1
|
Chen SY, Cao JL, Li KP, Wan S, Yang L. BIN1 in cancer: biomarker and therapeutic target. J Cancer Res Clin Oncol 2023; 149:7933-7944. [PMID: 36890396 DOI: 10.1007/s00432-023-04673-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/28/2023] [Indexed: 03/10/2023]
Abstract
BACKGROUND The bridging integrator 1 (BIN1) protein was originally identified as a pro-apoptotic tumor suppressor that binds to and inhibits oncogenic MYC transcription factors. BIN1 has complex physiological functions participating in endocytosis, membrane cycling, cytoskeletal regulation, DNA repair deficiency, cell-cycle arrest, and apoptosis. The expression of BIN1 is closely related to the development of various diseases such as cancer, Alzheimer's disease, myopathy, heart failure, and inflammation. PURPOSE Because BIN1 is commonly expressed in terminally differentiated normal tissues and is usually undetectable in refractory or metastatic cancer tissues, this differential expression has led us to focus on human cancers associated with BIN1. In this review, we discuss the potential pathological mechanisms of BIN1 during cancer development and its feasibility as a prognostic marker and therapeutic target for related diseases based on recent findings on its molecular, cellular, and physiological roles. CONCLUSION BIN1 is a tumor suppressor that regulates cancer development through a series of signals in tumor progression and microenvironment. It also makes BIN1 a feasible early diagnostic or prognostic marker for cancer.
Collapse
Affiliation(s)
- Si-Yu Chen
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Jin-Long Cao
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Kun-Peng Li
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Shun Wan
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Li Yang
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China.
| |
Collapse
|
2
|
G N S HS, Marise VLP, Satish KS, Yergolkar AV, Krishnamurthy M, Ganesan Rajalekshmi S, Radhika K, Burri RR. Untangling huge literature to disinter genetic underpinnings of Alzheimer's Disease: A systematic review and meta-analysis. Ageing Res Rev 2021; 71:101421. [PMID: 34371203 DOI: 10.1016/j.arr.2021.101421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/25/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
Drug discovery for Alzheimer's Disease (AD) is channeled towards unravelling key disease specific drug targets/genes to predict promising therapeutic candidates. Though enormous literature on AD genetics is available, there exists dearth in data pertinent to drug targets and crucial pathological pathways intertwined in disease progression. Further, the research findings revealing genetic associations failed to demonstrate consistency across different studies. This scenario prompted us to initiate a systematic review and meta-analysis with an aim of unearthing significant genetic hallmarks of AD. Initially, a Boolean search strategy was developed to retrieve case-control studies from PubMed, Cochrane, ProQuest, Europe PMC, grey literature and HuGE navigator. Subsequently, certain inclusion and exclusion criteria were framed to shortlist the relevant studies. These studies were later critically appraised using New Castle Ottawa Scale and Q-Genie followed by data extraction. Later, meta-analysis was performed only for those Single Nucleotide Polymorphisms (SNPs) which were evaluated in at least two different ethnicities from two different reports. Among, 204,351 studies retrieved, 820 met our eligibility criteria and 117 were processed for systematic review after critical appraisal. Ultimately, meta-analysis was performed for 23 SNPs associated with 15 genes which revealed significant associations of rs3865444 (CD33), rs7561528 (BIN1) and rs1801133 (MTHFR) with AD risk.
Collapse
|
3
|
Hoogmartens J, Cacace R, Van Broeckhoven C. Insight into the genetic etiology of Alzheimer's disease: A comprehensive review of the role of rare variants. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12155. [PMID: 33665345 PMCID: PMC7896636 DOI: 10.1002/dad2.12155] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022]
Abstract
Early-onset Alzheimer's disease (EOAD) is generally known as a dominant disease due to highly penetrant pathogenic mutations in the amyloid precursor protein, presenilin 1 and 2. However, they explain only a fraction of EOAD patients (5% to 10%). Furthermore, only 10% to 15% of EOAD families present with clear autosomal dominant inheritance. Studies showed that only 35% to 60% of EOAD patients have at least one affected first-degree relative. Parent-offspring concordance in EOAD was estimated to be <10%, indicating that full penetrant dominant alleles are not the sole players in EOAD. We aim to summarize current knowledge of rare variants underlying familial and seemingly sporadic Alzheimer's disease (AD) patients. Genetic findings indicate that in addition to the amyloid beta pathway, other pathways are of importance in AD pathophysiology. We discuss the difficulties in interpreting the influence of rare variants on disease onset and we underline the value of carefully selected ethnicity-matched cohorts in AD genetic research.
Collapse
Affiliation(s)
- Julie Hoogmartens
- Neurodegenerative Brain DiseasesVIB Center for Molecular NeurologyAntwerpBelgium
- Department of Biomedical SciencesUniversity of AntwerpAntwerpBelgium
| | - Rita Cacace
- Neurodegenerative Brain DiseasesVIB Center for Molecular NeurologyAntwerpBelgium
- Department of Biomedical SciencesUniversity of AntwerpAntwerpBelgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain DiseasesVIB Center for Molecular NeurologyAntwerpBelgium
- Department of Biomedical SciencesUniversity of AntwerpAntwerpBelgium
| |
Collapse
|
4
|
The Mechanistic Role of Bridging Integrator 1 (BIN1) in Alzheimer's Disease. Cell Mol Neurobiol 2020; 41:1431-1440. [PMID: 32719966 DOI: 10.1007/s10571-020-00926-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/17/2020] [Indexed: 01/18/2023]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia. The majority of AD cases are late-onset, multifactorial cases. Genome-wide association studies have identified more than 30 loci associated with sporadic AD (SAD), one of which is Bridging integrator 1 (BIN1). For the past few years, there has been a consensus that BIN1 is second only to APOE as the strongest genetic risk factor for SAD. Therefore, many researchers have put great effort into studying the mechanism by which BIN1 might be involved in the pathogenetic process of AD. To date, plenty of evidence has shown that BIN1 may participate in several pathways in AD, including tau and amyloid pathology. In addition, BIN1 has been indicated to take part in other relevant pathways such as inflammation, apoptosis, and calcium homeostasis. In this review, we systemically summarize the research progress on how BIN1 participates in the development of AD, with the expectation of providing promising perspectives for future research.
Collapse
|
5
|
Rahman MR, Tajmim A, Ali M, Sharif M. Overview and Current Status of Alzheimer's Disease in Bangladesh. J Alzheimers Dis Rep 2017; 1:27-42. [PMID: 30480227 PMCID: PMC6159651 DOI: 10.3233/adr-170012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease (AD) is a complex neurological disorder with economic, social, and medical burdens which is acknowledged as leading cause of dementia marked by the accumulation and aggregation of amyloid-β peptide and phosphorylated tau (p-tau) protein and concomitant dementia, neuron loss and brain atrophy. AD is the most prevalent neurodegenerative brain disorder with sporadic etiology, except for a small fraction of cases with familial inheritance where familial forms of AD are correlated to mutations in three functionally related genes: the amyloid-β protein precursor and presenilins 1 and 2, two key γ-secretase components. The common clinical features of AD are memory impairment that interrupts daily life, difficulty in accomplishing usual tasks, confusion with time or place, trouble understanding visual images and spatial relationships. Age is the most significant risk factor for AD, whereas other risk factors correlated with AD are hypercholesterolemia, hypertension, atherosclerosis, coronary heart disease, smoking, obesity, and diabetes. Despite decades of research, there is no satisfying therapy which will terminate the advancement of AD by acting on the origin of the disease process, whereas currently available therapeutics only provide symptomatic relief but fail to attain a definite cure and prevention. This review also represents the current status of AD in Bangladesh.
