1
|
Leyton L, Hagood JS. Thy-1 Modulates Neurological Cell–Cell and Cell–Matrix Interactions Through Multiple Molecular Interactions. ADVANCES IN NEUROBIOLOGY 2014; 8:3-20. [DOI: 10.1007/978-1-4614-8090-7_1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
2
|
Partida GJ, Stradleigh TW, Ogata G, Godzdanker I, Ishida AT. Thy1 associates with the cation channel subunit HCN4 in adult rat retina. Invest Ophthalmol Vis Sci 2012; 53:1696-703. [PMID: 22281825 PMCID: PMC3339924 DOI: 10.1167/iovs.11-9307] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 01/15/2012] [Indexed: 01/23/2023] Open
Abstract
PURPOSE The membrane expression and gene promoter of the glycosylphosphatidylinositol (GPI)-anchored protein Thy1 have been widely used to examine the morphology and distribution of retinal ganglion cells in normal eyes and disease models. However, it is not known how adult mammalian retinal neurons use Thy1. Because Thy1 is not a membrane-spanning protein and, instead, complexes with structural and signaling proteins in other tissues, the aim of this study was to find protein partners of retinal Thy1. METHODS Coimmunoprecipitation, immunohistochemistry, confocal imaging, and patch-clamp recording were used to test for association of Thy1 and HCN4, a cation channel subunit, in adult rat retina. RESULTS Hyperpolarization of cells immunopanned by an anti-Thy1 antibody activated HCN channels. Confocal imaging showed that individual somata in the ganglion cell layer bound antibodies against Thy1 and HCN4, that the majority of these bindings colocalized, and that some of the immunopositive cells also bound antibody against a ganglion cell marker (Brn3a). Consistent with these results, Thy1 and HCN4 were coimmunoprecipitated by magnetic beads coated with either anti-Thy1 antibody or anti-HCN4 antibody. In control experiments, beads coated with these antibodies did not immunoprecipitate a photoreceptor rim protein (ABCR) and uncoated beads did not immunoprecipitate either Thy1 or HCN4. CONCLUSIONS This is the first report that Thy1 colocalizes and coimmunoprecipitates with a membrane-spanning protein in retina, that Thy1 complexes with an ion channel protein in any tissue, and that a GPI-anchored protein associates with an HCN channel subunit protein.
Collapse
Affiliation(s)
| | | | - Genki Ogata
- From the Section of Neurobiology, Physiology, and Behavior and
| | - Iv Godzdanker
- From the Section of Neurobiology, Physiology, and Behavior and
| | - Andrew T. Ishida
- From the Section of Neurobiology, Physiology, and Behavior and
- the Department of Ophthalmology and Vision Science, University of California, Davis, California
| |
Collapse
|
3
|
Barker TH, Hagood JS. Getting a grip on Thy-1 signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:921-3. [PMID: 19007822 DOI: 10.1016/j.bbamcr.2008.10.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 10/07/2008] [Accepted: 10/08/2008] [Indexed: 11/30/2022]
Abstract
A recent study by Hermosilla et al. [T. Hermosilla, D. Munoz, R. Herrera-Molina, A. Valdivia, N. Munoz, S.U. Nham, P. Schneider, K. Burridge, A.F. Quest, L. Leyton, Direct Thy-1/alphaVbeta3 integrin interaction mediates neuron to astrocyte communication, Biochim Biophys Acta 1783 (2008) 1111-1120] demonstrates that Thy-1 on neurons binds to alphavbeta3 integrin on astrocytes via a conserved RLD motif, triggering the formation of focal adhesions and stress fibers via tyrosine phosphorylation and RhoA activation. This study adds to growing evidence regarding the signaling mechanisms and biological roles of Thy-1, an important regulator of context-dependent signaling. As knowledge of Thy-1 approaches its fiftieth year, it is critical to begin to synthesize insights from different fields to determine how this heretofore enigmatic molecule modulates cell behavior in both cis and trans.
