1
|
Tuusa J, Kokkonen N, Tasanen K. BP180/Collagen XVII: A Molecular View. Int J Mol Sci 2021; 22:12233. [PMID: 34830116 PMCID: PMC8623354 DOI: 10.3390/ijms222212233] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
BP180 is a type II collagenous transmembrane protein and is best known as the major autoantigen in the blistering skin disease bullous pemphigoid (BP). The BP180 trimer is a central component in type I hemidesmosomes (HD), which cause the adhesion between epidermal keratinocytes and the basal lamina, but BP180 is also expressed in several non-HD locations, where its functions are poorly characterized. The immunological roles of intact and proteolytically processed BP180, relevant in BP, have been subject to intensive research, but novel functions in cell proliferation, differentiation, and aging have also recently been described. To better understand the multiple physiological functions of BP180, the focus should return to the protein itself. Here, we comprehensively review the properties of the BP180 molecule, present new data on the biochemical features of its intracellular domain, and discuss their significance with regard to BP180 folding and protein-protein interactions.
Collapse
Affiliation(s)
| | | | - Kaisa Tasanen
- PEDEGO Research Unit, Department of Dermatology, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 8000, FI-90014 Oulu, Finland; (J.T.); (N.K.)
| |
Collapse
|
2
|
Natsuga K, Watanabe M, Nishie W, Shimizu H. Life before and beyond blistering: The role of collagen XVII in epidermal physiology. Exp Dermatol 2019; 28:1135-1141. [PMID: 29604146 DOI: 10.1111/exd.13550] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2018] [Indexed: 12/15/2022]
Abstract
Type XVII collagen (COL17) is a transmembranous protein that is mainly expressed in the epidermal basal keratinocytes. Epidermal-dermal attachment requires COL17 expression at the hemidesmosomes of the epidermal basement membrane zone because congenital COL17 deficiency leads to junctional epidermolysis bullosa and acquired autoimmunity to COL17 induces bullous pemphigoid. Recently, in addition to facilitating epidermal-dermal attachment, COL17 has been reported to serve as a niche for hair follicle stem cells, to regulate proliferation in the interfollicular epidermis and to be present along the non-hemidesmosomal plasma membrane of epidermal basal keratinocytes. This review focuses on the physiological properties of COL17 in the epidermis, its role in maintaining stem cells and its association with signalling pathways. We propose possible solutions to unanswered questions in this field.
Collapse
Affiliation(s)
- Ken Natsuga
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Mika Watanabe
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Wataru Nishie
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hiroshi Shimizu
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
3
|
Yuan L, Arikkath J. Functional roles of p120ctn family of proteins in central neurons. Semin Cell Dev Biol 2017; 69:70-82. [PMID: 28603076 DOI: 10.1016/j.semcdb.2017.05.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/16/2017] [Accepted: 05/30/2017] [Indexed: 02/06/2023]
Abstract
The cadherin-catenin complex in central neurons is associated with a variety of cytosolic partners, collectively called catenins. The p120ctn members are a family of catenins that are distinct from the more ubiquitously expressed α- and β-catenins. It is becoming increasingly clear that the functional roles of the p120ctn family of catenins in central neurons extend well beyond their functional roles in non-neuronal cells in partnering with cadherin to regulate adhesion. In this review, we will provide an overview of the p120ctn family in neurons and their varied functional roles in central neurons. Finally, we will examine the emerging roles of this family of proteins in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Li Yuan
- Department of Pharmacology and Experimental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE 68198, United States; Developmental Neuroscience, Munroe-Meyer Institute, Durham Research Center II, Room 3031, University of Nebraska Medical Center, 985960 Nebraska Medical Center, Omaha, NE 68198-5960, United States.
| | - Jyothi Arikkath
- Developmental Neuroscience, Munroe-Meyer Institute, Durham Research Center II, Room 3031, University of Nebraska Medical Center, 985960 Nebraska Medical Center, Omaha, NE 68198-5960, United States.
| |
Collapse
|
4
|
Hong JY, Oh IH, McCrea PD. Phosphorylation and isoform use in p120-catenin during development and tumorigenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:102-14. [PMID: 26477567 DOI: 10.1016/j.bbamcr.2015.10.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 12/12/2022]
Abstract
P120-catenin is essential to vertebrate development, modulating cadherin and small-GTPase functions, and growing evidence points also to roles in the nucleus. A complexity in addressing p120-catenin's functions is its many isoforms, including optional splicing events, alternative points of translational initiation, and secondary modifications. In this review, we focus upon how choices in the initiation of protein translation, or the earlier splicing of the RNA transcript, relates to primary sequences that harbor established or putative regulatory phosphorylation sites. While certain p120 phosphorylation events arise via known kinases/phosphatases and have defined outcomes, in most cases the functional consequences are still to be established. In this review, we provide examples of p120-isoforms as they relate to phosphorylation events, and thereby to isoform dependent protein-protein associations and downstream functions. We also provide a view of upstream pathways that determine p120's phosphorylation state, and that have an impact upon development and disease. Because other members of the p120 subfamily undergo similar processing and phosphorylation, as well as related catenins of the plakophilin subfamily, what is learned regarding p120 will by extension have wide relevance in vertebrates.