Collapse
Affiliation(s)
- Md Rashidur Rahman
- Department of Pharmacy, Jessore University of Science and Technology, Jessore, Bangladesh
| | - Afsana Tajmim
- Department of Pharmacy, Jessore University of Science and Technology, Jessore, Bangladesh
| | - Mohammad Ali
- Department of Pharmacy, Jessore University of Science and Technology, Jessore, Bangladesh
| | - Mostakim Sharif
- Department of Pharmacy, Jessore University of Science and Technology, Jessore, Bangladesh
| |
Collapse
|
6
|
Middelbeek J, Visser D, Henneman L, Kamermans A, Kuipers AJ, Hoogerbrugge PM, Jalink K, van Leeuwen FN. TRPM7 maintains progenitor-like features of neuroblastoma cells: implications for metastasis formation. Oncotarget 2016; 6:8760-76. [PMID: 25797249 PMCID: PMC4496182 DOI: 10.18632/oncotarget.3315] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/08/2015] [Indexed: 12/18/2022] Open
Abstract
Neuroblastoma is an embryonal tumor derived from poorly differentiated neural crest cells. Current research is aimed at identifying the molecular mechanisms that maintain the progenitor state of neuroblastoma cells and to develop novel therapeutic strategies that induce neuroblastoma cell differentiation. Mechanisms controlling neural crest development are typically dysregulated during neuroblastoma progression, and provide an appealing starting point for drug target discovery. Transcriptional programs involved in neural crest development act as a context dependent gene regulatory network. In addition to BMP, Wnt and Notch signaling, activation of developmental gene expression programs depends on the physical characteristics of the tissue microenvironment. TRPM7, a mechanically regulated TRP channel with kinase activity, was previously found essential for embryogenesis and the maintenance of undifferentiated neural crest progenitors. Hence, we hypothesized that TRPM7 may preserve progenitor-like, metastatic features of neuroblastoma cells. Using multiple neuroblastoma cell models, we demonstrate that TRPM7 expression closely associates with the migratory and metastatic properties of neuroblastoma cells in vitro and in vivo. Moreover, microarray-based expression profiling on control and TRPM7 shRNA transduced neuroblastoma cells indicates that TRPM7 controls a developmental transcriptional program involving the transcription factor SNAI2. Overall, our data indicate that TRPM7 contributes to neuroblastoma progression by maintaining progenitor-like features.
Collapse
Affiliation(s)
- Jeroen Middelbeek
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Daan Visser
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Linda Henneman
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Alwin Kamermans
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Arthur J Kuipers
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Peter M Hoogerbrugge
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands.,Princes Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Kees Jalink
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Frank N van Leeuwen
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
7
|
BIN1 tumor suppressor regulates Fas/Fas ligand–mediated apoptosis through c-FLIP in cutaneous T-cell lymphoma. Leukemia 2015; 29:1402-13. [DOI: 10.1038/leu.2015.9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 12/02/2014] [Accepted: 12/18/2014] [Indexed: 01/09/2023]
|
8
|
Karch CM, Goate AM. Alzheimer's disease risk genes and mechanisms of disease pathogenesis. Biol Psychiatry 2015; 77:43-51. [PMID: 24951455 PMCID: PMC4234692 DOI: 10.1016/j.biopsych.2014.05.006] [Citation(s) in RCA: 879] [Impact Index Per Article: 97.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 04/30/2014] [Accepted: 05/05/2014] [Indexed: 01/18/2023]
Abstract
We review the genetic risk factors for late-onset Alzheimer's disease (AD) and their role in AD pathogenesis. More recent advances in understanding of the human genome-technologic advances in methods to analyze millions of polymorphisms in thousands of subjects-have revealed new genes associated with AD risk, including ABCA7, BIN1, CASS4, CD33, CD2AP, CELF1, CLU, CR1, DSG2, EPHA1, FERMT2, HLA-DRB5-DBR1, INPP5D, MS4A, MEF2C, NME8, PICALM, PTK2B, SLC24H4-RIN3, SORL1, and ZCWPW1. Emerging technologies to analyze the entire genome in large data sets have also revealed coding variants that increase AD risk: PLD3 and TREM2. We review the relationship between these AD risk genes and the cellular and neuropathologic features of AD. Understanding the mechanisms underlying the association of these genes with risk for disease will provide the most meaningful targets for therapeutic development to date.
Collapse
Affiliation(s)
| | - Alison M. Goate
- Corresponding author Contact information: Department of Psychiatry, Washington University School of Medicine, 425 S. Euclid Ave, Campus Box 8134, St. Louis, MO 63110, phone: 314-362-8691, fax: 314-747-2983,
| |
Collapse
|
9
|
Calero R, Morchon E, Johnsen JI, Serrano R. Sunitinib suppress neuroblastoma growth through degradation of MYCN and inhibition of angiogenesis. PLoS One 2014; 9:e95628. [PMID: 24759734 PMCID: PMC3997473 DOI: 10.1371/journal.pone.0095628] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 03/28/2014] [Indexed: 01/09/2023] Open
Abstract
Neuroblastoma, a tumor of the peripheral sympathetic nervous system, is the most common and deadly extracranial tumor of childhood. The majority of high-risk neuroblastoma exhibit amplification of the MYCN proto-oncogene and increased neoangiogenesis. Both MYCN protein stabilization and angiogenesis are regulated by signaling through receptor tyrosine kinases (RTKs). Therefore, inhibitors of RTKs have a potential as a treatment option for high-risk neuroblastoma. We used receptor tyrosine kinase antibody arrays to profile the activity of membrane-bound RTKs in neuroblastoma and found the multi-RTK inhibitor sunitinib to tailor the activation of RTKs in neuroblastoma cells. Sunitinib inhibited several RTKs and demonstrated potent antitumor activity on neuroblastoma cells, through induction of apoptosis and cell cycle arrest. Treatment with sunitinib decreased MYCN protein levels by inhibition of PI3K/AKT signaling and GSK3β. This effect correlates with a decrease in VEGF secretion in neuroblastoma cells with MYCN amplification. Sunitinib significantly inhibited the growth of established, subcutaneous MYCN-amplified neuroblastoma xenografts in nude mice and demonstrated an anti-angiogenic effect in vivo with a reduction of tumor vasculature and a decrease of MYCN expression. These results suggest that sunitinib should be tested as a treatment option for high risk neuroblastoma patients.
Collapse
Affiliation(s)
- Raul Calero
- AECC-CHUA Cancer Research Unit, Albacete University Hospital, Albacete, Spain
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| | - Esther Morchon
- AECC-CHUA Cancer Research Unit, Albacete University Hospital, Albacete, Spain
| | - John Inge Johnsen
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| | - Rosario Serrano
- AECC-CHUA Cancer Research Unit, Albacete University Hospital, Albacete, Spain
- Castilla La Mancha University, Toledo, Spain
- * E-mail:
| |
Collapse
|
10
|
Zanichelli F, Capasso S, Di Bernardo G, Cipollaro M, Pagnotta E, Cartenì M, Casale F, Iori R, Giordano A, Galderisi U. Low concentrations of isothiocyanates protect mesenchymal stem cells from oxidative injuries, while high concentrations exacerbate DNA damage. Apoptosis 2013; 17:964-74. [PMID: 22684843 DOI: 10.1007/s10495-012-0740-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Isothiocyanates (ITCs) are molecules naturally present in many cruciferous vegetables (broccoli, black radish, daikon radish, and cauliflowers). Several studies suggest that cruciferous vegetable consumption may reduce cancer risk and slow the aging process. To investigate the effect of ITCs on cellular DNA damage, we evaluated the effects of two different ITCs [sulforaphane (SFN) and raphasatin (RPS)] on the biology of human mesenchymal stem cells (MSCs), which, in addition to their ability to differentiate into mesenchymal tissues, contribute to the homeostatic maintenance of many organs. The choice of SFN and RPS relies on two considerations: they are among the most popular cruciferous vegetables in the diet of western and eastern countries, respectively, and their bioactive properties may differ since they possess specific molecular moiety. Our investigation evidenced that MSCs incubated with low doses of SFN and RPS show reduced in vitro oxidative stress. Moreover, these cells are protected from oxidative damages induced by hydrogen peroxide, while no protection was evident following treatment with the UV ray of a double strand DNA damaging drug, such as doxorubicin. High concentrations of both ITCs induced cytotoxic effects in MSC cultures and further increased DNA damage induced by peroxides. In summary, our study suggests that ITCs, at low doses, may contribute to slowing the aging process related to oxidative DNA damage. Moreover, in cancer treatment, low doses of ITCs may be used as an adjuvant to reduce chemotherapy-induced oxidative stress, while high doses may synergize with anticancer drugs to promote cell DNA damage.
