrations in the soil. Intestinal ingestion, but not epidermal contact predominated the absorption of DBDPE. The fluctuations of biomarkers and the apoptosis rate were described as the "abnormity-recovery-dysregulation" pattern. Intense oxidative stress, energy demands, membrane-system damage, pathological organelles, and apoptosis were observed in the treated groups. Conclusively, the cytotoxicity of DBDPE initiated the mitochondrial apoptosis pathway which affected the physiological status of lysosomes, autophagy, and the expression of genes. The coping mechanisms of Eisenia fetida to DBDPE included activating mitochondrial electron transport processes, reorganizing actin cytoskeleton, and initiating autophagy. Earthworms resisted the cytotoxicity of DBDPE to a certain extent, while long-term exposure still resulted in apoptosis of coelomocytes. This study works as a laboratory simulation for the environmental safety evaluation of DBDPE and the detoxification mechanisms for earthworm.
Collapse
Affiliation(s)
- Mengru Fu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fang Liu
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Ghulam Abbas
- Department of chemical engineering, HH campus, university of Gujrat, Gujrat, Pakistan
| | - Shanqi Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Siyuan Ling
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jie Yang
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai 200233, China.
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
6
|
Jin Y, Chen X, Gao Z, Shen X, Fu H, Pan Z, Yan H, Yang B, He Q, Xu Z, Luo P. Bisdemethoxycurcumin alleviates vandetanib-induced cutaneous toxicity in vivo and in vitro through autophagy activation. Biomed Pharmacother 2021; 144:112297. [PMID: 34649218 DOI: 10.1016/j.biopha.2021.112297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 12/20/2022] Open
Abstract
High incidence of cutaneous toxicity ranging from 29.2% to 71.2% has been reported during clinical use of vandetanib, which is a multi-target kinase inhibitor indicated for the treatment of unresectable medullary thyroid carcinoma. The cutaneous toxicity of vandetanib has limited its clinical benefits, but the underlying mechanisms and protective strategies are not well studied. Hence, we firstly established an in vivo model by continuously administrating vandetanib at 55 mg/kg/day to C57BL/6 for 21 days and verified that vandetanib could induce skin rash in vivo, which was consistent with the clinical study. We further cultured HaCaT and NHEK cells, the immortalized or primary human keratinocyte line, and investigated vandetanib (0-10 μM, 0-24 h)-caused alteration in cellular survival and death processes. The western blot showed that the expression level of apoptotic-related protein, c-PARP, c-Caspase 3 and Bax were increased, while the anti-apoptotic protein Bcl2 and MCL1 level were decreased. Meanwhile, vandetanib downregulated mitochondrial membrane potential which in turn caused the release of Cytochrome C, excessive production of reactive oxygen species and DNA damage. Furthermore, we found that 5 μM bisdemethoxycurcumin partially rescued vandetanib-induced mitochondria pathway-dependent keratinocyte apoptosis via activation of autophagy in vivo and in vitro, thereby ameliorated cutaneous toxicity. Conclusively, our study revealed the mechanisms of vandetanib-induced apoptosis in keratinocytes during the occurrence of cutaneous toxicity, and suggested bisdemethoxycurcumin as a potential protective drug. This work provided a potentially promising therapeutic strategy for the treatment of vandetanib-induced cutaneous toxicity.
Collapse
Affiliation(s)
- Ying Jin
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Xueqin Chen
- Department of Oncology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006 Zhejiang, PR China
| | - Zizheng Gao
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Xiaofei Shen
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Huangxi Fu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Zezheng Pan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, PR China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, Zhejiang, PR China; Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, PR China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, PR China.
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, PR China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
7
|
Su X, Chen L. Quantitative single-cell optical technologies. Cytometry A 2021; 99:557-559. [PMID: 34043873 DOI: 10.1002/cyto.a.24463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 01/29/2023]
Affiliation(s)
- Xuantao Su
- School of Microelectronics, Shandong University, Jinan, China
| | - Liangyi Chen
- Institute of Molecular Medicine, Peking University, Beijing, China
| |
Collapse
|
8
|
Sakai H, Shiina I, Shinomiya T, Nagahara Y. BRAP2 inhibits the Ras/Raf/MEK and PI3K/Akt pathways in leukemia cells, thereby inducing apoptosis and inhibiting cell growth. Exp Ther Med 2021; 21:463. [PMID: 33747195 DOI: 10.3892/etm.2021.9894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
Breast cancer susceptibility gene 1 (BRCA1)-associated protein 2 (BRAP2) is a novel protein that binds to BRCA1 and is located in the cytoplasm. BRAP2 has been demonstrated to bind to regulators of the Ras-Raf-MEK and PI3K/Akt pathways, both of which are involved in carcinogenesis. This suggests that BRAP2 may be capable of regulating both pathways. In the present study, the role of BRAP2 in both pathways was clarified during apoptosis and cell proliferation in a leukemia cell line. A BRAP2-deficient leukemia cell line was generated using CRISPR/Cas9, the BRAP2-deficient and parental cells were treated with a Ras, pan-Raf or PI3K inhibitor, and the changes in signal transduction, apoptosis and cell proliferation were evaluated. BRAP2 knockout attenuated the inhibition of signal transduction of the Ras-Raf-MEK and PI3K/Akt pathways by the Ras, pan-Raf or PI3K inhibitor. BRAP2 deletion also suppressed the cytotoxic and apoptotic effects of the Ras and pan-Raf inhibitors. However, the loss of BRAP2 did not suppress the cytotoxicity of the PI3K inhibitor but did suppress the PI3K inhibitor-induced inhibition of cell proliferation. The present results indicated that BRAP2 induces apoptosis and the inhibition of cell proliferation via regulating the Ras-Raf-MEK and PI3K/Akt pathways. In leukemia cells, because the Ras-Raf-MEK and PI3K/Akt pathways are activated aberrantly, the simultaneous inhibition of both pathways is desired. The current results indicated that enhancement of the function of BRAP2 may represent a new target in leukemia treatment.
Collapse
Affiliation(s)
- Hiroharu Sakai
- Division of Materials and Life Sciences, Graduate School of Advanced Science and Technology, Tokyo Denki University, Hatoyama, Saitama 350-0394, Japan
| | - Isamu Shiina
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Takahisa Shinomiya
- Division of Materials and Life Sciences, Graduate School of Advanced Science and Technology, Tokyo Denki University, Hatoyama, Saitama 350-0394, Japan
| | - Yukitoshi Nagahara
- Division of Materials and Life Sciences, Graduate School of Advanced Science and Technology, Tokyo Denki University, Hatoyama, Saitama 350-0394, Japan
| |
Collapse
|
9
|
Phycocyanin of marine Oscillatoria sp. inhibits lipoxygenase by protein-protein interaction-induced change of active site entry apace: A model for non-specific biofunctions of phycocyanins. Int J Biol Macromol 2020; 165:1111-1118. [PMID: 33031854 DOI: 10.1016/j.ijbiomac.2020.09.238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/26/2020] [Accepted: 09/27/2020] [Indexed: 12/16/2022]
Abstract
An overview of the biological properties of phycocyanin (PC) amply illustrates that it may not have any specific functional feature towards any system at which it may elicit a specific function, but for the molecular interactions. Nevertheless, based on existing evidences, it is hypothesized that PC has more than one functional target with the interacting systems; therefore, it has diversity of effects. The mechanism of PC action remains elusive of a comprehensive idea. The present investigation focuses on the pro inflammatory enzyme, lipoxygenase (LOX) inhibiting property of PC purified from Oscillatoria sp. Enzyme kinetics studies show that the molecular composite of PC is required for its inhibition shown on LOX. Isothermal titration calorimetric study proves that one molecule of PC interacts with two molecules of LOX. Molecular dynamics simulation study pertaining to PC-LOX interactions shows it to be appropriate as a model to give molecular mechanistic insight into the varied biological properties of PC, demonstrated elsewhere in experimental studies including animal model studies. It explains that the PC-LOX interaction is of a function-freezing, protein-protein interaction in nature. The wide spectrum of properties of PC might be due to its function as a powerful protein hub showing non-specific protein-protein interactions.
Collapse
|
10
|
Ito SS, Nakagawa Y, Matsubayashi M, Sakaguchi YM, Kobashigawa S, Matsui TK, Nanaura H, Nakanishi M, Kitayoshi F, Kikuchi S, Kajihara A, Tamaki S, Sugie K, Kashino G, Takahashi A, Hasegawa M, Mori E, Kirita T. Inhibition of the ATR kinase enhances 5-FU sensitivity independently of nonhomologous end-joining and homologous recombination repair pathways. J Biol Chem 2020; 295:12946-12961. [PMID: 32675286 DOI: 10.1074/jbc.ra120.013726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/13/2020] [Indexed: 10/23/2022] Open
Abstract
The anticancer agent 5-fluorouracil (5-FU) is cytotoxic and often used to treat various cancers. 5-FU is thought to inhibit the enzyme thymidylate synthase, which plays a role in nucleotide synthesis and has been found to induce single- and double-strand DNA breaks. ATR Ser/Thr kinase (ATR) is a principal kinase in the DNA damage response and is activated in response to UV- and chemotherapeutic drug-induced DNA replication stress, but its role in cellular responses to 5-FU is unclear. In this study, we examined the effect of ATR inhibition on 5-FU sensitivity of mammalian cells. Using immunoblotting, we found that 5-FU treatment dose-dependently induced the phosphorylation of ATR at the autophosphorylation site Thr-1989 and thereby activated its kinase. Administration of 5-FU with a specific ATR inhibitor remarkably decreased cell survival, compared with 5-FU treatment combined with other major DNA repair kinase inhibitors. Of note, the ATR inhibition enhanced induction of DNA double-strand breaks and apoptosis in 5-FU-treated cells. Using gene expression analysis, we found that 5-FU induced the activation of the intra-S cell-cycle checkpoint. Cells lacking BRCA2 were sensitive to 5-FU in the presence of ATR inhibitor. Moreover, ATR inhibition enhanced the efficacy of the 5-FU treatment, independently of the nonhomologous end-joining and homologous recombination repair pathways. These findings suggest that ATR could be a potential therapeutic target in 5-FU-based chemotherapy.
