1
|
Freeman DW, Rodrigues Sousa E, Karkampouna S, Zoni E, Gray PC, Salomon DS, Kruithof-de Julio M, Spike BT. Whence CRIPTO: The Reemergence of an Oncofetal Factor in 'Wounds' That Fail to Heal. Int J Mol Sci 2021; 22:10164. [PMID: 34576327 PMCID: PMC8472190 DOI: 10.3390/ijms221810164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 02/06/2023] Open
Abstract
There exists a set of factors termed oncofetal proteins that play key roles in ontogeny before they decline or disappear as the organism's tissues achieve homeostasis, only to then re-emerge in cancer. Although the unique therapeutic potential presented by such factors has been recognized for more than a century, their clinical utility has yet to be fully realized1. This review highlights the small signaling protein CRIPTO encoded by the tumor derived growth factor 1 (TDGF1/Tdgf1) gene, an oft cited oncofetal protein whose presence in the cancer literature as a tumor promoter, diagnostic marker and viable therapeutic target continues to grow. We touch lightly on features well established and well-reviewed since its discovery more than 30 years ago, including CRIPTO's early developmental roles and modulation of SMAD2/3 activation by a selected set of transforming growth factor β (TGF-β) family ligands. We predominantly focus instead on more recent and less well understood additions to the CRIPTO signaling repertoire, on its potential upstream regulators and on new conceptual ground for understanding its mode of action in the multicellular and often stressful contexts of neoplastic transformation and progression. We ask whence it re-emerges in cancer and where it 'hides' between the time of its fetal activity and its oncogenic reemergence. In this regard, we examine CRIPTO's restriction to rare cells in the adult, its potential for paracrine crosstalk, and its emerging role in inflammation and tissue regeneration-roles it may reprise in tumorigenesis, acting on subsets of tumor cells to foster cancer initiation and progression. We also consider critical gaps in knowledge and resources that stand between the recent, exciting momentum in the CRIPTO field and highly actionable CRIPTO manipulation for cancer therapy and beyond.
Collapse
Affiliation(s)
- David W. Freeman
- Department of Oncological Sciences, School of Medicine, University of Utah, Salt Lake City, UT 84113, USA;
| | - Elisa Rodrigues Sousa
- Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, 3012 Bern, Switzerland; (E.R.S.); (S.K.); (E.Z.)
| | - Sofia Karkampouna
- Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, 3012 Bern, Switzerland; (E.R.S.); (S.K.); (E.Z.)
| | - Eugenio Zoni
- Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, 3012 Bern, Switzerland; (E.R.S.); (S.K.); (E.Z.)
| | - Peter C. Gray
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA;
| | - David S. Salomon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 20893, USA;
| | - Marianna Kruithof-de Julio
- Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, 3012 Bern, Switzerland; (E.R.S.); (S.K.); (E.Z.)
- Translational Organoid Models, Department for BioMedical Research, University of Bern, 3012 Bern, Switzerland
- Bern Center for Precision Medicine, Inselspital, University Hospital of Bern, 3010 Bern, Switzerland
- Department of Urology, Inselspital, University Hospital of Bern, 3010 Bern, Switzerland
| | - Benjamin T. Spike
- Department of Oncological Sciences, School of Medicine, University of Utah, Salt Lake City, UT 84113, USA;
| |
Collapse
|
2
|
Dodda BR, Bondi CD, Hasan M, Clafshenkel WP, Gallagher KM, Kotlarczyk MP, Sethi S, Buszko E, Latimer JJ, Cline JM, Witt-Enderby PA, Davis VL. Co-administering Melatonin With an Estradiol-Progesterone Menopausal Hormone Therapy Represses Mammary Cancer Development in a Mouse Model of HER2-Positive Breast Cancer. Front Oncol 2019; 9:525. [PMID: 31355130 PMCID: PMC6636553 DOI: 10.3389/fonc.2019.00525] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/30/2019] [Indexed: 12/20/2022] Open
Abstract
