1
|
Sengupta D, Sengupta K. Lamin A K97E leads to NF-κB-mediated dysfunction of inflammatory responses in dilated cardiomyopathy. Biol Cell 2024; 116:e2300094. [PMID: 38404031 DOI: 10.1111/boc.202300094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/07/2023] [Accepted: 01/04/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND INFORMATION Lamins are type V intermediate filament proteins underlying the inner nuclear membrane which provide structural rigidity to the nucleus, tether the chromosomes, maintain nuclear homeostasis, and remain dynamically associated with developmentally regulated regions of the genome. A large number of mutations particularly in the LMNA gene encoding lamin A/C results in a wide array of human diseases, collectively termed as laminopathies. Dilated Cardiomyopathy (DCM) is one such laminopathic cardiovascular disease which is associated with systolic dysfunction of left or both ventricles leading to cardiac arrhythmia which ultimately culminates into myocardial infarction. RESULTS In this work, we have unraveled the epigenetic landscape to address the regulation of gene expression in mouse myoblast cell line in the context of the missense mutation LMNA 289A CONCLUSIONS We report here for the first time that there is a significant downregulation of the NF-κB pathway, which has been implicated in cardio-protection elsewhere. SIGNIFICANCE This provides a new pathophysiological explanation that correlates an LMNA mutation and dilated cardiomyopathy.
Collapse
Affiliation(s)
- Duhita Sengupta
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Kaushik Sengupta
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| |
Collapse
|
2
|
Janssen AFJ, Breusegem SY, Larrieu D. Current Methods and Pipelines for Image-Based Quantitation of Nuclear Shape and Nuclear Envelope Abnormalities. Cells 2022; 11:347. [PMID: 35159153 PMCID: PMC8834579 DOI: 10.3390/cells11030347] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/02/2023] Open
Abstract
Any given cell type has an associated "normal" nuclear morphology, which is important to maintain proper cellular functioning and safeguard genomic integrity. Deviations from this can be indicative of diseases such as cancer or premature aging syndrome. To accurately assess nuclear abnormalities, it is important to use quantitative measures of nuclear morphology. Here, we give an overview of several nuclear abnormalities, including micronuclei, nuclear envelope invaginations, blebs and ruptures, and review the current methods used for image-based quantification of these abnormalities. We discuss several parameters that can be used to quantify nuclear shape and compare their outputs using example images. In addition, we present new pipelines for quantitative analysis of nuclear blebs and invaginations. Quantitative analyses of nuclear aberrations and shape will be important in a wide range of applications, from assessments of cancer cell anomalies to studies of nucleus deformability under mechanical or other types of stress.
Collapse
Affiliation(s)
| | | | - Delphine Larrieu
- Department of Clinical Biochemistry, Addenbrookes Biomedical Campus, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK; (A.F.J.J.); (S.Y.B.)
| |
Collapse
|
3
|
The Role of Emerin in Cancer Progression and Metastasis. Int J Mol Sci 2021; 22:ijms222011289. [PMID: 34681951 PMCID: PMC8537873 DOI: 10.3390/ijms222011289] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/27/2022] Open
Abstract
It is commonly recognized in the field that cancer cells exhibit changes in the size and shape of their nuclei. These features often serve as important biomarkers in the diagnosis and prognosis of cancer patients. Nuclear size can significantly impact cell migration due to its incredibly large size. Nuclear structural changes are predicted to regulate cancer cell migration. Nuclear abnormalities are common across a vast spectrum of cancer types, regardless of tissue source, mutational spectrum, and signaling dependencies. The pervasiveness of nuclear alterations suggests that changes in nuclear structure may be crucially linked to the transformation process. The factors driving these nuclear abnormalities, and the functional consequences, are not completely understood. Nuclear envelope proteins play an important role in regulating nuclear size and structure in cancer. Altered expression of nuclear lamina proteins, including emerin, is found in many cancers and this expression is correlated with better clinical outcomes. A model is emerging whereby emerin, as well as other nuclear lamina proteins, binding to the nucleoskeleton regulates the nuclear structure to impact metastasis. In this model, emerin and lamins play a central role in metastatic transformation, since decreased emerin expression during transformation causes the nuclear structural defects required for increased cell migration, intravasation, and extravasation. Herein, we discuss the cellular functions of nuclear lamina proteins, with a particular focus on emerin, and how these functions impact cancer progression and metastasis.
Collapse
|
4
|
Stiekema M, Ramaekers FCS, Kapsokalyvas D, van Zandvoort MAMJ, Veltrop RJA, Broers JLV. Super-Resolution Imaging of the A- and B-Type Lamin Networks: A Comparative Study of Different Fluorescence Labeling Procedures. Int J Mol Sci 2021; 22:ijms221910194. [PMID: 34638534 PMCID: PMC8508656 DOI: 10.3390/ijms221910194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/31/2022] Open
Abstract
A- and B-type lamins are type V intermediate filament proteins. Mutations in the genes encoding these lamins cause rare diseases, collectively called laminopathies. A fraction of the cells obtained from laminopathy patients show aberrations in the localization of each lamin subtype, which may represent only the minority of the lamina disorganization. To get a better insight into more delicate and more abundant lamina abnormalities, the lamin network can be studied using super-resolution microscopy. We compared confocal scanning laser microscopy and stimulated emission depletion (STED) microscopy in combination with different fluorescence labeling approaches for the study of the lamin network. We demonstrate the suitability of an immunofluorescence staining approach when using STED microscopy, by determining the lamin layer thickness and the degree of lamin A and B1 colocalization as detected in fixed fibroblasts (co-)stained with lamin antibodies or (co-)transfected with EGFP/YFP lamin constructs. This revealed that immunofluorescence staining of cells does not lead to consequent changes in the detected lamin layer thickness, nor does it influence the degree of colocalization of lamin A and B1, when compared to the transfection approach. Studying laminopathy patient dermal fibroblasts (LMNA c.1130G>T (p.(Arg377Leu)) variant) confirmed the suitability of immunofluorescence protocols in STED microscopy, which circumvents the need for less convenient transfection steps. Furthermore, we found a significant decrease in lamin A/C and B1 colocalization in these patient fibroblasts, compared to normal human dermal fibroblasts. We conclude that super-resolution light microscopy combined with immunofluorescence protocols provides a potential tool to detect structural lamina differences between normal and laminopathy patient fibroblasts.
Collapse
Affiliation(s)
- Merel Stiekema
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands; (M.S.); (F.C.S.R.); (D.K.); (M.A.M.J.v.Z.)
- GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
| | - Frans C. S. Ramaekers
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands; (M.S.); (F.C.S.R.); (D.K.); (M.A.M.J.v.Z.)
- GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
| | - Dimitrios Kapsokalyvas
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands; (M.S.); (F.C.S.R.); (D.K.); (M.A.M.J.v.Z.)
- Interdisciplinary Center for Clinical Research, IZKF, RWTH Aachen University, 52074 Aachen, Germany
| | - Marc A. M. J. van Zandvoort
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands; (M.S.); (F.C.S.R.); (D.K.); (M.A.M.J.v.Z.)
- GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
- CARIM-School for Cardiovascular Diseases, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
- Institute for Molecular Cardiovascular Research IMCAR, RWTH Aachen University, 52074 Aachen, Germany
| | - Rogier J. A. Veltrop
- Institute for Molecular Cardiovascular Research IMCAR, RWTH Aachen University, 52074 Aachen, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Jos L. V. Broers
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands; (M.S.); (F.C.S.R.); (D.K.); (M.A.M.J.v.Z.)
- GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
- CARIM-School for Cardiovascular Diseases, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
- Correspondence: ; Tel.: +31-433881366
| |
Collapse
|
5
|
Structural and Mechanical Aberrations of the Nuclear Lamina in Disease. Cells 2020; 9:cells9081884. [PMID: 32796718 PMCID: PMC7464082 DOI: 10.3390/cells9081884] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/02/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
The nuclear lamins are the major components of the nuclear lamina in the nuclear envelope. Lamins are involved in numerous functions, including a role in providing structural support to the cell and the mechanosensing of the cell. Mutations in the genes encoding for lamins lead to the rare diseases termed laminopathies. However, not only laminopathies show alterations in the nuclear lamina. Deregulation of lamin expression is reported in multiple cancers and several viral infections lead to a disrupted nuclear lamina. The structural and mechanical effects of alterations in the nuclear lamina can partly explain the phenotypes seen in disease, such as muscular weakness in certain laminopathies and transmigration of cancer cells. However, a lot of answers to questions about the relation between changes in the nuclear lamina and disease development remain elusive. Here, we review the current understandings of the contribution of the nuclear lamina in the structural support and mechanosensing of healthy and diseased cells.
Collapse
|
6
|
Oncogene PRR14 promotes breast cancer through activation of PI3K signal pathway and inhibition of CHEK2 pathway. Cell Death Dis 2020; 11:464. [PMID: 32541902 PMCID: PMC7296039 DOI: 10.1038/s41419-020-2640-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/28/2022]
Abstract
Nuclear envelope component PRR14 has been detected to be upregulated in varieties of cancers, especially in breast cancer. But its role in breast carcinogenesis is poorly understood. In this study, we show PRR14 contributes to breast carcinogenesis mainly through overexpression, which derives from elevated transcription and gene amplification. Increased PRR14 expression promotes breast cancer cell proliferation and tumor formation. Biochemical analysis reveals, in addition to previously reported activation of PI3-kinase/Akt/mTOR pathway, PRR14 overexpression regulates cell cycle in breast cancer by inhibiting CHEK2’s activation, followed with the deregulation of DNA damage pathway. In correspondence, CHEK2 and PRR14 show opposite impact on breast cancer patients receiving chemotherapy. Collectively, our study is the first to document the oncogenetic role of PRR14 in breast cancer, which protects cells from apoptosis and stimulates proliferation by activating the PI3-kinase/Akt/mTOR pathway and inhibiting the CHEK2 pathway. Both of these pathways are of great influence in breast cancer and PRR14 appears to be their novel interacting node, which renders patients more resistance to chemotherapy and provides a potential therapeutic target in breast cancer.