Collapse
Affiliation(s)
- Ji Yeon Hong
- Division of Cardiology, Department of Medicine, Severance Biomedical Science Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Republic of Korea.
| | - Il-Hoan Oh
- The Catholic University of Korea, Catholic High Performance Cell Therapy Center, 505 Banpo-dong, Seocho-Ku, Seoul 137-701, Republic of Korea
| | - Pierre D McCrea
- Department of Genetics, University of Texas MD Anderson Cancer Center, University of Texas Graduate School of Biomedical Science, Houston, TX 77030, USA.
| |
Collapse
|
5
|
Kourtidis A, Yanagisawa M, Huveldt D, Copland JA, Anastasiadis PZ. Pro-Tumorigenic Phosphorylation of p120 Catenin in Renal and Breast Cancer. PLoS One 2015; 10:e0129964. [PMID: 26067913 PMCID: PMC4466266 DOI: 10.1371/journal.pone.0129964] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 04/27/2015] [Indexed: 11/18/2022] Open
Abstract
Altered protein expression and phosphorylation are common events during malignant transformation. These perturbations have been widely explored in the context of E-cadherin cell-cell adhesion complexes, which are central in the maintenance of the normal epithelial phenotype. A major component of these complexes is p120 catenin (p120), which binds and stabilizes E-cadherin to promote its adhesive and tumor suppressing function. However, p120 is also an essential mediator of pro-tumorigenic signals driven by oncogenes, such as Src, and can be phosphorylated at multiple sites. Although alterations in p120 expression have been extensively studied by immunohistochemistry (IHC) in the context of tumor progression, little is known about the status and role of p120 phosphorylation in cancer. Here we show that tyrosine and threonine phosphorylation of p120 in two sites, Y228 and T916, is elevated in renal and breast tumor tissue samples. We also show that tyrosine phosphorylation of p120 at its N-terminus, including at the Y228 site is required for its pro-tumorigenic potential. In contrast, phosphorylation of p120 at T916 does not affect this p120 function. However, phosphorylation of p120 at T916 interferes with epitope recognition of the most commonly used p120 antibody, namely pp120. As a result, this antibody selectively underrepresents p120 levels in tumor tissues, where p120 is phosphorylated. Overall, our data support a role of p120 phosphorylation as a marker and mediator of tumor transformation. Importantly, they also argue that the level and localization of p120 in human cancer tissues immunostained with pp120 needs to be re-evaluated.
Collapse
Affiliation(s)
- Antonis Kourtidis
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States of America
| | - Masahiro Yanagisawa
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States of America
| | - Deborah Huveldt
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States of America
| | - John A. Copland
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States of America
| | - Panos Z. Anastasiadis
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States of America
- * E-mail:
| |
Collapse
|
6
|
Markham NO, Doll CA, Dohn MR, Miller RK, Yu H, Coffey RJ, McCrea PD, Gamse JT, Reynolds AB. DIPA-family coiled-coils bind conserved isoform-specific head domain of p120-catenin family: potential roles in hydrocephalus and heterotopia. Mol Biol Cell 2014; 25:2592-603. [PMID: 25009281 PMCID: PMC4148249 DOI: 10.1091/mbc.e13-08-0492] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Isoform-specific expression of p120 affects cell motility and migration during development and tumor progression. The DIPA coiled-coil protein is a novel binding partner to the conserved isoform 1–specific head domain of p120 family members. Zebrafish data suggest that DIPA is mechanistically linked to p120 isoform–specific function in development. p120-catenin (p120) modulates adherens junction (AJ) dynamics by controlling the stability of classical cadherins. Among all p120 isoforms, p120-3A and p120-1A are the most prevalent. Both stabilize cadherins, but p120-3A is preferred in epithelia, whereas p120-1A takes precedence in neurons, fibroblasts, and macrophages. During epithelial-to-mesenchymal transition, E- to N-cadherin switching coincides with p120-3A to -1A alternative splicing. These isoforms differ by a 101–amino acid “head domain” comprising the p120-1A N-terminus. Although its exact role is unknown, the head domain likely mediates developmental and cancer-associated events linked to p120-1A expression (e.g., motility, invasion, metastasis). Here we identified delta-interacting protein A (DIPA) as the first head domain–specific binding partner and candidate mediator of isoform 1A activity. DIPA colocalizes with AJs in a p120-1A- but not 3A-dependent manner. Moreover, all DIPA family members (Ccdc85a, Ccdc85b/DIPA, and Ccdc85c) interact reciprocally with p120 family members (p120, δ-catenin, p0071, and ARVCF), suggesting significant functional overlap. During zebrafish neural tube development, both knockdown and overexpression of DIPA phenocopy N-cadherin mutations, an effect bearing functional ties to a reported mouse hydrocephalus phenotype associated with Ccdc85c. These studies identify a novel, highly conserved interaction between two protein families that may participate either individually or collectively in N-cadherin–mediated development.