Melatonin has numerous anti-cancer properties reported to influence cancer initiation, promotion, and metastasis. With the need for effective hormone therapies (HT) to treat menopausal symptoms without increasing breast cancer risk, co-administration of nocturnal melatonin with a natural, low-dose HT was evaluated in mice that develop primary and metastatic mammary cancer. Individually, melatonin (MEL) and estradiol-progesterone therapy (EPT) did not significantly affect mammary cancer development through age 14 months, but, when combined, the melatonin-estradiol-progesterone therapy (MEPT) significantly repressed tumor formation. This repression was due to effects on tumor incidence, but not latency. These results demonstrate that melatonin and the HT cooperate to decrease the mammary cancer risk. Melatonin and EPT also cooperate to alter the balance of the progesterone receptor (PR) isoforms by significantly increasing PRA protein expression only in MEPT mammary glands. Melatonin significantly suppressed amphiregulin transcripts in MEL and MEPT mammary glands, suggesting that amphiregulin together with the higher PRA:PRB balance and other factors may contribute to reducing cancer development in MEPT mice. Melatonin supplementation influenced mammary morphology by increasing tertiary branching in the mouse mammary glands and differentiation in human mammary epithelial cell cultures. Uterine weight in the luteal phase was elevated after long-term exposure to EPT, but not to MEPT, indicating that melatonin supplementation may reduce estrogen-induced uterine stimulation. Melatonin supplementation significantly decreased the incidence of grossly-detected lung metastases in MEL mice, suggesting that melatonin delays the formation of metastatic lesions and/or decreases aggressiveness in this model of HER2+ breast cancer. Mammary tumor development was similar in EPT and MEPT mice until age 8.6 months, but after 8.6 months, only MEPT continued to suppress cancer development. These data suggest that melatonin supplementation has a negligible effect in young MEPT mice, but is required in older mice to inhibit tumor formation. Since melatonin binding was significantly decreased in older mammary glands, irrespective of treatment, melatonin supplementation may overcome reduced melatonin responsiveness in the aged MEPT mice. Since melatonin levels are known to decline near menopause, nocturnal melatonin supplementation may also be needed in aging women to cooperate with HT to decrease breast cancer risk.
Collapse
Affiliation(s)
- Balasunder R Dodda
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Corry D Bondi
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Mahmud Hasan
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - William P Clafshenkel
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Katie M Gallagher
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Mary P Kotlarczyk
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Shalini Sethi
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Ethan Buszko
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Jean J Latimer
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - J Mark Cline
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Paula A Witt-Enderby
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States.,UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Vicki L Davis
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| |
Collapse
|
3
|
Bianco C, Strizzi L, Mancino M, Watanabe K, Gonzales M, Hamada S, Raafat A, Sahlah L, Chang C, Sotgia F, Normanno N, Lisanti M, Salomon DS. Regulation of Cripto-1 signaling and biological activity by caveolin-1 in mammary epithelial cells. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:345-57. [PMID: 18202186 DOI: 10.2353/ajpath.2008.070696] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human and mouse Cripto-1 (CR-1/Cr-1) proteins play an important role in mammary gland development and tumorigenesis. In this study, we examined the relationship between Cripto-1 and caveolin-1 (Cav-1), a membrane protein that acts as a tumor suppressor in the mammary gland. Cripto-1 was found to interact with Cav-1 in COS7 cells and mammary epithelial cells. Using EpH4 mouse mammary epithelial cells expressing Cr-1 (EpH4 Cr-1) or Cr-1 and Cav-1 (EpH4 Cr-1/Cav-1), we demonstrate that Cav-1 expression markedly reduced the ability of Cr-1 to enhance migration, invasion, and formation of branching structures in EpH4 Cr-1/Cav-1 cells as compared to EpH4 Cr-1 cells. Furthermore, coexpression of Cav-1 together with Cr-1 in EpH4 Cr-1/Cav-1 cells inhibited Cr-1-mediated activation of c-src and mitogen-activated protein kinase signaling pathways. Conversely, primary mammary epithelial cells isolated from Cav-1 null(-/-)/mouse mammary tumor virus-CR-1 transgenic animals showed enhanced motility and activation of mitogen-activated protein kinase and c-src as compared to Cav-1(+/-)/CR-1 mammary cells. Finally, mammary tumors derived from mouse mammary tumor virus-CR-1 mice showed a dramatic reduction of Cav-1 expression as compared to mammary tissue from normal FVB/N mice, suggesting that in vivo Cav-1 is down-regulated during the process of CR-1-mediated mammary tumorigenesis.
