1
|
MiniVStimA: A miniaturized easy to use implantable electrical stimulator for small laboratory animals. PLoS One 2020; 15:e0241638. [PMID: 33125415 PMCID: PMC7598460 DOI: 10.1371/journal.pone.0241638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/16/2020] [Indexed: 01/17/2023] Open
Abstract
According to PubMed, roughly 10% of the annually added publications are describing findings from the small animal model (mice and rats), including investigations in the field of muscle physiology and training. A subset of this research requires neural stimulation with flexible adjustments of stimulation parameters, highlighting the need for reliable implantable electrical stimulators, small enough (~1 cm3), that even mice can tolerate them without impairing their movement. The MiniVStimA is a battery-powered implant for nerve stimulation with an outer diameter of 15 mm and an encapsulated volume of 1.2 cm3 in its smallest variation. It can be pre-programmed according to the experimental protocol and controlled after implantation with a magnet. It delivers constant current charge-balanced monophasic rectangular pulses up to 2 mA and 1 ms phase width (1 kΩ load). The circuitry is optimized for small volume and energy efficiency. Due to the variation of the internal oscillator (31 kHz ± 10%), calibration measures must be implemented during the manufacturing process, which can reduce the deviation of the frequency related parameters down to ± 1%. The expected lifetime of the smaller (larger) version is 100 (480) days for stimulation with 7 Hz all day and 10 (48) days for stimulation with 100 Hz. Devices with complex stimulation patterns for nerve stimulation have been successfully used in two in-vivo studies, lasting up to nine weeks. The implant worked fully self-contained while the animal stayed in its familiar environment. External components are not required during the entire time.
Collapse
|
2
|
Hesketh SJ, Sutherland H, Lisboa PJ, Jarvis JC, Burniston JG. Adaptation of rat fast‐twitch muscle to endurance activity is underpinned by changes to protein degradation as well as protein synthesis. FASEB J 2020; 34:10398-10417. [DOI: 10.1096/fj.202000668rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Stuart J. Hesketh
- Research Institute for Sport & Exercise Sciences Liverpool John Moores University Liverpool UK
| | - Hazel Sutherland
- Research Institute for Sport & Exercise Sciences Liverpool John Moores University Liverpool UK
| | - Paulo J. Lisboa
- Department of Applied Mathematics Liverpool John Moores University Liverpool UK
| | - Jonathan C. Jarvis
- Research Institute for Sport & Exercise Sciences Liverpool John Moores University Liverpool UK
| | - Jatin G. Burniston
- Research Institute for Sport & Exercise Sciences Liverpool John Moores University Liverpool UK
- Liverpool Centre for Cardiovascular Science Liverpool John Moores University Liverpool UK
| |
Collapse
|
3
|
Seaborne RA, Hughes DC, Turner DC, Owens DJ, Baehr LM, Gorski P, Semenova EA, Borisov OV, Larin AK, Popov DV, Generozov EV, Sutherland H, Ahmetov II, Jarvis JC, Bodine SC, Sharples AP. UBR5 is a novel E3 ubiquitin ligase involved in skeletal muscle hypertrophy and recovery from atrophy. J Physiol 2019; 597:3727-3749. [PMID: 31093990 DOI: 10.1113/jp278073] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/10/2019] [Indexed: 01/03/2023] Open
Abstract
KEY POINTS We have recently identified that a HECT domain E3 ubiquitin ligase, named UBR5, is altered epigenetically (via DNA methylation) after human skeletal muscle hypertrophy, where its gene expression is positively correlated with increasing lean leg mass after training and retraining. In the present study we extensively investigate this novel and uncharacterised E3 ubiquitin ligase (UBR5) in skeletal muscle atrophy, recovery from atrophy and injury, anabolism and hypertrophy. We demonstrated that UBR5 was epigenetically altered via DNA methylation during recovery from atrophy. We also determined that UBR5 was alternatively regulated versus well characterised E3 ligases, MuRF1/MAFbx, at the gene expression level during atrophy, recovery from atrophy and hypertrophy. UBR5 also increased at the protein level during recovery from atrophy and injury, hypertrophy and during human muscle cell differentiation. Finally, in humans, genetic variations of the UBR5 gene were strongly associated with larger fast-twitch muscle fibres and strength/power performance versus endurance/untrained phenotypes. ABSTRACT We aimed to investigate a novel and uncharacterized E3 ubiquitin ligase in skeletal muscle atrophy, recovery from atrophy/injury, anabolism and hypertrophy. We demonstrated an alternate gene expression profile for UBR5 vs. well characterized E3-ligases, MuRF1/MAFbx, where, after atrophy evoked by continuous-low-frequency electrical-stimulation in rats, MuRF1/MAFbx were both elevated, yet UBR5 was unchanged. Furthermore, after recovery of muscle mass post TTX-induced atrophy in rats, UBR5 was hypomethylated and increased at the gene expression level, whereas a suppression of MuRF1/MAFbx was observed. At the protein level, we also demonstrated a significant increase in UBR5 after recovery of muscle mass from hindlimb unloading in both adult and aged rats, as well as after recovery from atrophy evoked by nerve crush injury in mice. During anabolism and hypertrophy, UBR5 gene expression increased following acute loading in three-dimensional bioengineered mouse muscle in vitro, and after chronic electrical stimulation-induced hypertrophy in rats in vivo, without increases in MuRF1/MAFbx. Additionally, UBR5 protein abundance increased following functional overload-induced hypertrophy of the plantaris muscle in mice and during differentiation of primary human muscle cells. Finally, in humans, genetic association studies (>700,000 single nucleotide polymorphisms) demonstrated that the A alleles of rs10505025 and rs4734621 single nucleotide polymorphisms in the UBR5 gene were strongly associated with larger cross-sectional area of fast-twitch muscle fibres and favoured strength/power vs. endurance/untrained phenotypes. Overall, we suggest that: (i) UBR5 comprises a novel E3 ubiquitin ligase that is inversely regulated to MuRF1/MAFbx; (ii) UBR5 is epigenetically regulated; and (iii) UBR5 is elevated at both the gene expression and protein level during recovery from skeletal muscle atrophy and hypertrophy.
Collapse
Affiliation(s)
- Robert A Seaborne
- Stem Cells, Ageing and Molecular Physiology Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK.,Institute for Science and Technology in Medicine (ISTM), School of Medicine, Keele University, Keele, UK.,Centre for Genomics and Child Health, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - David C Hughes
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Daniel C Turner
- Stem Cells, Ageing and Molecular Physiology Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK.,Institute for Science and Technology in Medicine (ISTM), School of Medicine, Keele University, Keele, UK
| | - Daniel J Owens
- Stem Cells, Ageing and Molecular Physiology Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Leslie M Baehr
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Piotr Gorski
- Stem Cells, Ageing and Molecular Physiology Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK.,Institute for Science and Technology in Medicine (ISTM), School of Medicine, Keele University, Keele, UK
| | - Ekaterina A Semenova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Oleg V Borisov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia.,Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Bonn, Germany
| | - Andrey K Larin
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Daniil V Popov
- Laboratory of Exercise Physiology, Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Edward V Generozov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Hazel Sutherland
- Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Ildus I Ahmetov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia.,Laboratory of Molecular Genetics, Kazan State Medical University, Kazan, Russia.,Department of Physical Education, Plekhanov Russian University of Economics, Moscow, Russia.,Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Jonathan C Jarvis
- Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Sue C Bodine
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Adam P Sharples
- Stem Cells, Ageing and Molecular Physiology Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK.,Institute for Science and Technology in Medicine (ISTM), School of Medicine, Keele University, Keele, UK
| |
Collapse
|
4
|
Salmons S. The adaptive response of skeletal muscle: What is the evidence? Muscle Nerve 2017; 57:531-541. [PMID: 28857207 DOI: 10.1002/mus.25949] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 08/05/2017] [Accepted: 08/25/2017] [Indexed: 11/08/2022]
Abstract
Adult skeletal muscle is capable of adapting its properties in response to changing functional demands. This now sounds like a statement of the obvious, and many people assume it has always been this way. A mere 40 years ago, however, the picture was entirely different. In this Review and personal memoir, I outline the scientific context in which the theory was generated, the objections to it from entrenched opinion, and the way those objections were progressively met. The material should be of some historical interest, but, more importantly, it collects together the full range of evidence on which the current paradigm is based. Muscle Nerve 57: 531-541, 2018.