Collapse
Affiliation(s)
- Nicholas O Markham
- Vanderbilt-Ingram Cancer Center, Cancer Biology Department, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Caleb A Doll
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235
| | - Michael R Dohn
- Vanderbilt-Ingram Cancer Center, Cancer Biology Department, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Rachel K Miller
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Huapeng Yu
- Vanderbilt-Ingram Cancer Center, Cancer Biology Department, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Robert J Coffey
- Epithelial Biology Center, Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232
| | - Pierre D McCrea
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Joshua T Gamse
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235
| | - Albert B Reynolds
- Vanderbilt-Ingram Cancer Center, Cancer Biology Department, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
7
|
Zhang Y, Zhao Y, Jiang G, Zhang X, Zhao H, Wu J, Xu K, Wang E. Impact of p120-catenin isoforms 1A and 3A on epithelial mesenchymal transition of lung cancer cells expressing E-cadherin in different subcellular locations. PLoS One 2014; 9:e88064. [PMID: 24505377 PMCID: PMC3913724 DOI: 10.1371/journal.pone.0088064] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 01/06/2014] [Indexed: 11/30/2022] Open
Abstract
The epithelial mesenchymal transition (EMT) is an important process in tumor development. Despite previous investigations, it remains unclear how p120-catenin (p120ctn) isoforms 1A and 3A affect the EMT of tumor cells. Here we investigated expression of p120ctn, E-cadherin and vimentin in 78 human non-small cell lung cancer (NSCLC) samples by immunohistochemistry and found that p120ctn membrane expression positively correlated with E-cadherin expression (P<0.001) and negatively correlated with vimentin expression and lymph node metastasis (P<0.05). Meanwhile, p120ctn cytoplasmic expression negatively correlated with E-cadherin expression (P<0.001) and positively correlated with vimentin expression and lymph node metastasis (P<0.05). Cells expressing high (H460 and SPC) and low (H1299 and LK2) levels of p120ctn were screen to investigate its impact on EMT. E-cadherin was restricted to the cell membrane in H460 and H1299 cells, whereas it was expressed in the cytoplasm of SPC and LK2 cells. Ablation of endogenous p120ctn isoform 1A in cells expressing high levels of the protein resulted in decreased E-cadherin expression, increased N-cadherin, vimentin and snail expression and enhanced invasiveness in H460 cells. Meanwhile, completely opposite results were observed in SPC cells. Furthermore, transfection of in H1299 cells expressing low p120ctn levels with the p120ctn isoform 1A plasmid resulted in increased E-cadherin expression, decreased N-cadherin, vimentin and snail expression and weakened invasiveness, while LK2 cells showed completely opposite results. Both cell lines expressing low p120ctn levels and transfected with the p120ctn isoform 3A plasmid appeared to have increased E-cadherin expression, decreased N-cadherin, vimentin and snail expression and weakened invasiveness. In conclusion, in cells with membrane E-cadherin, both p120ctn isoforms 1A and 3A inhibited EMT and decreased cell invasiveness. In cells with cytoplasmic E-cadherin, p120ctn isoform 1A promoted EMT and increased cell invasiveness, while p120ctn isoform 3A inhibited the EMT and decreased cell invasiveness.
Collapse
Affiliation(s)
- Yijun Zhang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yue Zhao
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Guiyang Jiang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xiupeng Zhang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Huanyu Zhao
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Junhua Wu
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Ke Xu
- Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Enhua Wang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
- * E-mail:
| |
Collapse
|
8
|
p120 catenin: an essential regulator of cadherin stability, adhesion-induced signaling, and cancer progression. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 116:409-32. [PMID: 23481205 DOI: 10.1016/b978-0-12-394311-8.00018-2] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
p120 catenin is the best studied member of a subfamily of proteins that associate with the cadherin juxtamembrane domain to suppress cadherin endocytosis. p120 also recruits the minus ends of microtubules to the cadherin complex, leading to junction maturation. In addition, p120 regulates the activity of Rho family GTPases through multiple interactions with Rho GEFs, GAPs, Rho GTPases, and their effectors. Nuclear signaling is affected by the interaction of p120 with Kaiso, a transcription factor regulating Wnt-responsive genes as well as transcriptionally repressing methylated promoters. Multiple alternatively spliced p120 isoforms and complex phosphorylation events affect these p120 functions. In cancer, reduced p120 expression correlates with reduced E-cadherin function and with tumor progression. In contrast, in tumor cells that have lost E-cadherin expression, p120 promotes cell invasion and anchorage-independent growth. Furthermore, p120 is required for Src-induced oncogenic transformation and provides a potential target for future therapeutic interventions.