Collapse
Affiliation(s)
- Thomas H Barker
- Biomedical Engineering, GA Tech/Emory, 313 Ferst Drive, Ste 3111 Atlanta, GA 30332-0535, USA.
| | | |
Collapse
|
4
|
Rivaroli A, Prioni S, Loberto N, Bettiga A, Chigorno V, Prinetti A, Sonnino S. Reorganization of prion protein membrane environment during low potassium-induced apoptosis in primary rat cerebellar neurons. J Neurochem 2007; 103:1954-67. [PMID: 17854348 DOI: 10.1111/j.1471-4159.2007.04890.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We studied the changes occurring in the membrane environment of prion protein (PrP) during apoptosis induced by low potassium in primary rat cerebellar neurons. Ceramide levels increased during apoptosis-inducing treatment, being doubled with respect to time-matched controls after 24 h. Sphingomyelin levels were parallely decreased, while cholesterol and ganglioside contents were not affected. Changes in ceramide and sphingomyelin composition were exclusively restricted to a detergent-resistant membrane fraction. The pro-apoptotic treatment was accompanied by the down-regulation of PrP and of the non-receptor kinase Fyn. The levels of PrP and Fyn were correspondingly reduced in the detergent-resistant membrane fraction. In control cells, the membrane microenvironment separated by immunoprecipitation with anti-PrP antibody contained 80% of the detergent-resistant PrP and 35% and 38% of the sphingolipids and cholesterol respectively. Upon low potassium treatment, 20% of the PrP originally present in the detergent-resistant fraction was immunoprecipitated, together with 19% of sphingolipids and 22% of cholesterol. Thus, PrP in the immunoprecipitate from apoptotic cells was ninefold less than in control ones, while sphingolipids and cholesterol were about 50% with respect to controls cells. The molar ratio between cholesterol, sphingomyelin and ceramide was 15 : 6 : 1 in the PrP-rich environment from control neurons, and 6 : 2 : 1 in that from apoptotic cells.
Collapse
Affiliation(s)
- Anna Rivaroli
- Center of Excellence on Neurodegenerative Diseases, Study Center for the Biochemistry and Biotechnology of Glycolipids, Department of Medical Chemistry, Biochemistry and Biotechnology, University of Milan, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
5
|
Yang SH, Chen YJ, Tung PY, Lai WL, Chen Y, Jeng CJ, Wang SM. Anti-Thy-1 antibody-induced neurite outgrowth in cultured dorsal root ganglionic neurons is mediated by the c-Src-MEK signaling pathway. J Cell Biochem 2007; 103:67-77. [PMID: 17486586 DOI: 10.1002/jcb.21387] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Our previous study has shown that anti-Thy-1 antibody promotes neurite outgrowth of cultured dorsal root ganglion (DRG) neurons in a protein kinase A (PKA)-dependent manner. The present study provided another intracellular signaling pathway for the neurotrophic effect of anti-Thy-1 antibody. In DMSO-treated control cells, Thy-1 was enriched in microdomain-like structures on cell membranes by immunofluorescence observation. Treatment of DRG neurons with anti-Thy-1 antibody not only stimulated neurite outgrowth, but also increased the branching complexity of the neurites in both small and large neurons. We have previously shown that anti-Thy-1 antibody causes a time-dependent activation of mitogen-activated protein kinase (MEK) and of cyclic AMP response-element binding protein (CREB). Here, anti-Thy-1 antibody elicited a transient activation of c-Src kinase, and the activation of c-Src kinase appeared occurring upstream of the activation of MEK and CREB, since pretreatment with the Src kinase inhibitor, PP2, effectively abolished the anti-Thy-1 antibody-induced neurite outgrowth and the phosphorylation of MEK and CREB. CREB phosphorylation might result in upregulation of certain neurite outgrowth-related proteins. We therefore conclude that anti-Thy-1 antibody activates the c-Src kinase-MEK-CREB cascade and overcomes the inhibitory effect of Thy-1 on neurite outgrowth in DRG neurons.
