1
|
Abdel-Haffiez SH, Khalil NM. Effect of platelet rich plasma injection on bone formation in the expanded mid-palatal suture in rabbits: a randomized controlled animal study. BMC Oral Health 2024; 24:167. [PMID: 38308245 PMCID: PMC10835953 DOI: 10.1186/s12903-024-03922-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 01/21/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Mid-Palatal suture expansion needs long retention period due to delayed bone formation in the expanded suture. Platelet-rich plasma (PRP) is a concentrated source of growth factors which increase bone formation. The aim of this study was to evaluate the effect of PRP injection on bone formation in expanded mid palatal suture in rabbits. METHODS In this prospective randomized controlled animal study, Twenty male rabbits (8-weeks-old) were subjected to mid-palatal expansion for 5 days. Animals were afterwards randomly divided into control group A & study group B. PRP was prepared and injected in the mid-palatal suture in animals belonging to group B only. After 6 weeks of retention, all animals were euthanized, and premaxillae were prepared for histological, histomorphometric and immunohistochemical analysis. Student t-test and paired t-test were used to compare the means of the two groups and within the same group respectively. Significance level set at p ≤ 0.05. RESULTS Histomorphometric analysis revealed a significant increase (p < 0.001) in the mean percentage of new bone in the study group (14.4%) compared to the control (1.4%). Suture width in study group was significantly wider than the control group (278.8 ± 9μms and 120.4 ± 3.4μms, p < 0.001). There was a significant increase in vascular density in study group than control group (309 ± 65.34 and 243.86 ± 48.1, p = 0.021). Osteopontin immuno-expression revealed a significant increase in optical density in study group than control group (0.21 ± 0.02 & 0.12 ± 0.01, p < 0.001). CONCLUSIONS In rabbit model, PRP injection can accelerate new bone formation in the expanded mid-palatal suture when compared to the control. This could hopefully result in a more stable midpalatal expansion and a reduced retention period.
Collapse
|
2
|
Giovani PA, Martins L, Salmon CR, Mofatto LS, Leme AFP, Puppin-Rontani RM, Kolli TN, Foster BL, Nociti FH, Kantovitz KR. Comparative proteomic analysis of dental cementum from deciduous and permanent teeth. J Periodontal Res 2020; 56:173-185. [PMID: 33210734 DOI: 10.1111/jre.12808] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/29/2020] [Accepted: 09/16/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND OBJECTIVES Dental cementum (DC) is a mineralized tissue covering tooth roots that plays a critical role in dental attachment. Differences in deciduous vs. permanent tooth DC have not been explored. We hypothesized that proteomic analysis of DC matrix would identify compositional differences in deciduous (DecDC) vs. permanent (PermDC) cementum that might reflect physiological or pathological differences, such as root resorption that is physiological in deciduous teeth but can be pathological in the permanent dentition. METHODS Protein extracts from deciduous (n = 25) and permanent (n = 12) teeth were pooled (five pools of DecDC, five teeth each; four pools of PermDC, three teeth each). Samples were denatured, and proteins were extracted, reduced, alkylated, digested, and analyzed by liquid chromatography-mass spectrometry (LC-MS/MS). The beta-binomial statistical test was applied to normalized spectrum counts with 5% significance level to determine differentially expressed proteins. Immunohistochemistry was used to validate selected proteins. RESULTS A total of 510 proteins were identified: 123 (24.1%) exclusive to DecDC; 128 (25.1%) exclusive to PermDC; 259 (50.8%) commonly expressed in both DecDC and PermDC. Out of 60 differentially expressed proteins, 17 (28.3%) were detected in DecDC, including myeloperoxidase (MPO), whereas 43 (71.7%) were detected in PermDC, including decorin (DCN) and osteocalcin (BGLAP). Overall, Gene Ontology (GO) analysis indicated that all expressed proteins were related to GO biological processes that included localization and response to stress, and the GO molecular function of differentially expressed proteins was enriched in cell adhesion, molecular binding, cytoskeletal protein binding, structural molecular activity, and macromolecular complex binding. Immunohistochemistry confirmed the trends for selected differentially expressed proteins in human teeth. CONCLUSIONS Clear differences were found between the proteomes of DecDC and PermDC. These findings may lead to new insights into developmental differences between DecDC and PermDC, as well as to a better understanding of physiological/pathological events such as root resorption.