Collapse
|
7
|
Alena SK, Eva B, Aleš K, Emilie L. Spatiotemporal Mislocalization of Nuclear Membrane-Associated Proteins in γ-Irradiation-Induced Senescent Cells. Cells 2020; 9:E999. [PMID: 32316379 PMCID: PMC7227243 DOI: 10.3390/cells9040999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/09/2020] [Accepted: 04/11/2020] [Indexed: 01/01/2023] Open
Abstract
Cellular senescence, induced by genotoxic or replication stress, is accompanied by defects in nuclear morphology and nuclear membrane-heterochromatin disruption. In this work, we analyzed cytological and molecular changes in the linker of nucleoskeleton and cytoskeleton (LINC) complex proteins in senescence triggered by γ-irradiation. We used human mammary carcinoma and osteosarcoma cell lines, both original and shRNA knockdown clones targeting lamin B receptor (LBR) and leading to LBR and lamin B (LB1) reduction. The expression status and integrity of LINC complex proteins (nesprin-1, SUN1, SUN2), lamin A/C, and emerin were analyzed by immunodetection using confocal microscopy and Western blot. The results show frequent mislocalization of these proteins from the nuclear membrane to cytoplasm and micronuclei and, in some cases, their fragmentation and amplification. The timing of these changes clearly preceded the onset of senescence. The LBR deficiency triggered neither senescence nor changes in the LINC protein distribution before irradiation. However, the cytological changes following irradiation were more pronounced in shRNA knockdown cells compared to original cell lines. We conclude that mislocalization of LINC complex proteins is a significant characteristic of cellular senescence phenotypes and may influence complex events at the nuclear membrane, including trafficking and heterochromatin attachment.
Collapse
Affiliation(s)
- Svobodová Kovaříková Alena
- Laboratory of Molecular Cytology and Cytometry, Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic; (S.K.A.); (B.E.)
| | - Bártová Eva
- Laboratory of Molecular Cytology and Cytometry, Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic; (S.K.A.); (B.E.)
| | - Kovařík Aleš
- Laboratory of Molecular Epigenetics, Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic;
| | - Lukášová Emilie
- Laboratory of Molecular Epigenetics, Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic;
- Laboratory of Cell Biology and Radiobiology and Laboratory of Molecular Epigenetics, Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic
| |
Collapse
|
8
|
Hah J, Kim DH. Deciphering Nuclear Mechanobiology in Laminopathy. Cells 2019; 8:E231. [PMID: 30862117 PMCID: PMC6468464 DOI: 10.3390/cells8030231] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/23/2019] [Accepted: 03/05/2019] [Indexed: 12/13/2022] Open
Abstract
Extracellular mechanical stimuli are translated into biochemical signals inside the cell via mechanotransduction. The nucleus plays a critical role in mechanoregulation, which encompasses mechanosensing and mechanotransduction. The nuclear lamina underlying the inner nuclear membrane not only maintains the structural integrity, but also connects the cytoskeleton to the nuclear envelope. Lamin mutations, therefore, dysregulate the nuclear response, resulting in abnormal mechanoregulations, and ultimately, disease progression. Impaired mechanoregulations even induce malfunction in nuclear positioning, cell migration, mechanosensation, as well as differentiation. To know how to overcome laminopathies, we need to understand the mechanisms of laminopathies in a mechanobiological way. Recently, emerging studies have demonstrated the varying defects from lamin mutation in cellular homeostasis within mechanical surroundings. Therefore, this review summarizes recent findings highlighting the role of lamins, the architecture of nuclear lamina, and their disease relevance in the context of nuclear mechanobiology. We will also provide an overview of the differentiation of cellular mechanics in laminopathy.
Collapse
Affiliation(s)
- Jungwon Hah
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea.
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea.
| |
Collapse
|
9
|
Wang X, Zabell A, Koh W, Tang WHW. Lamin A/C Cardiomyopathies: Current Understanding and Novel Treatment Strategies. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2017; 19:21. [PMID: 28299614 DOI: 10.1007/s11936-017-0520-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OPINION STATEMENT Dilated cardiomyopathy (DCM) is the third leading cause of heart failure in the USA. A major gene associated with DCM with cardiac conduction system disease is lamin A/C (LMNA) gene. Lamins are type V filaments that serve a variety of roles, including nuclear structure support, DNA repair, cell signaling pathway mediation, and chromatin organization. In 1999, LMNA was found responsible for Emery-Dreifuss muscular dystrophy (EDMD) and, since then, has been found in association with a wide spectrum of diseases termed laminopathies, including LMNA cardiomyopathy. Patients with LMNA mutations have a poor prognosis and a higher risk for sudden cardiac death, along with other cardiac effects like dysrhythmias, development of congestive heart failure, and potential need of a pacemaker or ICD. As of now, there is no specific treatment for laminopathies, including LMNA cardiomyopathy, because the mechanism of LMNA mutations in humans is still unclear. This review discusses LMNA mutations and how they relate to DCM, the necessity for further investigation to better understand LMNA mutations, and potential treatment options ranging from clinical and therapeutic to cellular and molecular techniques.
Collapse
Affiliation(s)
- Xi Wang
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland, OH, USA
| | - Allyson Zabell
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland, OH, USA
| | - Wonshill Koh
- Children's Hospital of Pittsburgh, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - W H Wilson Tang
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland, OH, USA. .,Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH, USA. .,Center for Clinical Genomics, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
10
|
Thanisch K, Song C, Engelkamp D, Koch J, Wang A, Hallberg E, Foisner R, Leonhardt H, Stewart CL, Joffe B, Solovei I. Nuclear envelope localization of LEMD2 is developmentally dynamic and lamin A/C dependent yet insufficient for heterochromatin tethering. Differentiation 2017; 94:58-70. [PMID: 28056360 DOI: 10.1016/j.diff.2016.12.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/05/2016] [Accepted: 12/06/2016] [Indexed: 11/28/2022]
Abstract
Peripheral heterochromatin in mammalian nuclei is tethered to the nuclear envelope by at least two mechanisms here referred to as the A- and B-tethers. The A-tether includes lamins A/C and additional unknown components presumably INM protein(s) interacting with both lamins A/C and chromatin. The B-tether includes the inner nuclear membrane (INM) protein Lamin B-receptor, which binds B-type lamins and chromatin. Generally, at least one of the tethers is always present in the nuclear envelope of mammalian cells. Deletion of both causes the loss of peripheral heterochromatin and consequently inversion of the entire nuclear architecture, with this occurring naturally in rod photoreceptors of nocturnal mammals. The tethers are differentially utilized during development, regulate gene expression in opposite manners, and play an important role during cell differentiation. Here we aimed to identify the unknown chromatin binding component(s) of the A-tether. We analyzed 10 mouse tissues by immunostaining with antibodies against 7 INM proteins and found that every cell type has specific, although differentially and developmentally regulated, sets of these proteins. In particular, we found that INM protein LEMD2 is concomitantly expressed with A-type lamins in various cell types but is lacking in inverted nuclei of rod cells. Truncation or deletion of Lmna resulted in the downregulation and mislocalization of LEMD2, suggesting that the two proteins interact and pointing at LEMD2 as a potential chromatin binding mediator of the A-tether. Using nuclei of mouse rods as an experimental model lacking peripheral heterochromatin, we expressed a LEMD2 transgene alone or in combination with lamin C in these cells and observed no restoration of peripheral heterochromatin in either case. We conclude that in contrary to the B-tether, the A-tether has a more intricate composition and consists of multiple components that presumably vary, at differing degrees of redundancy, between cell types and differentiation stages.
Collapse
Affiliation(s)
- Katharina Thanisch
- Department of Biology II, Ludwig-Maximilians-University Munich, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany
| | - Congdi Song
- Department of Biology II, Ludwig-Maximilians-University Munich, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany
| | - Dieter Engelkamp
- Transgenic Service Facility, BTE, Franz-Penzoldt-Centre, Friedrich-Alexander-University of Erlangen-Nürnberg, Erwin-Rommel-Str.3, D-91058 Erlangen, Germany
| | - Jeannette Koch
- Department of Biology II, Ludwig-Maximilians-University Munich, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany
| | - Audrey Wang
- Institute of Medical Biology, 8A Biomedical Grove and Dept of Biological Sciences, NUS, 138648, Singapore
| | - Einar Hallberg
- Department of Neurochemistry, Stockholm University, Se-106 91 Stockholm, Sweden
| | - Roland Foisner
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Heinrich Leonhardt
- Department of Biology II, Ludwig-Maximilians-University Munich, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany
| | - Colin L Stewart
- Institute of Medical Biology, 8A Biomedical Grove and Dept of Biological Sciences, NUS, 138648, Singapore.
| | - Boris Joffe
- Department of Biology II, Ludwig-Maximilians-University Munich, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany
| | - Irina Solovei
- Department of Biology II, Ludwig-Maximilians-University Munich, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
11
|
Collins CM, Ellis JA, Holaska JM. MAPK signaling pathways and HDAC3 activity are disrupted during differentiation of emerin-null myogenic progenitor cells. Dis Model Mech 2017; 10:385-397. [PMID: 28188262 PMCID: PMC5399572 DOI: 10.1242/dmm.028787] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/01/2017] [Indexed: 01/28/2023] Open
Abstract
Mutations in the gene encoding emerin cause Emery–Dreifuss muscular dystrophy (EDMD). Emerin is an integral inner nuclear membrane protein and a component of the nuclear lamina. EDMD is characterized by skeletal muscle wasting, cardiac conduction defects and tendon contractures. The failure to regenerate skeletal muscle is predicted to contribute to the skeletal muscle pathology of EDMD. We hypothesize that muscle regeneration defects are caused by impaired muscle stem cell differentiation. Myogenic progenitors derived from emerin-null mice were used to confirm their impaired differentiation and analyze selected myogenic molecular pathways. Emerin-null progenitors were delayed in their cell cycle exit, had decreased myosin heavy chain (MyHC) expression and formed fewer myotubes. Emerin binds to and activates histone deacetylase 3 (HDAC3). Here, we show that theophylline, an HDAC3-specific activator, improved myotube formation in emerin-null cells. Addition of the HDAC3-specific inhibitor RGFP966 blocked myotube formation and MyHC expression in wild-type and emerin-null myogenic progenitors, but did not affect cell cycle exit. Downregulation of emerin was previously shown to affect the p38 MAPK and ERK/MAPK pathways in C2C12 myoblast differentiation. Using a pure population of myogenic progenitors completely lacking emerin expression, we show that these pathways are also disrupted. ERK inhibition improved MyHC expression in emerin-null cells, but failed to rescue myotube formation or cell cycle exit. Inhibition of p38 MAPK prevented differentiation in both wild-type and emerin-null progenitors. These results show that each of these molecular pathways specifically regulates a particular stage of myogenic differentiation in an emerin-dependent manner. Thus, pharmacological targeting of multiple pathways acting at specific differentiation stages may be a better therapeutic approach in the future to rescue muscle regeneration in vivo. Editors' choice: HDAC3, p38 MAPK and ERK signaling are altered during differentiation of myogenic progenitors lacking emerin; pharmacological activation or inhibition of these signaling proteins rescues specific stages of myogenic differentiation.