Collapse
Affiliation(s)
- Soichiro S Ito
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Yosuke Nakagawa
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Masaya Matsubayashi
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Yoshihiko M Sakaguchi
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Shinko Kobashigawa
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Takeshi K Matsui
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Nara, Japan; Department of Neurology, Nara Medical University, Kashihara, Nara, Japan
| | - Hitoki Nanaura
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Nara, Japan; Department of Neurology, Nara Medical University, Kashihara, Nara, Japan
| | - Mari Nakanishi
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Fumika Kitayoshi
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Sotaro Kikuchi
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Atsuhisa Kajihara
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Shigehiro Tamaki
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Kazuma Sugie
- Department of Neurology, Nara Medical University, Kashihara, Nara, Japan
| | - Genro Kashino
- Radioisotope Research Center, Nara Medical University, Kashihara, Nara, Japan
| | | | - Masatoshi Hasegawa
- Department of Radiation Oncology, Nara Medical University, Kashihara, Nara, Japan
| | - Eiichiro Mori
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Nara, Japan.
| | - Tadaaki Kirita
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara, Nara, Japan.
| |
Collapse
|
11
|
Darzynkiewicz Z. 40 Years of My Venture with CYTOMETRY. Cytometry A 2020; 97:557-562. [PMID: 32511890 DOI: 10.1002/cyto.a.24043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 04/25/2020] [Indexed: 11/11/2022]
Abstract
Briefly depicted are the publications in CYTOMETRY that received the highest frequency of citations. Among them are seminal papers describing application of metachromatic fluorochrome acridine orange to differentially stain DNA versus RNA or to analyze susceptibility of DNA in situ to denaturation; both features being markers of different sections of the cell cycle including identification of noncycling quiescent cells. The papers reviewing detection of cyclins D1, E, A or B1, each in relation to cell cycle phase, were also among the highly cited ones. The highest citation rates received publications describing development of the TUNEL methodology to detect apoptotic DNA fragmentation, and more recently expression of ϒH2AX to reveal DNA damage. © 2020 International Society for Advancement of Cytometry.
Collapse
|
12
|
Pagels F, Guedes AC, Amaro HM, Kijjoa A, Vasconcelos V. Phycobiliproteins from cyanobacteria: Chemistry and biotechnological applications. Biotechnol Adv 2019; 37:422-443. [DOI: 10.1016/j.biotechadv.2019.02.010] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/27/2019] [Accepted: 02/19/2019] [Indexed: 12/13/2022]
|
13
|
Rangone B, Ferrari B, Astesana V, Masiello I, Veneroni P, Zanellato I, Osella D, Bottone MG. A new platinum-based prodrug candidate: Its anticancer effects in B50 neuroblastoma rat cells. Life Sci 2018; 210:166-176. [PMID: 30144454 DOI: 10.1016/j.lfs.2018.08.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/27/2018] [Accepted: 08/20/2018] [Indexed: 01/11/2023]
Abstract
AIMS Neuroblastoma is a rare cancer that affects children, mostly under the age of 5. This type of cancer starts in very early forms of immature nerve cells or developing cells found in embryo or fetus. To date cisplatin represents one of the most potent antitumor agent known, however, the onset of systemic side effects and the induction of drug resistance limit its use in the clinic for long-term treatment. In the present study we have analysed the effects of a new compound of platinum(IV) conjugates, named Pt(IV)Ac-POA, which is able to generate a synergistic antineoplastic action when released along with cisplatin upon intracellular Pt(IV) → Pt(II) reduction. MAIN METHODS To assess the growth inhibition of the compounds under investigation, a cell viability test, i.e. the resazurin reduction assay was used on the B50 neuroblastoma rat cells. Further analysis on the cell cycle and metabolic alterations were carried out through flow cytometry. Morphological changes and activation of different cell death pathways after treatment, were observed at transmission electron microscope and by immunocytochemistry at fluorescence microscopy. Protein expression was examined by western blot analysis. KEY FINDINGS This compound bearing bioactive axial ligand, such as the active histone deacetylase inhibitor (HDACi) (2-propynyl)octanoic acid (POA), induced cell death through different pathways at a concentration ten times lower than cisplatin. SIGNIFICANCE The results showed that Pt(IV)Ac-POA could represent a promising improvement of Pt-based chemotherapy against neuroblastoma.
Collapse
Affiliation(s)
- Beatrice Rangone
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "A. Avogadro", viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Beatrice Ferrari
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, via Ferrata 9, 27100 Pavia, Italy
| | - Valentina Astesana
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, via Ferrata 9, 27100 Pavia, Italy
| | - Irene Masiello
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, via Ferrata 9, 27100 Pavia, Italy
| | - Paola Veneroni
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, via Ferrata 9, 27100 Pavia, Italy
| | - Ilaria Zanellato
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "A. Avogadro", viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Domenico Osella
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "A. Avogadro", viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Maria Grazia Bottone
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, via Ferrata 9, 27100 Pavia, Italy.
| |
Collapse
|
14
|
Wang JS, Chen YC, Chen WL, Lin CP. Effects of normoxic and hypoxic exercise regimens on lymphocyte apoptosis induced by oxidative stress in sedentary males. Eur J Appl Physiol 2017; 117:2445-2455. [PMID: 28988307 DOI: 10.1007/s00421-017-3731-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/28/2017] [Indexed: 02/04/2023]
Abstract
PURPOSE Oxidative stress-induced lymphocyte apoptosis is linked to hypoxemic individuals suffering from cardiopulmonary disorders or exposed to hypoxic environments. What kind of the exercise strategy under hypoxic condition improves exercise performance and simultaneously minimizes lymphocyte dysfunction caused by oxidative stress has not yet been established. This study elucidates how various exercises regimens with/without hypoxia affect lymphocyte apoptosis induced by oxidative stress. METHODS A total of 60 sedentary males were randomly divided into five groups. Each group (n = 12) received one of the five interventions: hypoxic-absolute exercise (HAT, 50%W max under 15%O2), hypoxic-relative exercise (HRT, 50% heart rate reserve under 15%O2), normoxic exercise (NT, 50%W max under 21%O2), hypoxic control (HC, resting under 15%O2), or normoxic control (NC, resting under 21%O2) for 30 min/day, 5 days/week for 4 weeks. RESULTS Before the intervention, the graded exercise test (GXT, progressive exercise up to VO2max) decreased the surface thiol level on lymphocytes and subsequently augmented the extents of H2O2-induced mitochondria transmembrane potential (MTP) diminishing, caspase 3/8/9 activations, and phosphotidyl serine (PS) exposure in lymphocytes. However, 4 weeks of NT, HRT, or HAT reduced the extents of surface thiol decreasing on lymphocytes and H2O2-induced MTP diminishing, caspase 3/8/9 activations, and PS exposure in lymphocytes following GXT. Moreover, the HAT group exhibited greater improvements in pulmonary ventilation and VO2max than either NT or HRT group did. CONCLUSIONS Exercise training with/without hypoxic exposure effectively alleviates lymphocyte apoptosis induced by oxidative stress following strenuous exercise. However, the HAT is superior to the NT or HRT for enhancing aerobic capacity.
Collapse
Affiliation(s)
- Jong-Shyan Wang
- Healthy Aging Research Center, Graduate Institute of Rehabilitation Science, Medical College, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, 333, Taiwan. .,Department of Physical Medicine and Rehabilitation, Heart Failure Center, Chang Gung Memorial Hospital, Keelung, Taiwan. .,Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan.
| | - Yi-Ching Chen
- Department of Rehabilitation Science, Jenteh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Wan-Ling Chen
- Healthy Aging Research Center, Graduate Institute of Rehabilitation Science, Medical College, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, 333, Taiwan
| | - Chin-Pu Lin
- Healthy Aging Research Center, Graduate Institute of Rehabilitation Science, Medical College, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, 333, Taiwan
| |
Collapse
|
15
|
Jiang L, Wang Y, Yin Q, Liu G, Liu H, Huang Y, Li B. Phycocyanin: A Potential Drug for Cancer Treatment. J Cancer 2017; 8:3416-3429. [PMID: 29151925 PMCID: PMC5687155 DOI: 10.7150/jca.21058] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/30/2017] [Indexed: 12/19/2022] Open
Abstract
Phycocyanin isolated from marine organisms has the characteristics of high efficiency and low toxicity, and it can be used as a functional food. It has been reported that phycocyanin has anti-oxidative function, anti-inflammatory activity, anti-cancer function, immune enhancement function, liver and kidney protection pharmacological effects. Thus, phycocyanin has an important development and utilization as a potential drug, and phycocyanin has become a new hot spot in the field of drug research. So far, there are more and more studies have shown that phycocyanin has the anti-cancer effect, which can block the proliferation of cancer cells and kill cancer cells. Phycocyanin exerts anti-cancer activity by blocking tumor cell cell cycle, inducing tumor cell apoptosis and autophagy, thereby phycocyanin can serve as a promising anti-cancer agent. This review discusses the therapeutic use of phycocyanin and focuses on the latest advances of phycocyanin as a promising anti-cancer drug.