Collapse
|
9
|
Orlichenko L, Geyer R, Yanagisawa M, Khauv D, Radisky ES, Anastasiadis PZ, Radisky DC. The 19-amino acid insertion in the tumor-associated splice isoform Rac1b confers specific binding to p120 catenin. J Biol Chem 2010; 285:19153-61. [PMID: 20395297 DOI: 10.1074/jbc.m109.099382] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Rac1b splice isoform contains a 19-amino acid insertion not found in Rac1; this insertion leads to decreased GTPase activity and reduced affinity for GDP, resulting in the intracellular predominance of GTP-bound Rac1b. Here, using co-precipitation and proteomic methods, we find that Rac1b does not bind to many common regulators of Rho family GTPases but that it does display enhanced binding to SmgGDS, RACK1, and p120 catenin (p120(ctn)), proteins involved in cell-cell adhesion, motility, and transcriptional regulation. We use molecular modeling and structure analysis approaches to determine that the interaction between Rac1b and p120(ctn) is dependent upon protein regions that are predicted to be unstructured in the absence of molecular complex formation, suggesting that the interaction between these two proteins involves coupled folding and binding. We also find that directed cell movement initiated by Rac1b is dependent upon p120. These results define a distinct binding functionality of Rac1b and provide insight into how the distinct phenotypic program activated by this protein may be implemented through molecular recognition of effectors distinct from those of Rac1.
Collapse
Affiliation(s)
- Lidiya Orlichenko
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida 32224, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
van Hengel J, van Roy F. Diverse functions of p120ctn in tumors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1773:78-88. [PMID: 17030444 DOI: 10.1016/j.bbamcr.2006.08.033] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 08/22/2006] [Accepted: 08/23/2006] [Indexed: 01/11/2023]
Abstract
p120ctn is a member of the Armadillo protein family. It stabilizes the cadherin-catenin adhesion complex at the plasma membrane, but also has additional roles in the cytoplasm and nucleus. Extensive alternative mRNA splicing and multiple phosphorylation sites generate additional complexity. Evidence is emerging that complete loss, downregulation or mislocalization of p120ctn correlates with progression of different types of human tumors. It remains to be determined whether a causal relationship exists between specific isoform expression, subcellular localization or selective phosphorylation of p120ctn on the one hand and tumor prognosis on the other.
Collapse
Affiliation(s)
- Jolanda van Hengel
- Molecular Cell Biology Unit, Department for Molecular Biomedical Research, VIB-Ghent University, Technologiepark 927, B-9052 Gent (Zwijnaarde), Belgium
| | | |
Collapse
|
11
|
Claudepierre T, Manglapus MK, Marengi N, Radner S, Champliaud MF, Tasanen K, Bruckner-Tuderman L, Hunter DD, Brunken WJ. Collagen XVII and BPAG1 expression in the retina: evidence for an anchoring complex in the central nervous system. J Comp Neurol 2005; 487:190-203. [PMID: 15880472 PMCID: PMC2925832 DOI: 10.1002/cne.20549] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ectoderm gives rise not only to the skin but also to the entire CNS. This common embryonic lineage suggests that some molecular isoforms might serve analogous functions in both tissues. Indeed, not only are laminins important components of dermal adhesion mechanisms, but they also regulate some aspects of synaptic development in both the CNS and the PNS. In the skin, laminins are part of a hemidesmosome complex essential for basal keratinocyte adhesion that includes collagen XVII (BP180) and BPAG1 (dystonin/BP230). Here, we show that CNS neurons also express collagen XVII and BPAG1 and that these molecules are expressed in the adult and developing retina. In the retina, isoforms of collagen XVII and BPAG1 are colocalized with laminins at photoreceptor synapses and around photoreceptor outer segments; both molecules are expressed by rods, whereas cones express collagen XVII but not BPAG1. Moreover, biochemical data demonstrate that collagen XVII complexes with retinal laminins. We propose that collagen XVII and BPAG1 isoforms may help to anchor elements of the rod photoreceptor cytomatrix to the extracellular matrix.