Collapse
Affiliation(s)
- Shih-Hung Yang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | | | | | | | | | | | | |
Collapse
|
6
|
Chen CH, Chen YJ, Jeng CJ, Yang SH, Tung PY, Wang SM. Role of PKA in the anti-Thy-1 antibody-induced neurite outgrowth of dorsal root ganglionic neurons. J Cell Biochem 2007; 101:566-75. [PMID: 17177293 DOI: 10.1002/jcb.21217] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Thy-1 is highly expressed in the mammalian nervous system. Our previous study showed that addition of anti-Thy-1 antibody to cultured dorsal root ganglionic (DRG) neurons promotes neurite outgrowth. In this study, we identified a novel signaling pathway mediating this event. Treatment with function-blocking anti-Thy-1 antibodies enhanced neurite outgrowth of DRG neurons in terms of total neurite length, longest neurite length, and total neurite branching points. To elucidate the possible signal transduction pathway involved, activation of kinases was evaluated by Western blotting. Transient phosphorylation of protein kinase A (PKA) and mitogen-activated kinase kinase (MEK) was induced after 15 min of anti-Thy-1 antibody treatment. Pretreatment with a PKA inhibitor (PKI) or an MEK inhibitor, PD98059, significantly decreased the neurite outgrowth response triggered by anti-Thy-1 antibody, indicating the involvement of both kinases. In addition, anti-Thy-1 antibody treatment also induced transient phosphorylation of cyclic AMP-response element-binding protein (CREB) and this effect was also blocked by a PKI or PD98059. Furthermore, the fact that PKI abolished anti-Thy-1 antibody-induced MEK phosphorylation showed that PKA acts upstream of the MEK-CREB cascade. In summary, the PKA-MEK-CREB pathway is a new pathway involved in the neurite outgrowth-promoting effect of anti-Thy-1 antibody.
Collapse
Affiliation(s)
- Chien-Hsing Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
7
|
Rege TA, Hagood JS. Thy-1, a versatile modulator of signaling affecting cellular adhesion, proliferation, survival, and cytokine/growth factor responses. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:991-9. [PMID: 16996153 PMCID: PMC1781924 DOI: 10.1016/j.bbamcr.2006.08.008] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2006] [Revised: 08/13/2006] [Accepted: 08/16/2006] [Indexed: 12/14/2022]
Abstract
Thy-1 is a 25-37 kDa glycosylphosphatidylinositol (GPI)-anchored protein involved in T cell activation, neurite outgrowth, apoptosis, tumor suppression, wound healing, and fibrosis. To mediate these diverse effects, Thy-1 participates in multiple signaling cascades. In this review, we discuss Thy-1 signaling primarily in non-immunologic cell types, including neurons, mesangial cells, ovarian cancer cells, nasopharyngeal carcinoma cells, endothelial cells, and fibroblasts. We review the current literature regarding Thy-1 signaling via integrins, protein tyrosine kinases, and cytokines and growth factors; and the roles of these signaling pathways in cellular adhesion, apoptosis, cell proliferation, and cell adhesion and migration. We also discuss the role of Thy-1 localization to lipid rafts, and of the GPI anchor in Thy-1 signaling. Ongoing research on the mechanisms of Thy-1 signaling will add to our understanding of the diverse physiologic and pathologic processes in which Thy-1 plays a role.
Collapse
Affiliation(s)
| | - James S. Hagood
- *Correspondence: Department of Pediatrics & Cell Biology, The University of Alabama at Birmingham, VH 648A, 1670 University Boulevard, Birmingham, AL 35294-0019, Tel. 205-934-6458, Fax 205-996-2333,
| |
Collapse
|
8
|
Rege TA, Hagood JS. Thy-1 as a regulator of cell-cell and cell-matrix interactions in axon regeneration, apoptosis, adhesion, migration, cancer, and fibrosis. FASEB J 2006; 20:1045-54. [PMID: 16770003 DOI: 10.1096/fj.05-5460rev] [Citation(s) in RCA: 251] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Thy-1 (CD90) is a 25-37 kDa glycosylphosphatidylinositol (GPI) -anchored glycoprotein expressed on many cell types, including T cells, thymocytes, neurons, endothelial cells, and fibroblasts. Activation of Thy-1 can promote T cell activation, and this role of Thy-1 is reviewed elsewhere. Thy-1 also affects numerous nonimmunologic biological processes, including cellular adhesion, neurite outgrowth, tumor growth, migration, and cell death. In reviewing the nonimmunologic functions of Thy-1, we discuss the phenotype of the Thy-1 null mouse, signaling pathways modulated by Thy-1, the role of the GPI anchor in Thy-1 localization to lipid rafts and signaling, and regulation of Thy-1 expression. Thy-1 is an important regulator of cell-cell and cell-matrix interactions, with important roles in nerve regeneration, metastasis, inflammation, and fibrosis.