Collapse
Affiliation(s)
- Priscila A Giovani
- Department of Pediatric Dentistry, Piracicaba Dental School, University of Campinas, São Paulo, Brazil
| | - Luciane Martins
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, University of Campinas, São Paulo, Brazil
| | - Cristiane R Salmon
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, University of Campinas, São Paulo, Brazil
| | - Luciana S Mofatto
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Adriana F P Leme
- Brazilian Biosciences National Laboratory, LNBio, CNPEM, Campinas, São Paulo, Brazil
| | - Regina M Puppin-Rontani
- Department of Pediatric Dentistry, Piracicaba Dental School, University of Campinas, São Paulo, Brazil
| | - Tamara N Kolli
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Brian L Foster
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Francisco H Nociti
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, University of Campinas, São Paulo, Brazil
| | - Kamila R Kantovitz
- Department of Pediatric Dentistry, Piracicaba Dental School, University of Campinas, São Paulo, Brazil.,Department of Dental Materials, São Leopoldo Mandic Research Center, Campinas, São Paulo, Brazil
| |
Collapse
|
3
|
Granito RN, Bouleftour W, Sabido O, Lescale C, Thomas M, Aubin JE, Goodhardt M, Vico L, Malaval L. Absence of Bone Sialoprotein (BSP) Alters Profoundly Hematopoiesis and Upregulates Osteopontin. J Cell Physiol 2015; 230:1342-51. [DOI: 10.1002/jcp.24877] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 12/05/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Renata neves Granito
- INSERM U1059/LBTO; Université Jean Monnet-Université de Lyon; Saint-Étienne France
| | - Wafa Bouleftour
- INSERM U1059/LBTO; Université Jean Monnet-Université de Lyon; Saint-Étienne France
| | - Odile Sabido
- Centre Commun de Cytométrie en Flux; Faculté de Médecine; Université Jean Monnet - Université de Lyon; Saint-Étienne France
| | - Chloé Lescale
- INSERM UMRS940, Institut Universitaire d'Hématologie; Université Paris 7 Denis Diderot; Paris France
| | - Mireille Thomas
- INSERM U1059/LBTO; Université Jean Monnet-Université de Lyon; Saint-Étienne France
| | - Jane E. Aubin
- Department of Molecular Genetics; University of Toronto; Toronto Ontario Canada
| | - Michèle Goodhardt
- INSERM UMRS940, Institut Universitaire d'Hématologie; Université Paris 7 Denis Diderot; Paris France
| | - Laurence Vico
- INSERM U1059/LBTO; Université Jean Monnet-Université de Lyon; Saint-Étienne France
| | | |
Collapse
|
4
|
Mantila Roosa SM, Liu Y, Turner CH. Alternative splicing in bone following mechanical loading. Bone 2011; 48:543-51. [PMID: 21095247 PMCID: PMC3039044 DOI: 10.1016/j.bone.2010.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 11/05/2010] [Accepted: 11/08/2010] [Indexed: 12/22/2022]
Abstract
It is estimated that more than 90% of human genes express multiple mRNA transcripts due to alternative splicing. Consequently, the proteins produced by different splice variants will likely have different functions and expression levels. Several genes with splice variants are known in bone, with functions that affect osteoblast function and bone formation. The primary goal of this study was to evaluate the extent of alternative splicing in a bone subjected to mechanical loading and subsequent bone formation. We used the rat forelimb loading model, in which the right forelimb was loaded axially for 3 min, while the left forearm served as a non-loaded control. Animals were subjected to loading sessions every day, with 24 h between sessions. Ulnae were sampled at 11 time points, from 4 h to 32days after beginning loading. RNA was isolated and mRNA abundance was measured at each time point using Affymetrix exon arrays (GeneChip® Rat Exon 1.0 ST Arrays). An ANOVA model was used to identify potential alternatively spliced genes across the time course, and five alternatively spliced genes were validated with qPCR: Akap12, Fn1, Pcolce, Sfrp4, and Tpm1. The number of alternatively spliced genes varied with time, ranging from a low of 68 at 12h to a high of 992 at 16d. We identified genes across the time course that encoded proteins with known functions in bone formation, including collagens, matrix proteins, and components of the Wnt/β-catenin and TGF-β signaling pathways. We also identified alternatively spliced genes encoding cytokines, ion channels, muscle-related genes, and solute carriers that do not have a known function in bone formation and represent potentially novel findings. In addition, a functional characterization was performed to categorize the global functions of the alternatively spliced genes in our data set. In conclusion, mechanical loading induces alternative splicing in bone, which may play an important role in the response of bone to mechanical loading.
Collapse
Affiliation(s)
- Sara M Mantila Roosa
- Department of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | | | | |
Collapse
|
5
|
Yourek G, McCormick SM, Mao JJ, Reilly GC. Shear stress induces osteogenic differentiation of human mesenchymal stem cells. Regen Med 2011; 5:713-24. [PMID: 20868327 DOI: 10.2217/rme.10.60] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To determine whether fluid flow-induced shear stress affects the differentiation of bone marrow-derived human mesenchymal stem cells (hMSCs) into osteogenic cells. MATERIALS & METHODS hMSCs cultured with or without osteogenic differentiation medium were exposed to fluid flow-induced shear stress and analyzed for alkaline phosphatase activity and expression of osteogenic genes. RESULTS Immediately following shear stress, alkaline phosphatase activity in osteogenic medium was significantly increased. At days 4 and 8 of culture the mRNA expression of bone morphogenetic protein-2 and osteopontin was significantly higher in hMSCs subjected to shear stress than those cultured in static conditions. However, hMSCs cultured in osteogenic differentiation medium were less responsive in gene expression of alkaline phosphatase and bone morphogenetic protein-2. CONCLUSION These data demonstrate that shear stress stimulates hMSCs towards an osteoblastic phenotype in the absence of chemical induction, suggesting that certain mechanical stresses may serve as an alternative to chemical stimulation of stem cell differentiation.