Collapse
Affiliation(s)
- Fulvia Zanichelli
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Second University of Naples, Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Capasso S, Alessio N, Di Bernardo G, Cipollaro M, Melone MA, Peluso G, Giordano A, Galderisi U. Silencing of RB1 and RB2/P130 during adipogenesis of bone marrow stromal cells results in dysregulated differentiation. Cell Cycle 2013; 13:482-90. [PMID: 24281253 DOI: 10.4161/cc.27275] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Bone marrow adipose tissue (BMAT) is different from fat found elsewhere in the body, and only recently have some of its functions been investigated. BMAT may regulate bone marrow stem cell niche and plays a role in energy storage and thermogenesis. BMAT may be involved also in obesity and osteoporosis onset. Given the paramount functions of BMAT, we decided to better clarify the human bone marrow adipogenesis by analyzing the role of the retinoblastoma gene family, which are key players in cell cycle regulation. Our data provide evidence that the inactivation of RB1 or RB2/P130 in uncommitted bone marrow stromal cells (BMSC) facilitates the first steps of adipogenesis. In cultures with silenced RB1 or RB2/P130, we observed an increase of clones with adipogenic potential and a higher percentage of cells accumulating lipid droplets. Nevertheless, the absence of RB1 or RB2/P130 impaired the terminal adipocyte differentiation and gave rise to dysregulated adipose cells, with alteration in lipid uptake and release. For the first time, we evidenced that RB2/P130 plays a role in bone marrow adipogenesis. Our data suggest that while the inactivation of retinoblastoma proteins may delay the onset of last cell division and allow more BMSC to be committed to adipocyte, it did not allow a permanent cell cycle exit, which is a prerequisite for adipocyte terminal maturation.
Collapse
Affiliation(s)
- Stefania Capasso
- Department of Experimental Medicine; Biotechnology and Molecular Biology Section; Second University of Naples; Naples, Italy
| | - Nicola Alessio
- Department of Experimental Medicine; Biotechnology and Molecular Biology Section; Second University of Naples; Naples, Italy; Institute of Protein Biochemistry; CNR; Naples, Italy
| | - Giovanni Di Bernardo
- Department of Experimental Medicine; Biotechnology and Molecular Biology Section; Second University of Naples; Naples, Italy
| | - Marilena Cipollaro
- Department of Experimental Medicine; Biotechnology and Molecular Biology Section; Second University of Naples; Naples, Italy
| | - Mariarosa Ab Melone
- Department of Clinical and Experimental Medicine; Second University of Naples; Naples, Italy
| | - Gianfranco Peluso
- Institute of Protein Biochemistry; CNR; Naples, Italy; Institute of Biomedicine and Bioresources; CNR; Naples, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine; Center For Biotechnology; Temple University; Philadelphia, PA USA; Department of Medicine, Surgery and Neurociences; University of Siena; Siena, Italy
| | - Umberto Galderisi
- Department of Experimental Medicine; Biotechnology and Molecular Biology Section; Second University of Naples; Naples, Italy; Institute of Protein Biochemistry; CNR; Naples, Italy; Sbarro Institute for Cancer Research and Molecular Medicine; Center For Biotechnology; Temple University; Philadelphia, PA USA; GENKÖK; Genome and Stem Cell Center; Erciyes University; Kayseri, Turkey
| |
Collapse
|
12
|
Tan MS, Yu JT, Tan L. Bridging integrator 1 (BIN1): form, function, and Alzheimer's disease. Trends Mol Med 2013; 19:594-603. [PMID: 23871436 DOI: 10.1016/j.molmed.2013.06.004] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 05/24/2013] [Accepted: 06/21/2013] [Indexed: 12/13/2022]
Abstract
The bridging integrator 1 (BIN1) gene, also known as amphiphysin 2, has recently been identified as the most important risk locus for late onset Alzheimer's disease (LOAD), after apolipoprotein E (APOE). Here, we summarize the known functions of BIN1 and discuss the polymorphisms associated with LOAD, as well as their possible physiological effects. Emerging data suggest that BIN1 affects AD risk primarily by modulating tau pathology, but other affected cellular functions are discussed, including endocytosis/trafficking, inflammation, calcium homeostasis, and apoptosis. Epigenetic modifications are important for AD pathogenesis, and we review data that suggests the possible DNA methylation of the BIN1 promoter. Finally, given the potential contributions of BIN1 to AD pathogenesis, targeting BIN1 might present novel opportunities for AD therapy.
Collapse
Affiliation(s)
- Meng-Shan Tan
- College of Medicine and Pharmaceutics, Ocean University of China, Qingdao 266003, China; Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266071, China
| | | | | |
Collapse
|
13
|
Samal K, Zhao P, Kendzicky A, Yco LP, McClung H, Gerner E, Burns M, Bachmann AS, Sholler G. AMXT-1501, a novel polyamine transport inhibitor, synergizes with DFMO in inhibiting neuroblastoma cell proliferation by targeting both ornithine decarboxylase and polyamine transport. Int J Cancer 2013; 133:1323-33. [PMID: 23457004 DOI: 10.1002/ijc.28139] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/08/2013] [Accepted: 02/14/2013] [Indexed: 11/11/2022]
Abstract
Neuroblastoma (NB) is associated with MYCN oncogene amplification occurring in approximately 30% of NBs and is associated with poor prognosis. MYCN is linked to a number of genes including ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine biosynthesis. ODC expression is elevated in many forms of cancer including NB. Alpha-difluoromethylornithine (DFMO), an ODC inhibitor, is currently being used in a Phase I clinical trial for treatment of NB. However, cancer cells treated with DFMO may overcome their polyamine depletion by the uptake of polyamines from extracellular sources. A novel polyamine transport inhibitor, AMXT-1501, has not yet been tested in NB. We propose that inhibiting ODC with DFMO, coupled with polyamine transport inhibition by AMXT-1501 will result in enhanced NB growth inhibition. Single and combination drug treatments were conducted on three NB cell lines. DFMO IC50 values ranged from 20.76 to 33.3 mM, and AMXT-1501 IC50 values ranged from 14.13 to 17.72 µM in NB. The combination treatment resulted in hypophosphorylation of retinoblastoma protein (Rb), suggesting growth inhibition via G1 cell cycle arrest. Increased expression of cleaved PARP and cleaved caspase 3 in combination-treated cells starting at 48 hr suggested apoptosis. The combination treatment depleted intracellular polyamine pools and decreased intracellular ATP, further verifying growth inhibition. Given the current lack of effective therapies for patients with relapsed/refractory NB and the preclinical effectiveness of DFMO with AMXT-1501, this combination treatment provides promising preclinical results. DFMO and AMXT-1501 may be a potential new therapy for children with NB.