Collapse
Affiliation(s)
- Tanya A Rege
- The Department Cell Biology and Medical Scientist Training Program, The University of Alabama at Birmingham, VH 648A, 1670 University Blvd., Birmingham, Alabama 35294-0019, USA
| | | |
Collapse
|
9
|
Loberto N, Prioni S, Bettiga A, Chigorno V, Prinetti A, Sonnino S. The membrane environment of endogenous cellular prion protein in primary rat cerebellar neurons. J Neurochem 2005; 95:771-83. [PMID: 16248888 DOI: 10.1111/j.1471-4159.2005.03397.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We studied the membrane environment of cellular prion protein in primary cultured rat cerebellar neurons differentiated in vitro. In these cells, about 45% of total cellular prion protein (corresponding to a 35-fold enrichment) is associated with a low-density, sphingolipid- and cholesterol-enriched membrane fraction, that can be separated by flotation on sucrose gradient. Biotinylation experiments indicated that almost all prion protein recovered in this fraction was exposed at the cell surface. Prion protein was efficiently separated from this fraction by a monoclonal antibody immuno-separation procedure. Under conditions designed to preserve lipid-mediated membrane organization, several proteins were found in the prion protein-enriched membrane domains (i.e. the non-receptor tyrosine kinases Lyn and Fyn and the neuronal glycosylphosphatidylinositol-anchored protein Thy-1). The prion protein-rich membrane domains contained, as well, about 50% of the sphingolipids, cholesterol and phosphatidylcholine present in the sphingolipid-enriched membrane fraction. All main sphingolipids, including sphingomyelin, neutral glycosphingolipids and gangliosides, were similarly enriched in the prion protein-rich membrane domains. Thus, prion protein plasma membrane environment in differentiated neurons resulted to be a complex entity, whose integrity requires a network of lipid-mediated non-covalent interactions.
Collapse
Affiliation(s)
- Nicoletta Loberto
- Center of Excellence on Neurodegenerative Diseases, Department of Medical Chemistry, Biochemistry and Biotechnology, University of Milan, Segrate, Italy
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
Prions--pathogens that are lethal to humans and other animals--are thought to be conformational isomers of the cellular prion protein. Their unique biology, and the potential for a wider pathobiological significance of prion-like mechanisms, has motivated much research into understanding prion neurodegeneration. Moreover, concerns that extensive dietary exposure to bovine spongiform encephalopathy (BSE) prions might have infected many individuals--who might eventually develop its human counterpart, variant Creutzfeldt-Jakob disease (vCJD)--has focused much interest on therapeutics. The challenge of interrupting this aggressive, diffuse and uniformly fatal neurodegenerative process is daunting. However, the recent finding that the onset of clinical disease in established neuroinvasive prion infection in a mouse model can be halted and early pathology reversed is a source for considerable optimism. A therapeutic focus on the cellular prion protein, rather than prions themselves, which might not be directly neurotoxic, is suggested.
Collapse
Affiliation(s)
- Giovanna Mallucci
- Medical Research Council Prion Unit and Department of Neurodegenerative Disease, Institute of Neurology, University College London, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | | |
Collapse
|
11
|
Abstract
Accumulations of particular lipids in ordered arrays in the membrane (termed microdomains or lipid rafts) can attract proteins with specific targeting domains. Both the lipid and protein components of rafts communicate with the cytoskeleton directly thereby regulating cellular responses. Recent evidence implicating phosphoinositide 1,5 bisphosphate (PIP2) in cytoskeletal regulation shows that agonist sensitive regulation of PIP2 homoeostasis occurs specifically rafts, which appear to provide a major structural substrate for its function. The crucial role of PIP2 in generating cytoskeletal responses is chiefly achieved by regulating proteins that control actin dynamics directly. Many of these regulatory proteins are also specifically enriched in rafts either directly (by insertion into the lipid bilayer via acetylation motifs), or indirectly via interactions with other raft components. The notion that rafts form membrane platforms or modules that mediate signaling responses has been most extensively demonstrated in the immune synapse (IS) of T cells, a complex assemblage of rafts that integrates signaling cascades originating from the simultaneous activation of a wide variety of receptors. The IS is essential for both the amplification and maintenance of T-cell activation, and its assembly at the antigen presenting site depends on the interactions between rafts and the actin cytoskeleton that regulates coalescence of smaller raft components into the larger IS complex. Likewise the neuron, which represents the most highly polarized cell in the body, utilizes the regulation of actin dynamics in response to a plethora of extracellular signals to control axon pathfinding thereby sculpting nervous system cytoarchitecture with utmost precision. It is now becoming clear, that as in the T-cell, lipid rafts in the growing axon can assemble into highly specific, yet malleable and dynamic, signaling modules that regulate actin dynamics in a fashion that is also PIP2-dependent and that utilizes both familiar and novel regulatory mechanisms. It seems clear that raft mediated cytoskeletal regulation represents a highly conserved mechanism to integrate cellular responses to diverse signals.