Collapse
Affiliation(s)
- Liangqian Jiang
- Department of Genetics and Cell Biology, Basic medical college, 308 Ningxia Road, Qingdao University, Qingdao, China, 266071
| | - Yujuan Wang
- Department of Genetics and Cell Biology, Basic medical college, 308 Ningxia Road, Qingdao University, Qingdao, China, 266071
| | - Qifeng Yin
- Department of Genetics and Cell Biology, Basic medical college, 308 Ningxia Road, Qingdao University, Qingdao, China, 266071
| | - Guoxiang Liu
- Department of Genetics and Cell Biology, Basic medical college, 308 Ningxia Road, Qingdao University, Qingdao, China, 266071
| | - Huihui Liu
- Department of Genetics and Cell Biology, Basic medical college, 308 Ningxia Road, Qingdao University, Qingdao, China, 266071
| | - Yajing Huang
- Basic medical college, 308 Ningxia Road, Qingdao University, Qingdao, China, 266071
| | - Bing Li
- Department of Genetics and Cell Biology, Basic medical college, 308 Ningxia Road, Qingdao University, Qingdao, China, 266071
| |
Collapse
|
16
|
Acquired temozolomide resistance in human glioblastoma cell line U251 is caused by mismatch repair deficiency and can be overcome by lomustine. Clin Transl Oncol 2017; 20:508-516. [PMID: 28825189 DOI: 10.1007/s12094-017-1743-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/17/2017] [Indexed: 12/31/2022]
Abstract
PURPOSE Glioblastoma multiforme (GBM) is the most common malignant primary brain tumor in adults. While the alkylating agent temozolomide (TMZ) has prolonged overall survival, resistance evolution represents an important clinical problem. Therefore, we studied the effectiveness of radiotherapy and CCNU in an in vitro model of acquired TMZ resistance. METHODS We studied the MGMT-methylated GBM cell line U251 and its in vitro derived TMZ-resistant subline, U251/TMZ-R. Cytotoxicity of TMZ, CCNU, and radiation was tested. Both cell lines were analyzed for MGMT promotor status and expression of mismatch repair genes (MMR). The influence of MMR inhibition by cadmium chloride (CdCl2) on the effects of both drugs was evaluated. RESULTS During the resistance evolution process in vitro, U251/TMZ-R developed MMR deficiency, but MGMT status did not change. U251/TMZ-R cells were more resistant to TMZ than parental U251 cells (cell viability: 92.0% in U251/TMZ-R/69.2% in U251; p = 0.032) yet more sensitive to CCNU (56.4%/80.8%; p = 0.023). The effectiveness of radiotherapy was not reduced in the TMZ-resistant cell line. Combination of CCNU and TMZ showed promising results for both cell lines and overcame resistance. CdCl2-induced MMR deficiency increased cytotoxicity of CCNU. CONCLUSION Our results confirm MMR deficiency as a crucial process for resistance evolution to TMZ. MMR-deficient TMZ-resistant GBM cells were particularly sensitive to CCNU and to combined CCNU/TMZ. Effectiveness of radiotherapy was preserved in TMZ-resistant cells. Consequently, CCNU might be preferentially considered as a treatment option for recurrent MGMT-methylated GBM and may even be suitable for prevention of resistance evolution in primary treatment.
Collapse
|
17
|
Choi J, Hong SC, Kim W, Jung JH. Highly Enriched, Controllable, Continuous Aerosol Sampling Using Inertial Microfluidics and Its Application to Real-Time Detection of Airborne Bacteria. ACS Sens 2017; 2:513-521. [PMID: 28723191 DOI: 10.1021/acssensors.6b00753] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We report a novel microfluidic technique for sampling of aerosols into liquids. The two-phase fluid, sampling air and collecting liquid, forms a stratified flow in the curved microchannel. By passing fluids through the curved region, the particles are transferred from air into the liquid phase by the particle centrifugal and drag forces. This microfluidic-based aerosol-into-liquid sampling system, called the MicroSampler, is driven by particle inertial differences. To evaluate the physical particle collection efficiency of the MicroSampler, we used standard polystyrene-latex (PSL) particles ranging in size from 0.6 to 2.1 μm and measured particle concentrations upstream and downstream of the MicroSampler with an aerodynamic particle sizer. The cutoff diameter of particle collection was selected controlling the air flow velocity (microfluidic air flow of 0.6 L/min showed a particle collection efficiency of ∼98% at a particle diameter of 1 μm), and continuous enriched particle sampling was possible for real-time postprocessing application. With regard to biological collection efficiency, the MicroSampler showed superior microbial recovery (Staphylococcus epidermidis) compared to the conventional BioSampler technique. These results indicate that our MicroSampler can be used as a portable, cost-effective, simple, and continuous airborne microorganism collector for applications in real-time bioaerosol detection.
Collapse
Affiliation(s)
- Jeongan Choi
- Center
for Environment, Health, and Welfare Research, KIST School, Korea University of Science and Technology (UST), Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department
of Mechanical Science and Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Seung Chan Hong
- Center
for Environment, Health, and Welfare Research, KIST School, Korea University of Science and Technology (UST), Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department
of Mechanical and Aerospace Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Woojin Kim
- Technology Convergence R&BD Group, Korea Institute of Industrial Technology, Daegu 42994, Republic of Korea
| | - Jae Hee Jung
- Center
for Environment, Health, and Welfare Research, KIST School, Korea University of Science and Technology (UST), Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Green School, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
18
|
Wang Y, Yuan S, Li L, Yang D, Xu C, Wang S, Zhang D. Novel proapoptotic agent SM-1 enhances the inhibitory effect of 5-fluorouracil on colorectal cancer cells in vitro and in vivo. Oncol Lett 2017; 13:4762-4768. [PMID: 28599477 PMCID: PMC5452999 DOI: 10.3892/ol.2017.6043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/03/2017] [Indexed: 12/22/2022] Open
Abstract
5-Fluorouracil (5-FU) is one of the most important agents used to treat colorectal cancer. However, the therapeutic effect of 5-FU on colon cancer is limited. SM-1 is a novel type of proapoptotic agent that directly activates procaspase-3 to caspase-3, leading to apoptosis in human cancer cells. The aim of the present study was to evaluate the antitumor effects of 5-FU in combination with SM-1. The human colorectal cancer cell lines HCT116 and LoVo were cultured in the presence of SM-1 and 5-FU. The combination of SM-1 and 5-FU treatment exhibited increased proliferation inhibitory effects compared with 5-FU treatment alone in HCT116 and LoVo cells, as determined using an MTT assay. SM-1 significantly decreased the half-maximal inhibitory concentration of 5-FU from 8.07±0.49 to 2.55±0.41 µmol/l in HCT116 cells, and from 7.90±0.98 to 3.14±0.81 µmol/l in LoVo cells. Similarly, the apoptotic activity was increased to 47.95 and 35.19% in HCT116 and LoVo cells, respectively, as determined using Annexin V/propidium iodide staining and flow cytometry. The combination of SM-1 and 5-FU treatment led to significantly increased caspase-3 activity compared with either compound alone. The reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis revealed the downregulation of B-cell lymphoma 2 and Survivin, and the upregulation of apoptosis regulator Bcl-2-associated X protein and cleaved poly (ADP-ribose) polymerase in HCT116 and LoVo cells. In addition, RT-qPCR identified downregulation of X-linked inhibitor of apoptosis protein mRNA. 5-FU and SM-1 treatment in combination increased tumor proliferation inhibition in HCT116 and LoVo xenograft mouse models of colorectal cancer, compared with SM-1 or 5-FU treatment alone. SM-1 significantly enhanced the antitumor activity of 5-FU in colorectal cancer. These improved effects were due to increased activity of the apoptotic signaling pathway.