Collapse
Affiliation(s)
- Katherine Samal
- Center for Translational Medicine, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Efficient cultivation of neural stem cells with controlled delivery of FGF-2. Stem Cell Res 2012; 10:85-94. [PMID: 23142801 DOI: 10.1016/j.scr.2012.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 08/22/2012] [Accepted: 09/19/2012] [Indexed: 01/25/2023] Open
Abstract
Neural stem cells (NSCs) raised the hope for cell-based therapies in human neurodevelopmental and neurodegenerative diseases. Current research strategies aim to isolate, enrich, and propagate homogeneous populations of neural stem cells. Unfortunately, several concerns with NSC cultures currently may limit their therapeutic promise. Exhaustion of growth factors and/or their uncontrolled release with burst and fall in their concentration may greatly affect the in vitro behavior of NSCs. In this context, we investigate whether a device containing heparan sulfate (HS), which is a co-factor in growth factor-mediated cell proliferation and differentiation, could potentiate and prolong the delivery of fibroblast growth factor-2 (FGF-2) and thus improve in vitro NSC cultivation. We demonstrated that NSCs cultivated in media with a controlled release of FGF-2 from a polyelectrolyte polymer showed a higher proliferation rate, and reduced apoptosis and senescence. In these experimental conditions NSCs preserve their stemness properties for a longer period of time compared with controls. Also of interest is that cell fate properties are conserved as well. The controlled release of FGF-2 reduced the level of oxidative stress and this is associated with a lower level of damaged DNA. This result may explain the reduced level of senescence and apoptosis in NSCs cultivated in the presence of hydrogel-releasing FGF-2.
Collapse
|
15
|
Pan K, Liang XT, Zhang HK, Zhao JJ, Wang DD, Li JJ, Lian Q, Chang AE, Li Q, Xia JC. Characterization of bridging integrator 1 (BIN1) as a potential tumor suppressor and prognostic marker in hepatocellular carcinoma. Mol Med 2012; 18:507-18. [PMID: 22281836 DOI: 10.2119/molmed.2011.00319] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 01/20/2012] [Indexed: 11/06/2022] Open
Abstract
It has been shown that bridging integrator 1 (BIN1) can interact with c-myelocytomatosis (c-Myc) oncoprotein in cancer. However, the role of BIN1 in hepatocellular carcinoma (HCC) is not clear. In the present study, we investigated the expression and prognostic role of BIN1 in primary HCC and evaluated the function of BIN1 in hepatocarcinogenesis. Using real-time polymerase chain reaction and Western blot analysis, we found significantly decreased expression of BIN1 in primary HCC tumor tissues (n = 42) compared with adjacent normal tissues and in HCC cell lines. Immunohistochemistry analysis also found decreased BIN1 expression in HCC tumor tissues (n = 117). In clinicopathological analysis, loss of BIN1 expression correlated significantly (P < 0.05) with differentiation scores and tumor size. Importantly, decreased expression of BIN1 in tumors was found to be closely associated with a poor prognosis, and we conclude that BIN1 was an independent prognostic factor in a multivariate analysis. In mechanistic studies, restoring BIN1 expression in BIN1-null HCC cells significantly inhibited cell proliferation and colony formation and induced apoptosis of HCC cells. Furthermore, we found that BIN1 overexpression could significantly suppress the motility and invasion of HCC cells in vitro. Our results indicate that BIN1 may function as a potential tumor suppressor and serve as a novel prognostic marker in HCC patients. The BIN1 molecule might play an important role in tumor growth, cell motility and invasion. Modulation of BIN1 expression may lead to clinical applications of this critical molecule in the control of hepatocellular carcinoma as well as in early and effective diagnosis of this aggressive tumor.
Collapse
Affiliation(s)
- Ke Pan
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Zanichelli F, Capasso S, Cipollaro M, Pagnotta E, Cartenì M, Casale F, Iori R, Galderisi U. Dose-dependent effects of R-sulforaphane isothiocyanate on the biology of human mesenchymal stem cells, at dietary amounts, it promotes cell proliferation and reduces senescence and apoptosis, while at anti-cancer drug doses, it has a cytotoxic effect. AGE (DORDRECHT, NETHERLANDS) 2012; 34:281-93. [PMID: 21465338 PMCID: PMC3312628 DOI: 10.1007/s11357-011-9231-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 03/02/2011] [Indexed: 04/16/2023]
Abstract
Brassica vegetables are attracting a great deal of attention as healthy foods because of the fact that they contain substantial amounts of secondary metabolite glucosinolates that are converted into isothiocyanates, such as sulforaphane [(-)1-isothiocyanato-4R-(methylsulfinyl)-butane] (R-SFN), through the actions of chopping or chewing the vegetables. Several studies have analyzed the biological and molecular mechanisms of the anti-cancer activity of synthetic R,S-sulforaphane, which is thought to be a result of its antioxidant properties and its ability to inhibit histone deacetylase enzymes (HDAC). Few studies have addressed the possible antioxidant effects of R-SFN, which could protect cells from the free radical damage that strongly contribute to aging. Moreover, little is known about the effect of R-SFN on stem cells whose longevity is implicated in human aging. We evaluated the effects of R-SFN on the biology on human mesenchymal stem cells (MSCs), which, in addition to their ability to differentiate into mesenchymal tissues, support hematopoiesis, and contribute to the homeostatic maintenance of many organs and tissues. Our investigation found evidence that low doses of R-SFN promote MSCs proliferation and protect them from apoptosis and senescence, while higher doses have a cytotoxic effect, leading to the induction of cell cycle arrest, programmed cell death and senescence. The beneficial effects of R-SFN may be ascribed to its antioxidant properties, which were observed when MSC cultures were incubated with low doses of R-SFN. Its cytotoxic effects, which were observed after treating MSCs with high doses of R-SFN, could be attributed to its HDAC inhibitory activity. In summary, we found that R-SFN, like many other dietary supplements, exhibits a hormetic behavior; it is able to induce biologically opposite effects at different doses.
Collapse
Affiliation(s)
- Fulvia Zanichelli
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Second University of Naples, Via Costantinopoli 16, 80138 Naples, Italy
| | - Stefania Capasso
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Second University of Naples, Via Costantinopoli 16, 80138 Naples, Italy
| | - Marilena Cipollaro
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Second University of Naples, Via Costantinopoli 16, 80138 Naples, Italy
| | - Eleonora Pagnotta
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura (C.R.A.), Industrial Crop Research Centre, Bologna, Italy
| | - Maria Cartenì
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Second University of Naples, Via Costantinopoli 16, 80138 Naples, Italy
| | - Fiorina Casale
- Department of Pediatrics “F. Fede”, Second University of Naples, Naples, Italy
| | - Renato Iori
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura (C.R.A.), Industrial Crop Research Centre, Bologna, Italy
| | - Umberto Galderisi
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, PA USA
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Second University of Naples, Via Costantinopoli 16, 80138 Naples, Italy
- Human Health Foundation, Spoleto, Italy
| |
Collapse
|
17
|
Olgiati P, Politis AM, Papadimitriou GN, De Ronchi D, Serretti A. Genetics of late-onset Alzheimer's disease: update from the alzgene database and analysis of shared pathways. Int J Alzheimers Dis 2011; 2011:832379. [PMID: 22191060 PMCID: PMC3235576 DOI: 10.4061/2011/832379] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 09/21/2011] [Indexed: 12/13/2022] Open
Abstract
The genetics of late-onset Alzheimer's disease (LOAD) has taken impressive steps forwards in the last few years. To date, more than six-hundred genes have been linked to the disorder. However, only a minority of them are supported by a sufficient level of evidence. This review focused on such genes and analyzed shared biological pathways. Genetic markers were selected from a web-based collection (Alzgene). For each SNP in the database, it was possible to perform a meta-analysis. The quality of studies was assessed using criteria such as size of research samples, heterogeneity across studies, and protection from publication bias. This produced a list of 15 top-rated genes: APOE, CLU, PICALM, EXOC3L2, BIN1, CR1, SORL1, TNK1, IL8, LDLR, CST3, CHRNB2, SORCS1, TNF, and CCR2. A systematic analysis of gene ontology terms associated with each marker showed that most genes were implicated in cholesterol metabolism, intracellular transport of beta-amyloid precursor, and autophagy of damaged organelles. Moreover, the impact of these genes on complement cascade and cytokine production highlights the role of inflammatory response in AD pathogenesis. Gene-gene and gene-environment interactions are prominent issues in AD genetics, but they are not specifically featured in the Alzgene database.