Collapse
Affiliation(s)
- Karina F Meiri
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
12
|
Barlow JZ, Kelley KA, Bozdagi O, Huntley GW. Testing the role of the cell-surface molecule Thy-1 in regeneration and plasticity of connectivity in the CNS. Neuroscience 2002; 111:837-52. [PMID: 12031407 DOI: 10.1016/s0306-4522(02)00023-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Thy-1 is a cell-surface signaling molecule of the Ig superfamily implicated in the regulation of neurite outgrowth, synaptic function and plasticity. There is, however, no consensus as to its precise function in the nervous system, and it remains unclear or untested as to what its role is in the development, maintenance and plasticity of neuronal connectivity in the intact brain and whether it is essential for any of the purported functions which have been attributed to it based largely on in vitro bioassays. Here, we have engineered transgenic mice with a targeted deletion of the Thy-1 gene and, after characterizing the development of their corticospinal and thalamocortical pathways, subjected them at adulthood to paradigms of axonal regeneration and plasticity which can be readily induced during development. Quantitative analyses of the brains and spinal cords of adult null mutants showed normal cellular organization, normal anatomical features of the corticospinal and thalamocortical pathways, and basic neurophysiological properties of thalamocortical synaptic transmission which were quantitatively indistinguishable from wild-type mice. Despite the absence of Thy-1, corticospinal axons in adult mutants failed to exhibit overt regeneration following spinal cord lesion; likewise, the terminal arbors of ventrobasal thalamocortical axons also failed to reorganize in adult barrel cortex in response to whisker cautery, although they did so during a developmental critical period identical to that displayed by wild-type mice.Taken together, these results suggest that Thy-1 is not essential for the normal development and maintenance of major axon pathways and functional synaptic connections, nor would it appear to be critically important for inhibiting or promoting axonal growth, regeneration and plasticity in the developing and mature CNS.
Collapse
Affiliation(s)
- J Z Barlow
- Fishberg Research Center for Neurobiology and Program in Cell Adhesion, Box 1065, The Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029-6574, USA
| | | | | | | |
Collapse
|
13
|
Tsui-Pierchala BA, Encinas M, Milbrandt J, Johnson EM. Lipid rafts in neuronal signaling and function. Trends Neurosci 2002; 25:412-7. [PMID: 12127758 DOI: 10.1016/s0166-2236(02)02215-4] [Citation(s) in RCA: 298] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Lipid rafts are plasma membrane microdomains rich in cholesterol and sphingolipids, which provide a particularly ordered lipid environment. Rafts are enriched in glycosylphosphatidylinositol (GPI)-anchored proteins, as well as proteins involved in signal transduction and intracellular trafficking. In neurons, lipid rafts act as platforms for the signal transduction initiated by several classes of neurotrophic factors, including neurotrophins and glial-derived neurotrophic factor (GDNF)-family ligands. Emerging evidence also indicates that such rafts are important for neuronal cell adhesion, axon guidance and synaptic transmission. Thus, lipid rafts are structurally unique components of plasma membranes, crucial for neural development and function.