Collapse
Affiliation(s)
- Ying Wang
- Department of Pharmacology, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Shoujun Yuan
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Linna Li
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Dexuan Yang
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Chengwang Xu
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Shanshan Wang
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Danshen Zhang
- Department of Pharmacology, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China.,College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, P.R. China
| |
Collapse
|
19
|
Chen X, Wu QS, Meng FC, Tang ZH, Chen X, Lin LG, Chen P, Qiang WA, Wang YT, Zhang QW, Lu JJ. Chikusetsusaponin IVa methyl ester induces G1 cell cycle arrest, triggers apoptosis and inhibits migration and invasion in ovarian cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:1555-1565. [PMID: 27823619 DOI: 10.1016/j.phymed.2016.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/20/2016] [Accepted: 09/04/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Panacis Japonici Rhizoma (PJR) is one of the most famous Chinese medical herbs that is known for exhibiting potential anti-cancer effects. PURPOSE This study aims to isolate and investigate the anti-cancer potential of saponins from PJR in ovarian cancer cells. METHODS The compounds were separated by comprehensive chromatographic methods. By comparison of the 1H- and 13C NMR data, as well as the HR-ESI-MS data, with the corresponding references, the structures of compounds were determined. MTT assay was performed to evaluate cell viability, along with flow cytometry for cell cycle analysis. JC-1 staining, Annexin V-PI double staining as well as Hoechst 33; 342 staining were used for detecting cell apoptosis. Western blot analysis was conducted to determine the relative protein level. Transwell assays were performed to investigate the effect of the saponin on cell migration and invasion and zymography experiments were used to detect the enzymatic activities. RESULTS Eleven saponins were isolated from PJR and their anti-proliferative effects were evaluated in human ovarian cancer cells. Chikusetsusaponin IVa methyl ester (1) exhibited the highest anti-proliferative potential among these isolates with the IC50 values at less than 10 µM in both ovarian cancer A2780 and HEY cell lines. Compound 1 induced G1 cell cycle arrest accompanied with an S phase decrease, and down-regulated the expression of cyclin D1, CDK2, and CDK6. Further study showed that compound 1 effectively decreased the cell mitochondrial membrane potential, increased the annexin V positive cells and nuclear chromatin condensation, as well as enhanced the expression of cleaved PARP, Bax and cleaved-caspase 3 while decreasing that of Bcl-2. Moreover, compound 1 suppressed the migration and invasion of HEY and A2780 cells, down-regulated the expression of Cdc42, Rac, RohA, MMP2 and MMP9, and decreased the enzymatic activities of MMP2 and MMP9. CONCLUSION These results provide a comprehensive evaluation of compound 1 as a potential agent for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Qiu-Shuang Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Fan-Cheng Meng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Zheng-Hai Tang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Li-Gen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Ping Chen
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wen-An Qiang
- Department of Obstetrics and Gynecology-Division of Reproductive Science in Medicine, Department of Pathology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yi-Tao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Qing-Wen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
20
|
Zhang Y, Sriraman SK, Kenny HA, Luther E, Torchilin V, Lengyel E. Reversal of Chemoresistance in Ovarian Cancer by Co-Delivery of a P-Glycoprotein Inhibitor and Paclitaxel in a Liposomal Platform. Mol Cancer Ther 2016; 15:2282-2293. [PMID: 27466355 DOI: 10.1158/1535-7163.mct-15-0986] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 07/13/2016] [Indexed: 01/23/2023]
Abstract
The overexpression of permeability-glycoprotein (P-gp), an ABC transporter involved in the cellular exclusion of chemotherapeutic drugs, is a major factor in paclitaxel-resistant ovarian cancer. However, in clinical trials, co-administration of P-gp inhibitors and anticancer drugs has not resulted in the efficient reversal of drug resistance. To improve administration, we encapsulated the third-generation P-gp inhibitor tariquidar (XR-9576, XR), alone or in combination with paclitaxel (PCT) in liposomes (LP). After optimization, the liposomes demonstrated favorable physicochemical properties and the ability to reverse chemoresistance in experiments using chemosensitive/chemoresistant ovarian cancer cell line pairs. Analyzing publicly available datasets, we found that overexpression of P-gp in ovarian cancer is associated with a shorter progression-free and overall survival. In vitro, LP(XR) significantly increased the cellular retention of rhodamine 123, a P-gp substrate. LP(XR,PCT) synergistically inhibited cell viability, blocked proliferation, and caused G2-M arrest in paclitaxel-resistant SKOV3-TR and HeyA8-MDR cell lines overexpressing P-gp. Holographic imaging cytometry revealed that LP(XR,PCT) treatment of SKOV3-TR cells induced almost complete mitotic arrest, whereas laser scanning cytometry showed that the treatment induced apoptosis. In proof-of-concept preclinical studies, LP(XR,PCT), when compared with LP(PCT), significantly reduced tumor weight (43.2% vs. 16.9%, P = 0.0007) and number of metastases (44.4% vs. 2.8%, P = 0.012) in mice bearing orthotopic HeyA8-MDR ovarian tumors. In the xenografts, LP(XR,PCT) efficiently induced apoptosis and impaired proliferation. Our findings suggest that co-delivery of a P-gp inhibitor and paclitaxel using a liposomal platform can sensitize paclitaxel-resistant ovarian cancer cells to paclitaxel. LP(XR,PCT) should be considered for clinical testing in patients with P-gp-overexpressing tumors. Mol Cancer Ther; 15(10); 2282-93. ©2016 AACR.
Collapse
Affiliation(s)
- Yilin Zhang
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, Illinois
| | - Shravan Kumar Sriraman
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, Massachusetts
| | - Hilary A Kenny
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, Illinois
| | - Ed Luther
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, Massachusetts
| | - Vladimir Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, Massachusetts
| | - Ernst Lengyel
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, Illinois.
| |
Collapse
|
21
|
Liu Y, Zheng J, Zhang Y, Wang Z, Yang Y, Bai M, Dai Y. Fucoxanthin Activates Apoptosis via Inhibition of PI3K/Akt/mTOR Pathway and Suppresses Invasion and Migration by Restriction of p38-MMP-2/9 Pathway in Human Glioblastoma Cells. Neurochem Res 2016; 41:2728-2751. [DOI: 10.1007/s11064-016-1989-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/15/2016] [Accepted: 06/22/2016] [Indexed: 10/21/2022]
|
22
|
Lin CHS, Chen J, Zhang Z, Johnson GVW, Cooper AJL, Feola J, Bank A, Shein J, Ruotsalainen HJ, Pihlajaniemi TA, Goligorsky MS. Endostatin and transglutaminase 2 are involved in fibrosis of the aging kidney. Kidney Int 2016; 89:1281-92. [PMID: 27165830 DOI: 10.1016/j.kint.2016.01.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 01/25/2016] [Accepted: 01/28/2016] [Indexed: 12/21/2022]
Abstract
Endostatin (EST), an antiangiogenic factor, is enriched in aging kidneys. EST is also an interactive partner of transglutaminase 2 (TG2), an enzyme that cross-links extracellular matrix proteins. Here we tested whether EST and TG2 play a role in the fibrosis of aging. In wild-type mice, aging kidneys exhibited a 2- to 4-fold increase in TG2 paralleled by increased cross-linked extracellular matrix proteins and fibrosis. Mice transgenic to express EST showed renal fibrosis at a young age. One-month delivery of EST via minipumps to young mice showed increased renal fibrosis that became more robust when superimposed on folic acid-induced nephropathy. Upregulated TG2 and impaired renal function were apparent with EST delivery combined with folic acid-induced nephropathy. Subcapsular injection of TG2 and/or EST into kidneys of young mice not only induced interstitial fibrosis, but also increased the proportion of senescent cells. Thus, kidney fibrosis in aging may represent a natural outcome of upregulated EST and TG2, but more likely it appears to be a result of cumulative stresses occurring on the background of synergistically acting geronic (aging) proteins, EST and TG2.
Collapse
Affiliation(s)
- Chi Hua Sarah Lin
- Department of Medicine, Renal Research Institute, New York Medical College, Valhalla, New York, USA; Department of Pharmacology, Renal Research Institute, New York Medical College, Valhalla, New York, USA; Department of Physiology, Renal Research Institute, New York Medical College, Valhalla, New York, USA
| | - Jun Chen
- Department of Medicine, Renal Research Institute, New York Medical College, Valhalla, New York, USA; Department of Pharmacology, Renal Research Institute, New York Medical College, Valhalla, New York, USA; Department of Physiology, Renal Research Institute, New York Medical College, Valhalla, New York, USA
| | - Zhongtao Zhang
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, USA
| | - Gail V W Johnson
- Department of Anesthesiology, University of Rochester, Rochester, New York, USA
| | - Arthur J L Cooper
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, USA
| | - Julianne Feola
- Department of Anesthesiology, University of Rochester, Rochester, New York, USA
| | - Alexander Bank
- Department of Medicine, Renal Research Institute, New York Medical College, Valhalla, New York, USA; Department of Pharmacology, Renal Research Institute, New York Medical College, Valhalla, New York, USA; Department of Physiology, Renal Research Institute, New York Medical College, Valhalla, New York, USA
| | - Jonathan Shein
- Department of Medicine, Renal Research Institute, New York Medical College, Valhalla, New York, USA; Department of Pharmacology, Renal Research Institute, New York Medical College, Valhalla, New York, USA; Department of Physiology, Renal Research Institute, New York Medical College, Valhalla, New York, USA
| | - Heli J Ruotsalainen
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Taina A Pihlajaniemi
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Michael S Goligorsky
- Department of Medicine, Renal Research Institute, New York Medical College, Valhalla, New York, USA; Department of Pharmacology, Renal Research Institute, New York Medical College, Valhalla, New York, USA; Department of Physiology, Renal Research Institute, New York Medical College, Valhalla, New York, USA.
| |
Collapse
|
23
|
Yu J, Xu H, Shen X, Jiang H. Ghrelin protects MES23.5 cells against rotenone via inhibiting mitochondrial dysfunction and apoptosis. Neuropeptides 2016; 56:69-74. [PMID: 26459609 DOI: 10.1016/j.npep.2015.09.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 09/25/2015] [Accepted: 09/29/2015] [Indexed: 12/21/2022]
Abstract
Ghrelin is an endogenous ligand for the growth hormone secretagogue (GHS) receptor and has several important physiological functions. Recently, particular attention has been paid to its neuroprotective effect. Rotenone is used to investigate the pathogenesis of Parkinson's disease (PD) for its ability to inhibit mitochondrial complex I. The current study was carried out to investigate the neuroprotective effects of ghrelin against rotenone in MES 23.5 dopaminergic cells and explored the possible mechanisms underlying this protection. Our results showed that rotenone induced significant decrease in cell viability which was counteracted by ghrelin treatment. In addition, rotenone challenge reduced mitochondrial membrane potential, inhibited the activity of mitochondrial complex I and depressed cytochrome C release from mitochondria. This mitochondrial dysfunction was reversed by ghrelin treatment. Furthermore, our results demonstrated that ghrelin protected MES23.5 cells against rotenone-induced apoptosis by inhibiting activation of caspase-3. Overall, our findings showed ghrelin provided protective effects on MES23.5 dopaminergic cells against rotenone via restoring mitochondrial dysfunction and inhibiting mitochondrial dependent apoptosis.