Collapse
Affiliation(s)
- Carol M Collins
- University of the Sciences, Department of Pharmaceutical Sciences, 600 S. 43rd St, Philadelphia, PA 19104, USA
| | - Joseph A Ellis
- University of the Sciences, Department of Pharmaceutical Sciences, 600 S. 43rd St, Philadelphia, PA 19104, USA
| | - James M Holaska
- University of the Sciences, Department of Pharmaceutical Sciences, 600 S. 43rd St, Philadelphia, PA 19104, USA
| |
Collapse
|
12
|
Abstract
The nucleus is separated from the cytosol by the nuclear envelope, which is a double lipid bilayer composed of the outer nuclear membrane and the inner nuclear membrane. The intermediate filament proteins lamin A, lamin B, and lamin C form a network underlying the inner nuclear membrane. This proteinaceous network provides the nucleus with its strength, rigidity, and elasticity. Positioned within the inner nuclear membrane are more than 150 inner nuclear membrane proteins, many of which interact directly with lamins and require lamins for their inner nuclear membrane localization. Inner nuclear membrane proteins and the nuclear lamins define the nuclear lamina. These inner nuclear membrane proteins have tissue-specific expression and diverse functions including regulating cytoskeletal organization, nuclear architecture, cell cycle dynamics, and genomic organization. Loss or mutations in lamins and inner nuclear membrane proteins cause a wide spectrum of diseases. Here, I will review the functions of the well-studied nuclear lamina proteins and the diseases associated with loss or mutations in these proteins. © 2016 American Physiological Society. Compr Physiol 6:1655-1674, 2016.
Collapse
Affiliation(s)
- James M. Holaska
- Department of Pharmaceutical Sciences, University of the Sciences, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
Czapiewski R, Robson MI, Schirmer EC. Anchoring a Leviathan: How the Nuclear Membrane Tethers the Genome. Front Genet 2016; 7:82. [PMID: 27200088 PMCID: PMC4859327 DOI: 10.3389/fgene.2016.00082] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/20/2016] [Indexed: 12/21/2022] Open
Abstract
It is well established that the nuclear envelope has many distinct direct connections to chromatin that contribute to genome organization. The functional consequences of genome organization on gene regulation are less clear. Even less understood is how interactions of lamins and nuclear envelope transmembrane proteins (NETs) with chromatin can produce anchoring tethers that can withstand the physical forces of and on the genome. Chromosomes are the largest molecules in the cell, making megadalton protein structures like the nuclear pore complexes and ribosomes seem small by comparison. Thus to withstand strong forces from chromosome dynamics an anchoring tether is likely to be much more complex than a single protein-protein or protein-DNA interaction. Here we will briefly review known NE-genome interactions that likely contribute to spatial genome organization, postulate in the context of experimental data how these anchoring tethers contribute to gene regulation, and posit several hypotheses for the physical nature of these tethers that need to be investigated experimentally. Significantly, disruption of these anchoring tethers and the subsequent consequences for gene regulation could explain how mutations in nuclear envelope proteins cause diseases ranging from muscular dystrophy to lipodystrophy to premature aging progeroid syndromes. The two favored hypotheses for nuclear envelope protein involvement in disease are (1) weakening nuclear and cellular mechanical stability, and (2) disrupting genome organization and gene regulation. Considerable experimental support has been obtained for both. The integration of both mechanical and gene expression defects in the disruption of anchoring tethers could provide a unifying hypothesis consistent with both.
Collapse
Affiliation(s)
| | | | - Eric C. Schirmer
- The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of EdinburghEdinburgh, UK
| |
Collapse
|
14
|
Uchino R, Sugiyama S, Katagiri M, Chuman Y, Furukawa K. Non-farnesylated B-type lamin can tether chromatin inside the nucleus and its chromatin interaction requires the Ig-fold region. Chromosoma 2016; 126:125-144. [PMID: 26892013 DOI: 10.1007/s00412-016-0581-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/06/2016] [Accepted: 02/10/2016] [Indexed: 11/27/2022]
Abstract
Lamins are thought to direct heterochromatin to the nuclear lamina (NL); however, this function of lamin has not been clearly demonstrated in vivo. To address this, we analyzed polytene chromosome morphology when artificial lamin variants were expressed in Drosophila endoreplicating cells. We found that the CaaX-motif-deleted B-type lamin Dm0, but not A-type lamin C, was able to form a nuclear envelope-independent layer that was closely associated with chromatin. Other nuclear envelope proteins were not detected in this "ectopic lamina," and the associated chromatin showed a repressive histone modification maker but not a permissive histone modification marker nor RNA polymerase II proteins. Furthermore, deletion of the C-terminal lamin-Ig-fold domain prevents chromatin association with this ectopic lamina. Thus, non-farnesylated B-type lamin Dm0 can form an ectopic lamina and induce changes to chromatin structure and status inside the interphase nucleus.
Collapse
Affiliation(s)
- Ryo Uchino
- Department of Chemistry, Faculty of Science, Niigata University, Niigata, 950-2181, Japan
| | - Shin Sugiyama
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Motoi Katagiri
- Department of Chemistry, Faculty of Science, Niigata University, Niigata, 950-2181, Japan
| | - Yoshiro Chuman
- Department of Chemistry, Faculty of Science, Niigata University, Niigata, 950-2181, Japan
| | - Kazuhiro Furukawa
- Department of Chemistry, Faculty of Science, Niigata University, Niigata, 950-2181, Japan.
| |
Collapse
|
15
|
Camozzi D, Capanni C, Cenni V, Mattioli E, Columbaro M, Squarzoni S, Lattanzi G. Diverse lamin-dependent mechanisms interact to control chromatin dynamics. Focus on laminopathies. Nucleus 2015; 5:427-40. [PMID: 25482195 PMCID: PMC4164485 DOI: 10.4161/nucl.36289] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Interconnected functional strategies govern chromatin dynamics in eukaryotic cells. In this context, A and B type lamins, the nuclear intermediate filaments, act on diverse platforms involved in tissue homeostasis. On the nuclear side, lamins elicit large scale or fine chromatin conformational changes, affect DNA damage response factors and transcription factor shuttling. On the cytoplasmic side, bridging-molecules, the LINC complex, associate with lamins to coordinate chromatin dynamics with cytoskeleton and extra-cellular signals.
Consistent with such a fine tuning, lamin mutations and/or defects in their expression or post-translational processing, as well as mutations in lamin partner genes, cause a heterogeneous group of diseases known as laminopathies. They include muscular dystrophies, cardiomyopathy, lipodystrophies, neuropathies, and progeroid syndromes. The study of chromatin dynamics under pathological conditions, which is summarized in this review, is shedding light on the complex and fascinating role of the nuclear lamina in chromatin regulation.
Collapse
Affiliation(s)
- Daria Camozzi
- a CNR Institute for Molecular Genetics; Unit of Bologna and SC Laboratory of Musculoskeletal Cell Biology; Rizzoli Orthopedic Institute; Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
16
|
Barton LJ, Soshnev AA, Geyer PK. Networking in the nucleus: a spotlight on LEM-domain proteins. Curr Opin Cell Biol 2015; 34:1-8. [PMID: 25863918 DOI: 10.1016/j.ceb.2015.03.005] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 11/29/2022]
Abstract
Proteins resident in the inner nuclear membrane and underlying nuclear lamina form a network that regulates nuclear functions. This review highlights a prominent family of nuclear lamina proteins that carries the LAP2-emerin-MAN1-domain (LEM-D). LEM-D proteins share an ability to bind lamins and tether repressive chromatin at the nuclear periphery. The importance of this family is underscored by findings that loss of individual LEM-D proteins causes progressive, tissue-restricted diseases, known as laminopathies. Diverse functions of LEM-D proteins are linked to interactions with unique and overlapping partners including signal transduction effectors, transcription factors and architectural proteins. Recent investigations suggest that LEM-D proteins form hubs within the nuclear lamina that integrate external signals important for tissue homeostasis and maintenance of progenitor cell populations.
Collapse
Affiliation(s)
- Lacy J Barton
- Department of Biochemistry, University of Iowa, College of Medicine, Iowa City, IA 52242, USA; Skirball Institute, Department of Cell Biology, NYU School of Medicine, NYU Langone Medical Center, New York, NY 10016, USA
| | - Alexey A Soshnev
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY, 10065, USA
| | - Pamela K Geyer
- Department of Biochemistry, University of Iowa, College of Medicine, Iowa City, IA 52242, USA.
| |
Collapse
|
17
|
Malik P, Zuleger N, de las Heras JI, Saiz-Ros N, Makarov AA, Lazou V, Meinke P, Waterfall M, Kelly DA, Schirmer EC. NET23/STING promotes chromatin compaction from the nuclear envelope. PLoS One 2014; 9:e111851. [PMID: 25386906 PMCID: PMC4227661 DOI: 10.1371/journal.pone.0111851] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 10/07/2014] [Indexed: 12/19/2022] Open
Abstract
Changes in the peripheral distribution and amount of condensed chromatin are observed in a number of diseases linked to mutations in the lamin A protein of the nuclear envelope. We postulated that lamin A interactions with nuclear envelope transmembrane proteins (NETs) that affect chromatin structure might be altered in these diseases and so screened thirty-one NETs for those that promote chromatin compaction as determined by an increase in the number of chromatin clusters of high pixel intensity. One of these, NET23 (also called STING, MITA, MPYS, ERIS, Tmem173), strongly promoted chromatin compaction. A correlation between chromatin compaction and endogenous levels of NET23/STING was observed for a number of human cell lines, suggesting that NET23/STING may contribute generally to chromatin condensation. NET23/STING has separately been found to be involved in innate immune response signaling. Upon infection cells make a choice to either apoptose or to alter chromatin architecture to support focused expression of interferon genes and other response factors. We postulate that the chromatin compaction induced by NET23/STING may contribute to this choice because the cells expressing NET23/STING eventually apoptose, but the chromatin compaction effect is separate from this as the condensation was still observed when cells were treated with Z-VAD to block apoptosis. NET23/STING-induced compacted chromatin revealed changes in epigenetic marks including changes in histone methylation and acetylation. This indicates a previously uncharacterized nuclear role for NET23/STING potentially in both innate immune signaling and general chromatin architecture.