Collapse
Affiliation(s)
- Brian A Tsui-Pierchala
- Department of Molecular Biology and Pharmacology, Campus Box 8103, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA
| | | | | | | |
Collapse
|
14
|
Gil OD, Zhang L, Chen S, Ren YQ, Pimenta A, Zanazzi G, Hillman D, Levitt P, Salzer JL. Complementary expression and heterophilic interactions between IgLON family members neurotrimin and LAMP. JOURNAL OF NEUROBIOLOGY 2002; 51:190-204. [PMID: 11984841 DOI: 10.1002/neu.10050] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Neurotrimin (Ntm) and the limbic system-associated membrane protein (LAMP) are members of the IgLON (LAMP, OBCAM, Ntm) family of glycorylphosphatidylinositol anchored neural cell adhesion molecules. We previously reported that LAMP and Ntm promote adhesion and neurite outgrowth via a homophilic mechanism, suggesting that these proteins promote the formation of specific neuronal circuits by homophilic interactions. In this report, we have further characterized the expression and binding specificity of Ntm. Using a newly generated monoclonal antibody to Ntm, we demonstrated that this protein is largely expressed in a complementary pattern to that of LAMP in the nervous system, with co-expression at a few sites. Ntm is expressed at high levels in sensory-motor cortex and, of particular note, is transiently expressed in neurons of cortical barrel fields and corresponding thalamic "barreloids." Binding of a recombinant, soluble form of Ntm to CHO cells expressing either Ntm or LAMP demonstrates that Ntm and LAMP interact both homophilically and heterophilically. In contrast to conventional growth-promoting activity of Ig superfamily members, LAMP strongly inhibits the outgrowth of Ntm-expressing dorsal root ganglion (DRG) neurons in a heterophilic manner. These anatomical and functional data support the concept that homophilic and heterophilic interactions between IgLON family members are likely to play a role in the specification of neuronal projections via growth promoting and inhibiting effects, respectively.
Collapse
Affiliation(s)
- Orlando D Gil
- Department of Cell Biology, New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Lodge AP, McNamee CJ, Howard MR, Reed JE, Moss DJ. Identification and characterization of CEPU-Se-A secreted isoform of the IgLON family protein, CEPU-1. Mol Cell Neurosci 2001; 17:746-60. [PMID: 11312609 DOI: 10.1006/mcne.2001.0964] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
CEPU-1/Neurotrimin is a neuronal glycoprotein thought to play a role in axon guidance and cell-cell recognition. It is a member of the IgLON family, has three C2 domains, and is attached to the plasma membrane by a GPI-anchor. We report here the characterisation of an alternatively-spliced isoform of CEPU-1 that is secreted. This isoform, termed CEPU-Se, is coexpressed with CEPU-1 in retina, cerebellum, and DRG neurons. In the cerebellum CEPU-1/CEPU-Se is expressed predominantly on granule cells and in the molecular layer. Divalent but not monovalent CEPU-Se interacts with CEPU-1 and other IgLONs, suggesting that the ability of CEPU-Se to modify the activity of the IgLON family may require an additional cofactor. CEPU-Se does not support the outgrowth of DRG neurons or the extension of established growth cones; however, neurite outgrowth on laminin is unaffected by CEPU-Se. Our data suggest that CEPU-Se may act to modulate the ability of CEPU-1, LAMP, and OBCAM to influence neurite outgrowth.
Collapse
Affiliation(s)
- A P Lodge
- Department of Human Anatomy and Cell Biology, The University of Liverpool, New Medical School, Ashton Street, Liverpool L69 3GE, United Kingdom
| | | | | | | | | |
Collapse
|
16
|
Kasahara K, Watanabe K, Takeuchi K, Kaneko H, Oohira A, Yamamoto T, Sanai Y. Involvement of gangliosides in glycosylphosphatidylinositol-anchored neuronal cell adhesion molecule TAG-1 signaling in lipid rafts. J Biol Chem 2000; 275:34701-9. [PMID: 10944523 DOI: 10.1074/jbc.m003163200] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The association of ganglioside GD3 with TAG-1, a glycosylphosphatidylinositol-anchored neuronal cell adhesion molecule, was examined by coimmunoprecipitation experiments. Previously, we have shown that the anti-ganglioside GD3 antibody (R24) immunoprecipitated the Src family kinase Lyn from the rat cerebellum, and R24 treatment of primary cerebellar cultures induced Lyn activation and rapid tyrosine phosphorylation of an 80-kDa protein (p80). We now report that R24 coimmunoprecipitates a 135-kDa protein (p135) from primary cerebellar cultures. Treatment with phosphatidylinositol-specific phospholipase C revealed that p135 was glycosylphosphatidylinositol-anchored to the membrane. It was identified as TAG-1 by sequential immunoprecipitation with an anti-TAG-1 antibody. Antibody-mediated cross-linking of TAG-1 induced Lyn activation and rapid tyrosine phosphorylation of p80. Selective inhibitor for Src family kinases reduced the tyrosine phosphorylation of p80. Sucrose density gradient analysis revealed that the TAG-1 and tyrosine-phosphorylated p80 in cerebellar cultures were present in the lipid raft fraction. These data show that TAG-1 transduces signals via Lyn to p80 in the lipid rafts of the cerebellum. Furthermore, degradation of cell-surface glycosphingolipids by endoglycoceramidase induced an alteration of TAG-1 distribution on an OptiPrep gradient and reduced the TAG-1-mediated Lyn activation and tyrosine phosphorylation of p80. These observations suggest that glycosphingolipids are involved in TAG-1-mediated signaling in lipid rafts.