Collapse
Affiliation(s)
- Thomas Claudepierre
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, and the Tufts Center for Vision Research, Boston, Massachusetts 02111
| | - Mary K. Manglapus
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, and the Tufts Center for Vision Research, Boston, Massachusetts 02111
| | - Nathan Marengi
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, and the Tufts Center for Vision Research, Boston, Massachusetts 02111
| | - Stephanie Radner
- Department of Neuroscience, Tufts University School of Medicine, and the Tufts Center for Vision Research, Boston, Massachusetts 02111
| | - Marie-France Champliaud
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| | - Kaisa Tasanen
- Department of Dermatology, University of Oulu, FIN-90230 Oulu, Finland
| | | | - Dale D. Hunter
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, and the Tufts Center for Vision Research, Boston, Massachusetts 02111
- Department of Neuroscience, Tufts University School of Medicine, and the Tufts Center for Vision Research, Boston, Massachusetts 02111
- Department of Ophthalmology, Tufts University School of Medicine; the Tufts Center for Vision Research, Boston, Massachusetts 02111
| | - William J. Brunken
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, and the Tufts Center for Vision Research, Boston, Massachusetts 02111
- Department of Neuroscience, Tufts University School of Medicine, and the Tufts Center for Vision Research, Boston, Massachusetts 02111
- Department of Ophthalmology, Tufts University School of Medicine; the Tufts Center for Vision Research, Boston, Massachusetts 02111
| |
Collapse
|
12
|
Ishizaki Y, Omori Y, Momiyama M, Nishikawa Y, Tokairin T, Manabe M, Enomoto K. Reduced expression and aberrant localization of p120catenin in human squamous cell carcinoma of the skin. J Dermatol Sci 2004; 34:99-108. [PMID: 15033192 DOI: 10.1016/j.jdermsci.2003.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2003] [Revised: 11/27/2003] [Accepted: 12/01/2003] [Indexed: 01/16/2023]
Abstract
BACKGROUND p120catenin (p120ctn), a member of the Armadillo protein family, is ubiquitously expressed and binds to classical cadherins together with other catenins to participate in the adherens junction. p120ctn has numerous isoforms generated through extensive splicing and alternative usage of translation initiation codons. Although the involvement of p120ctn in cell growth control has been postulated, little has so far been known about its expression patterns in the skin and epidermal tumors. OBJECTIVE To identify the isoforms expressed in benign and malignant keratinocytes and to analyze the expression patterns of p120ctn in epidermal tumor specimens. METHODS HaCaT, DJM-1, BSCC-93, HSC-1, HSC-5 and A431 cells along with normal skin tissue were subjected to RT-PCR to identify the expressed isoforms. For immunofluorescence study, surgical specimens including 29 squamous cell carcinomas (SSCs), 4 basal cell carcinomas (BCCs) and 4 seborrheic keratoses as well as 3 normal skin samples were stained with specific antibodies to detect p120ctn and E-cadherin. RESULTS RT-PCR revealed that the isoform 3A was predominantly expressed with faint expression of the isoform 4 and that there was no difference in expressed isoforms between the examined cell lines. Immunofluorescent staining indicated that the expression of p120ctn was significantly reduced in all of the examined squamous cell carcinomas and that p120ctn was frequently localized in cytoplasm. In benign tumors and normal samples, p120ctn was properly expressed in cell-cell boundaries. Furthermore, there were several SCCs where E-cadherin continued to be expressed with no expression of p120ctn. CONCLUSION Reduced expression and aberrant localization of p120ctn are among the most common events during the development and/or progression of SCCs.
Collapse
Affiliation(s)
- Yasuko Ishizaki
- Department of Pathology, Akita University School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Mruk DD, Cheng CY. Sertoli-Sertoli and Sertoli-germ cell interactions and their significance in germ cell movement in the seminiferous epithelium during spermatogenesis. Endocr Rev 2004; 25:747-806. [PMID: 15466940 DOI: 10.1210/er.2003-0022] [Citation(s) in RCA: 614] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Spermatogenesis is the process by which a single spermatogonium develops into 256 spermatozoa, one of which will fertilize the ovum. Since the 1950s when the stages of the epithelial cycle were first described, reproductive biologists have been in pursuit of one question: How can a spermatogonium traverse the epithelium, while at the same time differentiating into elongate spermatids that remain attached to the Sertoli cell throughout their development? Although it was generally agreed upon that junction restructuring was involved, at that time the types of junctions present in the testis were not even discerned. Today, it is known that tight, anchoring, and gap junctions are found in the testis. The testis also has two unique anchoring junction types, the ectoplasmic specialization and tubulobulbar complex. However, attention has recently shifted on identifying the regulatory molecules that "open" and "close" junctions, because this information will be useful in elucidating the mechanism of germ cell movement. For instance, cytokines have been shown to induce Sertoli cell tight junction disassembly by shutting down the production of tight junction proteins. Other factors such as proteases, protease inhibitors, GTPases, kinases, and phosphatases also come into play. In this review, we focus on this cellular phenomenon, recapping recent developments in the field.