Collapse
Affiliation(s)
- Poonam Malik
- The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Nikolaj Zuleger
- The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Jose I. de las Heras
- The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Natalia Saiz-Ros
- The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Alexandr A. Makarov
- The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Vassiliki Lazou
- The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter Meinke
- The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Martin Waterfall
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - David A. Kelly
- The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Eric C. Schirmer
- The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Nuclear envelope and striated muscle diseases. Curr Opin Cell Biol 2014; 32:1-6. [PMID: 25290386 DOI: 10.1016/j.ceb.2014.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/17/2014] [Accepted: 09/21/2014] [Indexed: 12/22/2022]
Abstract
The nuclear lamina is a mesh-like network of intermediate filaments localized mainly at the inner surface of the inner nuclear membrane and is composed of proteins called lamins. Many inherited diseases are linked with mutations in nuclear lamins and integral proteins of the inner nuclear membrane. In this article, we summarize basic aspects of the nuclear envelope architecture and provide some remarkable findings of the involvement of lamins in striated muscle disorders.
Collapse
|
19
|
Stubenvoll A, Rice M, Wietelmann A, Wheeler M, Braun T. Attenuation of Wnt/β-catenin activity reverses enhanced generation of cardiomyocytes and cardiac defects caused by the loss of emerin. Hum Mol Genet 2014; 24:802-13. [PMID: 25274778 DOI: 10.1093/hmg/ddu498] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mutations in EMD, encoding emerin cause skeletal muscle and heart defects in patients with X-linked Emery-Dreifuss muscular dystrophy (X-EDMD) but the underlying mechanisms leading to cardiac defects are poorly understood. Here, we investigated the role of emerin in controlling cardiomyocyte proliferation and cardiac remodeling and explored its function in regulation of the Wnt/β-catenin pathway. We observed a remarkable increase of cardiomyocytes in emerin-null adult mice accompanied with decreased numbers of multinucleated cells. Depletion of emerin in mouse ES cell-derived cardiomyocytes by shRNA caused hyperactivation of Wnt/β-catenin signaling, increased proliferation and abrogated timely cardiac differentiation. Likewise, emerin-null mice exhibited increased Wnt/β-catenin signaling, cardiac dysfunction and perturbed hypertrophic remodeling following pressure overload. Pharmacological inhibition of β-catenin normalized proliferation and differentiation of ES cell-derived cardiomyocytes while inactivation of a single allele of β-catenin efficiently rescued cardiac dysfunction in emerin-null mice. We conclude that emerin constrains β-catenin signaling in the heart providing tight control of cardiomyocyte numbers. Enhanced Wnt/β-catenin signaling seems to contribute to cardiac defects observed in X-EDMD. Hence, therapeutic inhibition of Wnt/β-catenin signaling might be beneficial for X-EDMD patients.
Collapse
Affiliation(s)
- Alexander Stubenvoll
- Department of Cardiac Development and Remodelling, Max-Planck-Institute for Heart and Lung Research, Ludwigstraße 43, Bad Nauheim 61231, Germany
| | - Megan Rice
- Department of Cardiac Development and Remodelling, Max-Planck-Institute for Heart and Lung Research, Ludwigstraße 43, Bad Nauheim 61231, Germany
| | - Astrid Wietelmann
- Department of Cardiac Development and Remodelling, Max-Planck-Institute for Heart and Lung Research, Ludwigstraße 43, Bad Nauheim 61231, Germany
| | - Matthew Wheeler
- Department of Cardiac Development and Remodelling, Max-Planck-Institute for Heart and Lung Research, Ludwigstraße 43, Bad Nauheim 61231, Germany
| | - Thomas Braun
- Department of Cardiac Development and Remodelling, Max-Planck-Institute for Heart and Lung Research, Ludwigstraße 43, Bad Nauheim 61231, Germany
| |
Collapse
|
20
|
Meinke P, Mattioli E, Haque F, Antoku S, Columbaro M, Straatman KR, Worman HJ, Gundersen GG, Lattanzi G, Wehnert M, Shackleton S. Muscular dystrophy-associated SUN1 and SUN2 variants disrupt nuclear-cytoskeletal connections and myonuclear organization. PLoS Genet 2014; 10:e1004605. [PMID: 25210889 PMCID: PMC4161305 DOI: 10.1371/journal.pgen.1004605] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 07/16/2014] [Indexed: 11/19/2022] Open
Abstract
Proteins of the nuclear envelope (NE) are associated with a range of inherited disorders, most commonly involving muscular dystrophy and cardiomyopathy, as exemplified by Emery-Dreifuss muscular dystrophy (EDMD). EDMD is both genetically and phenotypically variable, and some evidence of modifier genes has been reported. Six genes have so far been linked to EDMD, four encoding proteins associated with the LINC complex that connects the nucleus to the cytoskeleton. However, 50% of patients have no identifiable mutations in these genes. Using a candidate approach, we have identified putative disease-causing variants in the SUN1 and SUN2 genes, also encoding LINC complex components, in patients with EDMD and related myopathies. Our data also suggest that SUN1 and SUN2 can act as disease modifier genes in individuals with co-segregating mutations in other EDMD genes. Five SUN1/SUN2 variants examined impaired rearward nuclear repositioning in fibroblasts, confirming defective LINC complex function in nuclear-cytoskeletal coupling. Furthermore, myotubes from a patient carrying compound heterozygous SUN1 mutations displayed gross defects in myonuclear organization. This was accompanied by loss of recruitment of centrosomal marker, pericentrin, to the NE and impaired microtubule nucleation at the NE, events that are required for correct myonuclear arrangement. These defects were recapitulated in C2C12 myotubes expressing exogenous SUN1 variants, demonstrating a direct link between SUN1 mutation and impairment of nuclear-microtubule coupling and myonuclear positioning. Our findings strongly support an important role for SUN1 and SUN2 in muscle disease pathogenesis and support the hypothesis that defects in the LINC complex contribute to disease pathology through disruption of nuclear-microtubule association, resulting in defective myonuclear positioning. Emery-Dreifuss muscular dystrophy (EDMD) is an inherited disorder involving muscle wasting and weakness, accompanied by cardiac defects. The disease is variable in its severity and also in its genetic cause. So far, 6 genes have been linked to EDMD, most encoding proteins that form a structural network that supports the nucleus of the cell and connects it to structural elements of the cytoplasm. This network is particularly important in muscle cells, providing resistance to mechanical strain. Weakening of this network is thought to contribute to development of muscle disease in these patients. Despite rigorous screening, at least 50% of patients with EDMD have no detectable mutation in the 6 known genes. We therefore undertook screening and identified mutations in two additional genes that encode other components of the nuclear structural network, SUN1 and SUN2. Our findings add to the genetic complexity of this disease since some individuals carry mutations in more than one gene. We also show that the mutations disrupt connections between the nucleus and the structural elements of cytoplasm, leading to mis-positioning and clustering of nuclei in muscle cells. This nuclear mis-positioning is likely to be another factor contributing to pathogenesis of EDMD.
Collapse
Affiliation(s)
- Peter Meinke
- Institute of Human Genetics and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Elisabetta Mattioli
- National Research Council of Italy - CNR - Institute for Molecular Genetics, Unit of Bologna IOR, Bologna, Italy
- Rizzoli Orthopaedic Institute, Laboratory of Musculoskeletal Cell Biology, Bologna, Italy
| | - Farhana Haque
- Department of Biochemistry, University of Leicester, Leicester, United Kingdom
| | - Susumu Antoku
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Marta Columbaro
- Rizzoli Orthopaedic Institute, Laboratory of Musculoskeletal Cell Biology, Bologna, Italy
| | - Kees R. Straatman
- Centre for Core Biotechnology Services, University of Leicester, Leicester, United Kingdom
| | - Howard J. Worman
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Gregg G. Gundersen
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Giovanna Lattanzi
- National Research Council of Italy - CNR - Institute for Molecular Genetics, Unit of Bologna IOR, Bologna, Italy
- Rizzoli Orthopaedic Institute, Laboratory of Musculoskeletal Cell Biology, Bologna, Italy
| | - Manfred Wehnert
- Institute of Human Genetics and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Sue Shackleton
- Department of Biochemistry, University of Leicester, Leicester, United Kingdom
- * E-mail:
| |
Collapse
|
21
|
Koch AJ, Holaska JM. Emerin in health and disease. Semin Cell Dev Biol 2013; 29:95-106. [PMID: 24365856 DOI: 10.1016/j.semcdb.2013.12.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/02/2013] [Accepted: 12/15/2013] [Indexed: 12/27/2022]
Abstract
Emery-Dreifuss muscular dystrophy (EDMD) is caused by mutations in the genes encoding emerin, lamins A and C and FHL1. Additional EDMD-like syndromes are caused by mutations in nesprins and LUMA. This review will specifically focus on emerin function and the current thinking for how loss or mutations in emerin cause EDMD. Emerin is a well-conserved, ubiquitously expressed protein of the inner nuclear membrane. Emerin has been shown to have diverse functions, including the regulation of gene expression, cell signaling, nuclear structure and chromatin architecture. This review will focus on the relationships between these functions and the EDMD disease phenotype. Additionally it will highlight open questions concerning emerin's roles in cell and nuclear biology and disease.