Collapse
Affiliation(s)
- Stanley Salmons
- Department of Musculoskeletal Biology, Institute of Ageing & Chronic Diseases, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, United Kingdom
| |
Collapse
|
5
|
Fisher AG, Seaborne RA, Hughes TM, Gutteridge A, Stewart C, Coulson JM, Sharples AP, Jarvis JC. Transcriptomic and epigenetic regulation of disuse atrophy and the return to activity in skeletal muscle. FASEB J 2017; 31:5268-5282. [DOI: 10.1096/fj.201700089rr] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/25/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Andrew G. Fisher
- Institute for Ageing and Chronic DiseaseUniversity of Liverpool Liverpool United Kingdom
| | - Robert A. Seaborne
- Institute for Science and Technology in MedicineKeele University Medical SchoolKeele University Staffordshire United Kingdom
- Stem Cells, Ageing, and Molecular Physiology Research UnitExercise Metabolism and Adaptation Research GroupResearch Institute for Sport and Exercise SciencesLiverpool John Moores University Liverpool United Kingdom
| | - Thomas M. Hughes
- Instituto de Física y AstronomíaUniversidad de Valparaíso Valparaíso Chile
| | | | - Claire Stewart
- Institute for Science and Technology in MedicineKeele University Medical SchoolKeele University Staffordshire United Kingdom
| | - Judy M. Coulson
- Department of Cellular and Molecular PhysiologyInstitute of Translational MedicineUniversity of Liverpool Liverpool United Kingdom
| | - Adam P. Sharples
- Institute for Science and Technology in MedicineKeele University Medical SchoolKeele University Staffordshire United Kingdom
- Stem Cells, Ageing, and Molecular Physiology Research UnitExercise Metabolism and Adaptation Research GroupResearch Institute for Sport and Exercise SciencesLiverpool John Moores University Liverpool United Kingdom
| | - Jonathan C. Jarvis
- Stem Cells, Ageing, and Molecular Physiology Research UnitExercise Metabolism and Adaptation Research GroupResearch Institute for Sport and Exercise SciencesLiverpool John Moores University Liverpool United Kingdom
| |
Collapse
|
6
|
Hesketh S, Srisawat K, Sutherland H, Jarvis J, Burniston J. On the Rate of Synthesis of Individual Proteins within and between Different Striated Muscles of the Rat. Proteomes 2016; 4:proteomes4010012. [PMID: 28248222 PMCID: PMC5217367 DOI: 10.3390/proteomes4010012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/08/2016] [Accepted: 03/10/2016] [Indexed: 02/03/2023] Open
Abstract
The turnover of muscle protein is responsive to different (patho)-physiological conditions but little is known about the rate of synthesis at the level of individual proteins or whether this varies between different muscles. We investigated the synthesis rate of eight proteins (actin, albumin, ATP synthase alpha, beta enolase, creatine kinase, myosin essential light chain, myosin regulatory light chain and tropomyosin) in the extensor digitorum longus, diaphragm, heart and soleus of male Wistar rats (352 ± 30 g body weight). Animals were assigned to four groups (n = 3, in each), including a control and groups that received deuterium oxide (2H2O) for 4 days, 7 days or 14 days. Deuterium labelling was initiated by an intraperitoneal injection of 10 μL/g body weight of 99.9% 2H2O-saline, and was maintained by administration of 5% (v/v) 2H2O in drinking water provided ad libitum. Homogenates of the isolated muscles were analysed by 2-dimensional gel electrophoresis and matrix-assisted laser desorption ionisation time of flight mass spectrometry. Proteins were identified against the SwissProt database using peptide mass fingerprinting. For each of the eight proteins investigated, the molar percent enrichment (MPE) of 2H and rate constant (k) of protein synthesis was calculated from the mass isotopomer distribution of peptides based on the amino acid sequence and predicted number of exchangeable C–H bonds. The average MPE (2.14% ± 0.2%) was as expected and was consistent across muscles harvested at different times (i.e., steady state enrichment was achieved). The synthesis rate of individual proteins differed markedly within each muscle and the rank-order of synthesis rates differed among the muscles studied. After 14 days the fraction of albumin synthesised (23% ± 5%) was significantly (p < 0.05) greater than for other muscle proteins. These data represent the first attempt to study the synthesis rates of individual proteins across a number of different striated muscles.
Collapse
Affiliation(s)
- Stuart Hesketh
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK.
| | - Kanchana Srisawat
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK.
| | - Hazel Sutherland
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK.
| | - Jonathan Jarvis
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK.
| | - Jatin Burniston
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK.
| |
Collapse
|
7
|
Kim JY, Choi MJ, So B, Kim HJ, Seong JK, Song W. The Preventive Effects of 8 Weeks of Resistance Training on Glucose Tolerance and Muscle Fiber Type Composition in Zucker Rats. Diabetes Metab J 2015; 39:424-33. [PMID: 26566500 PMCID: PMC4641972 DOI: 10.4093/dmj.2015.39.5.424] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 01/10/2015] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND We investigated the therapeutic effects of resistance training on Zucker rats before and after the onset of diabetes to understand the importance of the timing of exercise intervention. We assessed whether 8 weeks of resistance training ameliorated impaired glucose tolerance and altered muscle fiber type composition in Zucker rats. METHODS Five-week-old male Zucker rats were divided into Zucker lean control (ZLC-Con), non-exercised Zucker diabetic fatty (ZDF-Con), and exercised Zucker diabetic fatty (ZDF-Ex) groups. The ZDF-Ex rats climbed a ladder three times a week for 8 weeks. Intraperitoneal glucose tolerance tests (IPGTT) were performed on the 1st and 8th weeks of training, and grip strength was measured during the last week. We also measured glucose transporter 4 (GLUT4) expression by Western blot and immunofluorescence. Moreover, immunohistochemistry was performed to assess muscle fiber type composition. RESULTS Fasting glucose levels and area under the curve responses to IPGTTs gradually increased as diabetes progressed in the ZDF-Con rats but decreased in the ZDF-Ex rats. Grip strength decreased in the ZDF-Con rats. However, resistance training did not improve grip strength in the ZDF-Ex rats. GLUT4 expression in the ZLC-Con and the ZDF-Con rats did not differ, but it increased in the ZDF-Ex rats. The proportions of myosin heavy chain I and II were lower and higher, respectively, in the ZDF-Con rats compared to the ZLC-Con rats. Muscle fiber type composition did not change in the ZDF-Ex rats. CONCLUSION Our results suggest that regular resistance training initiated at the onset of diabetes can improve glucose tolerance and GLUT4 expression without changing muscle morphology in Zucker rats.
Collapse
Affiliation(s)
- Ji-yeon Kim
- Health and Exercise Science Laboratory, Institute of Sports Science, Seoul National University College of Education, Seoul, Korea
| | - Mi Jung Choi
- Health and Exercise Science Laboratory, Institute of Sports Science, Seoul National University College of Education, Seoul, Korea
| | - Byunghun So
- Health and Exercise Science Laboratory, Institute of Sports Science, Seoul National University College of Education, Seoul, Korea
| | - Hee-jae Kim
- Health and Exercise Science Laboratory, Institute of Sports Science, Seoul National University College of Education, Seoul, Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, BK21 Program for Veterinary Science, Institute for Veterinary Science, Seoul National University College of Veterinary Medicine, Seoul, Korea
- Korea Mouse Phenotyping Center (KMPC), Seoul, Korea
| | - Wook Song
- Health and Exercise Science Laboratory, Institute of Sports Science, Seoul National University College of Education, Seoul, Korea
- Institute on Aging, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
8
|
Vickerton P, Jarvis JC, Gallagher JA, Akhtar R, Sutherland H, Jeffery N. Morphological and histological adaptation of muscle and bone to loading induced by repetitive activation of muscle. Proc Biol Sci 2014; 281:20140786. [PMID: 24966314 PMCID: PMC4083794 DOI: 10.1098/rspb.2014.0786] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 06/03/2014] [Indexed: 01/06/2023] Open
Abstract
Muscular contraction plays a pivotal role in the mechanical environment of bone, but controlled muscular contractions are rarely used to study the response of bone to mechanical stimuli. Here, we use implantable stimulators to elicit programmed contractions of the rat tibialis anterior (TA) muscle. Miniature stimulators were implanted in Wistar rats (n = 9) to induce contraction of the left TA every 30 s for 28 days. The right limb was used as a contralateral control. Hindlimbs were imaged using microCT. Image data were used for bone measurements, and to construct a finite-element (FE) model simulation of TA forces propagating through the bone. This simulation was used to target subsequent bone histology and measurement of micromechanical properties to areas of high strain. FE mapping of simulated strains revealed peak values in the anterodistal region of the tibia (640 µε ± 30.4 µε). This region showed significant increases in cross-sectional area (28.61%, p < 0.05) and bone volume (30.29%, p < 0.05) in the stimulated limb. Histology revealed a large region of new bone, containing clusters of chondrocytes, indicative of endochondral ossification. The new bone region had a lower elastic modulus (8.8 ± 2.2 GPa) when compared with established bone (20 ± 1.4 GPa). Our study provides compelling new evidence of the interplay between muscle and bone.