Collapse
Affiliation(s)
- Dolores D Mruk
- Population Council, Center for Biomedical Research, New York, New York 10021, USA.
| | | |
Collapse
|
14
|
Ciesiolka M, Delvaeye M, Van Imschoot G, Verschuere V, McCrea P, van Roy F, Vleminckx K. p120 catenin is required for morphogenetic movements involved in the formation of the eyes and the craniofacial skeleton in Xenopus. J Cell Sci 2004; 117:4325-39. [PMID: 15292404 DOI: 10.1242/jcs.01298] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During Xenopus development, p120 transcripts are enriched in highly morphogenetic tissues. We addressed the developmental function of p120 by knockdown experiments and by expressing E-cadherin mutants unable to bind p120. This resulted in defective eye formation and provoked malformations in the craniofacial cartilage structures, derivatives of the cranial neural crest cells. Closer inspection showed that p120 depletion impaired evagination of the optic vesicles and migration of cranial neural crest cells from the neural tube into the branchial arches. These morphogenetic processes were also affected by p120-uncoupled cadherins or E-cadherin containing a deletion of the juxtamembrane domain. Irrespective of the manipulation that caused the malformations, coexpression of dominant-negative forms of either Rac1 or LIM kinase rescued the phenotypes. Wild-type RhoA and constitutively active Rho kinase caused partial rescue. Our results indicate that, in contrast to invertebrates, p120 is an essential factor for vertebrate development and an adequate balance between cadherin activity and cytoskeletal condition is critical for correct morphogenetic movements.
Collapse
Affiliation(s)
- Malgorzata Ciesiolka
- Developmental Biology Unit, Department of Molecular Biomedical Research, Flanders Interuniversity Institute for Biotechnology (VIB)-Ghent University, Technologiepark 927, B-9052 Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
15
|
Chauvet N, Privat A, Prieto M. Differential expression of p120 catenin in glial cells of the adult rat brain. J Comp Neurol 2004; 479:15-29. [PMID: 15389614 DOI: 10.1002/cne.20301] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
p120 catenin (p120ctn) is involved in the regulation of cadherin-mediated adhesion and the dynamic organization of the actin cytoskeleton by modulating RhoGTPase activity. We have previously described the distribution of p120ctn during rat brain development and provided substantial evidence for the potential involvement of p120ctn in morphogenetic events and plasticity in the central nervous system. Here, we analyzed the cellular and ultrastructural distribution of p120ctn in glial cells of the adult rat forebrain. The highest intensity of immunostaining for p120ctn was found in cells of the choroid plexus and ependyma and was mainly restricted to the plasma membrane. However, p120ctn was almost absent from astrocytes. In contrast, in tanycytes, a particular glial cell exhibiting remarkable morphological plasticity, p120ctn, was localized at the plasma membrane and also in the cytoplasm. We show that a large subpopulation of oligodendrocytes expressed multiple isoforms, whereas other neural cells predominantly expressed isoform 1, and that p120ctn immunoreactivity was distributed through the cytoplasm and at certain portions of the plasma membrane. Finally, p120ctn was expressed by a small population of cortical NG2-expressing cells, whereas it was expressed by a large population of these cells in the white matter. However, in both regions, proliferating NG2-positive cells consistently expressed p120ctn. The expression of p120ctn by cells of the oligodendrocyte lineage suggests that p120ctn may participate in oligodendrogenesis and myelination. Moreover, the expression of p120ctn by various cell types and its differential subcellular distribution strongly suggest that p120ctn may serve multiple functions in the central nervous system.
Collapse
Affiliation(s)
- Norbert Chauvet
- Institut National de la Santé et de la Recherche Médicale U583, Institut des Neurosciences de Montpellier, 34095 Montpellier, France.