Collapse
Affiliation(s)
- Jianhan Yu
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Medical College of Qingdao University, Qingdao, 266071, China
| | - Huamin Xu
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Medical College of Qingdao University, Qingdao, 266071, China
| | - Xiaoli Shen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Medical College of Qingdao University, Qingdao, 266071, China
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Medical College of Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
24
|
Pan X, Jiang L, Zhong L, Geng C, Jia L, Liu S, Guan H, Yang G, Yao X, Piao F, Sun X. Arsenic induces apoptosis by the lysosomal-mitochondrial pathway in INS-1 cells. ENVIRONMENTAL TOXICOLOGY 2016; 31:133-41. [PMID: 25077447 DOI: 10.1002/tox.22027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 07/06/2014] [Accepted: 07/13/2014] [Indexed: 05/02/2023]
Abstract
Recently, long term arsenic exposure was considered to be associated with an increased risk of diabetes mellitus. While a relation of cause-and-effect between apoptosis of pancreatic β-cells and arsenic exposure, the precise mechanisms of these events remains unclear. The aim of this study was to explore arsenic-induced pancreatic β-cell apoptosis and the mechanisms of through the possible link between lysosomal and the mitochondrial apoptotic pathway. After exposure to 10 μM of arsenic, the reactive oxygen species (ROS) level was significantly increased at 12 h, while the mitochondrial membrane potential was reduced at 24 h and the lysosomal membrane integrity was disrupted at 48 h. A significant increase in protein expression for cytochrome c was also observed using Western blot analysis after exposure to arsenic for 48 h. To further demonstrate that arsenic reduced the lysosomal membrane integrity, cells pretreated with NH4 Cl and exposed to arsenic harbored a lower fluorescence increase than cells that were only exposed to arsenic. In addition, apoptosis was mesured using Hoechst 33342/PI dual staining by microscopy and annexin V-FITC/propidium iodide dual staining by flow cytometry. The results show an increased uptake of the arsenic dose and the cells changed from dark blue to light blue, karyopyknosis, nuclear chromatin condensation, side set or fracture, and a correlation was found between the number of apoptotic cells and arsenic dose. The result of present study suggest that arsenic may induce pancreatic β-cell apoptosis through activation of the lysosome-mitochondrial pathway.
Collapse
Affiliation(s)
- Xiao Pan
- Department of Ocuupational and Environmental Health, College of Public Health, Dalian Medical University, No. 9 Western Section, Lvshun South Street, Dalian, 116044, People's Republic of China
| | - Liping Jiang
- Natural Products Engineering Technology Research Center, Dalian Medical University, No. 9 Western Section, Lvshun South Street, Dalian, 116044, People's Republic of China
| | - Laifu Zhong
- Natural Products Engineering Technology Research Center, Dalian Medical University, No. 9 Western Section, Lvshun South Street, Dalian, 116044, People's Republic of China
| | - Chengyan Geng
- Natural Products Engineering Technology Research Center, Dalian Medical University, No. 9 Western Section, Lvshun South Street, Dalian, 116044, People's Republic of China
| | - Li Jia
- College of Laboratory Medicine, Dalian Medical University, No. 9 Western Section, Lvshun South Street, Dalian, 116044, People's Republic of China
| | - Shuang Liu
- Department of Ocuupational and Environmental Health, College of Public Health, Dalian Medical University, No. 9 Western Section, Lvshun South Street, Dalian, 116044, People's Republic of China
| | - Huai Guan
- Department of Ocuupational and Environmental Health, College of Public Health, Dalian Medical University, No. 9 Western Section, Lvshun South Street, Dalian, 116044, People's Republic of China
| | - Guang Yang
- Natural Products Engineering Technology Research Center, Dalian Medical University, No. 9 Western Section, Lvshun South Street, Dalian, 116044, People's Republic of China
| | - Xiaofeng Yao
- Department of Ocuupational and Environmental Health, College of Public Health, Dalian Medical University, No. 9 Western Section, Lvshun South Street, Dalian, 116044, People's Republic of China
| | - Fengyuan Piao
- Department of Ocuupational and Environmental Health, College of Public Health, Dalian Medical University, No. 9 Western Section, Lvshun South Street, Dalian, 116044, People's Republic of China
| | - Xiance Sun
- Department of Ocuupational and Environmental Health, College of Public Health, Dalian Medical University, No. 9 Western Section, Lvshun South Street, Dalian, 116044, People's Republic of China
- Natural Products Engineering Technology Research Center, Dalian Medical University, No. 9 Western Section, Lvshun South Street, Dalian, 116044, People's Republic of China
| |
Collapse
|
25
|
Grimaldi M, Santin G, Insolia V, Dal Bo V, Piccolini VM, Veneroni P, Barni S, Verri M, De Pascali SA, Fanizzi FP, Bernocchi G, Bottone MG. [Pt(O,O'-acac)(γ-acac)(DMS)] versus cisplatin: apoptotic effects in B50 neuroblastoma cells. Histochem Cell Biol 2016; 145:587-601. [PMID: 26748644 DOI: 10.1007/s00418-015-1396-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2015] [Indexed: 12/19/2022]
Abstract
Cisplatin is one of the most active chemotherapeutic agents used in the treatment of childhood and adult malignancies. Cisplatin induces cell death through different pathways. Despite its effectiveness, the continued clinical use of cisplatin is limited by onset of severe side effects (nephrotoxicity, ototoxicity and neurotoxicity) and drug resistance. Therefore, one of the main experimental oncology purpose is related to the search for new platinum-based drugs to create different types of adducts or more specific and effective subcellular targets. Thus, [Pt(O,O'-acac)(γ-acac)(DMS)], which reacts preferentially with protein thiols or thioether, was synthesized. In our research, different approaches were used to compare cisplatin and [Pt(O,O'-acac)(γ-acac)(DMS)] effects in B50 rat neuroblastoma cells. Our results, using immunocytochemical, cytometric and morphological techniques, showed that these compounds exert a cytostatic action and activate apoptosis with different pathways. Long-term effects demonstrated that [Pt(O,O'-acac)(γ-acac)(DMS)] exerts cytotoxic effects in neuronal B50 cell line not inducing drug resistance. Analysis was performed both to compare the ability of these platinum compounds to induce cell death and to investigate the intracellular mechanisms at the basis of their cytotoxicity.
Collapse
Affiliation(s)
- Maddalena Grimaldi
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Giada Santin
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Violetta Insolia
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Veronica Dal Bo
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Valeria Maria Piccolini
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Paola Veneroni
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Sergio Barni
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Manuela Verri
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Sandra Angelica De Pascali
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Francesco Paolo Fanizzi
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Graziella Bernocchi
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Maria Grazia Bottone
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100, Pavia, Italy.
| |
Collapse
|
26
|
Choi J, Kang M, Jung JH. Integrated micro-optofluidic platform for real-time detection of airborne microorganisms. Sci Rep 2015; 5:15983. [PMID: 26522006 PMCID: PMC4629162 DOI: 10.1038/srep15983] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 10/06/2015] [Indexed: 01/04/2023] Open
Abstract
We demonstrate an integrated micro-optofluidic platform for real-time, continuous detection and quantification of airborne microorganisms. Measurements of the fluorescence and light scattering from single particles in a microfluidic channel are used to determine the total particle number concentration and the microorganism number concentration in real-time. The system performance is examined by evaluating standard particle measurements with various sample flow rates and the ratios of fluorescent to non-fluorescent particles. To apply this method to real-time detection of airborne microorganisms, airborne Escherichia coli, Bacillus subtilis, and Staphylococcus epidermidis cells were introduced into the micro-optofluidic platform via bioaerosol generation, and a liquid-type particle collection setup was used. We demonstrate successful discrimination of SYTO82-dyed fluorescent bacterial cells from other residue particles in a continuous and real-time manner. In comparison with traditional microscopy cell counting and colony culture methods, this micro-optofluidic platform is not only more accurate in terms of the detection efficiency for airborne microorganisms but it also provides additional information on the total particle number concentration.
Collapse
Affiliation(s)
| | | | - Jae Hee Jung
- Center for Environment, Health, and Welfare Research, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| |
Collapse
|
27
|
Mikosik A, Henc I, Ruckemann-Dziurdzińska K, Frąckowiak JE, Płoszyńska A, Balcerska A, Bryl E, Witkowski JM. Increased μ-Calpain Activity in Blasts of Common B-Precursor Childhood Acute Lymphoblastic Leukemia Correlates with Their Lower Susceptibility to Apoptosis. PLoS One 2015; 10:e0136615. [PMID: 26317226 PMCID: PMC4552652 DOI: 10.1371/journal.pone.0136615] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 07/23/2015] [Indexed: 12/11/2022] Open
Abstract
Childhood acute lymphoblastic leukemia (ALL) blasts are characterized by inhibited apoptosis promoting fast disease progress. It is known that in chronic lymphocytic and acute myeloid leukemias the reduced apoptosis is strongly related with the activity of calpain-calpastatin system (CCS) composed of cytoplasmic proteases--calpains--performing the modulatory proteolysis of key proteins involved in cell proliferation and apoptosis, and of their endogenous inhibitor--calpastatin. Here, the CCS protein abundance and activity was for the first time studied in childhood ALL blasts and in control bone marrow CD19+ B cells by semi-quantitative flow cytometry and western blotting of calpastatin fragments resulting from endogenous calpain activity. Significantly higher μ-calpain (CAPN1) gene transcription, protein amounts and activity (but not those of m-calpain), with calpastatin amount and transcription of its gene (CAST) greatly varying were observed in CD19(+) ALL blasts compared to control cells. Significant inverse relation between the amount/activity of calpain and spontaneous apoptosis was noted. Patients older than 10 years (considered at higher risk) displayed increased amounts and activities of blast calpain. Finally, treatment of blasts with the tripeptide calpain inhibitors II and IV significantly and in dose-dependent fashion increased the percentage of blasts entering apoptosis. Together, these findings make the CCS a potential new predictive tool and therapeutic target in childhood ALL.