Collapse
Affiliation(s)
- Adam J Koch
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, IL 60637, USA.
| | - James M Holaska
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, IL 60637, USA; Committee on Developmental, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
22
|
Demmerle J, Koch AJ, Holaska JM. Emerin and histone deacetylase 3 (HDAC3) cooperatively regulate expression and nuclear positions of MyoD, Myf5, and Pax7 genes during myogenesis. Chromosome Res 2013; 21:765-79. [PMID: 24062260 DOI: 10.1007/s10577-013-9381-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 08/29/2013] [Accepted: 09/03/2013] [Indexed: 12/11/2022]
Abstract
The spatial organization of chromatin is critical in establishing cell-type dependent gene expression programs. The inner nuclear membrane protein emerin has been implicated in regulating global chromatin architecture. We show emerin associates with genomic loci of muscle differentiation promoting factors in murine myogenic progenitors, including Myf5 and MyoD. Prior to their transcriptional activation Myf5 and MyoD loci localized to the nuclear lamina in proliferating progenitors and moved to the nucleoplasm upon transcriptional activation during differentiation. The Pax7 locus, which is transcribed in proliferating progenitors, localized to the nucleoplasm and Pax7 moved to the nuclear lamina upon repression during differentiation. Localization of Myf5, MyoD, and Pax7 to the nuclear lamina and proper temporal expression of these genes required emerin and HDAC3. Interestingly, activation of HDAC3 catalytic activity rescued both Myf5 localization to the nuclear lamina and its expression. Collectively, these data support a model whereby emerin facilitates repressive chromatin formation at the nuclear lamina by activating the catalytic activity of HDAC3 to regulate the coordinated spatiotemporal expression of myogenic differentiation genes.
Collapse
Affiliation(s)
- Justin Demmerle
- Department of Medicine, Section of Cardiology, The University of Chicago, 5841 S. Maryland Ave, MC6088, Rm A607, Chicago, IL, 60637, USA,
| | | | | |
Collapse
|
23
|
Pellegrini C, Zulian A, Gualandi F, Manzati E, Merlini L, Michelini ME, Benassi L, Marmiroli S, Ferlini A, Sabatelli P, Bernardi P, Maraldi NM. Melanocytes--a novel tool to study mitochondrial dysfunction in Duchenne muscular dystrophy. J Cell Physiol 2013; 228:1323-31. [PMID: 23169061 PMCID: PMC3601437 DOI: 10.1002/jcp.24290] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 11/09/2012] [Indexed: 12/19/2022]
Abstract
Dystrophin is a subsarcolemmal protein that, by linking the actin cytoskeleton to the extracellular matrix via dystroglycans, is critical for the integrity of muscle fibers. Here, we report that epidermal melanocytes, obtained from conventional skin biopsy, express dystrophin with a restricted localization to the plasma membrane facing the dermal–epidermal junction. In addition the full-length muscle isoform mDp427 was clearly detectable in melanocyte cultures as assessed by immunohistochemistry, RNA, and Western blot analysis. Melanocytes of Duchenne muscular dystrophy (DMD) patients did not express dystrophin, and the ultrastructural analysis revealed typical mitochondrial alterations similar to those occurring in myoblasts from the same patients. Mitochondria of melanocytes from DMD patients readily accumulated tetramethylrhodamine methyl ester, indicating that they are energized irrespective of the presence of dystrophin but, at variance from mitochondria of control donors, depolarized upon the addition of oligomycin, suggesting that they are affected by a latent dysfunction unmasked by inhibition of the ATP synthase. Pure melanocyte cultures can be readily obtained by conventional skin biopsies and may be a feasible and reliable tool alternative to muscle biopsy for functional studies in dystrophinopathies. The mitochondrial dysfunction occurring in DMD melanocytes could represent a promising cellular biomarker for monitoring dystrophinopathies also in response to pharmacological treatments. J. Cell. Physiol. 228: 1323–1331, 2013. © 2012 Wiley Periodicals, Inc.
Collapse
|
24
|
Lattanzi G, Marmiroli S, Facchini A, Maraldi NM. Nuclear damages and oxidative stress: new perspectives for laminopathies. Eur J Histochem 2012; 56:e45. [PMID: 23361241 PMCID: PMC3567764 DOI: 10.4081/ejh.2012.e45] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 10/11/2012] [Accepted: 10/09/2012] [Indexed: 01/27/2023] Open
Abstract
Mutations in genes encoding nuclear envelope proteins, particularly LMNA encoding the A-type lamins, cause a broad range of diverse diseases, referred to as laminopathies. The astonishing variety of diseased phenotypes suggests that different mechanisms could be involved in the pathogenesis of laminopathies. In this review we will focus mainly on two of these pathogenic mechanisms: the nuclear damages affecting the chromatin organization, and the oxidative stress causing un-repairable DNA damages. Alteration in the nuclear profile and in chromatin organization, which are particularly impressive in systemic laminopathies whose cells undergo premature senescence, are mainly due to accumulation of unprocessed prelamin A. The toxic effect of these molecular species, which interfere with chromatin-associated proteins, transcription factors, and signaling pathways, could be reduced by drugs which reduce their farnesylation and/or stability. In particular, inhibitors of farnesyl transferase (FTIs), have been proved to be active in rescuing the altered cellular phenotype, and statins, also in association with other drugs, have been included into pilot clinical trials. The identification of a mechanism that accounts for accumulation of un-repairable DNA damage due to reactive oxygen species (ROS) generation in laminopathic cells, similar to that found in other muscular dystrophies (MDs) caused by altered expression of extracellular matrix (ECM) components, suggests that anti-oxidant therapeutic strategies might prove beneficial to laminopathic patients.
Collapse
Affiliation(s)
- G Lattanzi
- Laboratory of Musculoskeletal Cell Biology, IOR, Bologna, Italy
| | | | | | | |
Collapse
|
25
|
Demmerle J, Koch AJ, Holaska JM. The nuclear envelope protein emerin binds directly to histone deacetylase 3 (HDAC3) and activates HDAC3 activity. J Biol Chem 2012; 287:22080-8. [PMID: 22570481 PMCID: PMC3381166 DOI: 10.1074/jbc.m111.325308] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 05/07/2012] [Indexed: 11/06/2022] Open
Abstract
Organization of the genome is critical for maintaining cell-specific gene expression, ensuring proper cell function. It is well established that the nuclear lamina preferentially associates with repressed chromatin. However, the molecular mechanisms underlying repressive chromatin formation and maintenance at the nuclear lamina remain poorly understood. Here we show that emerin binds directly to HDAC3, the catalytic subunit of the nuclear co-repressor (NCoR) complex, and recruits HDAC3 to the nuclear periphery. Emerin binding stimulated the catalytic activity of HDAC3, and emerin-null cells exhibit increased H4K5 acetylation, which is the preferred target of the NCoR complex. Emerin-null cells exhibit an epigenetic signature similar to that seen in HDAC3-null cells. Emerin-null cells also had significantly less HDAC3 at the nuclear lamina. Collectively, these data support a model whereby emerin facilitates repressive chromatin formation at the nuclear periphery by increasing the catalytic activity of HDAC3.
Collapse
Affiliation(s)
| | - Adam J. Koch
- the Committee on Genetics, Genomics and Systems Biology, and
| | - James M. Holaska
- From the Department of Medicine, Section of Cardiology
- the Committee on Genetics, Genomics and Systems Biology, and
- the Committee on Developmental, Regeneration, and Stem Cell Biology, The University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
26
|
Shimi T, Butin-Israeli V, Goldman RD. The functions of the nuclear envelope in mediating the molecular crosstalk between the nucleus and the cytoplasm. Curr Opin Cell Biol 2011; 24:71-8. [PMID: 22192274 DOI: 10.1016/j.ceb.2011.11.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 11/05/2011] [Accepted: 11/16/2011] [Indexed: 11/26/2022]
Abstract
Recent studies of the nuclear envelope (NE) have emphasized its role in linking the nuclear and cytoplasmic compartments of mammalian cells. The inner face of the NE is bound to chromatin and this interaction is involved in regulating DNA replication and transcription. The outer face of the NE binds to different components of the cytoskeleton, and these interactions are involved in nuclear positioning. Many disease causing mutations in genes encoding NE proteins cause significant changes in nuclear architecture and cytoskeletal interactions with the NE. These mutations are also providing important new insights into nuclear-cytoplasmic interactions.
Collapse
Affiliation(s)
- Takeshi Shimi
- Department of Cell and Molecular Biology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | |
Collapse
|
27
|
Meldi L, Brickner JH. Compartmentalization of the nucleus. Trends Cell Biol 2011; 21:701-8. [PMID: 21900010 PMCID: PMC3970429 DOI: 10.1016/j.tcb.2011.08.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 08/03/2011] [Accepted: 08/04/2011] [Indexed: 12/14/2022]
Abstract
The nucleus is a spatially organized compartment. The most obvious way in which this is achieved is at the level of chromosomes. The positioning of chromosomes with respect to nuclear landmarks and with respect to each other is both non-random and cell-type specific. This suggests that cells possess molecular mechanisms to influence the folding and disposition of chromosomes within the nucleus. The localization of many proteins is also heterogeneous within the nucleus. Therefore, chromosome folding and the localization of proteins leads to a model in which individual genes are positioned in distinct protein environments that can affect their transcriptional state. We focus here on the spatial organization of the nucleus and how it impacts upon gene expression.
Collapse
Affiliation(s)
- Lauren Meldi
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA
| | | |
Collapse
|
28
|
Abstract
In the past 15 years our perception of nuclear envelope function has evolved perhaps nearly as much as the nuclear envelope itself evolved in the last 3 billion years. Historically viewed as little more than a diffusion barrier between the cytoplasm and the nucleoplasm, the nuclear envelope is now known to have roles in the cell cycle, cytoskeletal stability and cell migration, genome architecture, epigenetics, regulation of transcription, splicing, and DNA replication. Here we will review both what is known and what is speculated about the role of the nuclear envelope in genome organization, particularly with respect to the positioning and repositioning of genes and chromosomes within the nucleus during differentiation.
Collapse
Affiliation(s)
- Nikolaj Zuleger
- The Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3JR, UK
| | | | | |
Collapse
|
29
|
Abstract
The lamins are the major architectural proteins of the animal cell nucleus. Lamins line the inside of the nuclear membrane, where they provide a platform for the binding of proteins and chromatin and confer mechanical stability. They have been implicated in a wide range of nuclear functions, including higher-order genome organization, chromatin regulation, transcription, DNA replication and DNA repair. The lamins are members of the intermediate filament (IF) family of proteins, which constitute a major component of the cytoskeleton. Lamins are the only nuclear IFs and are the ancestral founders of the IF protein superfamily. Lamins polymerize into fibers forming a complex protein meshwork in vivo and, like all IF proteins, have a tripartite structure with two globular head and tail domains flanking a central α-helical rod domain, which supports the formation of higher-order polymers. Mutations in lamins cause a large number of diverse human diseases, collectively known as the laminopathies, underscoring their functional importance.