Collapse
Affiliation(s)
- Paolo Olgiati
- Institute of Psychiatry, University of Bologna, Viale Carlo Pepoli 5, 40123 Bologna, Italy
| | | | | | | | | |
Collapse
|
18
|
Fernando P, Sandoz JS, Ding W, de Repentigny Y, Brunette S, Kelly JF, Kothary R, Megeney LA. Bin1 SRC homology 3 domain acts as a scaffold for myofiber sarcomere assembly. J Biol Chem 2009; 284:27674-86. [PMID: 19633357 DOI: 10.1074/jbc.m109.029538] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In skeletal muscle development, the genes and regulatory factors that govern the specification of myocytes are well described. Despite this knowledge, the mechanisms that regulate the coordinated assembly of myofiber proteins into the functional contractile unit or sarcomere remain undefined. Here we explored the hypothesis that modular domain proteins such as Bin1 coordinate protein interactions to promote sarcomere formation. We demonstrate that Bin1 facilitates sarcomere organization through protein-protein interactions as mediated by the Src homology 3 (SH3) domain. We observed a profound disorder in myofiber size and structural organization in a murine model expressing the Bin1 SH3 region. In addition, satellite cell-derived myogenesis was limited despite the accumulation of skeletal muscle-specific proteins. Our experiments revealed that the Bin1 SH3 domain formed transient protein complexes with both actin and myosin filaments and the pro-myogenic kinase Cdk5. Bin1 also associated with a Cdk5 phosphorylation domain of titin. Collectively, these observations suggest that Bin1 displays protein scaffold-like properties and binds with sarcomeric factors important in directing sarcomere protein assembly and myofiber maturation.
Collapse
Affiliation(s)
- Pasan Fernando
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa, Ontario K1H 8L6, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Prendergast GC, Muller AJ, Ramalingam A, Chang MY. BAR the door: cancer suppression by amphiphysin-like genes. Biochim Biophys Acta Rev Cancer 2008; 1795:25-36. [PMID: 18930786 DOI: 10.1016/j.bbcan.2008.09.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 08/26/2008] [Accepted: 09/03/2008] [Indexed: 11/17/2022]
Abstract
The evolutionarily conserved amphiphysin-like genes Bin1 and Bin3 function in membrane and actin dynamics, cell polarity, and stress signaling. Recent genetic studies in mice discriminate non-essential roles in endocytic processes commonly ascribed to amphiphysins from essential roles in cancer suppression. Bin1 acts in default pathways of apoptosis and senescence that are triggered by the Myc and Raf oncogenes in primary cells, and Bin1 gene products display a 'moonlighting function' in the nucleus where a variety of other 'endocytic' proteins are also found. Together, genetic investigations in yeast, flies, and mice suggest that amphiphysin-like adapter proteins may suppress cancer by helping integrate cell polarity signals generated by actin and vesicle dynamics with central regulators of cell cycle arrest, apoptosis, and immune surveillance.
Collapse
|
20
|
Characterization of NKIP: a novel, Na+/K+-ATPase interacting protein mediates neural differentiation and apoptosis. Exp Cell Res 2007; 314:463-77. [PMID: 18096156 DOI: 10.1016/j.yexcr.2007.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Revised: 11/05/2007] [Accepted: 11/08/2007] [Indexed: 01/17/2023]
Abstract
Cellular differentiation and programmed cell death are tightly controlled to maintain tissue homeostasis and proper organ function. In a screen for apoptosis specific gene products, we isolated an immediate early apoptosis response gene from myelomonocytic stem cells that appears to play a key regulatory role in a number of cell types and may be of particular importance in cells of the central nervous system. The gene's 28 kDa protein product interacts with the C-terminal ectodomain of the Na+/K+-ATPase (NKA) beta 1 subunit and was therefore named NKIP (NKA Interacting Protein). NKIP is coexpressed with NKA, localizes to lysosomes and the endoplasmic reticulum and is predominantly expressed in excitable tissues including polarized epithelia and the central nervous system. NKIP has been characterized as an endogenous suppressor of the NKA as reduction of NKIP in PC12 cells significantly increases NKA activity. In pluripotent NT2 progenitor cells, NKIP induced rapidly K+-level-dependent cell death. NKIP overexpression induced growth factor-independent neurite outgrowth, which was associated with MEK-independent phosphorylation of the transcription factor ERK1/2. Thus, we have identified NKIP as an important novel protein that interacts to the NKA complex, influencing cellular ion balance, induction of apoptosis and neuronal differentiation.
Collapse
|
21
|
Napolitano MA, Cipollaro M, Cascino A, Melone MAB, Giordano A, Galderisi U. Brg1 chromatin remodeling factor is involved in cell growth arrest, apoptosis and senescence of rat mesenchymal stem cells. J Cell Sci 2007; 120:2904-11. [PMID: 17666433 DOI: 10.1242/jcs.004002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Self-renewal, proliferation and differentiation properties of stem cells are controlled by key transcription factors. However, their activity is modulated by chromatin remodeling factors that operate at the highest hierarchical level. Studies on these factors can be especially important to dissect molecular pathways governing the biology of stem cells. SWI/SNF complexes are adenosine triphosphate (ATP)-dependent chromatin remodeling enzymes that have been shown to be required for cell cycle control, apoptosis and cell differentiation in several biological systems. The aim of our research was to investigate the role of these complexes in the biology of mesenchymal stem cells (MSCs). To this end, in MSCs we caused a forced expression of the ATPase subunit of SWI/SNF (Brg1 – also known as Smarca4) by adenoviral transduction. Forced Brg1 expression induced a significant cell cycle arrest of MSCs in culture. This was associated with a huge increase in apoptosis that reached a peak 3 days after transduction. In addition, we observed signs of senescence in cells having ectopic Brg1 expression. At the molecular level these phenomena were associated with activation of Rb- and p53-related pathways. Inhibition of either p53 or Rb with E1A mutated proteins allowed us to hypothesize that both Rb and p53 are indispensable for Brg1-induced senescence, whereas only p53 seems to play a role in triggering programmed cell death. We also looked at the effects of forced Brg1 expression on canonical MSC differentiation in adipocytes, chondrocytes and osteocytes. Brg1 did not induce cell differentiation per se; however, this protein could contribute, at least in part, to the adipocyte differentiation process.
In conclusion, our results suggest that whereas some ATP-dependent chromatin remodeling factors, such as ISWI complexes, promote stem cell self-renewal and conservation of an uncommitted state, others cause an escape from `stemness' and induction of differentiation along with senescence and cell death phenomena.
Collapse
Affiliation(s)
- Marco A Napolitano
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Excellence Research Center for Cardiovascular Diseases, Second University of Naples, Naples, Italy
| | | | | | | | | | | |
Collapse
|
22
|
Chang MY, Boulden J, Sutanto-Ward E, Duhadaway JB, Soler AP, Muller AJ, Prendergast GC. Bin1 ablation in mammary gland delays tissue remodeling and drives cancer progression. Cancer Res 2007; 67:100-7. [PMID: 17210688 DOI: 10.1158/0008-5472.can-06-2742] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Genes that modify oncogenesis may influence dormancy versus progression in cancer, thereby affecting clinical outcomes. The Bin1 gene encodes a nucleocytosolic adapter protein that interacts with and suppresses the cell transforming activity of Myc. Bin1 is often attenuated in breast cancer but its ability to negatively modify oncogenesis or progression in this context has not been gauged directly. In this study, we investigated the effects of mammary gland-specific deletion of Bin1 on initiation and progression of breast cancer in mice. Bin1 loss delayed the outgrowth and involution of the glandular ductal network during pregnancy but had no effect on tumor susceptibility. In contrast, in mice where tumors were initiated by the ras-activating carcinogen 7,12-dimethylbenz(a)anthracene, Bin1 loss strongly accentuated the formation of poorly differentiated tumors characterized by increased proliferation, survival, and motility. This effect was specific as Bin1 loss did not accentuate progression of tumors initiated by an overexpressed mouse mammary tumor virus-c-myc transgene, which on its own produced poorly differentiated and aggressive tumors. These findings suggest that Bin1 loss cooperates with ras activation to drive progression, establishing a role for Bin1 as a negative modifier of oncogenicity and progression in breast cancer.