| | | | | |
Collapse
|
16
|
Aho S, Levänsuo L, Montonen O, Kari C, Rodeck U, Uitto J. Specific sequences in p120ctn determine subcellular distribution of its multiple isoforms involved in cellular adhesion of normal and malignant epithelial cells. J Cell Sci 2002; 115:1391-402. [PMID: 11896187 DOI: 10.1242/jcs.115.7.1391] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
P120 catenin (p120ctn) belongs to the Armadillo family of proteins, which is implicated in cell-cell adhesion and signal transduction. Owing to alternative splicing and multiple translation initiation codons, several p120ctn isoforms can be expressed from a single gene. All p120ctn isoforms share the central Armadillo repeat domain but have divergent N- and C-termini. Little is known about the biological functions of the different isoforms. In this study, we examined the distribution of various p120ctn isoforms and the consequences of their expression in cultured cells of epidermal origin. Immunohistochemical analysis and western blotting revealed that melanocytes and melanoma cells primarily express the long isoform 1A, whereas keratinocytes express shorter isoforms, especially 3A, which localize to cell-cell adhesion junctions in a calcium-dependent manner. The shortest isoform 4A, which was detected in normal keratinocytes and melanocytes, was generally lost from cells derived from squamous cell carcinomas or melanomas. The C-terminal alternatively spliced exon B was present in the p120ctn transcripts in the colon, intestine and prostate, but was lost in several tumor tissues derived from these organs. To test whether p120ctn isoforms serve in distinct biological functions, we transiently transfected the expression constructs into melanoma cells (1205-Lu) and immortalized keratinocytes (HaCaT). Indeed, distinct domains of p120ctn are responsible for its different biological functions. The prominent branching phenotype was induced equally by isoforms 1A, 2A and 3A, whereas the shortest isoform 4A,which was devoid of the N-terminal domain, completely lacked this ability. Also, the exon-B-encoded sequences, as in the isoform 1AB, were sufficient to abolish the branching phenotype as induced by the isoform 1A. The induction of the branching phenotype cosegregated with the nuclear localization of the p120ctn isoforms 1A, 2A and 3A, whereas the isoforms 4A and 1AB, which were excluded from the nucleus, did not induce the branching phenotype. The N-terminal sequences that contain seven out of eight tyrosine residues,recently characterized as potential candidates for phosphorylation by Src kinase, are required for the nuclear localization and for the formation of the branching phenotype. Finally, expression of the p120ctn isoforms, which caused the branching phenotype, was associated with cellular relocalization of E-cadherin in HaCaT cells. Collectively, we have identified sequences within the p120ctn N-terminus that are prerequisites for both nuclear localization and the p120ctn-induced branching phenotype. Loss of the cytoplasmic pool of p120ctn from tumor cells suggests an important function for such isoforms in normal cells and tissues.
Collapse
Affiliation(s)
- Sirpa Aho
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Kim SW, Fang X, Ji H, Paulson AF, Daniel JM, Ciesiolka M, van Roy F, McCrea PD. Isolation and characterization of XKaiso, a transcriptional repressor that associates with the catenin Xp120(ctn) in Xenopus laevis. J Biol Chem 2002; 277:8202-8. [PMID: 11751886 DOI: 10.1074/jbc.m109508200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The Armadillo family of catenin proteins function in multiple capacities including cadherin-mediated cell-cell adhesion and nuclear signaling. The newest catenin, p120(ctn), differs from the classical catenins and binds to the membrane-proximal domain of cadherins. Recently, a novel transcription factor Kaiso was found to interact with p120(ctn), suggesting that p120(ctn) also possesses a nuclear function. We isolated the Xenopus homolog of Kaiso, XKaiso, from a Xenopus stage 17 cDNA library. XKaiso contains an amino-terminal BTB/POZ domain and three carboxyl-terminal zinc fingers. The XKaiso transcript was present maternally and expressed throughout early embryonic development. XKaiso's spatial expression was defined via in situ hybridization and was found localized to the brain, eye, ear, branchial arches, and spinal cord. Co-immunoprecipitation of Xenopus p120(ctn) and XKaiso demonstrated their mutual association, whereas related experiments employing differentially epitope-tagged XKaiso constructs suggest that XKaiso additionally self-associates. Finally, reporter assays employing a chimera of XKaiso fused to the GAL4 DNA binding domain indicate that XKaiso is a transcriptional repressor. These data suggest that XKaiso functions throughout development and that its repressor functions may be most apparent in the context of neural tissues. The significance of the XKaiso-p120(ctn) interaction has yet to be determined, but it may include transducing information from cadherin-mediated cell-cell contacts to transcriptional processes within the nucleus.