Collapse
Affiliation(s)
- Gregory Yourek
- Department of Physiology & Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
6
|
Abstract
The advent of high-throughput measurements of gene expression and bioinformatics analysis methods offers new ways to study gene expression patterns. The primary goal of this study was to determine the time sequence for gene expression in a bone subjected to mechanical loading during key periods of the bone-formation process, including expression of matrix-related genes, the appearance of active osteoblasts, and bone desensitization. A standard model for bone loading was employed in which the right forelimb was loaded axially for 3 minutes per day, whereas the left forearm served as a nonloaded contralateral control. We evaluated loading-induced gene expression over a time course of 4 hours to 32 days after the first loading session. Six distinct time-dependent patterns of gene expression were identified over the time course and were categorized into three primary clusters: genes upregulated early in the time course, genes upregulated during matrix formation, and genes downregulated during matrix formation. Genes then were grouped based on function and/or signaling pathways. Many gene groups known to be important in loading-induced bone formation were identified within the clusters, including AP-1-related genes in the early-response cluster, matrix-related genes in the upregulated gene clusters, and Wnt/β-catenin signaling pathway inhibitors in the downregulated gene clusters. Several novel gene groups were identified as well, including chemokine-related genes, which were upregulated early but downregulated later in the time course; solute carrier genes, which were both upregulated and downregulated; and muscle-related genes, which were primarily downregulated.
Collapse
Affiliation(s)
- Sara M Mantila Roosa
- Department of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| | | | | |
Collapse
|
7
|
Jekir MG, Donahue HJ. Gap junctions and osteoblast-like cell gene expression in response to fluid flow. J Biomech Eng 2009; 131:011005. [PMID: 19045921 DOI: 10.1115/1.3005201] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bone formation occurs in vivo in response to mechanical stimuli, but the signaling pathways involved remain unclear. The ability of bone cells to communicate with each other in the presence of an applied load may influence the overall osteogenic response. The goal of this research was to determine whether inhibiting cell-to-cell gap junctional communication between bone-forming cells would affect the ensemble cell response to an applied mechanical stimulus in vitro. In this study, we investigated the effects of controlled oscillatory fluid flow (OFF) on osteoblastic cells in the presence and the absence of a gap-junction blocker. MC3T3-E1 Clone 14 cells in a monolayer were exposed to 2 h of OFF at a rate sufficient to create a shear stress of 20 dyne/cm(2) at the cell surface, and changes in steady-state mRNA levels for a number of key proteins known to be involved in osteogenesis were measured. Of the five proteins investigated, mRNA levels for osteopontin (OPN) and osteocalcin were found to be significantly increased 24 h postflow. These experiments were repeated in the presence of 18 beta-glycyrrhetinic acid (BGA), a known gap-junction blocker, to determine whether gap-junction intercellular communication is necessary for this response. We found that the increase in OPN mRNA levels is not observed in the presence of BGA, suggesting that gap junctions are involved in the signaling process. Interestingly, enzyme linked immunosorbent assay data showed that levels of secreted OPN protein increased 48 h postflow and that this increase was unaffected by the presence of intact gap junctions.
Collapse
Affiliation(s)
- Michael G Jekir
- Division of Musculoskeletal Sciences, Department of Orthopaedics and Rehabilitation, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | |
Collapse
|
8
|
Güncü GN, Tözüm TF, Güncü MB, Yamalik N, Tümer C, Karabulut E, Kilinç K. Myeloperoxidase as a Measure of Polymorphonuclear Leukocyte Response in Inflammatory Status Around Immediately and Delayed Loaded Dental Implants: A Randomized Controlled Clinical Trial. Clin Implant Dent Relat Res 2008; 10:30-9. [DOI: 10.1111/j.1708-8208.2007.00058.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Globus RK. Extracellular Matrix and Integrin Interactions in the Skeletal Responses to Mechanical Loading and Unloading. Clin Rev Bone Miner Metab 2007. [DOI: 10.1007/s12018-008-9013-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Lin Y, Wang T, Wu L, Jing W, Chen X, Li Z, Liu L, Tang W, Zheng X, Tian W. Ectopic and in situ bone formation of adipose tissue-derived stromal cells in biphasic calcium phosphate nanocomposite. J Biomed Mater Res A 2007; 81:900-10. [PMID: 17236222 DOI: 10.1002/jbm.a.31149] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Adipose-derived stromal cells (ASCs) have the potential to differentiate into a variety of cell lineages both in vitro and in vivo. A novel biodegradable biphasic calcium phosphate nanocomposite (NanoBCP) comprising beta-tricalcium phosphate matrix and hydroxyl apatite nanofibers is favorable for bone tissue engineering. In this study, ASCs were harvested from Sprague-Dawley (SD) rats and induced to osteogenesis before seeded into porous NanoBCP scaffold. To determine ectopic in vivo osteogenic differentiation, these constructs were implanted in nude mice subcutaneously. Meanwhile, the ability of engineered constructs to stimulate in situ bone repair was assessed in rat critical-size cranial defects. The defects were filled with NanoBCP containing osteogenic ASCs in experimental group; with cell-free NanoBCP in negative controls; and with nothing in blank controls. The retrieved specimens were analyzed with morphological, histological, and molecular methods. Histological analysis of the retrieved specimens from nude mice in experimental group showed obvious ectopic bone formation. There were positive expression of osteopontin (OPN) and osteocalcin (OCN) at RNA and protein level. As for the cranial defects, there was complete repair in experimental group, but only partial repair in negative controls. The radiographs, H&E staining, and Masson's trichrome method showed better bone regeneration at experimental sites. Combining osteogenic ASCs with NanoBCP can lead to formation of ectopic new bone. Furthermore, the approach can also stimulate bone regeneration and repair for the large size bone defects.