Collapse
Affiliation(s)
- Paula Vickerton
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Sherrington Building, Ashton Street, Liverpool L69 3GE, UK
| | - Jonathan C Jarvis
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Merseyside, Liverpool L3 3AF, UK
| | - James A Gallagher
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Sherrington Building, Ashton Street, Liverpool L69 3GE, UK
| | - Riaz Akhtar
- Centre for Materials and Structures, School of Engineering, University of Liverpool, Merseyside, Liverpool L69 3GH, UK
| | - Hazel Sutherland
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Sherrington Building, Ashton Street, Liverpool L69 3GE, UK Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Merseyside, Liverpool L3 3AF, UK
| | - Nathan Jeffery
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Sherrington Building, Ashton Street, Liverpool L69 3GE, UK
| |
Collapse
|
9
|
Birbrair A, Zhang T, Wang ZM, Messi ML, Mintz A, Delbono O. Type-1 pericytes participate in fibrous tissue deposition in aged skeletal muscle. Am J Physiol Cell Physiol 2013; 305:C1098-113. [PMID: 24067916 DOI: 10.1152/ajpcell.00171.2013] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In older adults, changes in skeletal muscle composition are associated with increased fibrosis, loss of mass, and decreased force, which can lead to dependency, morbidity, and mortality. Understanding the biological mechanisms responsible is essential to sustaining and improving their quality of life. Compared with young mice, aged mice take longer to recover from muscle injury; their tissue fibrosis is more extensive, and regenerated myofibers are smaller. Strong evidence indicates that cells called pericytes, embedded in the basement membrane of capillaries, contribute to the satellite-cell pool and muscle growth. In addition to their role in skeletal muscle repair, after tissue damage, they detach from capillaries and migrate to the interstitial space to participate in fibrosis formation. Here we distinguish two bona fide pericyte subtypes in the skeletal muscle interstitium, type-1 (Nestin-GFP(-)/NG2-DsRed(+)) and type-2 (Nestin-GFP(+)/NG2-DsRed(+)), and characterize their heretofore unknown specific roles in the aging environment. Our in vitro results show that type-1 and type-2 pericytes are either fibrogenic or myogenic, respectively. Transplantation studies in young animals indicate that type-2 pericytes are myogenic, while type-1 pericytes remain in the interstitial space. In older mice, however, the muscular regenerative capacity of type-2 pericytes is limited, and type-1 pericytes produce collagen, contributing to fibrous tissue deposition. We conclude that in injured muscles from aging mice, the pericytes involved in skeletal muscle repair differ from those associated with scar formation.
Collapse
Affiliation(s)
- Alexander Birbrair
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | | | | | | | | | | |
Collapse
|
10
|
Crooks DR, Natarajan TG, Jeong SY, Chen C, Park SY, Huang H, Ghosh MC, Tong WH, Haller RG, Wu C, Rouault TA. Elevated FGF21 secretion, PGC-1α and ketogenic enzyme expression are hallmarks of iron-sulfur cluster depletion in human skeletal muscle. Hum Mol Genet 2013; 23:24-39. [PMID: 23943793 DOI: 10.1093/hmg/ddt393] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Iron-sulfur (Fe-S) clusters are ancient enzyme cofactors found in virtually all life forms. We evaluated the physiological effects of chronic Fe-S cluster deficiency in human skeletal muscle, a tissue that relies heavily on Fe-S cluster-mediated aerobic energy metabolism. Despite greatly decreased oxidative capacity, muscle tissue from patients deficient in the Fe-S cluster scaffold protein ISCU showed a predominance of type I oxidative muscle fibers and higher capillary density, enhanced expression of transcriptional co-activator PGC-1α and increased mitochondrial fatty acid oxidation genes. These Fe-S cluster-deficient muscles showed a dramatic up-regulation of the ketogenic enzyme HMGCS2 and the secreted protein FGF21 (fibroblast growth factor 21). Enhanced muscle FGF21 expression was reflected by elevated circulating FGF21 levels in the patients, and robust FGF21 secretion could be recapitulated by respiratory chain inhibition in cultured myotubes. Our findings reveal that mitochondrial energy starvation elicits a coordinated response in Fe-S-deficient skeletal muscle that is reflected systemically by increased plasma FGF21 levels.
Collapse
Affiliation(s)
- Daniel R Crooks
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Hortobágyi T, Maffiuletti NA. Neural adaptations to electrical stimulation strength training. Eur J Appl Physiol 2011; 111:2439-49. [PMID: 21643920 PMCID: PMC3175340 DOI: 10.1007/s00421-011-2012-2] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 05/18/2011] [Indexed: 01/26/2023]
Abstract
This review provides evidence for the hypothesis that electrostimulation strength training (EST) increases the force of a maximal voluntary contraction (MVC) through neural adaptations in healthy skeletal muscle. Although electrical stimulation and voluntary effort activate muscle differently, there is substantial evidence to suggest that EST modifies the excitability of specific neural paths and such adaptations contribute to the increases in MVC force. Similar to strength training with voluntary contractions, EST increases MVC force after only a few sessions with some changes in muscle biochemistry but without overt muscle hypertrophy. There is some mixed evidence for spinal neural adaptations in the form of an increase in the amplitude of the interpolated twitch and in the amplitude of the volitional wave, with less evidence for changes in spinal excitability. Cross-sectional and exercise studies also suggest that the barrage of sensory and nociceptive inputs acts at the cortical level and can modify the motor cortical output and interhemispheric paths. The data suggest that neural adaptations mediate initial increases in MVC force after short-term EST.
Collapse
Affiliation(s)
- Tibor Hortobágyi
- Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | | |
Collapse
|
12
|
Grünheid T, Langenbach GEJ, Brugman P, Everts V, Zentner A. The masticatory system under varying functional load. Part 2: Effect of reduced masticatory load on the degree and distribution of mineralization in the rabbit mandible. Eur J Orthod 2010; 33:365-71. [PMID: 20923936 DOI: 10.1093/ejo/cjq084] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A reduction in mechanical loading of the mandible brought about by mastication of soft food is assumed to decrease the remodelling rate of bone, which, in turn, might increase the degree of bone mineralization. The effect of a reduction in masticatory functional load on the degree and distribution of mineralization of mandibular bone was investigated in male juvenile New Zealand White rabbits. The experimental animals (n=8) had been raised on a diet of soft pellets from 8 to 20 weeks of age, while the controls (n=8) had been fed pellets of normal hardness. The degree of mineralization of bone (DMB) was assessed at the attachment sites of various jaw muscles, the condylar head, and the alveolar process. Differences between groups and among sites were tested for statistical significance using a Student's t-test and one-way analysis of variance, respectively. The DMB did not differ significantly between the experimental and control animals at any of the sites assessed. However, in the rabbits that had been fed soft pellets, both cortical bone at the attachment sites of the temporalis and digastric muscles and cortical bone in the alveolar process had a significantly higher DMB than cortical bone at the attachment site of the masseter muscle, while there were no significant differences among these sites in the control animals. The results suggest that a moderate reduction in masticatory functional load does not significantly affect the remodelling rate and the DMB in areas of the mandible that are loaded during mastication but might induce a more heterogeneous mineral distribution.
Collapse
Affiliation(s)
- Thorsten Grünheid
- Division of Orthodontics, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | | | | | |
Collapse
|
13
|
Salmons S. An interesting study of the relationship between electromyographic activity in jaw muscles and their fibre type composition. J Anat 2010; 216:417; author reply 417. [PMID: 20447250 DOI: 10.1111/j.1469-7580.2009.01206_1.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
14
|
Gerrits MF, Ghosh S, Kavaslar N, Hill B, Tour A, Seifert EL, Beauchamp B, Gorman S, Stuart J, Dent R, McPherson R, Harper ME. Distinct skeletal muscle fiber characteristics and gene expression in diet-sensitive versus diet-resistant obesity. J Lipid Res 2010; 51:2394-404. [PMID: 20332421 DOI: 10.1194/jlr.p005298] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Inter-individual variability in weight gain and loss under energy surfeit and deficit conditions, respectively, are well recognized but poorly understood phenomena. We documented weight loss variability in an intensively supervised clinical weight loss program and assessed skeletal muscle gene expression and phenotypic characteristics related to variable response to a 900 kcal regimen. Matched pairs of healthy, diet-compliant, obese diet-sensitive (ODS) and diet-resistant (ODR) subjects were defined as those in the highest and lowest quintiles for weight loss rate. Physical activity energy expenditure was minimal and comparable. Following program completion and weight stabilization, skeletal muscle biopsies were obtained. Gene expression analysis of rectus femoris and vastus lateralis indicated upregulation of genes and gene sets involved in oxidative phosphorylation and glucose and fatty acid metabolism in ODS compared with ODR. In vastus lateralis, there was a higher proportion of oxidative (type I) fibers in ODS compared with ODR women and lean controls, fiber hypertrophy in ODS compared with ODR women and lean controls, and lower succinate dehydrogenase in oxidative and oxidative-glycolytic fibers in all obese compared with lean subjects. Intramuscular lipid content was generally higher in obese versus lean, and specifically higher in ODS vs. lean women. Altogether, our findings demonstrate differences in muscle gene expression and fiber composition related to clinical weight loss success.
Collapse
Affiliation(s)
- Martin F Gerrits
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Rd, Ottawa, ON, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Salmons S. Adaptive change in electrically stimulated muscle: a framework for the design of clinical protocols. Muscle Nerve 2009; 40:918-35. [PMID: 19902542 DOI: 10.1002/mus.21497] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Adult mammalian skeletal muscles have a remarkable capacity for adapting to increased use. Although this behavior is familiar from the changes brought about by endurance exercise, it is seen to a much greater extent in the response to long-term neuromuscular stimulation. The associated phenomena include a markedly increased resistance to fatigue, and this is the key to several clinical applications. However, a more rational basis is needed for designing regimes of stimulation that are conducive to an optimal outcome. In this review I examine relevant factors, such as the amount, frequency, and duty cycle of stimulation, the influence of force generation, and the animal model. From these considerations a framework emerges for the design of protocols that yield an overall functional profile appropriate to the application. Three contrasting examples illustrate the issues that need to be addressed clinically.