Collapse
Affiliation(s)
- K Kasahara
- Department of Biochemical Cell Research, The Tokyo Metropolitan Institute of Medical Science, Tokyo Metropolitan Organization for Medical Research, Honkomagome, Bunkyo-ku, Tokyo 113-8613, Japan.
| | | | | | | | | | | | | |
Collapse
|
17
|
Simon PD, McConnell J, Zurakowski D, Vorwerk CK, Naskar R, Grosskreutz CL, Dreyer EB. Thy-1 is critical for normal retinal development. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1999; 117:219-23. [PMID: 10567740 DOI: 10.1016/s0165-3806(99)00123-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the mammalian retina, Thy-1, the most abundant mammalian neuronal surface glycoprotein, is found predominantly if not exclusively on retinal ganglion cells. We hypothesized that Thy-1 plays a significant role in retinal development. Neurite outgrowth of retinal ganglion cells from Thy-1(-) mice over multiple substrates was compared to that seen with wild-type controls. Adult mouse retinas were histologically compared between Thy-1(-) and three strains of Thy-1 positive mice. Thy-1(-) retinal ganglion cells had significantly less neurite outgrowth than controls. The inner nuclear, inner plexiform, ganglion cell and outer segment/pigment epithelium layers were thinner in Thy-1(-) retinae than in controls. Thy-1 appears to be critical for normal retinal development.
Collapse
Affiliation(s)
- P D Simon
- The Department of Ophthalmology, University of Pennsylvania, 51 North 39th Street, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Funatsu N, Miyata S, Kumanogoh H, Shigeta M, Hamada K, Endo Y, Sokawa Y, Maekawa S. Characterization of a novel rat brain glycosylphosphatidylinositol-anchored protein (Kilon), a member of the IgLON cell adhesion molecule family. J Biol Chem 1999; 274:8224-30. [PMID: 10075727 DOI: 10.1074/jbc.274.12.8224] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In the central nervous system, many cell adhesion molecules are known to participate in the establishment and remodeling of the neural circuit. Some of the cell adhesion molecules are known to be anchored to the membrane by the glycosylphosphatidylinositol (GPI) inserted to their C termini, and many GPI-anchored proteins are known to be localized in a Triton-insoluble membrane fraction of low density or so-called "raft." In this study, we surveyed the GPI-anchored proteins in the Triton-insoluble low density fraction from 2-week-old rat brain by solubilization with phosphatidylinositol-specific phospholipase C. By Western blotting and partial peptide sequencing after the deglycosylation with peptide N-glycosidase F, the presence of Thy-1, F3/contactin, and T-cadherin was shown. In addition, one of the major proteins, having an apparent molecular mass of 36 kDa after the peptide N-glycosidase F digestion, was found to be a novel protein. The result of cDNA cloning showed that the protein is an immunoglobulin superfamily member with three C2 domains and has six putative glycosylation sites. Since this protein shows high sequence similarity to IgLON family members including LAMP, OBCAM, neurotrimin, CEPU-1, AvGP50, and GP55, we termed this protein Kilon (a kindred of IgLON). Kilon-specific monoclonal antibodies were produced, and Western blotting analysis showed that expression of Kilon is restricted to brain, and Kilon has an apparent molecular mass of 46 kDa in SDS-polyacrylamide gel electrophoresis in its expressed form. In brain, the expression of Kilon is already detected in E16 stage, and its level gradually increases during development. Kilon immunostaining was observed in the cerebral cortex and hippocampus, in which the strongly stained puncta were observed on dendrites and soma of pyramidal neurons.