Collapse
Affiliation(s)
- Yunfeng Lin
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Sawakami K, Robling AG, Ai M, Pitner ND, Liu D, Warden SJ, Li J, Maye P, Rowe DW, Duncan RL, Warman ML, Turner CH. The Wnt co-receptor LRP5 is essential for skeletal mechanotransduction but not for the anabolic bone response to parathyroid hormone treatment. J Biol Chem 2006; 281:23698-711. [PMID: 16790443 DOI: 10.1074/jbc.m601000200] [Citation(s) in RCA: 333] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The cell surface receptor, low-density lipoprotein receptor-related protein 5 (LRP5) is a key regulator of bone mass. Loss-of-function mutations in LRP5 cause the human skeletal disease osteoporosis-pseudoglioma syndrome, an autosomal recessive disorder characterized by severely reduced bone mass and strength. We investigated the role of LRP5 on bone strength using mice engineered with a loss-of-function mutation in the gene. We then tested whether the osteogenic response to mechanical loading was affected by the loss of Lrp5 signaling. Lrp5-null (Lrp5-/-) mice exhibited significantly lower bone mineral density and decreased strength. The osteogenic response to mechanical loading of the ulna was reduced by 88 to 99% in Lrp5-/- mice, yet osteoblast recruitment and/or activation at mechanically strained surfaces was normal. Subsequent experiments demonstrated an inability of Lrp5-/- osteoblasts to synthesize the bone matrix protein osteopontin after a mechanical stimulus. We then tested whether Lrp5-/- mice increased bone formation in response to intermittent parathyroid hormone (PTH), a known anabolic treatment. A 4-week course of intermittent PTH (40 microg/kg/day; 5 days/week) enhanced skeletal mass equally in Lrp5-/- and Lrp5+/+ mice, suggesting that the anabolic effects of PTH do not require Lrp5 signaling. We conclude that Lrp5 is critical for mechanotransduction in osteoblasts. Lrp5 is a mediator of mature osteoblast function following loading. Our data suggest an important component of the skeletal fragility phenotype in individuals affected with osteoporosis-pseudoglioma is inadequate processing of signals derived from mechanical stimulation and that PTH might be an effective treatment for improving bone mass in these patients.
Collapse
Affiliation(s)
- Kimihiko Sawakami
- Department of Orthopedic Surgery, Biomechanics and Biomaterials Research Center, Indiana University School of Medicine, Indianapolis 46202, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kaku M, Uoshima K, Yamashita Y, Miura H. Investigation of periodontal ligament reaction upon excessive occlusal load - osteopontin induction among periodontal ligament cells. J Periodontal Res 2005; 40:59-66. [PMID: 15613081 DOI: 10.1111/j.1600-0765.2004.00773.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The purpose of the present study was to investigate the reaction of the periodontal ligament to excessive occlusal loading by observing the histological changes and osteopontin induction. The possibility of ligand for receptor activator of nuclear factor kappaB (RANKL) participation in osteopontin induction was also discussed. BACKGROUND The precise mechanism of periodontal ligament breakdown by excessive occlusal loading remains unclear. We established an experimental model for excessive occlusal loading in vivo. Osteopontin is known to be produced upon mechanical loading and is considered to induce the migration of osteoclasts to the resorption site. RANKL is one of the essential factors for osteoclast maturation and induces the constitutive induction of intracellular osteopontin in vitro. METHODS The occlusal surface of the upper left first molars of rats was raised by steel wire bonding in order to induce occlusal trauma. The destruction of the periodontal ligament was observed and the production of osteopontin and RANKL by periodontal ligament cells was detected via immunohistochemistry. RESULTS Our model produced wide-ranging destruction of the periodontal ligament. From day 3 to day 7, prominent compression of the periodontal ligament and osteoclast migration were observed at the apical interradicular septum. Osteopontin was detected in some osteoclasts, surrounding fibroblasts, and osteoblasts adjacent to the compression area. RANKL was observed from day 1 to day 7 around the osteoblasts and osteoclasts. CONCLUSIONS Our model was useful for the detailed investigation of periodontal ligament breakdown during excessive occlusal loading. Although intracellular osteopontin was produced in osteoclasts with intermittent occlusal loading, the role of this protein in the cells was not clear. No correlation between RANKL distribution and osteopontin production in osteoclasts could be found.