Collapse
MESH Headings
- 9,10-Dimethyl-1,2-benzanthracene
- Adaptor Proteins, Signal Transducing/deficiency
- Adaptor Proteins, Signal Transducing/genetics
- Animals
- Base Sequence
- Carcinogens
- Cell Transformation, Neoplastic/chemically induced
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Cocarcinogenesis
- Disease Progression
- Female
- Gene Deletion
- Genes, ras
- Mammary Glands, Animal/drug effects
- Mammary Glands, Animal/pathology
- Mammary Glands, Animal/physiology
- Mammary Neoplasms, Experimental/chemically induced
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/pathology
- Mice
- Mice, Transgenic
- Molecular Sequence Data
- Nerve Tissue Proteins/deficiency
- Nerve Tissue Proteins/genetics
- Pregnancy
- Tumor Suppressor Proteins/deficiency
- Tumor Suppressor Proteins/genetics
Collapse
Affiliation(s)
- Mee Young Chang
- Lankenau Institute for Medical Research, 100 Lancaster Avenue, Wynnewood, PA 19096, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Jori FP, Galderisi U, Napolitano MA, Cipollaro M, Cascino A, Giordano A, Melone MAB. RB and RB2/P130 genes cooperate with extrinsic signals to promote differentiation of rat neural stem cells. Mol Cell Neurosci 2007; 34:299-309. [PMID: 17223573 DOI: 10.1016/j.mcn.2006.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 10/04/2006] [Accepted: 11/13/2006] [Indexed: 11/20/2022] Open
Abstract
Mechanisms governing commitment and differentiation of the cells of the nervous system begin to be elucidated: how extrinsic and intrinsic components are related remains poorly understood. To investigate this issue, we overexpressed genes of the retinoblastoma (Rb) family RB and RB2/p130, which play an important role during nerve cell maturation, in rat neural stem cells (NSCs). Immunostaining of neurons, astrocytes and oligodendrocytes in cultures overexpressing pRb or pRb2/p130 revealed that these genes affect lineage specification of differentiating NSCs. We observed modifications in percentage of differentiated cells indicating a shift towards the phenotype induced by culture conditions. Results were confirmed by detection of the expression levels of differentiation markers by RT-PCR. Analysis of BrdU incorporation and detection of an early marker of apoptosis suggest that the effect of pRb and pRb2/p130 overexpression is not dependent on the inhibition of cell proliferation, nor does it rely on the regulation of cell survival. Our findings suggest that Rb family genes are involved in fate determination of the cells of the nervous system. However, their role seems subsidiary to that of the extrinsic signals that promote lineage specification and appear to be mediated by a direct effect on the acquisition of a specific phenotype.
Collapse
Affiliation(s)
- Francesco P Jori
- Department of Neurological Sciences, Second University of Naples, Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
24
|
Forte A, Napolitano MA, Cipollaro M, Giordano A, Cascino A, Galderisi U. An effective method for adenoviral-mediated delivery of small interfering RNA into mesenchymal stem cells. J Cell Biochem 2007; 100:293-302. [PMID: 16888813 DOI: 10.1002/jcb.21025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Mesenchymal stem cells (MSCs) promise as a main actor of cell-based therapeutic strategies, due to their intrinsic ability to differentiate along different mesenchymal cell lineages, able to repair the diseased or injured tissue in which they are localized. The application of MSCs in therapies requires an in depth knowledge of their biology and of the molecular mechanisms leading to MSC multilineage differentiation. The knockdown of target genes through small interfering RNA (siRNA) carried by adenoviruses (Ad) represents a valid tool for the study of the role of specific molecules in cell biology. Unfortunately, MSCs are poorly transfected by conventional Ad serotype 5 (Ad5) vectors. We set up a method to obtain a very efficient transduction of rat MSCs with low doses of unmodified Ad5, carrying the siRNA targeted against the mRNA coding for Rb2/p130 (Ad-siRNA-Rb2), which plays a fundamental role in cell differentiation. This method allowed a 95% transduction rate of Ad-siRNA in MSC, along with a siRNA-mediated 85% decrease of Rb2/p130 mRNA and a 70% decrease of Rb2/p130 protein 48 h after transduction with 50 multiplicities of infection (MOIs) of Ad5. The effect on Rb2/p130 protein persisted 15 days after transduction. Finally, Ad-siRNA did not compromise the viability of transduced MSCs neither induced any cell cycle modification. The effective Ad-siRNA-Rb2 we constructed, together with the efficient method of delivery in MSCs we set up, will allow an in depth analysis of the role of Rb2/p130 in MSC biology and multilineage differentiation.
Collapse
Affiliation(s)
- Amalia Forte
- Excellence Research Center for Cardiovascular Diseases, Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Second University of Naples, Naples, Italy
| | | | | | | | | | | |
Collapse
|
25
|
Gallelli L, Pelaia G, D'Agostino B, Cuda G, Vatrella A, Fratto D, Gioffrè V, Galderisi U, De Nardo M, Mastruzzo C, Salinaro ET, Maniscalco M, Sofia M, Crimi N, Rossi F, Caputi M, Costanzo FS, Maselli R, Marsico SA, Vancheri C. Endothelin-1 induces proliferation of human lung fibroblasts and IL-11 secretion through an ET(A) receptor-dependent activation of MAP kinases. J Cell Biochem 2006; 96:858-68. [PMID: 16149067 DOI: 10.1002/jcb.20608] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Endothelin-1 (ET-1) is implicated in the fibrotic responses characterizing interstitial lung diseases, as well as in the airway remodeling process occurring in asthma. Within such a context, the aim of our study was to investigate, in primary cultures of normal human lung fibroblasts (NHLFs), the ET-1 receptor subtypes, and the intracellular signal transduction pathways involved in the proliferative effects of this peptide. Therefore, cells were exposed to ET-1 in the presence or absence of an overnight pre-treatment with either ET(A) or ET(B) selective receptor antagonists. After cell lysis, immunoblotting was performed using monoclonal antibodies against the phosphorylated, active forms of mitogen-activated protein kinases (MAPK). ET-1 induced a significant increase in MAPK phosphorylation pattern, and also stimulated fibroblast proliferation and IL-6/IL-11 release into cell culture supernatants. All these effects were inhibited by the selective ET(A) antagonist BQ-123, but not by the specific ET(B) antagonist BQ-788. The stimulatory influence of ET-1 on IL-11, but not on IL-6 secretion, was prevented by MAPK inhibitors. Therefore, such results suggest that in human lung fibroblasts ET-1 exerts a profibrogenic action via an ET(A) receptor-dependent, MAPK-mediated induction of IL-11 release and cell proliferation.