Collapse
Affiliation(s)
- Anna Mikosik
- Department of Pathophysiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Izabella Henc
- Department of Pathology and Experimental Rheumatology, Medical University of Gdańsk, Gdańsk, Poland
| | | | | | - Anna Płoszyńska
- Clinic of Pediatrics, Hematology and Oncology, Medical University of Gdańsk, Gdańsk, Poland
| | - Anna Balcerska
- Clinic of Pediatrics, Hematology and Oncology, Medical University of Gdańsk, Gdańsk, Poland
| | - Ewa Bryl
- Department of Pathology and Experimental Rheumatology, Medical University of Gdańsk, Gdańsk, Poland
| | - Jacek M. Witkowski
- Department of Pathophysiology, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
28
|
Tulini FL, Hymery N, Choiset Y, Chobert JM, Haertlé T, De Martinis ECP, Le Blay G. Milk fermented with the probiotic candidate Lactobacillus paracasei FT700 induces differentiation of monocytes toward macrophages in vitro. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
29
|
Lee BS, Jan YD, Huang GS, Huang CH, Chou HY, Wang JS, Tseng WY. Effect of dentin bonding agent diffusing through dentin slices on the reactive oxygen species production and apoptosis of pulpal cells. J Formos Med Assoc 2015; 114:339-46. [DOI: 10.1016/j.jfma.2012.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 12/03/2012] [Accepted: 12/10/2012] [Indexed: 12/24/2022] Open
|
30
|
Chang YH, Leu WJ, Datta A, Hsiao HC, Lin CH, Guh JH, Huang JH. Catalytic transfer hydrogenation and anticancer activity of arene–ruthenium compounds incorporating bi-dentate precursors. Dalton Trans 2015; 44:16107-18. [DOI: 10.1039/c5dt01310k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of arene–Ru compounds were synthesized and their catalytic transfer hydrogenation and anticancer activity towards human hormone-refractory prostate cancer were investigated.
Collapse
Affiliation(s)
- Yu-Hsiang Chang
- Department of Chemistry
- National Changhua University of Education
- Changhua
- Taiwan 50058
| | - Wohn-Jenn Leu
- School of Pharmacy
- National Taiwan University
- Taipei
- Taiwan 100
| | - Amitabha Datta
- Department of Chemistry
- National Changhua University of Education
- Changhua
- Taiwan 50058
| | - Hung-Chang Hsiao
- Department of Chemistry
- National Changhua University of Education
- Changhua
- Taiwan 50058
| | - Chia-Her Lin
- Department of Chemistry
- Chung-Yuan Christian University
- Chun-Li 320
- Taiwan
| | - Jih-Hwa Guh
- School of Pharmacy
- National Taiwan University
- Taipei
- Taiwan 100
| | - Jui-Hsien Huang
- Department of Chemistry
- National Changhua University of Education
- Changhua
- Taiwan 50058
| |
Collapse
|
31
|
Huang M, Lin HS, Lee YS, Ho PC. Evaluation of meisoindigo, an indirubin derivative: in vitro antileukemic activity and in vivo pharmacokinetics. Int J Oncol 2014; 45:1724-34. [PMID: 25050545 DOI: 10.3892/ijo.2014.2548] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 06/06/2014] [Indexed: 11/06/2022] Open
Abstract
Meisoindigo has been a routine therapeutic agent in the clinical treatment of chronic myelogenous leukemia (CML) in China since the 1980s. In the present study, the in vitro antileukemic activity of meisoindigo was investigated in acute promyelocytic leukemia (APL) cells, acute myeloid leukemia (AML) cells, and myelomonocytic leukemia cells (NB4, NB4.007/6, HL-60 and U937) comprising both retinoic acid-sensitive and retinoic acid-resistant cells. We found that meisoindigo effectively inhibited the growth and/or proliferation of these four cell types at µM levels. The effects of meisoindigo in these cells are related to its proliferation inhibition and apoptosis induction, and are independent of cell cycle arrest, indicating that meisoindigo could be possible in the treatment of APL, AML and retinoic acid resistant APL. The in vivo pharmacokinetics of meisoindigo and its major circulatory metabolites in rat plasma were then investigated by a newly developed and validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. The profiles of plasma concentration versus time were plotted and the relevant pharmacokinetic parameters were calculated for meisoindigo and its reductive metabolites. The plasma concentrations of meisoindigo after oral administration were much lower than the in vitro IC50s determined in the leukemic cells. The contradicting poor pharmacokinetic characteristics and the established clinical efficacy of meisoindigo could indicate the presence of active metabolites in vivo.
Collapse
Affiliation(s)
- Meng Huang
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore 117543, Republic of Singapore
| | - Hai-Shu Lin
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore 117543, Republic of Singapore
| | - Ying Shiuan Lee
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore 117543, Republic of Singapore
| | - Paul C Ho
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore 117543, Republic of Singapore
| |
Collapse
|
32
|
Zhao H, Darzynkiewicz Z. Attenuation of replication stress-induced premature cellular senescence to assess anti-aging modalities. ACTA ACUST UNITED AC 2014; 69:9.47.1-9.47.10. [PMID: 24984966 DOI: 10.1002/0471142956.cy0947s69] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Described is an in vitro model of premature senescence in pulmonary adenocarcinoma A549 cells induced by persistent DNA replication stress in response to treatment with the DNA damaging drug mitoxantrone (Mxt). The degree of cellular senescence, based on characteristic changes in cell morphology, is measured by laser scanning cytometry. Specifically, the flattening of cells grown on slides (considered the hallmark of cellular senescence) is measured as the decline in local intensity of DNA-associated DAPI fluorescence (represented by maximal pixels). This change is paralleled by an increase in nuclear area. Thus, the ratio of mean intensity of maximal pixels to nuclear area provides a very sensitive morphometric biomarker for the degree of senescence. This analysis is combined with immunocytochemical detection of senescence markers, such as overexpression of cyclin kinase inhibitors (e.g., p21(WAF1) ) and phosphorylation of ribosomal protein S6 (rpS6), a key marker associated with aging/senescence that is detected using a phospho-specific antibody. These biomarker indices are presented in quantitative terms defined as a senescence index (SI), which is the fraction of the marker in test cultures relative to the same marker in exponentially growing control cultures. This system can be used to evaluate the anti-aging potential of test agents by assessing attenuation of maximal senescence. As an example, the inclusion of berberine, a natural alkaloid with reported anti-aging properties and a long history of use in traditional Chinese medicine, is shown to markedly attenuate the Mxt-induced SI and phosphorylation of rpS6. The multivariate analysis of senescence markers by laser scanning cytometry offers a promising tool to explore the potential anti-aging properties of a variety agents.
Collapse
Affiliation(s)
- Hong Zhao
- Brander Cancer Research Institute and Department of Pathology, New York Medical College, Valhalla, New York
| | | |
Collapse
|
33
|
HOCl-modified phosphatidylcholines induce apoptosis and redox imbalance in HUVEC-ST cells. Arch Biochem Biophys 2014; 548:1-10. [DOI: 10.1016/j.abb.2014.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 02/21/2014] [Accepted: 02/24/2014] [Indexed: 11/21/2022]
|
34
|
Koelreuteria formosana extract impedes in vitro human LDL and prevents oxidised LDL-induced apoptosis in human umbilical vein endothelial cells. Food Chem 2014; 146:299-307. [DOI: 10.1016/j.foodchem.2013.09.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 09/02/2013] [Accepted: 09/04/2013] [Indexed: 02/03/2023]
|
35
|
Affiliation(s)
- Zbigniew Darzynkiewicz
- Professor of Pathology, Medicine and Immunology/Microbiology; New York Medical College; Valhalla NY
| | - Louis Kamentsky
- Inventor of Cytofluorograf ® (Biophysics Systems/Ortho Instruments), and of Laser Scanning Cytometer (CompuCyte Corporation), currently retired
| | - Elena Holden
- Former President and CEO of CompuCyte Corporation, currently Chief of Strategic Scientific Marketing Life Sciences, Thorlabs Imaging Systems; Sterling VA
| |
Collapse
|
36
|
Chao PZ, Chin YP, Hsu IU, Liu CM, Yu YC, Leung TK, Lee YJ, Chen CH, Lin YF. Apoptotic toxicity of destruxin B in human non-Hodgkin lymphoma cells. Toxicol In Vitro 2013; 27:1870-6. [DOI: 10.1016/j.tiv.2013.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 05/03/2013] [Accepted: 05/29/2013] [Indexed: 12/16/2022]
|
37
|
Cytotoxic effect of efavirenz is selective against cancer cells and associated with the cannabinoid system. AIDS 2013; 27:2031-40. [PMID: 23612009 DOI: 10.1097/qad.0b013e3283625444] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND Recently, a regression of precancerous lesions in HIV-1-infected patients after initiation of HAART was reported. Nonnucleoside reverse transcriptase inhibitors (NNRTIs) as efavirenz (EFV) might be mediators of this effect, as they are known to have a cytotoxic effect on tumour cells. A potential mechanism involved in this effect may be the activation of the cannabinoid receptor to mediate tumour toxicity. METHODS Several tumour-derived and fibroblast cell lines were studied. Cytotoxicity of EFV was evaluated by Annexin-Pi staining. The expression of the cannabinoid receptors CB1, CB2 and GPR55 was analysed by western blot, quantitative reverse transcriptase (qRT-PCR) and fluorescence activated cell sorting. The influence of the cannabinoid agonists and antagonists on the effects of EFV was investigated. Furthermore, the effect of EFV on the phosphorylation state of the growth factors Erk, Akt and the tumour suppressor protein p53 was tested. RESULTS EFV revealed a selective cytotoxic effect on several tumour cell lines, whereas primary fibroblasts were not affected. The cytotoxic effect was associated with the expression of CB1. The combination of EFV with cannabinoid agonists showed an increase in toxicity. The phosphorylation state of Erk and Akt was not affected by EFV, whereas p53 showed an increased phosphorylation. CONCLUSION EFV has a selective cytotoxic effect on several tumour cells. Furthermore, EFV led to an activating phosphorylation of the tumour suppressor protein p53 going in line with earlier reports that EFV may be antitumourigenic and a potential cytostatic drug. The observed synergistic effect with cannabinoid agonists implicates an involvement of the cannabinoid system.