Collapse
Affiliation(s)
- Stanley Salmons
- Department of Human Anatomy and Cell Biology, School of Biomedical Sciences, University of Liverpool, The Sherrington Buildings, Ashton Street, Liverpool L69 3GE, UK.
| |
Collapse
|
16
|
|
17
|
Mallinson J, Meissner J, Chang KC. Chapter 2. Calcineurin signaling and the slow oxidative skeletal muscle fiber type. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 277:67-101. [PMID: 19766967 DOI: 10.1016/s1937-6448(09)77002-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Calcineurin, also known as protein phosphatase 2B (PP2B), is a calcium-calmodulin-dependent phosphatase. It couples intracellular calcium to dephosphorylate selected substrates resulting in diverse biological consequences depending on cell type. In mammals, calcineurin's functions include neuronal growth, development of cardiac valves and hypertrophy, activation of lymphocytes, and the regulation of ion channels and enzymes. This chapter focuses on the key roles of calcineurin in skeletal muscle differentiation, regeneration, and fiber type conversion to an oxidative state, all of which are crucial to muscle development, metabolism, and functional adaptations. It seeks to integrate the current knowledge of calcineurin signaling in skeletal muscle and its interactions with other prominent regulatory pathways and their signaling intermediates to form a molecular overview that could provide directions for possible future exploitations in human metabolic health.
Collapse
Affiliation(s)
- Joanne Mallinson
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| | | | | |
Collapse
|
18
|
Lushaj EB, Johnson JK, McKenzie D, Aiken JM. Sarcopenia accelerates at advanced ages in Fisher 344xBrown Norway rats. J Gerontol A Biol Sci Med Sci 2008; 63:921-7. [PMID: 18840796 DOI: 10.1093/gerona/63.9.921] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Although the age-dependent loss of muscle mass and strength, sarcopenia, is an inevitable process, its onset and progression are not well established. Here we defined the onset and the progression of sarcopenia in a healthy aging animal model, Fisher 344xBrown Norway rats. Vastus lateralis, rectus femoris, and vastus medialis muscles (three of the quadriceps muscles) were analyzed at 5 months of age and at 3-month intervals between 12 and 39 months of age. We found an age-dependent decline in muscle mass and fiber number and an increase in fiber atrophy and nonmuscle tissue. Significant changes of fiber number and muscle mass were not observed until very late in life (30-33 months) and were concurrent, whereas fiber cross-sectional area (CSA) gradually declined from maximum CSA (24 months). Sarcopenic declines identified between 30 and 36 months did not continue to 39 months, possibly due to the increased proportion of type I fibers.
Collapse
Affiliation(s)
- Entela Bua Lushaj
- Institute on Aging, School of Public Health, Department of Comparative Biosciences, University of Wisconsin, 1656 Linden Drive, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
19
|
Moore LM, Fisher AG, Coulson JM, Salmons S, Jarvis JC. Real-time polymerase chain reaction to follow the response of muscle to training. Artif Organs 2008; 32:630-3. [PMID: 18782134 DOI: 10.1111/j.1525-1594.2008.00613.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The adaptive response of muscle to changes in activity or loading can take many weeks. Changes in the levels of RNA within a muscle fiber can give an early indication of the nature of the response of that fiber to changes in activity or loading. We have designed a new primer set for quantitative polymerase chain reaction (PCR) that will allow us to follow these early transcriptional changes in rat muscle, and have shown that analysis can be performed by standard techniques on as little as 5 mg of muscle, an amount that can be obtained by needle biopsy.
Collapse
Affiliation(s)
- Lauren M Moore
- Department of Human Anatomy and Cell Biology, School of Biomedical Sciences, the University of Liverpool, Liverpool, UK
| | | | | | | | | |
Collapse
|
20
|
Abstract
Peroxisome proliferator activated receptors (PPARs) are nuclear receptors activated by small, lipophilic compounds. Typically resident on nuclear DNA, full activation requires heterodimer formation with retinoid X receptor and ligand binding, leading to modulation in the expression of hundreds of genes. Of the 3 described forms, (PPAR-alpha, PPAR-gamma, and PPAR-delta), PPAR-delta has been the least investigated. Preclinical in vitro data show that activation of PPAR-delta, like PPAR-alpha, results in enhancement of fatty acid oxidation, leading to increased energy production in the form of adenosine triphosphate and of energy uncoupling. Microarray data in preclinical models suggest substantial PPAR-delta expression in skeletal muscle. Exercise, which induces upregulation of PPAR-delta in muscle tissue, leads to an increased requirement for an external or serum derived triacylglycerol energy source. This suggests that upregulation of skeletal muscle PPAR-delta would influence lipoprotein composition, this being the major source of combustible substrate. In the first human study using a PPAR-delta agonist, experimental data obtained with GW 501516 (a highly specific PPAR-delta agonist) suggested that upregulated enzymes critical to fatty acid oxidation in human cells enhanced fatty acid and beta-oxidation in skeletal muscle.
Collapse
|
21
|
Matsuura T, Li Y, Giacobino JP, Fu FH, Huard J. Skeletal muscle fiber type conversion during the repair of mouse soleus: potential implications for muscle healing after injury. J Orthop Res 2007; 25:1534-40. [PMID: 17593537 DOI: 10.1002/jor.20451] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We used a mouse model of cardiotoxin injury to examine fiber type conversion during muscle repair. We evaluated the soleus muscles of 37 wild-type mice at 2, 4, 8, and 12 weeks after injury. We also used antibodies (fMHC and sMHC) against fast and slow myosin heavy chain to classify the myofibers into three categories: fast-, slow-, and mixed (hybrid)-type myofibers (myofibers expressing both fMHC and sMHC). Our results revealed an increase in the percentage of slow-type myofibers and a decrease in the percentage of fast-type myofibers during the repair process. The percentage of hybrid-type myofibers increased 2 weeks after injury, then gradually decreased over the following 6 weeks. Similarly, our analysis of centronucleated myofibers showed an increase in the percentage of slow-type myofibers and decreases in the percentages of fast- and hybrid-type myofibers. We also investigated the relationship between myofiber type conversion and peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha). The expression of both PGC-1alpha protein, which is expressed in both the nucleus and the cytoplasm of regenerating myofibers, and sMHC protein increased with time after cardiotoxin injection, but we observed no significant differential expression of fMHC protein in regenerating muscle fibers during muscle repair. PGC-1alpha-positive myofibers underwent fast to slow myofiber type conversion during the repair process. These results suggest that PGC-1alpha contributes to myofiber type conversion after muscle injury and that this phenomenon could influence the recovery of the injured muscle.
Collapse
Affiliation(s)
- Tetsuya Matsuura
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
22
|
Wang YX, Zhang CL, Yu RT, Cho HK, Nelson MC, Bayuga-Ocampo CR, Ham J, Kang H, Evans RM. Regulation of muscle fiber type and running endurance by PPARdelta. PLoS Biol 2004; 2:e294. [PMID: 15328533 PMCID: PMC509410 DOI: 10.1371/journal.pbio.0020294] [Citation(s) in RCA: 806] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Accepted: 07/06/2004] [Indexed: 12/11/2022] Open
Abstract
Endurance exercise training can promote an adaptive muscle fiber transformation and an increase of mitochondrial biogenesis by triggering scripted changes in gene expression. However, no transcription factor has yet been identified that can direct this process. We describe the engineering of a mouse capable of continuous running of up to twice the distance of a wild-type littermate. This was achieved by targeted expression of an activated form of peroxisome proliferator-activated receptor delta (PPARdelta) in skeletal muscle, which induces a switch to form increased numbers of type I muscle fibers. Treatment of wild-type mice with PPARdelta agonist elicits a similar type I fiber gene expression profile in muscle. Moreover, these genetically generated fibers confer resistance to obesity with improved metabolic profiles, even in the absence of exercise. These results demonstrate that complex physiologic properties such as fatigue, endurance, and running capacity can be molecularly analyzed and manipulated.