Collapse
Affiliation(s)
- Travis A Dittmer
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20896, USA.
| | | |
Collapse
|
30
|
Muscular dystrophies: an update on pathology and diagnosis. Acta Neuropathol 2010; 120:343-58. [PMID: 20652576 DOI: 10.1007/s00401-010-0727-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 07/09/2010] [Accepted: 07/12/2010] [Indexed: 12/31/2022]
Abstract
Muscular dystrophies are clinically, genetically, and molecularly a heterogeneous group of neuromuscular disorders. Considerable advances have been made in recent years in the identification of causative genes, the differentiation of the different forms and in broadening the understanding of pathogenesis. Muscle pathology has an important role in these aspects, but correlation of the pathology with clinical phenotype is essential. Immunohistochemistry has a major role in differential diagnosis, particularly in recessive forms where an absence or reduction in protein expression can be detected. Several muscular dystrophies are caused by defects in genes encoding sarcolemmal proteins, several of which are known to interact. Others are caused by defects in nuclear membrane proteins or enzymes. Assessment of both primary and secondary abnormalities in protein expression is useful, in particular the hypoglycosylation of alpha-dystroglycan. In dominantly inherited muscular dystrophies it is rarely possible to detect a change in the expression of the primary defective protein; an exception to this is caveolin-3.
Collapse
|
31
|
Korfali N, Wilkie GS, Swanson SK, Srsen V, Batrakou DG, Fairley EAL, Malik P, Zuleger N, Goncharevich A, de Las Heras J, Kelly DA, Kerr ARW, Florens L, Schirmer EC. The leukocyte nuclear envelope proteome varies with cell activation and contains novel transmembrane proteins that affect genome architecture. Mol Cell Proteomics 2010; 9:2571-85. [PMID: 20693407 PMCID: PMC3101955 DOI: 10.1074/mcp.m110.002915] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
A favored hypothesis to explain the pathology underlying nuclear envelopathies is that mutations in nuclear envelope proteins alter genome/chromatin organization and thus gene expression. To identify nuclear envelope proteins that play roles in genome organization, we analyzed nuclear envelopes from resting and phytohemagglutinin-activated leukocytes because leukocytes have a particularly high density of peripheral chromatin that undergoes significant reorganization upon such activation. Thus, nuclear envelopes were isolated from leukocytes in the two states and analyzed by multidimensional protein identification technology using an approach that used expected contaminating membranes as subtractive fractions. A total of 3351 proteins were identified between both nuclear envelope data sets among which were 87 putative nuclear envelope transmembrane proteins (NETs) that were not identified in a previous proteomics analysis of liver nuclear envelopes. Nuclear envelope localization was confirmed for 11 new NETs using tagged fusion proteins and antibodies on spleen cryosections. 27% of the new proteins identified were unique to one or the other of the two leukocyte states. Differences in expression between activated and resting leukocytes were confirmed for some NETs by RT-PCR, and most of these proteins appear to only be expressed in certain types of blood cells. Several known proteins identified in both data sets have functions in chromatin organization and gene regulation. To test whether the novel NETs identified might include those that also regulate chromatin, nine were run through two screens for different chromatin effects. One screen found two NETs that can recruit a specific gene locus to the nuclear periphery, and the second found a different NET that promotes chromatin condensation. The variation in the protein milieu with pharmacological activation of the same cell population and consequences for gene regulation suggest that the nuclear envelope is a complex regulatory system with significant influences on genome organization.
Collapse
Affiliation(s)
- Nadia Korfali
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH93JR, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kandert S, Wehnert M, Müller CR, Buendia B, Dabauvalle MC. Impaired nuclear functions lead to increased senescence and inefficient differentiation in human myoblasts with a dominant p.R545C mutation in the LMNA gene. Eur J Cell Biol 2009; 88:593-608. [PMID: 19589617 DOI: 10.1016/j.ejcb.2009.06.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 06/05/2009] [Accepted: 06/05/2009] [Indexed: 11/26/2022] Open
Abstract
We have studied myoblasts from a patient with a severe autosomal dominant Emery-Dreifuss muscular dystrophy (AD-EDMD) caused by an arginine 545 to cystein point mutation (p.R545C) in the carboxy-terminal domain of the lamin A/C gene. This mutation has pleiotropic cellular effects on these myoblasts as demonstrated by nuclear structural defects, exhibiting lobulations which increase with cell passages in culture. The organization of both lamin A/C and its inner nuclear membrane partner emerin are altered, eventually showing a honeycomb pattern upon immunofluorescence microscopy. In addition, the distribution of histone H3 trimethylated at lysine 27 and of phosphorylated RNA polymerase II, markers of inactive and active chromatin domains, respectively, are altered suggesting an impact on gene expression. Patient myoblasts also presented a high index of senescence in ex vivo culture. Moreover, our data show for the first time in an AD-EDMD context that the 20S core particle of the proteasome was inactivated. With cell passages, the 20S core protein progressively accumulated into discrete nuclear foci that largely colocalized with promyelocytic leukemia (PML) bodies while p21 accumulated throughout the nuclear compartment. Proteasome inactivation has been linked to normal cellular ageing. Our data indicate that it may also contribute to premature senescence in AD-EDMD patient myoblasts. Finally, when transferred to low-serum medium, patient myoblasts were deficient in ex vivo differentiation, as assessed by the absence of myotube formation and myogenin induction. Altogether, these data suggest that the LMNA mutation p.R545C impairs both proliferation and differentiation capacities of myoblasts as part of the pathogenesis of AD-EDMD.
Collapse
Affiliation(s)
- Sebastian Kandert
- Division of Electron Microscopy, Biocenter, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | | | | | | | | |
Collapse
|
33
|
Dechat T, Adam SA, Goldman RD. Nuclear lamins and chromatin: when structure meets function. ADVANCES IN ENZYME REGULATION 2008; 49:157-66. [PMID: 19154754 PMCID: PMC3253622 DOI: 10.1016/j.advenzreg.2008.12.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Thomas Dechat
- Northwestern University Medical School, Department of Cell and Molecular Biology, Chicago, Illinois 60611, USA
| | - Stephen A. Adam
- Northwestern University Medical School, Department of Cell and Molecular Biology, Chicago, Illinois 60611, USA
| | - Robert D. Goldman
- Northwestern University Medical School, Department of Cell and Molecular Biology, Chicago, Illinois 60611, USA
| |
Collapse
|
34
|
Schirmer EC. The epigenetics of nuclear envelope organization and disease. Mutat Res 2008; 647:112-21. [PMID: 18722388 DOI: 10.1016/j.mrfmmm.2008.07.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 07/16/2008] [Accepted: 07/23/2008] [Indexed: 01/09/2023]
Abstract
Mammalian chromosomes and some specific genes have non-random positions within the nucleus that are tissue-specific and heritable. Work in many organisms has shown that genes at the nuclear periphery tend to be inactive and altering their partitioning to the interior results in their activation. Proteins of the nuclear envelope can recruit chromatin with specific epigenetic marks and can also recruit silencing factors that add new epigenetic modifications to chromatin sequestered at the periphery. Together these findings indicate that the nuclear envelope is a significant epigenetic regulator. The importance of this function is emphasized by observations of aberrant distribution of peripheral heterochromatin in several human diseases linked to mutations in NE proteins. These debilitating inherited diseases range from muscular dystrophies to the premature aging progeroid syndromes and the heterochromatin changes are just one early clue for understanding the molecular details of how they work. The architecture of the nuclear envelope provides a unique environment for epigenetic regulation and as such a great deal of research will be required before we can ascertain the full range of its contributions to epigenetics.
Collapse
Affiliation(s)
- Eric C Schirmer
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK.
| |
Collapse
|
35
|
Zhang Q, Bethmann C, Worth NF, Davies JD, Wasner C, Feuer A, Ragnauth CD, Yi Q, Mellad JA, Warren DT, Wheeler MA, Ellis JA, Skepper JN, Vorgerd M, Schlotter-Weigel B, Weissberg PL, Roberts RG, Wehnert M, Shanahan CM. Nesprin-1 and -2 are involved in the pathogenesis of Emery Dreifuss muscular dystrophy and are critical for nuclear envelope integrity. Hum Mol Genet 2007; 16:2816-33. [PMID: 17761684 DOI: 10.1093/hmg/ddm238] [Citation(s) in RCA: 378] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Emery-Dreifuss muscular dystrophy (EDMD) is a heterogeneous late-onset disease involving skeletal muscle wasting and heart defects caused, in a minority of cases, by mutations in either of two genes encoding the inner nuclear membrane (INM) proteins, emerin and lamins A/C. Nesprin-1 and -2 are multi-isomeric, spectrin-repeat proteins that bind both emerin and lamins A/C and form a network in muscle linking the nucleoskeleton to the INM, the outer nuclear membrane, membraneous organelles, the sarcomere and the actin cytoskeleton. Thus, disruptions in nesprin/lamin/emerin interactions might play a role in the muscle-specific pathogenesis of EDMD. Screening for DNA variations in the genes encoding nesprin-1 (SYNE1) and nesprin-2 (SYNE2) in 190 probands with EDMD or EDMD-like phenotypes identified four heterozygous missense mutations. Fibroblasts from these patients exhibited nuclear morphology defects and specific patterns of emerin and SUN2 mislocalization. In addition, diminished nuclear envelope localization of nesprins and impaired nesprin/emerin/lamin binding interactions were common features of all EDMD patient fibroblasts. siRNA knockdown of nesprin-1 or -2 in normal fibroblasts reproduced the nuclear morphological changes and mislocalization of emerin and SUN2 observed in patient fibroblasts. Taken together, these data suggest that EDMD may be caused, in part, by uncoupling of the nucleoskeleton and cytoskeleton because of perturbed nesprin/emerin/lamin interactions.