Collapse
Affiliation(s)
- Masaru Kaku
- Fixed Prosthodontics, Department of Restorative Sciences, Graduate School of Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
13
|
Gross TS, King KA, Rabaia NA, Pathare P, Srinivasan S. Upregulation of osteopontin by osteocytes deprived of mechanical loading or oxygen. J Bone Miner Res 2005; 20:250-6. [PMID: 15647819 PMCID: PMC1435734 DOI: 10.1359/jbmr.041004] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2004] [Revised: 08/30/2004] [Accepted: 08/30/2004] [Indexed: 11/18/2022]
Abstract
UNLABELLED The pathway(s) by which disuse is transduced into locally mediated osteoclastic resorption remain unknown. We found that both acute disuse (in vivo) and direct hypoxia (in vitro) induced rapid upregulation of OPN expression by osteocytes. Within the context of OPN's role in osteoclast migration and attachment, hypoxia-induced osteocyte OPN expression may serve to mediate disuse-induced bone resorption. INTRODUCTION We have recently reported that disuse induces osteocyte hypoxia. Because hypoxia upregulates osteopontin (OPN) in nonconnective tissue cells, we hypothesized that both disuse and hypoxia would rapidly elevate expression of OPN by osteocytes. MATERIALS AND METHODS The response of osteocytes to 24 h of disuse was explored by isolating the left ulna diaphysis of adult male turkeys from loading (n = 5). Cortical osteocytes staining positive for OPN were determined using immunohistochemistry and confocal microscopy. In vitro experiments were performed to determine if OPN expression was altered in MLO-Y4 osteocytes by direct hypoxia (3, 6, 24, and 48 h) or hypoxia (3 and 24 h) followed by 24 h of reoxygenation. A final in vitro experiment explored the potential of protein kinase C (PKC) to regulate hypoxia-induced osteocyte OPN mRNA alterations. RESULTS We found that 24 h of disuse significantly elevated osteocyte OPN expression in vivo (145% versus intact bones; p = 0.02). We confirmed this finding in vitro, by observing rapid and significant upregulation of OPN protein expression after 24 and 48 h of hypoxia. Whereas 24 h of reoxygenation after 3 h of hypoxia restored normal osteocyte OPN expression levels, 24 h of reoxygenation after 24 h of hypoxia did not mitigate elevated osteocyte OPN expression. Finally, preliminary inhibitor studies suggested that PKC serves as a potent upstream regulator of hypoxia-induced osteocyte OPN expression. CONCLUSIONS Given the documented roles of OPN as a mediator of environmental stress (e.g., hypoxia), an osteoclast chemotaxant, and a modulator of osteoclastic attachment to bone, we speculate that hypoxia-induced osteocyte OPN expression may serve to mediate disuse-induced osteoclastic resorption. Furthermore, it seems that a brief window of time exists in which reoxygenation (as might be achieved by reloading bone) can serve to inhibit this pathway.
Collapse
Affiliation(s)
- Ted S Gross
- Orthopaedic Science Laboratories, Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA 98104-2499, USA.
| | | | | | | | | |
Collapse
|
14
|
Schnapper A, Meyer W. Osteopontin Distribution in the Canine Skeleton during Growth and Structural Maturation. Cells Tissues Organs 2005; 178:158-67. [PMID: 15655333 DOI: 10.1159/000082246] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2004] [Indexed: 01/08/2023] Open
Abstract
The distribution of osteopontin (OPN) was studied immunohistochemically in cells and extracellular matrix in the humerus, scapula, and lumbar vertebrae of growing (age: 6 weeks, 12 weeks, 4.5 months) and adult dogs. OPN was expressed in hypertrophic chondrocytes of epiphyseal cartilage and in chondrocytes of the deep zone of mature articular cartilage, where extracellular matrix was also stained. OPN expression was strongest in 4.5-month-old puppies in cells of the osteoblastic lineage. It also varied with microlocation and was pronounced in areas prone to resorption due to modelling and remodelling activities. Osteoclasts were always strongly labelled with OPN. OPN deposition in extracellular bone matrix was detected particularly as a delineation of cartilage cores within secondary trabeculae and as a lining of the trabecular surfaces in resorption microlocations. The OPN distribution pattern is discussed here for each cell population with regard to its functional implications.
Collapse
Affiliation(s)
- Anke Schnapper
- Anatomisches Institut, Stiftung Tierärztliche Hochschule Hannover, Bischofsholer Damm 15, DE-30173 Hannover, Germany.
| | | |
Collapse
|
15
|
Mauney JR, Sjostorm S, Blumberg J, Horan R, O'Leary JP, Vunjak-Novakovic G, Volloch V, Kaplan DL. Mechanical stimulation promotes osteogenic differentiation of human bone marrow stromal cells on 3-D partially demineralized bone scaffolds in vitro. Calcif Tissue Int 2004; 74:458-68. [PMID: 14961210 DOI: 10.1007/s00223-003-0104-7] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2003] [Accepted: 10/03/2003] [Indexed: 12/13/2022]
Abstract
Bone is a dynamic tissue that is able to sense and adapt to mechanical stimuli by modulating its mass, geometry, and structure. Bone marrow stromal cells (BMSCs) are known to play an integral part in bone formation by providing an osteoprogenitor cell source capable of differentiating into mature osteoblasts in response to mechanical stresses. Characteristics of the in vivo bone environment including the three dimensional (3-D) lacunocanalicular structure and extracellular matrix composition have previously been shown to play major roles in influencing mechanotransduction processes within bone cells. To more accurately model this phenomenon in vitro, we cultured human BMSCs on 3-D, partially demineralized bone scaffolds in the presence of four-point bending loads within a novel bioreactor. The effect of mechanical loading and dexamethasone concentration on BMSC osteogenic differentiation and mineralized matrix production was studied for 8 and 16 days of culture. Mechanical stimulation after 16 days with 10 nM dexamethasone promoted osteogenic differentiation of BMSCs by significantly elevating alkaline phosphatase activity as well as alkaline phosphatase and osteopontin transcript levels over static controls. Mineralized matrix production also increased under these culture conditions. Dexamethasone concentration had a dramatic effect on the ability of mechanical stimulation to modulate these phenotypic and genotypic responses. These results provide increased insight into the role of mechanical stimulation on osteogenic differentiation of human BMSCs in vitro and may lead to improved strategies in bone tissue engineering.