Collapse
Affiliation(s)
- Yong-Xu Wang
- 1Gene Expression Laboratory, Salk InstituteLa Jolla, CaliforniaUnited States of America
| | - Chun-Li Zhang
- 1Gene Expression Laboratory, Salk InstituteLa Jolla, CaliforniaUnited States of America
| | - Ruth T Yu
- 1Gene Expression Laboratory, Salk InstituteLa Jolla, CaliforniaUnited States of America
| | - Helen K Cho
- 1Gene Expression Laboratory, Salk InstituteLa Jolla, CaliforniaUnited States of America
| | - Michael C Nelson
- 1Gene Expression Laboratory, Salk InstituteLa Jolla, CaliforniaUnited States of America
- 2Howard Hughes Medical InstituteLa Jolla, CaliforniaUnited States of America
| | | | - Jungyeob Ham
- 3Marine Biotechnology Laboratory, School of Earth and Environmental SciencesSeoul National University, SeoulKorea
| | - Heonjoong Kang
- 3Marine Biotechnology Laboratory, School of Earth and Environmental SciencesSeoul National University, SeoulKorea
| | - Ronald M Evans
- 1Gene Expression Laboratory, Salk InstituteLa Jolla, CaliforniaUnited States of America
- 2Howard Hughes Medical InstituteLa Jolla, CaliforniaUnited States of America
| |
Collapse
|
23
|
Dupont Salter AC, Richmond FJR, Loeb GE. Prevention of muscle disuse atrophy by low-frequency electrical stimulation in rats. IEEE Trans Neural Syst Rehabil Eng 2003; 11:218-26. [PMID: 14518784 DOI: 10.1109/tnsre.2003.817674] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
When muscles lose neural drive, they atrophy rapidly. Neuromuscular electrical stimulation (NMS) has been used in attempts to prevent or reverse the atrophy, but optimal stimulation programs and parameters are not well defined. In this study, we investigated the effects of four different stimulation patterns on disuse atrophy produced in the tibialis anterior, lateral gastrocnemius, and soleus muscles of rats paralyzed with tetrodotoxin for seven days. Stimulation paradigms differed from one another by their stimulation frequency (2 or 10 pulses/s) and by their stimulation period (2 or 10 h a day). Results showed that stimulation with 2 pulses/s, paradigms were more effective at preventing disuse muscle atrophy than higher-frequency stimulation. The most marked difference was in the slow soleus muscle, which had only 10% mean atrophy when stimulated at 2 pulses/s for 10 h, compared to 26% atrophy when stimulated at 10 pulses/s for either 2 or 10 h and 32% atrophy in unstimulated, paralyzed controls. The level of atrophic change was not correlated with the levels of serum creatine kinase, used as an index of muscle damage. Results suggest that remediation of disuse atrophy may be accomplished using unphysiologically low rates of motor-unit activation despite the relatively low force produced by such unfused contractions. This may have significant implications for the design of therapies for muscle paralysis consequent to upper-motoneuron lesions.
Collapse
MESH Headings
- Adaptation, Physiological
- Anatomy, Cross-Sectional
- Animals
- Ankle Joint/pathology
- Ankle Joint/physiopathology
- Electric Stimulation Therapy/instrumentation
- Electric Stimulation Therapy/methods
- Female
- Muscle Contraction
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Muscular Disorders, Atrophic/blood
- Muscular Disorders, Atrophic/pathology
- Muscular Disorders, Atrophic/physiopathology
- Muscular Disorders, Atrophic/prevention & control
- Organ Size
- Phosphocreatine/blood
- Rats
- Rats, Sprague-Dawley
- Tetrodotoxin
- Treatment Outcome
Collapse
|
24
|
Decherchi P, Dousset E, Marqueste T, Berthelin F, Hug F, Jammes Y, Grélot L. Électromyostimulation et récupération fonctionnelle d’un muscle dénervé. Sci Sports 2003. [DOI: 10.1016/s0765-1597(03)00144-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
Pette D, Sketelj J, Skorjanc D, Leisner E, Traub I, Bajrović F. Partial fast-to-slow conversion of regenerating rat fast-twitch muscle by chronic low-frequency stimulation. J Muscle Res Cell Motil 2003; 23:215-21. [PMID: 12500901 DOI: 10.1023/a:1020974710389] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Chronic low-frequency stimulation (CLFS) of rat fast-twitch muscles induces sequential transitions in myosin heavy chain (MHC) expression from MHCIIb --> MHCIId/x --> MHCIIa. However, the 'final' step of the fast-to-slow transition, i.e., the upregulation of MHCI, has been observed only after extremely long stimulation periods. Assuming that fibre degeneration/regeneration might be involved in the upregulation of slow myosin, we investigated the effects of CLFS on extensor digitorum longus (EDL) muscles regenerating after bupivacaine-induced fibre necrosis. Normal, non-regenerating muscles responded to both 30- and 60-day CLFS with fast MHC isoform transitions (MHCIIb --> MHCIId --> MHCIIa) and only slight increases in MHCI. CLFS of regenerating EDL muscles caused similar transitions among the fast isoforms but, in addition, caused significant increases in MHCI (to approximately 30% relative concentration). Stimulation periods of 30 and 60 days induced similar changes in the regenerating bupivacaine-treated muscles, indicating that the upregulation of slow myosin was restricted to regenerating fibres, but only during an early stage of regeneration. These results suggest that satellite cells and/or regenerating fast rat muscle fibres are capable of switching directly to a slow program under the influence of CLFS and, therefore, appear to be more malleable than adult fibres.
Collapse
MESH Headings
- Animals
- Bupivacaine/pharmacology
- Cell Death/drug effects
- Cell Death/physiology
- Electric Stimulation
- Male
- Muscle Contraction/physiology
- Muscle Fibers, Fast-Twitch/cytology
- Muscle Fibers, Fast-Twitch/metabolism
- Muscle Fibers, Slow-Twitch/cytology
- Muscle Fibers, Slow-Twitch/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/metabolism
- Muscular Atrophy/chemically induced
- Muscular Atrophy/metabolism
- Muscular Atrophy/physiopathology
- Myosin Heavy Chains/metabolism
- Protein Isoforms/metabolism
- Rats
- Rats, Wistar
- Satellite Cells, Skeletal Muscle/cytology
- Satellite Cells, Skeletal Muscle/metabolism
Collapse
Affiliation(s)
- Dirk Pette
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany.
| | | | | | | | | | | |
Collapse
|
26
|
Langenbach G, van de Pavert S, Savalle W, Korfage H, van Eijden T. Influence of food consistency on the rabbit masseter muscle fibres. Eur J Oral Sci 2003; 111:81-4. [PMID: 12558812 DOI: 10.1034/j.1600-0722.2003.00008.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The plasticity of the masseter muscle was studied by comparing two groups of rabbits that were fed soft- and hard-diet for 87 d. Incisors of the soft-diet group were cut back to minimize the bite forces. Muscle fibres were immunohistochemically defined as fast- or slow-contracting fibres and their cross-sectional area was measured. The muscles of animals fed with the hard-diet were composed of fibres with larger cross-sectional areas than the soft-diet group. The relative difference was larger in slow-contracting fibres than in fast-contracting fibres. The results were similar for the different regions of the muscle. No changes in fibre composition were found. In conclusion, the difference in food consistency, as induced in this study, caused changes in the muscle fibre cross-sectional area that can be recognized from the altered necessary occlusal forces, which result from the modified forces developed by the masseter muscle.
Collapse
Affiliation(s)
- Geerling Langenbach
- Department of Functional Anatomy, Academic Center for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
27
|
Freitas EMS, Dal Pai Silva M, da Cruz-Höfling MA. Histochemical differences in the responses of predominantly fast-twitch glycolytic muscle and slow-twitch oxidative muscle to veratrine. Toxicon 2002; 40:1471-81. [PMID: 12368117 DOI: 10.1016/s0041-0101(02)00165-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of this study was to investigate if the Na(+)-channel activating alkaloid veratrine is able to change the oxidative and m-ATPase activities of a fast-twitch glycolytic muscle (EDL, extensor digitorum longus) and slow-twitch oxidative muscle (SOL, soleus) in mice. Oxidative fibers and glycolytic fibers were more sensitive to veratrine than oxidative-glycolytic fibers 15, 30 and 60 min after the i.m. injection of veratrine (10 ng/kg) with both showing an increase in their metabolic activity in both muscles. In EDL, the m-ATPase reaction revealed a significant (p < 0.001) decrease (50%) in the number of type IIB fibers after 30 min while the number of type I fibers increased by 550%. Type I fibers decreased from 34% in control SOL to 17% (50% decrease) in veratrinized muscles, with a 10% decrease in type IIA fibers within 15 min. A third type of fiber appeared in SOL veratrinized muscle, which accounted for 28% of the fibers. Our work gives evidence that the changes in the percentage of the fiber types induced by veratrine may be the result, at least partially, from a direct effect of veratrine on muscle fibers and else from an interaction with the muscle type influencing distinctively the response of a same fiber type. Based on the results obtained in the present study the alterations in EDL may be related to the higher number of Na(+) channels present in this muscle whereas those in SOL may involve an action of veratrine on mitochondria. Although it is unlikely that the shift of enzymes activities induced by veratrine involves genotypic expression changes an alternative explanation for the findings cannot be substantiated by the present experimental approach.