Collapse
Affiliation(s)
- N Funatsu
- Department of Biotechnology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Although molecular components of signal transduction pathways are rapidly being identified, how elements of these pathways are positioned spatially and how signals traverse the intracellular environment from the cell surface to the nucleus or to other cytoplasmic targets are not well understood. The discovery of signaling molecules that interact with microtubules (MTs), as well as the multiple effects on signaling pathways of drugs that destabilize or hyperstabilize MTs, indicate that MTs are likely to be critical to the spatial organization of signal transduction. MTs themselves are also affected by signaling pathways and this may contribute to the transmission of signals to downstream targets.
Collapse
Affiliation(s)
- G G Gundersen
- Department of Anatomy and Cell Biology Columbia University 630 West 168th Street New York NY 10032 USA.
| | | |
Collapse
|
20
|
Neurotrimin mediates bifunctional effects on neurite outgrowth via homophilic and heterophilic interactions. J Neurosci 1998. [PMID: 9801370 DOI: 10.1523/jneurosci.18-22-09312.1998] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurotrimin (Ntm) together with the limbic system-associated membrane protein (LAMP) and the opioid-binding cell adhesion molecule (OBCAM) comprise the IgLON family of neural cell adhesion molecules. These glycosylphosphatidylinositol (GPI)-anchored proteins are expressed in distinct neuronal systems. In the case of Ntm, its expression pattern suggests a role in the development of thalamocortical and pontocerebellar projections (Struyket al., 1995). We have now characterized Ntm's function in cell adhesion and in neurite outgrowth. Cross-linking studies of transfected cells show that Ntm forms noncovalent homodimers and multimers at the cell surface. Ntm mediates homophilic adhesion, as evidenced by the reaggregation of the transfected cells and the specific binding of an Ntm-Fc chimera to these cells. Consistent with these results, Ntm-Fc binds to neurons that express Ntm at high levels, e.g., dorsal root ganglion (DRG) and hippocampal neurons. It does not bind to DRG neurons treated with phosphatidylinositol-specific phospholipase C (PI-PLC) or to sympathetic neurons that do not express Ntm or other members of the IgLON family at significant levels. Ntm promotes the outgrowth of DRG neurons, even after PI-PLC treatment, suggesting that its effects on outgrowth are mediated by heterophilic interactions. Of particular note, both membrane-bound and soluble Ntm inhibit the outgrowth of sympathetic neurons. These results strongly suggest that Ntm, and other members of the IgLON family, regulate the development of neuronal projections via attractive and repulsive mechanisms that are cell type specific and are mediated by homophilic and heterophilic interactions.
Collapse
|
21
|
Meaney JA, Balcar VJ, Rothstein JD, Jeffrey PL. Glutamate transport in cultures from developing avian cerebellum: presence of GLT-1 immunoreactivity in Purkinje neurons. J Neurosci Res 1998; 54:595-603. [PMID: 9843150 DOI: 10.1002/(sici)1097-4547(19981201)54:5<595::aid-jnr4>3.0.co;2-q] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Immunocytochemical studies indicated that Purkinje cells cultured from chick embryonic cerebellum (embryonic day 8) strongly express a glutamate transporter EAAT2 cloned from human brain (GLT-1 in rat brain). At both 7 days and 14 days in culture, Purkinje neurons accumulated 1 microM [3H]L-glutamate via a potent "high-affinity" transport system that could be inhibited by D- and L-threo-3-hydroxyaspartate (D- and L-t-3OHA) and by L-trans-pyrrolidine-2,4-dicarboxylate (L-t-PDC). The order of potency of the three inhibitors was L-t-PDC approximately L-t-3OHA > D-t-30HA. Only the value of IC50 (concentration causing 50% inhibition) for D-t-3OHA significantly changed between 7 days (116 microM) and 14 days in culture (40 microM). All nH approximately 1, except in the case of the inhibition by D-t-3OHA at 14 days in culture (nH = 0.57), indicating the possible appearance of heterogeneity of the transport sites at later stages of culturing. Chronic inhibition of L-glutamate transport by L-t-PDC resulted in major changes in the morphology of Purkinje cells; particularly, the neurites almost completely regressed.
Collapse
Affiliation(s)
- J A Meaney
- Children's Medical Research Institute, Wentworthville, Australia
| | | | | | | |
Collapse
|