Collapse
Affiliation(s)
- J R Mauney
- Tufts University, Department of Biomedical Engineering, Biotechnology Center, 4 Colby Street, Medford, Massachusetts 02155, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
D'Alonzo RC, Kowalski AJ, Denhardt DT, Nickols GA, Partridge NC. Regulation of collagenase-3 and osteocalcin gene expression by collagen and osteopontin in differentiating MC3T3-E1 cells. J Biol Chem 2002; 277:24788-98. [PMID: 11964409 DOI: 10.1074/jbc.m202604200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Both collagenase-3 and osteocalcin mRNAs are expressed maximally during the later stages of osteoblast differentiation. Here, we demonstrate that collagenase-3 mRNA expression in differentiating MC3T3-E1 cells is dependent upon the presence of ascorbic acid, is inhibited in the presence of the collagen synthesis inhibitor, 3,4-dehydroproline, and is stimulated by growth on collagen in the absence of ascorbic acid. Transient transfection studies show that collagenase-3 promoter activity increases during cell differentiation and requires the presence of ascorbic acid. Additionally, we show that, in differentiating MC3T3-E1 cells, collagenase-3 gene expression increases in the presence of an anti-osteopontin monoclonal antibody that binds near the RGD motif of this protein, whereas osteocalcin expression is inhibited. Furthermore, an RGD peptidomimetic compound, designed to block interaction of ligands to the alpha(v) integrin subunit, increases osteocalcin expression and inhibits collagenase-3 expression, suggesting that the RGD peptidomimetic initiates certain alpha(v) integrin signaling in osteoblastic cells. Overall, these studies demonstrate that stimulation of collagenase-3 expression during osteoblast differentiation requires synthesis of a collagenous matrix and that osteopontin and alpha(v) integrins exert divergent regulation of collagenase-3 and osteocalcin expression during osteoblast differentiation.
Collapse
Affiliation(s)
- Richard C D'Alonzo
- Department of Physiology and Biophysics, Robert Wood Johnson Medical School and the Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | | | | | | |
Collapse
|
17
|
Ishijima M, Tsuji K, Rittling SR, Yamashita T, Kurosawa H, Denhardt DT, Nifuji A, Noda M. Resistance to unloading-induced three-dimensional bone loss in osteopontin-deficient mice. J Bone Miner Res 2002; 17:661-7. [PMID: 11918223 DOI: 10.1359/jbmr.2002.17.4.661] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recent development in three-dimensional (3D) imaging of cancellous bone has made possible true 3D quantification of trabecular architecture. This provides a significant improvement in the measures available to study and understand the mechanical functions of cancellous bone. We recently reported that the presence of osteopontin (OPN) was required for the effects of mechanical stress on bone as OPN-null (OPN-/-) mice showed neither enhancement of bone resorption nor suppression of bone formation when they were subjected to unloading by tail suspension. However, in this previous study, morphological analyses were limited to two-dimensional (2D) evaluation. Although bone structure is 3D and thus stress effect should be evaluated based on 3D parameters, no such 3D morphological features underlying the phenomenon have been known. To elucidate the role of OPN in mediating mechanical stress effect based on true quantitative examination of bone, we evaluated 3D trabecular structures of hindlimb bones of OPN-/- mice after tail suspension. Tail suspension significantly reduced 3D parameters of bone volume (BV/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th), and anisotropy and increased 3D parameters on trabecular separation (Tb.Sp) in wild-type mice. In contrast, these 3D parameters were not altered after tail suspension in OPN-/- mice. These data provided evidence that OPN is required for unloading-induced 3D bone loss.