Collapse
MESH Headings
- Adenosine Triphosphatases/analysis
- Adenosine Triphosphatases/metabolism
- Animals
- Histocytochemistry
- Injections, Intramuscular
- Male
- Mice
- Mice, Inbred BALB C
- Muscle Fibers, Fast-Twitch/drug effects
- Muscle Fibers, Fast-Twitch/enzymology
- Muscle Fibers, Fast-Twitch/pathology
- Muscle Fibers, Slow-Twitch/drug effects
- Muscle Fibers, Slow-Twitch/enzymology
- Muscle Fibers, Slow-Twitch/pathology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/pathology
- Myosins/analysis
- Myosins/metabolism
- Protein Isoforms
- Sodium Channels/metabolism
- Veratrine/administration & dosage
- Veratrine/pharmacology
Collapse
Affiliation(s)
- Erika Maria Silva Freitas
- Departamento de Histologia e Embriologia, Instituto de Biologia, Universidade Estadual de Campinas, CP 6109, 13083-970, Campinas, SP, Brazil
| | | | | |
Collapse
|
28
|
Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, Michael LF, Puigserver P, Isotani E, Olson EN, Lowell BB, Bassel-Duby R, Spiegelman BM. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature 2002; 418:797-801. [PMID: 12181572 DOI: 10.1038/nature00904] [Citation(s) in RCA: 1956] [Impact Index Per Article: 88.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The biochemical basis for the regulation of fibre-type determination in skeletal muscle is not well understood. In addition to the expression of particular myofibrillar proteins, type I (slow-twitch) fibres are much higher in mitochondrial content and are more dependent on oxidative metabolism than type II (fast-twitch) fibres. We have previously identified a transcriptional co-activator, peroxisome-proliferator-activated receptor-gamma co-activator-1 (PGC-1 alpha), which is expressed in several tissues including brown fat and skeletal muscle, and that activates mitochondrial biogenesis and oxidative metabolism. We show here that PGC-1 alpha is expressed preferentially in muscle enriched in type I fibres. When PGC-1 alpha is expressed at physiological levels in transgenic mice driven by a muscle creatine kinase (MCK) promoter, a fibre type conversion is observed: muscles normally rich in type II fibres are redder and activate genes of mitochondrial oxidative metabolism. Notably, putative type II muscles from PGC-1 alpha transgenic mice also express proteins characteristic of type I fibres, such as troponin I (slow) and myoglobin, and show a much greater resistance to electrically stimulated fatigue. Using fibre-type-specific promoters, we show in cultured muscle cells that PGC-1 alpha activates transcription in cooperation with Mef2 proteins and serves as a target for calcineurin signalling, which has been implicated in slow fibre gene expression. These data indicate that PGC-1 alpha is a principal factor regulating muscle fibre type determination.
Collapse
Affiliation(s)
- Jiandie Lin
- Dana-Farber Cancer Institute and the Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Roy RR, Zhong H, Hodgson JA, Grossman EJ, Siengthai B, Talmadge RJ, Edgerton VR. Influences of electromechanical events in defining skeletal muscle properties. Muscle Nerve 2002; 26:238-51. [PMID: 12210389 DOI: 10.1002/mus.10189] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Inactivity of the cat soleus muscle was induced via spinal cord isolation (SI), and the cats were maintained for 4 months. The soleus was electrically stimulated while lengthening (SI-L) or shortening (SI-S) during a simulated step cycle or during isometric (SI-I) contractions. For the SI, SI-S, SI-L, and SI-I groups, the soleus weights were 33, 55, 55, and 64% of the control, respectively, and the maximum tetanic tensions were 15, 30, 36, and 44% of the control, respectively. The specific tension was lower in all SI groups than in the control. Absolute forces at stimulation frequencies of 5-200 Hz were smaller in all SI groups than in the control. The SI-I group tended to have higher values for all force-related parameters than the other SI groups. Fatigue resistance was similar among all groups. The isometric twitch time-to-peak tension was shorter, and the frequency of the stimulation-tension response was shifted to the right in all SI groups with respect to the control. Maximum shortening velocities were 70, 59, and 73% faster for the SI, SI-S, and SI-L groups and similar to the control for the SI-I group. Inactivity resulted in an increased percentage of faster myosin heavy chains (MHCs) that was blunted in the SI-I and SI-L groups but not in the SI-S group. Pure type I MHC fibers atrophied by 80, 59, 58, and 47% in the SI, SI-S, SI-L, and SI-I groups. The data from the SI group quantify the contribution of activity-independent factors in maintaining the mechanical and phenotypic properties of the cat soleus. Relative to a fast-fatigable muscle, these results suggest that only 25% of the slowness (type I MHC) and none of the resistance to fatigue of the soleus muscle are dependent on activity-related factors. Short, daily bouts of electromechanical activation ameliorated several of these adaptations, with the isometric contractions being the most effective countermeasure. The clinical implications of these findings for rehabilitation strategies are discussed.
Collapse
Affiliation(s)
- Roland R Roy
- Brain Research Institute, University of California at Los Angeles, 1320 Gonda Neuroscience and Genetics Building, Box 951761, Los Angeles, California 90095-1761, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Woo EBC, Tang ATM, Jarvis JC, Hasleton PS, Salmons S, Hooper TL. Improved viability of latissimus dorsi muscle grafts after electrical prestimulation. Muscle Nerve 2002; 25:679-684. [PMID: 11994961 DOI: 10.1002/mus.10099] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Surgical mobilization of the latissimus dorsi muscle (LDM) produces fiber degeneration, particularly in the distal part of the graft, that may compromise its function in clinical applications such as dynamic cardiomyoplasty. In five rats, the left LDM was stimulated continuously at 10 HZ. After 5 weeks, vessels perforating the chest wall were divided and the left LDM was mobilized as a pedicle graft based on the thoracodorsal artery. Twenty-four hours later, animals were killed and left and right LDMs were incubated with the vital stain nitroblue tetrazolium. Five control rats underwent a similar procedure without prestimulation. Mobilization of the LDM resulted in a loss of viability in the distal third of the muscle graft. This was reduced significantly by prestimulation (P = 0.006). Blood flow to the distal LDM graft is known to be augmented by electrical stimulation in situ before mobilization; the present results show that there is an associated enhancement of viability. The clinical implications of this finding are discussed.
Collapse
Affiliation(s)
- Edwin B C Woo
- Department of Cardiothoracic Surgery, Wythenshawe Hospital, Manchester, United Kingdom
- Department of Human Anatomy and Cell Biology, University of Liverpool, Sherrington Building, Ashton Street, Liverpool L69 3GE, United Kingdom
| | - Augustine T M Tang
- Department of Cardiothoracic Surgery, Southampton General Hospital, Southampton, United Kingdom
| | - Jonathan C Jarvis
- Department of Human Anatomy and Cell Biology, University of Liverpool, Sherrington Building, Ashton Street, Liverpool L69 3GE, United Kingdom
| | - Philip S Hasleton
- Department of Cardiothoracic Surgery, Wythenshawe Hospital, Manchester, United Kingdom
| | - Stanley Salmons
- Department of Human Anatomy and Cell Biology, University of Liverpool, Sherrington Building, Ashton Street, Liverpool L69 3GE, United Kingdom
| | - Timothy L Hooper
- Department of Cardiothoracic Surgery, Wythenshawe Hospital, Manchester, United Kingdom
| |
Collapse
|
31
|
Harridge SDR, Andersen JL, Hartkopp A, Zhou S, Biering-Sørensen F, Sandri C, Kjaer M. Training by low-frequency stimulation of tibialis anterior in spinal cord-injured men. Muscle Nerve 2002; 25:685-694. [PMID: 11994962 DOI: 10.1002/mus.10021] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The tibialis anterior muscle of nine paraplegic men was chronically stimulated (2-6 h per day; at 10 Hz, 5 s on, 5 s off) under isometric loading conditions for 5 days per week for 4 weeks. After 4 weeks of training, muscle fatigue resistance in an electrically evoked test had increased by an average of 75% (P <.01, n = 9), but there were no changes in the relative composition of the three myosin heavy chain (MHC) isoforms. Five of the subjects continued training for an additional 5 weeks (2 h per day, 3 days per week). Although there was a tendency for twitch time to peak torque to increase after this additional period, no change occurred in relative MHC isoform content. However, in situ hybridization analysis revealed that even after 2 weeks of stimulation, there was evidence of upregulation of the mRNA for the MHC-I isoform and downregulation of the MHC-IIX isoform, a development that continued in weeks 4 and 9. This study provides evidence, at the level of gene transcription, that a fast-to-slow change in MHC isoform composition may be possible in human muscle when its usage is significantly increased.