Collapse
Affiliation(s)
- Si Wan Kim
- Department of Biochemistry and Molecular Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Montonen O, Aho M, Uitto J, Aho S. Tissue distribution and cell type-specific expression of p120ctn isoforms. J Histochem Cytochem 2001; 49:1487-96. [PMID: 11724896 DOI: 10.1177/002215540104901202] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Cadherin-based molecular complexes play a major role in cell-cell adhesion. At the adherens junctions the intracellular domain of cadherins specifically interacts with beta-catenin and p120ctn, members of the Armadillo repeat protein family. Differential splicing and utilization of the alternative translation initiation codons lead to many p120ctn isoforms. Two major p120ctn isoforms are expressed in mouse tissues. In this study we used indirect immunofluorescence to demonstrate significant tissue specificity in expression of the p120ctn isoforms. The short isoform is abundant at cell-cell adhesion junctions in epidermis, palatal, and tongue epithelia, in the ducts of excretory glands, bronchiolar epithelium, and in mucosal epithelia of esophagus, forestomach, and small intestine. In contrast, the long isoform, containing an amino terminus highly conserved within the p120ctn subfamily, is expressed at vascular-endothelial cell junctions in blood vessels, at cell-cell junctions in the serosal epithelium lining the internal organs, in choroid plexus of brain, in the pigment epithelium of retina, and in structures such as the outer limiting membrane of retina and intercalated discs of cardiomyocytes. The tissue- and cell type-specific expression of p120ctn isoforms suggests a role for the long p120ctn isoform in cell structures responsible for stable tissue integrity, compared to the role of the short isoform in cell-cell adhesion in the external epithelia with rapid turnover.
Collapse
Affiliation(s)
- O Montonen
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | |
Collapse
|
19
|
Gonzalez AM, Otey C, Edlund M, Jones JC. Interactions of a hemidesmosome component and actinin family members. J Cell Sci 2001; 114:4197-206. [PMID: 11739652 DOI: 10.1242/jcs.114.23.4197] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hemidesmosomes are multimeric protein complexes that attach epithelial cells to their underlying matrix and serve as cell surface anchorage sites for the keratin cytoskeleton. Two hemidesmosome components, the alpha6beta4 integrin heterodimer and a human autoantigen termed BP180, are transmembrane proteins that link the extracellular matrix to the keratin network in cells. Here, we report that actinin-4, an actin-bundling protein, is a potential binding partner for BP180. Using yeast two-hybrid, we have mapped the binding site for BP180 to the C-terminal region of actinin-4. This site contains two EF-hand, Ca2+ regulation domains and shares 87% sequence homology with the same region in actinin-1. Consistent with this, BP180 can bind actinin-1 in both the yeast two-hybrid assay and in immunoprecipitation assays. To determine whether the EF-hand domain is a consensus binding sequence for BP180, we tested whether other proteins with this domain bind BP180. None of the proteins tested including calmodulin, with 4 EF-hand domains, and myosin regulatory light chain, with 1 EF-hand domain, interacts with BP180 in yeast two-hybrid system and immunoprecipitation studies, suggesting that the interaction between BP180 and actinin family members is specific. We have compared the distribution of actinin-1 and actinin-4 with that of BP180 in MCF-10A and pp126 cells. Surprisingly, BP180 localizes not only to sites of cell-substratum interaction, but is also present at sites of cell-cell contacts where it co-distributes with both actinin-1 and actinin-4 as well as other adherens junction proteins. In oral tissues, BP180 is present along the basement membrane and at cell-cell contact sites in basal epithelial cells where it co-distributes with adherens junction proteins. Since BP180 antibodies inhibit association of junction proteins at sites of cell-cell contact in oral keratinocytes, these results suggest that BP180 may play a role in establishing cell-cell interactions. We discuss a role for BP180 in crosstalk between cell-matrix and cell-cell junctions.
Collapse
Affiliation(s)
- A M Gonzalez
- Department of Cell and Molecular Biology, Northwestern University Medical School, 303 E. Chicago Avenue, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
20
|
Anastasiadis PZ, Reynolds AB. The p120 catenin family: complex roles in adhesion, signaling and cancer. J Cell Sci 2000; 113 ( Pt 8):1319-34. [PMID: 10725216 DOI: 10.1242/jcs.113.8.1319] [Citation(s) in RCA: 321] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
p120 catenin (p120) is the prototypic member of a growing subfamily of Armadillo-domain proteins found at cell-cell junctions and in nuclei. In contrast to the functions of the classical catenins (alpha-catenin, beta-catenin, and gamma-catenin/plakoglobin), which have been studied extensively, the first clues to p120's biological function have only recently emerged, and its role remains controversial. Nonetheless, it is now clear that p120 affects cell-cell adhesion through its interaction with the highly conserved juxtamembrane domain of classical cadherins, and is likely to have additional roles in the nucleus. Here, we summarize the data on the potential involvement of p120 both in promotion of and in prevension of adhesion, and propose models that attempt to reconcile some of the disparities in the literature. We also discuss the structural relationships and functions of several known p120 family members, as well as the potential roles of p120 in signaling and cancer.
Collapse
Affiliation(s)
- P Z Anastasiadis
- Department of Cell Biology, Vanderbilt University, MCN #C-2310, Nashville, TN 37232-2175, USA
| | | |
Collapse
|