Collapse
Affiliation(s)
- Muneaki Ishijima
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Perrien DS, Brown EC, Aronson J, Skinner RA, Montague DC, Badger TM, Lumpkin CK. Immunohistochemical study of osteopontin expression during distraction osteogenesis in the rat. J Histochem Cytochem 2002; 50:567-74. [PMID: 11897810 DOI: 10.1177/002215540205000414] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Distraction osteogenesis (DO) is a limb-lengthening procedure that combines mechanical tension stress with fracture healing to provide a unique opportunity for detailed histological examination of bone formation. Osteopontin (OPN) is a multifunctional matricellular protein believed to play a key role in wound healing and cellular response to mechanical stress. We studied the expression of OPN during DO using standard immunohistochemical (IHC) staining techniques. In addition, we compared the expression of OPN to proliferation (PCNA-positive cells) in the DO gap. After 14 days of distraction in the rat, these stains revealed variations in OPN expression and its relationship to proliferation according to the cell type, tissue type, and mode of ossification examined. Fibroblast-like cells within the central fibrous area exhibited intermittent low levels of OPN, but no relationship was observed between OPN and proliferation. In areas of transchondral ossification, OPN expression was very high in the morphologically intermediate oval cells. During intramembranous ossification, osteoblasts appeared to exhibit a bimodal expression of OPN. Specifically, proliferating pre-osteoblasts expressed osteopontin, but OPN was not detected in the post-proliferative pre-osteoblasts/osteoblasts that border the new bone columns. Finally, intracellular OPN was detected in virtually all of the mature osteoblasts/osteocytes within the new bone columns, while detection of OPN in the matrix of the developing bone columns may increase with the maturity of the new bone. These results imply that the expression of OPN during DO may be more similar to that seen during embryogenesis than would be expected from other studies. Furthermore, the biphasic expression of OPN during intramembranous ossification may exemplify the protein's multi-functional role. Early expression may facilitate pre-osteoblastic proliferation and migration, while the latter downregulation may be necessary for hydroxyapatite crystal formation.
Collapse
Affiliation(s)
- Daniel S Perrien
- Department of Pediatrics and Orthopaedics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, 1120 Marshall Street, Little Rock, AR 72202,USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Denhardt DT, Burger EH, Kazanecki C, Krishna S, Semeins CM, Klein-Nulend J. Osteopontin-deficient bone cells are defective in their ability to produce NO in response to pulsatile fluid flow. Biochem Biophys Res Commun 2001; 288:448-53. [PMID: 11606063 DOI: 10.1006/bbrc.2001.5780] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Osteopontin (OPN) is a noncollagenous component of bone matrix. It mediates cell attachment and activates signal transduction pathways. In this work, bone cells, cultured from fragments of long bones derived from wild-type and OPN-/- ("knock-out") mice, were exposed to pulsatile fluid flow (PFF) over a 60-min period. The medium was assayed periodically for nitric oxide (NO) and prostaglandin E(2) (PGE(2)) release. OPN+/+ cells exhibited a peak of NO production 5-10 min after the onset of PFF, decreasing to a stable plateau at 15 min; much less NO was produced by the OPN-/- cells. PFF resulted in reduced PGE(2) release by both cell types, although the reduction was less for the OPN-/- cells in the 15-30 min window. Both cell types exhibited a similar enhancement of cyclooxygenase2 mRNA levels 60 min after initiation of PFF. These results suggest that bone cells require OPN to respond fully to PFF as assessed by increased NO and reduced PGE(2) synthesis.
Collapse
Affiliation(s)
- D T Denhardt
- Department of Cell Biology and Neuroscience, Nelson Biological Laboratories, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Yang W, Hyllner SJ, Christakos S. Interrelationship between signal transduction pathways and 1,25(OH)2D3 in UMR106 osteoblastic cells. Am J Physiol Endocrinol Metab 2001; 281:E162-70. [PMID: 11404234 DOI: 10.1152/ajpendo.2001.281.1.e162] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, the interrelationship between signal transduction pathways and 1,25-dihydroxyvitamin D(3) [1,25(OH)2D3] action was examined in UMR106 osteoblastic cells. Treatment of these cells with 8-bromo-cAMP (1 mM) resulted in an upregulation of the vitamin D receptor (VDR) and an augmentation in the induction by 1,25(OH)2D3 of 25(OH)D3 24-hydroxylase [24(OH)ase] and osteopontin (OPN) mRNAs as well as gene transcription. Transfection with constructs containing the vitamin D response element devoid of other promoter regulatory elements did not alter the cAMP-mediated potentiation, suggesting that cAMP-enhanced transcription is due, at least in part, to upregulation of VDR. Treatment with phorbol ester [12-O-tetradecanoyl-phorbol-13-acetate (TPA) 100 nM], an activator of protein kinase C, significantly enhanced 1,25(OH)2D3-induced OPN mRNA and transcription but had no effect on VDR or on 24(OH)ase mRNA or transcription. Studies using OPN promoter constructs indicate that TPA-enhanced OPN transcription is mediated by an effect on the OPN promoter separate from an effect on VDR. Thus interactions with signal transduction pathways can enhance 1,25(OH)2D3 induction of 24(OH)ase and OPN gene expression, and, through different mechanisms, changes in cellular phosphorylation may play a significant role in determining the effectiveness of 1,25(OH)2D3 on transcriptional control in cells expressing skeletal phenotypic properties.