Collapse
Affiliation(s)
- Stephen D R Harridge
- Copenhagen Muscle Research Centre, Rigshospitalet, Copenhagen, Denmark
- Department of Physiology, Royal Free and University College Medical School, Rowland Hill Street, London NW3 2PF, United Kingdom
| | - Jesper L Andersen
- Copenhagen Muscle Research Centre, Rigshospitalet, Copenhagen, Denmark
| | - Andreas Hartkopp
- Centre for Spinal Cord Injured, Neuroscience Centre, Rigshospitalet, Copenhagen, Denmark
| | - Shu Zhou
- School of Exercise Science and Sport Management, Southern Cross University, Lismore, Australia
| | - Fin Biering-Sørensen
- Centre for Spinal Cord Injured, Neuroscience Centre, Rigshospitalet, Copenhagen, Denmark
| | - Claudia Sandri
- Consiglio Nazionalle delle Ricerche Center of Muscle Biology and Physiopathology, Department of Biomedical Sciences, Padova, Italy
| | - Michael Kjaer
- Copenhagen Muscle Research Centre, Rigshospitalet, Copenhagen, Denmark
- Sports Medicine Research Unit, Bispebjerg Hospital, Copenhagen, Denmark
| |
Collapse
|
32
|
Muñiz J, Del Rio J, Huerta M, Marin JL. Effects of sprint and endurance training on passive stress-strain relation of fast- and slow-twitch skeletal muscle in Wistar rat. ACTA PHYSIOLOGICA SCANDINAVICA 2001; 173:207-12. [PMID: 11683678 DOI: 10.1046/j.1365-201x.2001.00875.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We investigated the effects of endurance and sprint training on the passive mechanical properties of fast-twitch (FT) and slow-twitch (ST) skeletal muscles. Eight-week-old male Wistar rats (n=18) were divided into three groups: control (C), sprint-trained (S) and endurance-trained (E). The trained animals exercised for 10 weeks on a treadmill. Under anaesthesia, Plantaris and Soleus muscles were deformed cyclically in vivo at 0.33 mm x s(-1) with length increments of 1 mm in successive cycles until rupture. The rupture of muscle occurs at belly. Stress-strain relation were constructed using the maximum stress and maximum strain in each cycle. The data were fitted to an S-shaped curve. The curve-fitting parameters for trained and untrained muscles showed significant statistical differences. Stress and strain at rupture and maximum deformation energy were statistically greater for trained ST muscles (both groups) than for the controls. The changes induced by the present training protocols were not significant in Plantaris. The above results suggest the plasticity of passive structure caused by activity-demands.
Collapse
Affiliation(s)
- J Muñiz
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, México
| | | | | | | |
Collapse
|
33
|
Fabis J, Danilewicz M, Omulecka A. Rabbit supraspinatus tendon detachment: effects of size and time after tenotomy on morphometric changes in the muscle. ACTA ORTHOPAEDICA SCANDINAVICA 2001; 72:282-6. [PMID: 11480606 DOI: 10.1080/00016470152846637] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We studied the effects of size and time after rabbit supraspinatus tenotomy (group A--small tenotomy, group B--large tenotomy) on muscle morphometric changes in 48 rabbits. Animals were killed 6 (subgroups A1 and B1), 12 (subgroups A2 and B2) and 24 weeks (subgroups A3 and B3) after tendon detachment. Statistically significantly greater increases in interstitium volume were noted in subgroups A1-A3 and B1-B3 than in controls. Reductions in type I and II fiber diameters were mainly due to the length of observation. However, statistically significant differences in comparison with controls appeared earlier after large tenotomy. The size of the tenotomy primarily affected muscle fiber composition. Our results suggest that these changes were caused by fiber transformation from type I to type II and vice versa. These findings indicate that the interdigitations between the supraspinatus and infraspinatus and between the supraspinatus and subscapularis tendons are important in dynamics and the degree of morphometric changes in the rabbit supraspinatus after tenotomy.
Collapse
Affiliation(s)
- J Fabis
- Clinic of Orthopaedics, Medical University of Lódz, Poland
| | | | | |
Collapse
|
34
|
Abstract
Skeletal muscle is an extremely heterogeneous tissue composed of a variety of fast and slow fiber types and subtypes. Moreover, muscle fibers are versatile entities capable of adjusting their phenotypic properties in response to altered functional demands. Major differences between muscle fiber types relate to their myosin complement, i.e., isoforms of myosin light and heavy chains. Myosin heavy chain (MHC) isoforms appear to represent the most appropriate markers for fiber type delineation. On this basis, pure fiber types are characterized by the expression of a single MHC isoform, whereas hybrid fiber type express two or more MHC isoforms. Hybrid fibers bridge the gap between the pure fiber types. The fiber population of skeletal muscles, thus, encompasses a continuum of pure and hybrid fiber types. Under certain conditions, changes can be induced in MHC isoform expression heading in the direction of either fast-to-slow or slow-to-fast. Increased neuromuscular activity, mechanical loading, and hypothyroidism are conditions that induce fast-to-slow transitions, whereas reduced neuromuscular activity, mechanical unloading, and hyperthyroidism cause transitions in the slow-to-fast direction.
Collapse
Affiliation(s)
- D Pette
- Department of Biology, University of Konstanz, D-78547 Konstanz, Germany
| | | |
Collapse
|
35
|
Berchtold MW, Brinkmeier H, Müntener M. Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease. Physiol Rev 2000; 80:1215-65. [PMID: 10893434 DOI: 10.1152/physrev.2000.80.3.1215] [Citation(s) in RCA: 617] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mammalian skeletal muscle shows an enormous variability in its functional features such as rate of force production, resistance to fatigue, and energy metabolism, with a wide spectrum from slow aerobic to fast anaerobic physiology. In addition, skeletal muscle exhibits high plasticity that is based on the potential of the muscle fibers to undergo changes of their cytoarchitecture and composition of specific muscle protein isoforms. Adaptive changes of the muscle fibers occur in response to a variety of stimuli such as, e.g., growth and differentition factors, hormones, nerve signals, or exercise. Additionally, the muscle fibers are arranged in compartments that often function as largely independent muscular subunits. All muscle fibers use Ca(2+) as their main regulatory and signaling molecule. Therefore, contractile properties of muscle fibers are dependent on the variable expression of proteins involved in Ca(2+) signaling and handling. Molecular diversity of the main proteins in the Ca(2+) signaling apparatus (the calcium cycle) largely determines the contraction and relaxation properties of a muscle fiber. The Ca(2+) signaling apparatus includes 1) the ryanodine receptor that is the sarcoplasmic reticulum Ca(2+) release channel, 2) the troponin protein complex that mediates the Ca(2+) effect to the myofibrillar structures leading to contraction, 3) the Ca(2+) pump responsible for Ca(2+) reuptake into the sarcoplasmic reticulum, and 4) calsequestrin, the Ca(2+) storage protein in the sarcoplasmic reticulum. In addition, a multitude of Ca(2+)-binding proteins is present in muscle tissue including parvalbumin, calmodulin, S100 proteins, annexins, sorcin, myosin light chains, beta-actinin, calcineurin, and calpain. These Ca(2+)-binding proteins may either exert an important role in Ca(2+)-triggered muscle contraction under certain conditions or modulate other muscle activities such as protein metabolism, differentiation, and growth. Recently, several Ca(2+) signaling and handling molecules have been shown to be altered in muscle diseases. Functional alterations of Ca(2+) handling seem to be responsible for the pathophysiological conditions seen in dystrophinopathies, Brody's disease, and malignant hyperthermia. These also underline the importance of the affected molecules for correct muscle performance.
Collapse
Affiliation(s)
- M W Berchtold
- Department of Molecular Cell Biology, Institute of Molecular Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
36
|
Fraysse B, Guillet C, Huchet-Cadiou C, Camerino DC, Gascan H, Léoty C. Ciliary neurotrophic factor prevents unweighting-induced functional changes in rat soleus muscle. J Appl Physiol (1985) 2000; 88:1623-30. [PMID: 10797122 DOI: 10.1152/jappl.2000.88.5.1623] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of the present work was to see whether changes in rat soleus characteristics due to 3 wk of hindlimb suspension could be modified by ciliary neurotrophic factor (CNTF) treatment. Throughout the tail suspension period, the cytokine was delivered by means of an osmotic pump (flow rate 16 microg. kg(-1). h(-1)) implanted under the hindlimb skin. In contrast to extensor digitorum longus, CNTF treatment was able to reduce unweighting-induced atrophy in the soleus. Twitch and 146 mM potassium (K) tensions, measured in small bundles of unloaded soleus, decreased by 48 and 40%, respectively. Moreover, the time to peak tension and the time constant of relaxation of the twitch were 48 and 54% faster, respectively, in unloaded soleus than in normal muscle. On the contrary, twitch and 146 mM K contracture generated in CNTF-treated unloaded and normal soleus were not different. CNTF receptor-alpha mRNA expression increased in extensor digitorum longus and soleus unloaded nontreated muscles but was similar in CNTF-treated unloaded muscles. The present results demonstrate that exogenously provided CNTF could prevent functional changes occurring in soleus innervated muscle subject to unweighting.
Collapse
Affiliation(s)
- B Fraysse
- Laboratoire de Physiologie Générale, Faculté des Sciences Nantes, 4322 Nantes Cedex 3, France.
| | | | | | | | | | | |
Collapse
|
37
|
Loughna PT, Mason P, Bayol S, Brownson C. The LIM-domain protein FHL1 (SLIM 1) exhibits functional regulation in skeletal muscle. MOLECULAR CELL BIOLOGY RESEARCH COMMUNICATIONS : MCBRC 2000; 3:136-40. [PMID: 10860860 DOI: 10.1006/mcbr.2000.0206] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The LIM domain protein FHL1 (SLIM 1) transcript is preferentially expressed in postnatal skeletal muscle but almost nothing is known about its function in this tissue. In this study we have examined the expression of the FHL1 transcript at the cellular level by in situ hybridisation. Muscle fibers exist as a number of discrete subpopulations or "types" which are differentiated by their contractile and metabolic properties. It was observed that the FHL1 transcript was not fiber-type specific but was however more abundant in oxidative fibers. Muscle atrophy induced by disuse caused a significant decline in the expression of the transcript but atrophy induced by short-term denervation did not. Hypertrophy of skeletal muscle induced by passive stretch was associated with an up-regulation of the FHL1 transcript. These data are consistent that FHL1 is involved in synthetic processes within the muscle fibre.