Collapse
|
38
|
Yoo HJ, Park J, Yoon TH. High throughput cell cycle analysis using microfluidic image cytometry (μFIC). Cytometry A 2013; 83:356-62. [DOI: 10.1002/cyto.a.22261] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 01/11/2013] [Accepted: 01/13/2013] [Indexed: 01/06/2023]
|
39
|
Abstract
Nanomaterials are now routinely used in technical as well as medical applications. The very physicochemical properties that favor nanomaterial application are the prime cause that these materials cannot be considered "generally safe." We are still far from predicting the toxicological profile of new nanoparticles, despite continuous attempts to establish a structure-function relation between the physical and chemical properties of nanoparticles and their interactions with biological systems. Herein, we summarize some basic concept to assess nanoparticle toxicity, death pathways, cell cycle, and oxidative stress in response to nanoparticle exposure of cells.
Collapse
Affiliation(s)
- Yu Pan
- Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | | | | |
Collapse
|
40
|
Nishida K, Nakatani T, Ohishi A, Okuda H, Higashi Y, Matsuo T, Fujimoto S, Nagasawa K. Mitochondrial dysfunction is involved in P2X7 receptor-mediated neuronal cell death. J Neurochem 2012; 122:1118-28. [PMID: 22774935 DOI: 10.1111/j.1471-4159.2012.07868.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
P2X7 receptor (P2X7R) is known to be a 'death receptor' in immune cells, but its functional expression in non-immune cells such as neurons is controversial. Here, we examined the involvement of P2X7R activation and mitochondrial dysfunction in ATP-induced neuronal death in cultured cortical neurons. In P2X7R- and pannexin-1-expressing neuron cultures, 5 or more mM ATP or 0.1 or more mM BzATP induced neuronal death including apoptosis, and cell death was prevented by oxATP, P2X7R-selective antagonists. ATP-treated neurons exhibited Ca(2+) entry and YO-PRO-1 uptake, the former being inhibited by oxATP and A438079, and the latter by oxATP and carbenoxolone, while P2X7R antagonism with oxATP, but not pannexin-1 blocking with carbenoxolone, prevented the ATP-induced neuronal death. The ATP treatment induced reactive oxygen species generation through activation of NADPH oxidase and activated poly(ADP-ribose) polymerase, but both of them made no or negligible contribution to the neuronal death. Rhodamine123 efflux from neuronal mitochondria was increased by the ATP-treatment and was inhibited by oxATP, and a mitochondrial permeability transition pore inhibitor, cyclosporine A, significantly decreased the ATP-induced neuronal death. In ATP-treated neurons, the cleavage of pro-caspase-3 was increased, and caspase inhibitors, Q-VD-OPh and Z-DEVD-FMK, inhibited the neuronal death. The cleavage of apoptosis-inducing factor was increased, and calpain inhibitors, MDL28170 and PD151746, inhibited the neuronal death. These findings suggested that P2X7R was functionally expressed by cortical neuron cultures, and its activation-triggered Ca(2+) entry and mitochondrial dysfunction played important roles in the ATP-induced neuronal death.
Collapse
Affiliation(s)
- Kentaro Nishida
- Department of Environmental Biochemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Barteneva NS, Fasler-Kan E, Vorobjev IA. Imaging flow cytometry: coping with heterogeneity in biological systems. J Histochem Cytochem 2012; 60:723-33. [PMID: 22740345 DOI: 10.1369/0022155412453052] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Imaging flow cytometry (IFC) platforms combine features of flow cytometry and fluorescent microscopy with advances in data-processing algorithms. IFC allows multiparametric fluorescent and morphological analysis of thousands of cellular events and has the unique capability of identifying collected events by their real images. IFC allows the analysis of heterogeneous cell populations, where one of the cellular components has low expression (<0.03%) and can be described by Poisson distribution. With the help of IFC, one can address a critical question of statistical analysis of subcellular distribution of proteins in a cell. Here the authors review advantages of IFC in comparison with more traditional technologies, such as Western blotting and flow cytometry (FC), as well as new high-throughput fluorescent microscopy (HTFM), and discuss further developments of this novel analytical technique.
Collapse
Affiliation(s)
- Natasha S Barteneva
- Immune Disease Institute and Program in Cellular and Molecular Medicine, Children's Hospital Boston and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| | | | | |
Collapse
|
42
|
Cytoprotective effects of fucoidan, an algae-derived polysaccharide on 5-fluorouracil-treated dendritic cells. Food Chem Toxicol 2012; 50:1480-4. [DOI: 10.1016/j.fct.2012.01.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 01/21/2012] [Accepted: 01/24/2012] [Indexed: 12/27/2022]
|
43
|
Xu Z, Chen X, Fu S, Bao J, Dang Y, Huang M, Chen L, Wang Y. Dehydrocorydaline Inhibits Breast Cancer Cells Proliferation by Inducing Apoptosis in MCF-7 Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2012; 40:177-85. [DOI: 10.1142/s0192415x12500140] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Dehydrocorydaline is an alkaloid isolated from traditional Chinese herb Corydalis yanhusuo W.T. Wang. We discovered that it possessed anti-tumor potential during screening of anti-tumor natural products from Chinese medicine. In this study, its anti-tumor potential was investigated with breast cancer line cells MCF-7 in vitro. The anti-proliferative effect of dehydrocorydaline was determined by MTT assay and the mitochondrial membrane potential (Δ Ψ m) was monitored by JC-1 staining. DNA fragments were visualized by Hoechst 33342 staining and DNA ladder assay. Apoptotic related protein expressions were measured by Western blotting. Dehydrocorydaline significantly inhibited MCF-7 cell proliferation in a dose- dependent manner, which could be reversed by a caspase-8 inhibitor, Z-IETD-FMK. Dehydrocorydaline increased DNA fragments without affecting ΔΨm. Western blotting assay showed that dehydrocorydaline dose-dependently increased Bax protein expression and decreased Bcl-2 protein expression. Furthermore, dehydrocorydaline induced activation of caspase-7,-8 and the cleavage of PARP without affecting caspase-9. These results showed that dehydrocorydaline inhibits MCF-7 cell proliferation by inducing apoptosis mediated by regulating Bax/Bcl-2, activating caspases as well as cleaving PARP.
Collapse
Affiliation(s)
- Zengtao Xu
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350004, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau 999078, China
- Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau 999078, China
- Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Shu Fu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau 999078, China
- Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Jiaolin Bao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau 999078, China
- Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Yuanye Dang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau 999078, China
- Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Mingqing Huang
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350004, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau 999078, China
- Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Lidian Chen
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350004, China
| | - Yitao Wang
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350004, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau 999078, China
- Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| |
Collapse
|
44
|
Cecic IK, Li G, MacAulay C. Technologies supporting analytical cytology: clinical, research and drug discovery applications. JOURNAL OF BIOPHOTONICS 2012; 5:313-326. [PMID: 22271675 DOI: 10.1002/jbio.201100093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 12/08/2011] [Accepted: 12/30/2011] [Indexed: 05/31/2023]
Abstract
The tools and techniques developed for analytical cytology have become invaluable in expanding the development of cancer screening programs and biomarker discovery for personalized medicine. Detecting cellular, molecular, and functional changes of diseased tissue as defined by quantitative analytical methodologies has enhanced the field of medical diagnostics and prognostics. The focus of this review is to outline applications and recent technical advances in flow cytometry, laser scanning cytometry, image cytometry, and quantitative image analysis, as they pertain to clinical, research, and drug discovery applications.