Collapse
Affiliation(s)
- Luca Gallelli
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Jori FP, Melone MAB, Napolitano MA, Cipollaro M, Cascino A, Giordano A, Galderisi U. RB and RB2/p130 genes demonstrate both specific and overlapping functions during the early steps of in vitro neural differentiation of marrow stromal stem cells. Cell Death Differ 2005; 12:65-77. [PMID: 15459751 DOI: 10.1038/sj.cdd.4401499] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Marrow stromal stem cells (MSCs) are stem-like cells that are currently being tested for their potential use in cell therapy for a number of human diseases. MSCs can differentiate into both mesenchymal and nonmesenchymal lineages. In fact, in addition to bone, cartilage and fat, it has been demonstrated that MSCs are capable of differentiating into neurons and astrocytes. RB and RB2/p130 genes are involved in the differentiation of several systems. For this reason, we evaluated the role of RB and RB2/p130 in the differentiation and apoptosis of MSCs under experimental conditions that allow for MSC differentiation toward the neuron-like phenotype. To this end, we ectopically expressed either RB or RB2/p130 and monitored proliferation, differentiation and apoptosis in rat primary MSC cultures induced to differentiate toward the neuron-like phenotype. Both RB and RB2/P130 decreased cell proliferation rate. In pRb-overexpressing cells, the arrest of cell growth was also observed in the presence of the HDAC-inhibitor TSA, suggesting that its antiproliferative activity does not rely upon the HDAC pathway, while the addition of TSA to pRb2/p130-overexpressing cells relieved growth inhibition. TUNEL reactions and studies on the expression of genes belonging to the Bcl-2 family showed that while RB protected differentiating MSCs from apoptosis, RB2/p130 induced an increase of apoptosis compared to controls. The effects of both RB and RB2/p130 on programmed cell death appeared to be HDAC- independent. Molecular analysis of neural differentiation markers and immunocytochemistry revealed that RB2/p130 contributes mainly to the induction of generic neural properties and RB triggers cholinergic differentiation. Moreover, the differentiation potentials of RB2/p130 and RB appear to rely, at least in part, on the activity of HDACs.
Collapse
Affiliation(s)
- F P Jori
- Department of Neurological Sciences, Second University of Naples, Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
27
|
Jori FP, Napolitano MA, Melone MAB, Cipollaro M, Cascino A, Altucci L, Peluso G, Giordano A, Galderisi U. Molecular pathways involved in neural in vitro differentiation of marrow stromal stem cells. J Cell Biochem 2005; 94:645-55. [PMID: 15547939 DOI: 10.1002/jcb.20315] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In recent years several reports have claimed to demonstrate trans-differentiation, namely that stem cells have been derived from a given tissue and have differentiated into phenotypes characteristic of different tissues following transplantation or in vitro treatment. For example, the mesenchymal stem cells, also referred to as marrow stromal stem cells (MSCs), present in bone marrow, have been induced to differentiate into neurons. We decided to investigate this phenomenon more in depth by a molecular and morphological follow-up. We analyzed the biochemical pathways that are currently induced to trigger neuron-like commitment and maturation of MSCs. Our studies suggest that: (i) the increase in cAMP, induced to differentiate MSCs, activates the classical PKA pathway and not through the exchange protein directly activated by cAMP (EPAC), a guanine nucleotide exchange factor for the small GTPase Rap1 and Rap2; (ii) MEK-ERK signaling could contribute to neural commitment and differentiation; (iii) CaM KII activity seems dispensable for neuron differentiation. On the contrary, its inhibition could contribute to rescuing differentiating cells from death. Our research also indicates that the currently used in vitro differentiation protocols, while they allow the early steps of neural differentiation to take place, are not able to further sustain this process.
Collapse
Affiliation(s)
- Francesco P Jori
- Department of Neurological Sciences, Second University of Naples, Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Jori FP, Napolitano MA, Melone MAB, Cipollaro M, Cascino A, Giordano A, Galderisi U. Role of RB and RB2/P130 genes in marrow stromal stem cells plasticity. J Cell Physiol 2004; 200:201-12. [PMID: 15174090 DOI: 10.1002/jcp.20026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Marrow stromal cells (MSCs) are stem-like cells having a striking somatic plasticity. In fact, besides differentiating into mesenchymal lineages (bone, cartilage, and fat), they are capable of differentiating into neurons and astrocytes in vitro and in vivo. The RB and RB2/P130 genes, belonging to the retinoblastoma gene family, play a key role in neurogenesis, and for this reason, we investigated their role in neural commitment and differentiation of MSCs. In MSCs that were either uncommitted or committed toward neural differentiation, we ectopically expressed RB and RB2/P130 genes and analyzed their role in regulating the cell cycle, apoptosis and differentiation. In uncommitted MSCs, the activity of RB and RB2/P130 appeared limited to negatively regulating cell cycle progression, having no role in apoptosis and differentiation (toward either mesenchymal or neural lineages). On the other hand, in MSCs committed toward the neural phenotype, both RB and RB2/P130 reduced cell proliferation rate and affected the apoptotic process. RB protected differentiating cells from programmed cell death. On the contrary, RB2/P130 increased the percentage of cells in apoptosis. All of these activities were accomplished mainly in an HDAC-independent way. The retinoblastoma genes also influenced differentiation in neural committed MSCs. RB2/P130 contributes mainly to the induction of generic neural properties, while RB triggers cholinergic differentiation. These differentiating activities are HDAC-dependent. Our research shows that there is a critical temporal requirement for the RB genes during neuronal differentiation of MSCs: they are not required for cell commitment but play a role in the maturation process. For the above reasons, RB and RB2/P130 may have a role in neural differentiation but not in neural determination.
Collapse
Affiliation(s)
- Francesco P Jori
- Department of Neurological Sciences, Second University of Naples, Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
29
|
DuHadaway JB, Du W, Donover S, Baker J, Liu AX, Sharp DM, Muller AJ, Prendergast GC. Transformation-selective apoptotic program triggered by farnesyltransferase inhibitors requires Bin1. Oncogene 2003; 22:3578-88. [PMID: 12789266 DOI: 10.1038/sj.onc.1206481] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Neoplastic transformation sensitizes many cells to apoptosis. This phenomenon may underlie the therapeutic benefit of many anticancer drugs, but its molecular basis is poorly understood. We have used a selective and potent farnesyltransferase inhibitor (FTI) to probe a mechanism of apoptosis that is peculiarly linked to neoplastic transformation. While nontoxic to untransformed mouse cells, FTI triggers a massive RhoB-dependent, p53-independent apoptosis in mouse cells that are neoplastically transformed. Here we offer evidence that the BAR adapter-encoding tumor suppressor gene Bin1 is required for this transformation-selective death program. Targeted deletion of Bin1 in primary mouse embyro fibroblasts (MEFs) transformed by E1A+Ras did not affect FTI-induced reversion, actin fiber formation, or growth inhibition, but it abolished FTI-induced apoptosis. The previously defined requirement for RhoB in these effects suggests that Bin1 adapter proteins act downstream or in parallel to RhoB in cell death signaling. The death defect in Bin1 null cells was significant insofar as it abolished FTI efficacy in tumor xenograft assays. p53 deletion did not phenocopy the effects of Bin1 deletion. However, MEFs transformed by SV40 large T antigen+Ras were also resistant to apoptosis by FTI, consistent with other evidence that large T inhibits Bin1-dependent cell death by a p53-independent mechanism. Taken together, the results define a function for Bin1 in apoptosis that is conditional on transformation stress. This study advances understanding of the functions of BAR adapter proteins, which are poorly understood, by revealing genetic interactions with an Rho small GTPase that functions in stress signaling. The frequent losses of Bin1 expression that occur in human breast and prostate cancers may promote tumor progression and limit susceptibility to FTI or other therapeutic agents that exploit the heightened sensitivity of neoplastic cells to apoptosis.