Collapse
Affiliation(s)
- W Yang
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey 07103, USA
| | | | | |
Collapse
|
21
|
Sodek J, Ganss B, McKee MD. Osteopontin. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2001; 11:279-303. [PMID: 11021631 DOI: 10.1177/10454411000110030101] [Citation(s) in RCA: 829] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Osteopontin (OPN) is a highly phosphorylated sialoprotein that is a prominent component of the mineralized extracellular matrices of bones and teeth. OPN is characterized by the presence of a polyaspartic acid sequence and sites of Ser/Thr phosphorylation that mediate hydroxyapatite binding, and a highly conserved RGD motif that mediates cell attachment/signaling. Expression of OPN in a variety of tissues indicates a multiplicity of functions that involve one or more of these conserved motifs. While the lack of a clear phenotype in OPN "knockout" mice has not established a definitive role for OPN in any tissue, recent studies have provided some novel and intriguing insights into the versatility of this enigmatic protein in diverse biological events, including developmental processes, wound healing, immunological responses, tumorigenesis, bone resorption, and calcification. The ability of OPN to stimulate cell activity through multiple receptors linked to several interactive signaling pathways can account for much of the functional diversity. In this review, we discuss the structural features of OPN that relate to its function in the formation, remodeling, and maintenance of bones and teeth.
Collapse
Affiliation(s)
- J Sodek
- MRC Group in Periodontal Physiology, Faculty of Dentistry, University of Toronto, ON, Canada.
| | | | | |
Collapse
|
22
|
Ishijima M, Rittling SR, Yamashita T, Tsuji K, Kurosawa H, Nifuji A, Denhardt DT, Noda M. Enhancement of osteoclastic bone resorption and suppression of osteoblastic bone formation in response to reduced mechanical stress do not occur in the absence of osteopontin. J Exp Med 2001; 193:399-404. [PMID: 11157060 PMCID: PMC2195919 DOI: 10.1084/jem.193.3.399] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Reduced mechanical stress to bone in bedridden patients and astronauts leads to bone loss and increase in fracture risk which is one of the major medical and health issues in modern aging society and space medicine. However, no molecule involved in the mechanisms underlying this phenomenon has been identified to date. Osteopontin (OPN) is one of the major noncollagenous proteins in bone matrix, but its function in mediating physical-force effects on bone in vivo has not been known. To investigate the possible requirement for OPN in the transduction of mechanical signaling in bone metabolism in vivo, we examined the effect of unloading on the bones of OPN(-/-) mice using a tail suspension model. In contrast to the tail suspension-induced bone loss in wild-type mice, OPN(-/-) mice did not lose bone. Elevation of urinary deoxypyridinoline levels due to unloading was observed in wild-type but not in OPN(-/-) mice. Analysis of the mechanisms of OPN deficiency-dependent reduction in bone on the cellular basis resulted in two unexpected findings. First, osteoclasts, which were increased by unloading in wild-type mice, were not increased by tail suspension in OPN(-/-) mice. Second, measures of osteoblastic bone formation, which were decreased in wild-type mice by unloading, were not altered in OPN(-/-) mice. These observations indicate that the presence of OPN is a prerequisite for the activation of osteoclastic bone resorption and for the reduction in osteoblastic bone formation in unloaded mice. Thus, OPN is a molecule required for the bone loss induced by mechanical stress that regulates the functions of osteoblasts and osteoclasts.
Collapse
Affiliation(s)
- Muneaki Ishijima
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | | | - Teruhito Yamashita
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | - Kunikazu Tsuji
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | | | - Akira Nifuji
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | | | - Masaki Noda
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| |
Collapse
|
23
|
Abstract
A goal of current implantology research is to design devices that induce controlled, guided, and rapid healing. In addition to acceleration of normal wound healing phenomena, endosseous implants should result in formation of a characteristic interfacial layer and bone matrix with adequate biomechanical properties. To achieve these goals, however, a better understanding of events at the interface and of the effects biomaterials have on bone and bone cells is needed. Such knowledge is essential for developing strategies to optimally control osseointegration. This paper reviews current knowledge of the bone-biomaterial interface and methods being investigated for controlling it. Morphological studies have revealed the heterogeneity of the bone-implant interface. One feature often reported, regardless of implant material, is an afibrillar interfacial zone, comparable to cement lines and laminae limitantes at natural bone interfaces. These electron-dense interfacial layers are rich in noncollagenous proteins, such as osteopontin and bone sialoprotein. Several approaches, involving alteration of surface physicochemical, morphological, and/or biochemical properties, are being investigated in an effort to obtain a desirable bone-implant interface. Of particular interest are biochemical methods of surface modification, which immobilize molecules on biomaterials for the purpose of inducing specific cell and tissue responses or, in other words, to control the tissue-implant interface with biomolecules delivered directly to the interface. Although still in its infancy, early studies indicate the value of this methodology for controlling cell and matrix events at the bone-implant interface.
Collapse
Affiliation(s)
- D A Puleo
- Center for Biomedical Engineering, University of Kentucky, Lexington 40506-0070, USA.
| | | |
Collapse
|
24
|
Affiliation(s)
- Elisabeth H. Burger
- ACTA‐Vrije UniversiteitDepartment of Oral Cell BiologyAmsterdamThe Netherlands
| | | |
Collapse
|
25
|
Denhardt DT, Noda M. Osteopontin expression and function: Role in bone remodeling. J Cell Biochem 1998; 72 Suppl 30-31:92-102. [DOI: 10.1002/(sici)1097-4644(1998)72:30/31+<92::aid-jcb13>3.0.co;2-a] [Citation(s) in RCA: 290] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/1998] [Accepted: 09/22/1998] [Indexed: 01/13/2023]
|