Collapse
Affiliation(s)
- Qiuping Zhang
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Meaburn KJ, Cabuy E, Bonne G, Levy N, Morris GE, Novelli G, Kill IR, Bridger JM. Primary laminopathy fibroblasts display altered genome organization and apoptosis. Aging Cell 2007; 6:139-53. [PMID: 17274801 DOI: 10.1111/j.1474-9726.2007.00270.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
A number of diseases associated with specific tissue degeneration and premature aging have mutations in the nuclear envelope proteins A-type lamins or emerin. Those diseases with A-type lamin mutation are inclusively termed laminopathies. Due to various hypothetical roles of nuclear envelope proteins in genome function we investigated whether alterations to normal genomic behaviour are apparent in cells with mutations in A-type lamins and emerin. Even though the distributions of these proteins in proliferating laminopathy fibroblasts appear normal, there is abnormal nuclear positioning of both chromosome 18 and 13 territories, from the nuclear periphery to the interior. This genomic organization mimics that found in normal nonproliferating quiescent or senescent cells. This finding is supported by distributions of modified pRb in the laminopathy cells. All laminopathy cell lines tested and an X-linked Emery-Dreifuss muscular dystrophy cell line also demonstrate increased incidences of apoptosis. The most extreme cases of apoptosis occur in cells derived from diseases with mutations in the tail region of the LMNA gene, such as Dunningan-type familial partial lipodystrophy and mandibuloacral dysplasia, and this correlates with a significant level of micronucleation in these cells.
Collapse
Affiliation(s)
- Karen J Meaburn
- Laboratory of Nuclear and Genomic Health, Division of Biosciences, School of Health Sciences and Social Care, Brunel University, Uxbridge, Middlesex UB8 3PH, UK
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Columbaro M, Capanni C, Mattioli E, Novelli G, Parnaik VK, Squarzoni S, Maraldi NM, Lattanzi G. Rescue of heterochromatin organization in Hutchinson-Gilford progeria by drug treatment. Cell Mol Life Sci 2006; 62:2669-78. [PMID: 16261260 PMCID: PMC2773834 DOI: 10.1007/s00018-005-5318-6] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Hutchinson-Gilford progeria (HGPS) is a premature aging syndrome associated with LMNA mutations. Progeria cells bearing the G608G LMNA mutation are characterized by accumulation of a mutated lamin A precursor (progerin), nuclear dysmorphism and chromatin disorganization. In cultured HGPS fibroblasts, we found worsening of the cellular phenotype with patient age, mainly consisting of increased nuclear-shape abnormalities, progerin accumulation and heterochromatin loss. Moreover, transcript distribution was altered in HGPS nuclei, as determined by different techniques. In the attempt to improve the cellular phenotype, we applied treatment with drugs either affecting protein farnesylation or chromatin arrangement. Our results show that the combined treatment with mevinolin and the histone deacetylase inhibitor trichostatin A dramatically lowers progerin levels, leading to rescue of heterochromatin organization and reorganization of transcripts in HGPS fibroblasts. These results suggest that morpho-functional defects of HGPS nuclei are directly related to progerin accumulation and can be rectified by drug treatment.
Collapse
Affiliation(s)
- M. Columbaro
- Laboratory of Cell Biology, Istituti Ortopedici Rizzoli, Bologna, Italy
| | - C. Capanni
- Unit of Bologna, c/o IOR, ITOI-CNR, Via di Barbiano, 1/10, 40136 Bologna, Italy
| | - E. Mattioli
- Laboratory of Cell Biology, Istituti Ortopedici Rizzoli, Bologna, Italy
| | - G. Novelli
- Department of Biopathology and Image Diagnostics, University of Rome Tor Vergata, Rome, Italy
| | - V. K. Parnaik
- Centre for Cellular and Molecular Biology, Hyderabad, 500 007 India
| | - S. Squarzoni
- Unit of Bologna, c/o IOR, ITOI-CNR, Via di Barbiano, 1/10, 40136 Bologna, Italy
| | - N. M. Maraldi
- Laboratory of Cell Biology, Istituti Ortopedici Rizzoli, Bologna, Italy
- Unit of Bologna, c/o IOR, ITOI-CNR, Via di Barbiano, 1/10, 40136 Bologna, Italy
| | - G. Lattanzi
- Unit of Bologna, c/o IOR, ITOI-CNR, Via di Barbiano, 1/10, 40136 Bologna, Italy
| |
Collapse
|
38
|
Prokocimer M, Margalit A, Gruenbaum Y. The nuclear lamina and its proposed roles in tumorigenesis: Projection on the hematologic malignancies and future targeted therapy. J Struct Biol 2006; 155:351-60. [PMID: 16697219 DOI: 10.1016/j.jsb.2006.02.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2005] [Accepted: 02/13/2006] [Indexed: 01/10/2023]
Abstract
The nuclear lamina, a network of lamin filaments and lamin-associated proteins, is located between the inner nuclear membrane and the peripheral chromatin. The nuclear lamina is involved in numerous nuclear functions including maintaining nuclear shape, determining nuclear positioning, organizing chromatin and regulating the cell cycle, DNA replication, transcription, cell differentiation, apoptosis, and aging. Alterations in the composition of nuclear lamins and their associated proteins are currently emerging as an additional event involved in malignant transformation, tumor propagation and progression, thus identifying potential novel targets for future anti-cancer therapy. Here, we review the current knowledge on lamin expression patterns in cells of hematologic malignancies and give an overview on the roles of the nuclear lamina proteins in heterochromatin organization, apoptosis, and aging with special emphasis on the relevance in cancer development.
Collapse
Affiliation(s)
- Miron Prokocimer
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | |
Collapse
|
39
|
Holt I, Nguyen TM, Wehnert M, Morris GE. Lamin A/C assembly defects in Emery-Dreifuss muscular dystrophy can be regulated by culture medium composition. Neuromuscul Disord 2006; 16:368-73. [PMID: 16697197 DOI: 10.1016/j.nmd.2006.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Revised: 03/13/2006] [Accepted: 03/23/2006] [Indexed: 10/24/2022]
Abstract
Emery-Dreifuss muscular dystrophy results from mutations in either emerin or lamin A/C and is caused by loss of some unknown function of emerin-lamin A/C complexes. This function must be of special importance in the skeletal and cardiac muscles that are affected by the disease. Some lamin A/C mutant proteins form 'nuclear foci' in the nucleoplasm when overexpressed by transient transfection and similar aggregates have been seen in cultured skin fibroblasts from patients with Emery-Dreifuss muscular dystrophy, suggesting that mis-assembly of the A-type lamina may be involved in the pathogenesis. Whereas an earlier study of cultured skin fibroblasts compared several different missense mutations in lamin A/C, we have chosen to study one particular Emery-Dreifuss mutation (R249Q) in greater detail. We found that the proportion of fibroblast nuclei containing abnormal lamin A/C aggregates can vary from 0.5 to 23.6% depending on the culture conditions. In particular, switching from a 'slow growth' medium to 'rapid growth' media increased both the number and size of nuclear aggregates. Similar results were obtained with fibroblasts from a second unrelated patient with the same mutation. In contrast to these aggregates of endogenous lamin A/C, 'nuclear foci' formed after transfection of mouse embryo fibroblasts by mutant lamin A/C were not affected by culture conditions. Faulty assembly of the nuclear lamina by mutated lamin A/C molecules could be partly responsible for the disease phenotype, though this has not been proven. The present study suggests that inappropriate lamin A/C assembly may be preventable by manipulation of cell growth conditions.
Collapse
Affiliation(s)
- Ian Holt
- Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
| | | | | | | |
Collapse
|
40
|
Abstract
The muscular dystrophies are characterised by progressive muscle weakness and wasting. Pathologically the hallmarks are muscle fibre degeneration and fibrosis. Several recessive forms of muscular dystrophy are caused by defects in proteins localised to the sarcolemma. However, it is now apparent that others are due to defects in a wide range of proteins including those which are either nuclear-related (Emery-Dreifuss type muscular dystrophies, oculopharyngeal muscular dystrophy), enzymatic (limb-girdle muscular dystrophy 2A, myotonic dystrophy) or sarcomeric (limb-girdle muscular dystrophies 1A and 2G). Although the clinical and molecular basis of these disorders is heterogeneous all display myopathic morphological features. These include variation in fibre size, an increase in internal nuclei, and some myofibrillar distortion. Degeneration and fibrosis occur, but usually not to the same extent as in muscular dystrophies associated with sarcolemmal protein defects. This review outlines the genetic basis of these "non-sarcolemmal" forms of dystrophy and discusses current ideas on their pathogenesis.
Collapse
Affiliation(s)
- S C Brown
- Dubowitz Neuromuscular Centre, Imperial College School of Medicine, Hammersmith Hospital, London, UK
| | | | | |
Collapse
|
41
|
Maraldi NM, Lattanzi G, Capanni C, Columbaro M, Mattioli E, Sabatelli P, Squarzoni S, Manzoli FA. Laminopathies: A chromatin affair. ACTA ACUST UNITED AC 2006; 46:33-49. [PMID: 16857244 DOI: 10.1016/j.advenzreg.2006.01.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
42
|
Filesi I, Gullotta F, Lattanzi G, D'Apice MR, Capanni C, Nardone AM, Columbaro M, Scarano G, Mattioli E, Sabatelli P, Maraldi NM, Biocca S, Novelli G. Alterations of nuclear envelope and chromatin organization in mandibuloacral dysplasia, a rare form of laminopathy. Physiol Genomics 2005; 23:150-8. [PMID: 16046620 DOI: 10.1152/physiolgenomics.00060.2005] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Autosomal recessive mandibuloacral dysplasia [mandibuloacral dysplasia type A (MADA); Online Mendelian Inheritance in Man (OMIM) no. 248370] is caused by a mutation in LMNA encoding lamin A/C. Here we show that this mutation causes accumulation of the lamin A precursor protein, a marked alteration of the nuclear architecture and, hence, chromatin disorganization. Heterochromatin domains are altered or completely lost in MADA nuclei, consistent with the finding that heterochromatin-associated protein HP1beta and histone H3 methylated at lysine 9 and their nuclear envelope partner protein lamin B receptor (LBR) are delocalized and solubilized. Both accumulation of lamin A precursor and chromatin defects become more severe in older patients. These results strongly suggest that altered chromatin remodeling is a key event in the cascade of epigenetic events causing MADA and could be related to the premature-aging phenotype.