Collapse
|
30
|
Routhier EL, Donover PS, Prendergast GC. hob1+, the fission yeast homolog of Bin1, is dispensable for endocytosis or actin organization, but required for the response to starvation or genotoxic stress. Oncogene 2003; 22:637-48. [PMID: 12569356 DOI: 10.1038/sj.onc.1206162] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BAR (Bin/Amphiphysin/Rvs) adapter proteins have been suggested to regulate endocytosis, actin organization, apoptosis, and transcription, but their precise roles are obscure. There are at least five mammalian genes that encode BAR adapter proteins, including the evolutionarily conserved and ubiquitously expressed Bin1/Amphiphysin-II and Bin3 genes. Bin1 holds special interest as certain splice isoforms localize to the nucleus, interact with the c-Abl and c-Myc oncoproteins, and display tumor suppressor properties. To obtain functional insights, we embarked upon a genetic analysis of the two BAR adapter proteins expressed in the fission yeast Schizosaccharomyces pombe. In a previous work, a role in actin organization and cytokinesis was identified for the Bin3 homolog hob3+. In this study, a role in stress signaling was defined for the Bin1 homolog, hob1+. Notably, hob1+ was dispensable for endocytosis, actin organization, or osmotic sensitivity. Instead, mutation of hob1+ led to slight cell elongation and faulty cell cycle arrest upon nutrient starvation. These defects were complemented by Bin1, but not by Amphiphysin-I, arguing that these genes have distinct functions despite their structural similarity. hob1 delta mutant cells were also hypersensitive to genotoxic stress. This was not related to a faulty checkpoint response, but mutation in the checkpoint gene rad3(+) further exacerbated the sensitivity of hob1 delta mutant cells. Interestingly, mutation of the cell cycle regulator wee1+ partially relieved the sensitivity defect, suggesting that hob1+ may influence the efficiency of DNA repair or checkpoint release after DNA damage. Genetic and biochemical evidence indicated that hob3+ is epistatic to hob1+ in the response to genotoxic stress. Our findings indicate that the Bin1 homolog hob1+ participates in DNA damage signaling and they suggest a novel role for BAR adapter proteins in stress response processes.
Collapse
Affiliation(s)
- Eric L Routhier
- Cancer Research Group, The DuPont Pharmaceuticals Company, Glenolden, PA 19036, USA
| | | | | |
Collapse
|
31
|
Abstract
The activated product of the myc oncogene deregulates both cell growth and death check points and, in a permissive environment, rapidly accelerates the affected clone through the carcinogenic process. Advances in understanding the molecular mechanism of Myc action are highlighted in this review. With the revolutionary developments in molecular diagnostic technology, we have witnessed an unprecedented advance in detecting activated myc in its deregulated, oncogenic form in primary human cancers. These improvements provide new opportunities to appreciate the tumor subtypes harboring deregulated Myc expression, to identify the essential cooperating lesions, and to realize the therapeutic potential of targeting Myc. Knowledge of both the breadth and depth of the numerous biological activities controlled by Myc has also been an area of progress. Myc is a multifunctional protein that can regulate cell cycle, cell growth, differentiation, apoptosis, transformation, genomic instability, and angiogenesis. New insights into Myc's role in regulating these diverse activities are discussed. In addition, breakthroughs in understanding Myc as a regulator of gene transcription have revealed multiple mechanisms of Myc activation and repression of target genes. Moreover, the number of reported Myc regulated genes has expanded in the past few years, inspiring a need to focus on classifying and segregating bona fide targets. Finally, the identity of Myc-binding proteins has been difficult, yet has exploded in the past few years with a plethora of novel interactors. Their characterization and potential impact on Myc function are discussed. The rapidity and magnitude of recent progress in the Myc field strongly suggests that this marvelously complex molecule will soon be unmasked.
Collapse
Affiliation(s)
- Sara K Oster
- Division of Cellular and Molecular Biology, Ontario Cancer Institute, Princess Margaret Hospital, University of Toronto
| | | | | | | |
Collapse
|
32
|
Zörnig M, Hueber A, Baum W, Evan G. Apoptosis regulators and their role in tumorigenesis. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1551:F1-37. [PMID: 11591448 DOI: 10.1016/s0304-419x(01)00031-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It has become clear that, together with deregulated growth, inhibition of programmed cell death (PCD) plays a pivotal role in tumorigenesis. In this review, we present an overview of the genes and mechanisms involved in PCD. We then summarize the evidence that impaired PCD is a prerequisite for tumorigenesis, as indicated by the fact that more and more neoplastic mutations appear to act by interfering with PCD. This has made the idea of restoration of corrupted 'death programs' an intriguing new area for potential cancer therapy.
Collapse
Affiliation(s)
- M Zörnig
- Georg-Speyer-Haus, Frankfurt, Germany.
| | | | | | | |
Collapse
|
33
|
Forte A, Di Micco G, Galderisi U, Guarino FM, Cipollaro M, De Feo M, Gregorio R, Bianco MR, Vollono C, Esposito F, Berrino L, Angelini F, Renzulli A, Cotrufo M, Rossi F, Cascino A. Molecular analysis of arterial stenosis in rat carotids. J Cell Physiol 2001; 186:307-13. [PMID: 11169467 DOI: 10.1002/1097-4652(200002)186:2<307::aid-jcp1029>3.0.co;2-i] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A new model of surgical injury for the induction and development of stenosis in common rat carotids is described. This model differs from balloon angioplasty or vein graft systems currently applied on animals to develop stenosis, since it involves the entire vessel wall layers and mimics the injury occurring during arterial grafts, endarterectomy or organ transplantation. At different times following arterial damage, the pattern of expression of genes already known to be involved in the proliferation, differentiation, and apoptosis of smooth muscle cells (c-myc, Angiotensin II receptor 1, Bcl-2 and Bax alpha), as well as of Rb and Rb2 genes, whose pattern of expression after arterial injury has not yet been reported, was analyzed by semi-quantitative reverse transcription-polymerase chain reaction technique. Histological and histochemical analysis on carotid sections shows the morphological changes which occurred 30 days after surgical injury in the vessel wall. Molecular and histological data demonstrate that this model of surgical injury induces neointimal proliferation in about 30% of rats. In about 70% of the remaining rats, it induces the processes responsible for negative remodelling, namely the significant accumulation of extracellular matrix and fibers and disorganization of arterial tunics. This model is therefore available for further studies on the expression of genes involved in the arterial stenotic process, as well as for testing drugs aimed at limiting this recurrent pathophysiological phenomenon.
Collapse
MESH Headings
- Animals
- Apoptosis
- Carotid Arteries/metabolism
- Carotid Arteries/pathology
- Carotid Arteries/physiopathology
- Carotid Stenosis/genetics
- Carotid Stenosis/pathology
- Disease Models, Animal
- Gene Expression Regulation
- Genes, Retinoblastoma
- Genes, bcl-2
- Genes, myc
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins c-bcl-2
- Rats
- Rats, Inbred WKY
- Receptor, Angiotensin, Type 1
- Receptor, Angiotensin, Type 2
- Receptors, Angiotensin/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- bcl-2-Associated X Protein
Collapse
Affiliation(s)
- A Forte
- Institute of Pharmacology and Toxicology, Second University of Naples, Via Constantinopoli, 16, 80138 Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Slepnev VI, De Camilli P. Accessory factors in clathrin-dependent synaptic vesicle endocytosis. Nat Rev Neurosci 2000; 1:161-72. [PMID: 11257904 DOI: 10.1038/35044540] [Citation(s) in RCA: 399] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Clathrin-mediated endocytosis is a special form of vesicle budding important for the internalization of receptors and extracellular ligands, for the recycling of plasma membrane components, and for the retrieval of surface proteins destined for degradation. In nerve terminals, clathrin-mediated endocytosis is crucial for synaptic vesicle recycling. Recent structural studies have provided molecular details of coat assembly. In addition, biochemical and genetic studies have identified numerous accessory proteins that assist the clathrin coat in its function at synapses and in other systems. This review summarizes these advances with a special focus on accessory factors and highlights new aspects of clathrin-mediated endocytosis revealed by the study of these factors.
Collapse
Affiliation(s)
- V I Slepnev
- Howard Hughes Medical Institute and Department of Cell Biology, Yale University School of Medicine, 295 Congress Avenue, New Haven, Connecticut 06510, USA.
| | | |
Collapse
|