Collapse
|
4
|
McBryan J, Howlin J, Kenny PA, Shioda T, Martin F. ERalpha-CITED1 co-regulated genes expressed during pubertal mammary gland development: implications for breast cancer prognosis. Oncogene 2007; 26:6406-19. [PMID: 17486082 DOI: 10.1038/sj.onc.1210468] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Expression microarray analysis identified over 930 genes regulated during puberty in the mouse mammary gland. Most prominent were genes whose expression increased in parallel with pubertal development and remained high thereafter. Members of the Wnt, transforming growth factor-beta and oestrogen-signalling pathways were significantly overrepresented. Comparison to expression data from CITED1 knockout mice identified a subset of oestrogen-responsive genes displaying altered expression in the absence of CITED1. Included in this subset are stanniocalcin2 (Stc2) and amphiregulin (Areg). Chromatin immunoprecipitation revealed that ERalpha binds to oestrogen response elements in both the Stc2 and Areg genes in the mammary gland during puberty. Additionally, CITED1 and ERalpha localize to the same epithelial cells of the pubertal mammary gland, supporting a role for interaction of these two proteins during normal development. In a human breast cancer data set, expression of Stc2, Areg and CITED1 parallel that of ERalpha. Similar to ERalpha, CITED1 expression correlates with good outcome in breast cancer, implying that potential maintenance of the ERalpha-CITED1 co-regulated signalling pathway in breast tumours can indicate good prognosis.
Collapse
Affiliation(s)
- J McBryan
- UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Ireland
| | | | | | | | | |
Collapse
|
5
|
Sangai T, Ishii G, Fujimoto H, Ikehara A, Ito T, Hasebe T, Magae J, Nagashima T, Miyazaki M, Ochiai A. Hormonal stimulation increases the recruitment of bone marrow-derived myoepithelial cells and periductal fibroblasts into the mammary gland. Biochem Biophys Res Commun 2006; 346:1173-80. [PMID: 16793011 DOI: 10.1016/j.bbrc.2006.06.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Accepted: 06/02/2006] [Indexed: 11/15/2022]
Abstract
Recent reports have revealed that bone marrow (BM)-derived cells can be constituents in a number of organs, especially in remodeling tissue. Using bone marrow transplantation (BMT) technique, we found that BM can serve as a source of both myoepithelial cells and periductal fibroblasts in the mammary gland. The numbers of BM-derived myoepithelial cell were 4.8-fold, and those of periductal fibroblast were 2.4-fold higher in the mice when BMT which was performed at the pubertal stage, as compared with BMT was performed at the postpubertal stage. Treatment with estrogen+progesterone pellet increased numbers of BM-derived myoepithelial cells and periductal fibroblasts, to levels 4.5- and 2.6-fold higher than in placebo mice, respectively. In situ hybridization revealed BM-derived periductal fibroblasts expressed insulin-like growth factor I mRNAs that are known to regulate mammary gland. These results suggest that drastic structural change that is induced by hormonal stimulation increased the recruitment of BM-derived myoepithelial cells and periductal fibroblasts to the mammary gland context.
Collapse
Affiliation(s)
- Takafumi Sangai
- Pathology Division, Innovative Medical Research Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa-City, Chiba 277-8577, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Marasco D, Saporito A, Ponticelli S, Chambery A, De Falco S, Pedone C, Minchiotti G, Ruvo M. Chemical synthesis of mouse cripto CFC variants. Proteins 2006; 64:779-88. [PMID: 16752415 DOI: 10.1002/prot.21043] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We report for the first time the chemical synthesis of refolded CFC domain of mouse Cripto (mCFC) and of two variants bearing mutations on residues W107 and H104 involved in Alk4 binding. The domains undergo spontaneous and quantitative refolding in about 4 h, yet with very different kinetics. Disulfide linkages have been assessed by enzyme digestion and mass spectrometry analysis of resulting fragments, and the first experimental studies on structural organization have been conducted by circular dichroism spectroscopy under different pH conditions. Upon refolding, the domains considerably change their conformations, although they do not assume canonical structures, and become highly resistant to enzyme degradation. A comparative study of receptor binding shows that the CFC domain can bind Alk4 and confirms the importance of W107 and H104 for receptor recognition.