Collapse
Affiliation(s)
- Ivana K Cecic
- Integrative Oncology Department, BC Cancer Research Centre, Vancouver, BC, Canada
| | | | | |
Collapse
|
45
|
da Mota MF, Benfica PL, Batista AC, Martins FS, de Paula JR, Valadares MC. Investigation of Ehrlich ascites tumor cell death mechanisms induced by Synadenium umbellatum Pax. JOURNAL OF ETHNOPHARMACOLOGY 2012; 139:319-329. [PMID: 21549815 DOI: 10.1016/j.jep.2011.04.055] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 04/18/2011] [Accepted: 04/19/2011] [Indexed: 05/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Synadenium umbellatum Pax. is widely found in South America and empirically used in Brazil for the treatment of several diseases, mainly cancer. The aim of the study was to investigate cell death mechanisms induced by Synadenium umbellatum Pax. using Ehrlich ascites tumor (EAT) cells, as well as the myelotoxicity potential of this plant. MATERIALS AND METHODS S. umbellatum cytotoxicity was evaluated in EAT cells by trypan blue exclusion and MTT reduction test and the mechanisms involved in EAT cell death were investigated by light and fluorescence microscopy, flow cytometry and immunocytochemistry. Investigation of S. umbellatum myelotoxicity was performed by clonogenic assay of colony forming unit- granulocyte macrophage (CFU-GM). RESULTS AND CONCLUSION Our results demonstrated that S. umbellatum decreased the viability of EAT cells using both methods. Morphological analyses revealed that S. umbellatum-treatment induced EAT cell death by apoptotic pathway. We demonstrated the occurrence of reactive oxygen species (ROS) overgeneration, increased intracellular Ca(2+) concentration, alteration in mitochondrial membrane potential, phosphatydylserine externalization, and activation of caspases 3, 8, and 9. However, S. umbellatum produced myelotoxicity in bone marrow cells in a concentration-dependent manner. In comparison to EAT cells, the effects of S. umbellatum in bone marrow cells were 8-fold lower. Taken together, our results showed that S. umbellatum induced apoptosis in EAT cells at several levels and seems more toxic to tumor cells than to normal bone marrow cells.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/toxicity
- Apoptosis/drug effects
- Calcium/metabolism
- Carcinoma, Ehrlich Tumor/metabolism
- Carcinoma, Ehrlich Tumor/pathology
- Caspase 3/metabolism
- Caspase 8/metabolism
- Caspase 9/metabolism
- Cell Cycle/drug effects
- Cell Shape/drug effects
- Cell Survival/drug effects
- Chromatography, High Pressure Liquid
- Dose-Response Relationship, Drug
- Euphorbiaceae
- Flow Cytometry
- Granulocyte-Macrophage Progenitor Cells/drug effects
- Granulocyte-Macrophage Progenitor Cells/pathology
- Immunohistochemistry
- Membrane Potential, Mitochondrial/drug effects
- Mice
- Microscopy, Fluorescence
- Oxidative Stress/drug effects
- Phosphatidylserines/metabolism
- Plant Components, Aerial
- Plants, Medicinal
- Reactive Oxygen Species/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Mariana Flavia da Mota
- Laboratório de Farmacologia e Toxicologia Celular, Faculdade de Farmácia, Universidade Federal de Goiás, UFG, Goiânia, GO, Brazil
| | | | | | | | | | | |
Collapse
|
46
|
Pozarowski P, Holden E, Darzynkiewicz Z. Laser scanning cytometry: principles and applications-an update. Methods Mol Biol 2012; 931:187-212. [PMID: 23027005 DOI: 10.1007/978-1-62703-056-4_11] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Laser scanning cytometer (LSC) is the microscope-based cytofluorometer that offers a plethora of unique analytical capabilities, not provided by flow cytometry (FCM). This review describes attributes of LSC and covers its numerous applications derived from plentitude of the parameters that can be measured. Among many LSC applications the following are emphasized: (a) assessment of chromatin condensation to identify mitotic, apoptotic cells, or senescent cells; (b) detection of nuclear or mitochondrial translocation of critical factors such as NF-κB, p53, or Bax; (c) semi-automatic scoring of micronuclei in mutagenicity assays; (d) analysis of fluorescence in situ hybridization (FISH) and use of the FISH analysis attribute to measure other punctuate fluorescence patterns such as γH2AX foci or receptor clustering; (e) enumeration and morphometry of nucleoli and other cell organelles; (f) analysis of progeny of individual cells in clonogenicity assay; (g) cell immunophenotyping; (h) imaging, visual examination, or sequential analysis using different probes of the same cells upon their relocation; (i) in situ enzyme kinetics, drug uptake, and other time-resolved processes; (j) analysis of tissue section architecture using fluorescent and chromogenic probes; (k) application for hypocellular samples (needle aspirate, spinal fluid, etc.); and (l) other clinical applications. Advantages and limitations of LSC are discussed and compared with FCM.
Collapse
Affiliation(s)
- Piotr Pozarowski
- The Brander Cancer Research Institute, New York Medical College, Valhalla, NY, USA
| | | | | |
Collapse
|
47
|
Abstract
The uptake of nanoparticles by cells is an important factor to assess nanotoxicity. In general, the nanoparticles taken up by the cells have been identified by transmission electron microscope, inductively coupled plasma mass spectrometry, etc.; however, the methods required an immense amount of time and effort. Flow cytometry (FCM) has been used and developed in the fields of biochemistry and clinical hematology, and has advantages to analyze thousands of cells in seconds. We recently clarified that the side-scatter(ed) light of FCM could be used as a guide to measure uptake potential of nanoparticles. Here, we describe the protocol for screening of the uptake potential of nanoparticles using FCM.
Collapse
Affiliation(s)
- Yuko Ibuki
- Institute for Environmental Sciences, University of Shizuoka, Shizuoka-shi, Japan.
| | | |
Collapse
|
48
|
Xu Z, Chen X, Zhang Q, Chen L, Wang Y. Corydalis yanhusuo W.T. Wang extract inhibits MCF-7 cell proliferation by inducing cell cycle G2/M arrest. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2011; 39:579-86. [PMID: 21598423 DOI: 10.1142/s0192415x11009044] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Corydalis yanhusuo W.T. Wang (YHS) is a traditional Chinese herb widely prescribed for promoting blood circulation, reinforcing vital energy and alleviating pain. Our previous studies showed that an ethanol extract of YHS inhibits metastasis of breast cancer cells in vitro. In the present study, the anti-proliferative effect of the extract was determined by MTT assay and the LDH release was measured with a commercial kit. Intracellular reactive oxygen species (ROS) production and mitochondrial membrane potential (ΔΨm) were monitored by CM- H(2)DCF-DA and JC-1 staining, respectively. Cell cycle was analyzed with propidium iodide (PI) staining by flow cytometry and protein expressions were measured by Western blotting. The YHS extract significantly inhibited MCF-7 cell proliferation in a dose-dependent manner. Significant increase of ROS formation and decrease of ΔΨm were observed. Furthermore, it induced MCF-7 cell cycle arrest at the G2/M phases. In addition, the p-cdc-2/cdc-2 protein expression ratio was increased while Rb and p21 protein expressions were decreased. The YHS extract inhibited MCF-7 proliferation by inducing G2/M cell cycle arrest, which might be mediated by inducing ROS formation, decreasing ΔΨm and regulating cell cycle related protein expressions.
Collapse
Affiliation(s)
- Zengtao Xu
- Institute of Chinese Medical Sciences University of Macau, China
| | | | | | | | | |
Collapse
|
49
|
Chen X, Pei L, Zhong Z, Guo J, Zhang Q, Wang Y. Anti-tumor potential of ethanol extract of Curcuma phaeocaulis Valeton against breast cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2011; 18:1238-1243. [PMID: 21795032 DOI: 10.1016/j.phymed.2011.06.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 06/17/2011] [Indexed: 05/31/2023]
Abstract
Curcuma phaeocaulis Valeton is a commonly prescribed Chinese medical herb for tumor therapy. In this study, an extract of Curcuma phaeocaulis Valeton referred as Cpv was prepared and its anti-tumor effect was evaluated with MCF-7 and MDA-MB-231 cells. Curcuma phaeocaulis Valeton power was extracted with ethanol and the main components of the extract (Cpv) were analyzed with HPLC. The effect of Cpv on MCF-7 cells proliferation, intracellular reactive oxygen species (ROS) formation, mitochondrial membrane potential (ΔΨm), apoptosis, apoptotic related proteins, MDA-MB-231 cell migration, and integrins expression were determined. Furthermore, the effect of Cpv on some key signal transduction molecules was also investigated. Furanodienone, germacrone and furanodiene were identified as the main components of Cpv. Cpv treatment significantly inhibited cell proliferation, increased LDH release, induced intracellular ROS formation, and decreased ΔΨm in a dose-dependent manner in MCF-7 cells. Cpv induced apoptosis without affecting cell migration. Cpv increased protein expression of Bax, PARP, cleaved PARP, caspase-3, 7, JNK1, p-p42/44MAPK, NF-κB, IKKα, IKKβ, decreased protein expression of Bcl-2, Bcl-xL, Bim, Bik, Bad, integrin β5, p42/44MAPK without affecting integrin α5, β1, and p38MAPK protein expression. We concluded that Cpv inhibited MCF-7 cells proliferation by inducing apoptosis mediated by increasing ROS formation, decreasing ΔΨm, regulating Bcl-2 family proteins expression, and activating caspases. Cpv treatment also modulated several signaling transduction pathways. These results might provide some molecular basis for the anti-tumor activity of Curcuma phaeocaulis Valeton.
Collapse
Affiliation(s)
- Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau, China.
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
A cell undergoing apoptosis demonstrates multitude of characteristic morphological and biochemical features, which vary depending on the inducer of apoptosis, cell type and the "time window" at which the process of apoptosis is observed. Because the gross majority of apoptotic hallmarks can be revealed by flow and image cytometry, the cytometric methods become a technology of choice in diverse studies of cellular demise. Variety of cytometric methods designed to identify apoptotic cells, detect particular events of apoptosis and probe mechanisms associated with this mode of cell death have been developed during the past two decades. In the present review, we outline commonly used methods that are based on the assessment of mitochondrial transmembrane potential, activation of caspases, DNA fragmentation, and plasma membrane alterations. We also present novel developments in the field such as the use of cyanine SYTO and TO-PRO family of probes. Strategies of selecting the optimal multiparameter approaches, as well as potential difficulties in the experimental procedures, are thoroughly summarized.
Collapse
|