Collapse
Affiliation(s)
- P T Loughna
- Department of Veterinary Sciences, Royal Veterinary College, Royal College Street, London, NW1 0TU, United Kingdom.
| | | | | | | |
Collapse
|
38
|
Stevens L, Sultan KR, Peuker H, Gohlsch B, Mounier Y, Pette D. Time-dependent changes in myosin heavy chain mRNA and protein isoforms in unloaded soleus muscle of rat. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:C1044-9. [PMID: 10600755 DOI: 10.1152/ajpcell.1999.277.6.c1044] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Time-dependent changes in myosin heavy chain (MHC) isoform expression were investigated in rat soleus muscle unloaded by hindlimb suspension. Changes at the mRNA level were measured by RT-PCR and correlated with changes in the pattern of MHC protein isoforms. Protein analyses of whole muscle revealed that MHCI decreased after 7 days, when MHCIIa had increased, reaching a transient maximum by 15 days. Longer periods led to inductions and progressive increases of MHCIId(x) and MHCIIb. mRNA analyses of whole muscle showed that MHCIId(x) displayed the steepest increase after 4 days and continued to rise until 28 days, the longest time period investigated. MHCIIb mRNA followed a similar time course, although at lower levels. MHCIalpha mRNA, present at extremely low levels in control soleus, peaked after 4 days, stayed elevated until 15 days, and then decayed. Immunohistochemistry of 15-day unloaded muscles revealed that MHCIalpha was present in muscle spindles but at low amounts also in extrafusal fibers. The slow-to-fast transitions thus seem to proceed in the order MHCIbeta --> MHCIIa --> MHCIId(x) --> MHCIIb. Our findings indicate that MHCIalpha is transiently upregulated in some fibers as an intermediate step during the transition from MHCIbeta to MHCIIa.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal
- Cell Differentiation
- Gene Expression/physiology
- Hindlimb
- Immobilization/physiology
- Immunoenzyme Techniques
- Isomerism
- Male
- Muscle Fibers, Fast-Twitch/cytology
- Muscle Fibers, Fast-Twitch/physiology
- Muscle Fibers, Slow-Twitch/cytology
- Muscle Fibers, Slow-Twitch/physiology
- Muscle, Skeletal/chemistry
- Muscle, Skeletal/cytology
- Muscle, Skeletal/physiology
- Myosin Heavy Chains/chemistry
- Myosin Heavy Chains/genetics
- Myosin Heavy Chains/immunology
- Organ Size
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Reverse Transcriptase Polymerase Chain Reaction
- Time Factors
- Weight-Bearing
Collapse
Affiliation(s)
- L Stevens
- Faculty of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
The model of chronic low-frequency stimulation for the study of muscle plasticity was developed over 30 years ago. This protocol leads to a transformation of fast, fatigable muscles toward slower, fatigue-resistant ones. It involves qualitative and quantitative changes of all elements of the muscle fiber studied so far. The multitude of stimulation-induced changes makes it possible to establish the full adaptive potential of skeletal muscle. Both functional and structural alterations are caused by orchestrated exchanges of fast protein isoforms with their slow counterparts, as well as by altered levels of expression. This remodeling of the muscle fiber encompasses the major, myofibrillar proteins, membrane-bound and soluble proteins involved in Ca2+ dynamics, and mitochondrial and cytosolic enzymes of energy metabolism. Most transitions occur in a coordinated, time-dependent manner and result from altered gene expression, including transcriptional and posttranscriptional processes. This review summarizes the advantages of chronic low-frequency stimulation for studying activity-induced changes in phenotype, and its potential for investigating regulatory mechanisms of gene expression. The potential clinical relevance or utility of the technique is also considered.
Collapse
Affiliation(s)
- D Pette
- Faculty of Biology, University of Konstanz, Germany
| | | |
Collapse
|
40
|
Ohnuki Y, Saeki Y, Yamane A, Kawasaki K, Yanagisawa K. Adaptation of guinea-pig superficial masseter muscle to an increase in occlusal vertical dimension. Arch Oral Biol 1999; 44:329-35. [PMID: 10348359 DOI: 10.1016/s0003-9969(98)00128-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To study the effect of increased occlusal vertical dimension on the fibre phenotypes of the superficial masseter muscle, the composition of myosin heavy-chains (MHC), myosin light-chains (MLC) and tropomyosin was investigated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and two-dimensional gel electrophoresis in conjunction with densitometric analysis in normal (control) and bite-opened (5.7 mm increase in the vertical dimension for 1 week) guinea-pigs. The superficial masseter contained two fast-type MHC isoforms, II-1 and II-2, in both the bite-opened and control groups; their relative content (mean+/-SD, n = 7) was 47.8+/-2.9% and 52.2+/-2.9%, in the bite-opened and 44.4+/-3.0% and 55.6+3.0% in control preparations, indicating no significant (p>0.05) changes in MHC composition in association with the bite opening. On the other hand, significant differences in MLC and tropomyosin composition were found between the two preparations. Although the MLC consisted of three components, LC1f, LC2f and LC3f, in both preparations, their relative content (mean+/-SD, n = 7) was 37.1+/-2.4%, 49.6+/-1.6% and 13.2+/-3.2%, respectively, in the bite-opened and 28.1+/-3.1%, 50.9+/-1.6% and 21.0+/-3.5% in the control preparations, indicating that the bite opening induced a significant (p < 0.0001) increase in the relative content of LC1f at the expense of that of LC3f. Although the tropomyosin consisted of two components, TM-alpha and TM-beta, in both preparations, their relative content (mean+/-SD, n = 7) was 91.8%+/-1.9% and 8.2+/-1.9%, respectively, in the bite-opened and 95.9+/-0.7% and 4.1+/-0.7% in the control preparations, showing a significant (p < 0.001) increase in the relative content of TM-beta in relation to the bite opening. These results indicate that in guinea-pigs an increase in occlusal vertical dimension for 1 week changes the composition of MLC and tropomyosin, with no significant change in MHC, in the masseter muscle. These changes might be required to meet altered functional demands.
Collapse
Affiliation(s)
- Y Ohnuki
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan.
| | | | | | | | | |
Collapse
|
41
|
Abstract
Developing networks of the chick spinal cord become spontaneously active early in development and remain so until hatching. Experiments using an isolated preparation of the spinal cord have begun to reveal the mechanisms responsible for this activity. Whole-cell and optical recordings have shown that spinal neurons receive a rhythmic, depolarizing synaptic drive and experience rhythmic elevations of intracellular calcium during spontaneous episodes. Activity is expressed throughout the neuraxis and can be produced by different parts of the cord and by the isolated brain stem, suggesting that it does not depend upon the details of network architecture. Two factors appear to be particularly important for the production of endogenous activity. The first is the predominantly excitatory nature of developing synaptic connections, and the second is the presence of prolonged activity-dependent depression of network excitability. The interaction between high excitability and depression results in an equilibrium in which episodes are expressed periodically by the network. The mechanism of the rhythmic bursting within an episode is not understood, but it may be due to a "fast" form of network depression. Spontaneous embryonic activity has been shown to play a role in neuron and muscle development, but is probably not involved in the initial formation of connections between spinal neurons. It may be important in refining the initial connections, but this possibility remains to be explored.
Collapse
Affiliation(s)
- M J O'Donovan
- Section of Developmental Neurobiology, Laboratory of Neural Control, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
42
|
Cooper RL, Warren WM, Ashby HE. Activity of phasic motor neurons partially transforms the neuronal and muscle phenotype to a tonic-like state. Muscle Nerve 1998; 21:921-31. [PMID: 9626252 DOI: 10.1002/(sici)1097-4598(199807)21:7<921::aid-mus10>3.0.co;2-t] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We present a model preparation, the crayfish, to investigate chronic stimulation effects in muscle fiber type and neuronal conversion from fast to slow. The results show a presynaptic alteration in transmitter release after 1 week of stimulation at 5 Hz for a 2-h daily regime. With the same stimulation paradigm, the muscle proteins displayed on a polyacrylamide gel only start to show changes after 3 weeks. The original phasic motoneurons within 1 week display an enhanced ability to resist synaptic depression, as do tonic motoneurons. The results show that identified phasic motoneurons and muscle fibers in the crayfish can be transformed to a toniclike state, and that the nerve terminals convert prior to the muscle fibers. Electrophysiological clinical measures indicating a change in transmitter release properties may not necessarily mean that the muscle fibers have fully adapted for long-lasting effects. This preparation allows stimulation conditions to be examined with ease.
Collapse
Affiliation(s)
- R L Cooper
- Section of Organismal and Integrative Biology, Thomas Hunt Morgan School of Biological Sciences, Lexington, Kentucky, USA
| | | | | |
Collapse
|