Collapse
Affiliation(s)
- Daniela Marasco
- Istituto di Biostrutture e Bioimmagini del CNR, Sezione Biostrutture, Napoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Wechselberger C, Strizzi L, Kenney N, Hirota M, Sun Y, Ebert A, Orozco O, Bianco C, Khan NI, Wallace-Jones B, Normanno N, Adkins H, Sanicola M, Salomon DS. Human Cripto-1 overexpression in the mouse mammary gland results in the development of hyperplasia and adenocarcinoma. Oncogene 2005; 24:4094-105. [PMID: 15897912 DOI: 10.1038/sj.onc.1208417] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human Cripto-1 (CR-1) is overexpressed in approximately 80% of human breast, colon and lung carcinomas. Mouse Cr-1 upregulation is also observed in a number of transgenic (Tg) mouse mammary tumors. To determine whether CR-1 can alter mammary gland development and/or may contribute to tumorigenesis in vivo, we have generated Tg mouse lines that express human CR-1 under the transcriptional control of the mouse mammary tumor virus (MMTV). Stable Tg MMTV/CR-1 FVB/N lines expressing different levels of CR-1 were analysed. Virgin female MMTV/CR-1 Tg mice exhibited enhanced ductal branching, dilated ducts, intraductal hyperplasia, hyperplastic alveolar nodules and condensation of the mammary stroma. Virgin aged MMTV/CR-1 Tg mice also possessed persistent end buds. In aged multiparous MMTV/CR-1 mice, the hyperplastic phenotype was most pronounced with multifocal hyperplasias. In the highest CR-1-expressing subline, G4, 38% (12/31) of the multiparous animals aged 12-20 months developed hyperplasias and approximately 33% (11/31) developed papillary adenocarcinomas. The long latency period suggests that additional genetic alterations are required to facilitate mammary tumor formation in conjunction with CR-1. This is the first in vivo study that shows hyperplasia and tumor growth in CR-1-overexpressing animals.
Collapse
Affiliation(s)
- Christian Wechselberger
- Tumor Growth Factor Section, Mammary Biology and Tumorigenesis Laboratory, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Bianco C, Strizzi L, Normanno N, Khan N, Salomon DS. Cripto-1: an oncofetal gene with many faces. Curr Top Dev Biol 2005; 67:85-133. [PMID: 15949532 DOI: 10.1016/s0070-2153(05)67003-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Human Cripto-1 (CR-1), a member of the epidermal growth factor (EGF)-CFC family, has been implicated in embryogenesis and in carcinogenesis. During early vertebrate development, CR-1 functions as a co-receptor for Nodal, a transforming growth factor beta (TGFbeta) family member and is essential for mesoderm and endoderm formation and anterior-posterior and left-right axis establishment. In adult tissues, CR-1 is expressed at a low level in all stages of mammary gland development and expression increases during pregnancy and lactation. Overexpression of CR-1 in mouse mammary epithelial cells leads to their transformation in vitro and, when injected into mammary glands, produces ductal hyperplasias. CR-1 can also enhance migration, invasion, branching morphogenesis and epithelial to mesenchymal transition (EMT) of several mouse mammary epithelial cell lines. Furthermore, transgenic mouse studies have shown that overexpression of a human CR-1 transgene in the mammary gland under the transcriptional control of the mouse mammary tumor virus (MMTV) promoter results in mammary hyperplasias and papillary adenocarcinomas. Finally, CR-1 is expressed at high levels in approximately 50 to 80% of different types of human carcinomas, including breast, cervix, colon, stomach, pancreas, lung, ovary, and testis. In conclusion, EGF-CFC proteins play dual roles as embryonic pattern formation genes and as oncogenes. While during embryogenesis EGF-CFC proteins perform specific and regulatory functions related to cell and tissue patterning, inappropriate expression of these molecules in adult tissues can lead to cellular proliferation and transformation and therefore may be important in the etiology and/or progression of cancer.