Collapse
Affiliation(s)
- Ilaria Filesi
- Laboratory of Clinical Biochemistry and Department of Neuroscience, University of Roma Tor Vergata, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Somech R, Shaklai S, Geller O, Amariglio N, Simon AJ, Rechavi G, Gal-Yam EN. The nuclear-envelope protein and transcriptional repressor LAP2β interacts with HDAC3 at the nuclear periphery, and induces histone H4 deacetylation. J Cell Sci 2005; 118:4017-25. [PMID: 16129885 DOI: 10.1242/jcs.02521] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nuclear-envelope proteins have been implicated in diverse and fundamental cell functions, among them transcriptional regulation. Gene expression at the territory of the nuclear periphery is known to be repressed by epigenetic modifications such as histone deacetylation and methylation. However, the mechanism by which nuclear-envelope proteins are involved in such modifications is still obscure. We have previously shown that LAP2β, an integral nuclear-envelope protein that contains the chromatin-binding LEM domain, was able to repress the transcriptional activity of the E2F5-DP3 heterodimer. Here, we show that LAP2β's repressive activity is more general, encompassing various E2F members as well as other transcription factors such as p53 and NF-κB. We further show that LAP2β interacts at the nuclear envelope with HDAC3, a class-I histone deacetylase, and that TSA (an HDAC inhibitor) abrogates LAP2β's repressive activity. Finally, we show that LAP2β is capable of inducing histone-H4 deacetylation. Our data provide evidence for the existence of a previously unknown repressive complex, composed of an integral nuclear membrane protein and a histone modifier, at the nuclear periphery.
Collapse
Affiliation(s)
- Raz Somech
- Sheba Cancer Research Center and Institute of Hematology, The Chaim Sheba Medical Center, Tel-Hashomer 52621, Israel
| | | | | | | | | | | | | |
Collapse
|
44
|
Tunnah D, Sewry CA, Vaux D, Schirmer EC, Morris GE. The apparent absence of lamin B1 and emerin in many tissue nuclei is due to epitope masking. J Mol Histol 2005; 36:337-44. [PMID: 16283426 DOI: 10.1007/s10735-005-9004-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Accepted: 07/13/2005] [Indexed: 01/18/2023]
Abstract
Immunolocalization studies have concluded that the nuclear membrane protein, emerin, is absent from many cell types and that lamin B1 is absent from adult heart and skeletal muscle. We now show that epitope masking in the nucleus is often responsible for failure to detect emerin and lamins in human, rat and pig tissues. Human heart cardiomyocyte nuclei were negative for lamin B1 using a commercial mAb, but were positive using two other lamin B1 antibodies, mAb8D1 and pAbB1-cbs. Rat hippocampal neuronal nuclei were immunostained by mAb8D1, but not pAbB1-cbs, while the commercial antibody stained only a subset. These data suggest that different regions of the lamin B1 molecule are masked in different tissues. Similarly, pig spleen had fewer emerin-positive nuclei than lung (5% vs. 32%), although their emerin content was similar by Western blotting. As mAbs against six epitopes gave the same result, the whole emerin molecule is either masked or redistributed in a subset of cells. Our findings argue that immunostaining evidence can be misleading for expression of nuclear envelope proteins. Problems with lamin B1 immunostaining can be avoided by using mAb8D1, but use of antibodies recognizing different epitopes may reveal cell-specific protein interactions in the nucleus.
Collapse
Affiliation(s)
- Darran Tunnah
- Centre for Inherited Neuromuscular Disease, LMARC Building, Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, SY10 7AG, UK
| | | | | | | | | |
Collapse
|
45
|
Maraldi NM, Squarzoni S, Sabatelli P, Capanni C, Mattioli E, Ognibene A, Lattanzi G. Laminopathies: Involvement of structural nuclear proteins in the pathogenesis of an increasing number of human diseases. J Cell Physiol 2005; 203:319-27. [PMID: 15389628 DOI: 10.1002/jcp.20217] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Just at the beginning of the millennium the neologism laminopathies has been introduced in the scientific vocabulary. An exponential increase of interest on the subject started concomitantly, so that a formerly quite neglected group of rare human diseases is now widely investigated. This review will cover the history of the identification of the molecular basis for fourteen (since now) hereditary diseases arising from defects in genes that encode nuclear envelope and nuclear lamina-associated proteins and will also consider the hypotheses that can account for the role of structural nuclear proteins in the pathogenesis of diseases affecting a wide spectrum of tissues.
Collapse
Affiliation(s)
- Nadir M Maraldi
- ITOI-CNR, Unit of Bologna via di Barbiano 1/10 c/o IOR, 40136 Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
46
|
Maraldi NM, Lattanzi G, Squarzoni S, Capanni C, Cenni V, Manzoli FA. Implications for nuclear organization and gene transcription of lamin A/C specific mutations. ACTA ACUST UNITED AC 2005; 45:1-16. [PMID: 16185751 DOI: 10.1016/j.advenzreg.2005.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
47
|
Reichart B, Klafke R, Dreger C, Krüger E, Motsch I, Ewald A, Schäfer J, Reichmann H, Müller CR, Dabauvalle MC. Expression and localization of nuclear proteins in autosomal-dominant Emery-Dreifuss muscular dystrophy with LMNA R377H mutation. BMC Cell Biol 2004; 5:12. [PMID: 15053843 PMCID: PMC407848 DOI: 10.1186/1471-2121-5-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2003] [Accepted: 03/30/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The autosomal dominant form of Emery-Dreifuss muscular dystrophy (AD-EDMD) is caused by mutations in the gene encoding for the lamins A and C (LMNA). Lamins are intermediate filament proteins which form the nuclear lamina underlying the inner nuclear membrane. We have studied the expression and the localization of nuclear envelope proteins in three different cell types and muscle tissue of an AD-EDMD patient carrying a point mutation R377H in the lamin A/C gene. RESULTS Lymphoblastoid cells, skin fibroblasts, primary myoblasts and muscle thin sections were studied by immunocytochemistry and electron microscopy. Cellular levels of A-type lamins were reduced compared to control cells. In contrast, the amount of emerin and lamin B appeared unaltered. Cell synchronization experiments showed that the reduction of the cellular level of A-type lamin was due to instability of lamin A. By electron microscopy, we identified a proportion of nuclei with morphological alterations in lymphoblastoid cells, fibroblasts and mature muscle fibres. Immunofluorescence microscopy showed that a major population of the lamin B receptor (LBR), an inner nuclear membrane protein, was recovered in the cytoplasm in association with the ER. In addition, the intranuclear organization of the active form of RNA polymerase II was markedly different in cells of this AD-EDMD patient. This aberrant intranuclear distribution was specifically observed in muscle cells where the pathology of EDMD predominates. CONCLUSIONS From our results we conclude: Firstly, that structural alterations of the nuclei which are found only in a minor fraction of lymphoblastoid cells and mature muscle fibres are not sufficient to explain the clinical pathology of EDMD; Secondly, that wild type lamin A is required not only for the retention of LBR in the inner nuclear membrane but also for a correct localization of the transcriptionally active RNA pol II in muscle cells. We speculate that a rearrangement of the internal chromatin could lead to muscle-specific disease symptoms by interference with proper mRNA transcription.
Collapse
Affiliation(s)
- Beate Reichart
- Department of Cell and Developmental Biology, University of Würzburg, Germany
| | - Ruth Klafke
- Department of Cell and Developmental Biology, University of Würzburg, Germany
| | - Christine Dreger
- Department of Cell Biology, German Cancer Research Center, Heidelberg, Germany
| | - Eleonora Krüger
- Department of Cell and Developmental Biology, University of Würzburg, Germany
| | - Isabell Motsch
- Department of Cell and Developmental Biology, University of Würzburg, Germany
| | - Andrea Ewald
- Department of Cell and Developmental Biology, University of Würzburg, Germany
| | | | | | | | | |
Collapse
|
48
|
Maraldi NM, Lattanzi G, Squarzoni S, Sabatelli P, Marmiroli S, Ognibene A, Manzoli FA. At the nucleus of the problem: nuclear proteins and disease. ADVANCES IN ENZYME REGULATION 2004; 43:411-43. [PMID: 12791400 DOI: 10.1016/s0065-2571(02)00042-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Maraldi NM, Lattanzi G, Marmiroli S, Squarzoni S, Manzoli FA. New roles for lamins, nuclear envelope proteins and actin in the nucleus. ACTA ACUST UNITED AC 2004; 44:155-72. [PMID: 15581488 DOI: 10.1016/j.advenzreg.2003.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Nadir M Maraldi
- ITOI-CNR, Unit of Bologna, c/o IOR, Via di Barbiano 1/10, Bologna 40136, Italy
| | | | | | | | | |
Collapse
|
50
|
Capanni C, Cenni V, Mattioli E, Sabatelli P, Ognibene A, Columbaro M, Parnaik VK, Wehnert M, Maraldi NM, Squarzoni S, Lattanzi G. Failure of lamin A/C to functionally assemble in R482L mutated familial partial lipodystrophy fibroblasts: altered intermolecular interaction with emerin and implications for gene transcription. Exp Cell Res 2003; 291:122-34. [PMID: 14597414 DOI: 10.1016/s0014-4827(03)00395-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Familial partial lipodystrophy is an autosomal dominant disease caused by mutations of the LMNA gene encoding alternatively spliced lamins A and C. Abnormal distribution of body fat and insulin resistance characterize the clinical phenotype. In this study, we analyzed primary fibroblast cultures from a patient carrying an R482L lamin A/C mutation by a morphological and biochemical approach. Abnormalities were observed consisting of nuclear lamin A/C aggregates mostly localized close to the nuclear lamina. These aggregates were not bound to either DNA-containing structures or RNA splicing intranuclear compartments. In addition, emerin did not colocalize with nuclear lamin A/C aggregates. Interestingly, emerin failed to interact with lamin A in R482L mutated fibroblasts in vivo, while the interaction with lamin C was preserved in vitro, as determined by coimmunoprecipitation experiments. The presence of lamin A/C nuclear aggregates was restricted to actively transcribing cells, and it was increased in insulin-treated fibroblasts. In fibroblasts carrying lamin A/C nuclear aggregates, a reduced incorporation of bromouridine was observed, demonstrating that mutated lamin A/C in FPLD cells interferes with RNA transcription.
Collapse
Affiliation(s)
- Cristina Capanni
- Laboratory of Cell Biology, Istituti Ortopedici Rizzoli, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|