Collapse
Affiliation(s)
- Caterina Bianco
- Tumor Growth Factor Section, Mammary Biology & Tumorigenesis Laboratory Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
9
|
Xing PX, Hu XF, Pietersz GA, Hosick HL, McKenzie IFC. Cripto: a novel target for antibody-based cancer immunotherapy. Cancer Res 2004; 64:4018-23. [PMID: 15173016 DOI: 10.1158/0008-5472.can-03-3888] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cripto, a member of the epidermal growth factor-Cripto-FRL-Criptic (EGF-CFC) family, has been described recently as a potential target for immunotherapy (Adkins et al., J Clin Invest 2003;112:575-87). We have produced rat monoclonal antibodies (mAbs) to a Cripto 17-mer peptide, corresponding to the "EGF-like" motif of Cripto. The mAbs react with most cancers of the breast, colon, lung, stomach, and pancreas but do not react or react weakly with normal tissues. The mAbs inhibit cancer cell growth in vitro, and this effect was greater with cytotoxic drugs such as 5-fluorouracil, epirubicin, and cisplatin. The anti-Cripto mAbs prevent tumor development in vivo and inhibit the growth of established tumors of LS174T colon xenografts in Scid mice. The growth inhibitory effects with these mAbs may be greater than those described elsewhere, possibly because of IgM giving more effective cross-linking or binding to a different epitope (EGF-like region versus CFC region). The mechanism of inhibitory effects of the Cripto mAbs includes both cancer cell apoptosis, activation of c-Jun-NH(2)-terminal kinase and p38 kinase signaling pathways and blocking of Akt phosphorylation. Thus, Cripto is a unique target, and mAbs to Cripto could be of therapeutic value for human cancers.
Collapse
Affiliation(s)
- Pei Xiang Xing
- Cancer Immunotherapy Laboratory, Austin Research Institute, Heidelberg, Victoria, Australia.
| | | | | | | | | |
Collapse
|
10
|
|
11
|
Bianco C, Adkins HB, Wechselberger C, Seno M, Normanno N, De Luca A, Sun Y, Khan N, Kenney N, Ebert A, Williams KP, Sanicola M, Salomon DS. Cripto-1 activates nodal- and ALK4-dependent and -independent signaling pathways in mammary epithelial Cells. Mol Cell Biol 2002; 22:2586-97. [PMID: 11909953 PMCID: PMC133714 DOI: 10.1128/mcb.22.8.2586-2597.2002] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cripto-1 (CR-1), an epidermal growth factor-CFC (EGF-CFC) family member, has a demonstrated role in embryogenesis and mammary gland development and is overexpressed in several human tumors. Recently, EGF-CFC proteins were implicated as essential signaling cofactors for Nodal, a transforming growth factor beta family member whose expression has previously been defined as embryo specific. To identify a receptor for CR-1, a human brain cDNA phage display library was screened using CR-1 protein as bait. Phage inserts with identity to ALK4, a type I serine/threonine kinase receptor for Activin, were identified. CR-1 binds to cell surface ALK4 expressed on mammalian epithelial cells in fluorescence-activated cell sorter analysis, as well as by coimmunoprecipitation. Nodal is coexpressed with mouse Cr-1 in the mammary gland, and CR-1 can phosphorylate the transcription factor Smad-2 in EpH-4 mammary epithelial cells only in the presence of Nodal and ALK4. In contrast, CR-1 stimulation of mitogen-activated protein kinase and AKT in these cells is independent of Nodal and ALK4, suggesting that CR-1 may modulate different signaling pathways to mediate its different functional roles.
Collapse
Affiliation(s)
- Caterina Bianco
- Tumor Growth Factor Section, Basic Research Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Cripto, a growth factor with an EGF-like domain, and the first member of the EGF-CFC family of genes to be sequenced and characterized, contributes to deregulated growth of cancer cells. A role for Cripto in tumor development has been described in the human and the mouse. Members of the EGF-CFC family are found only in vertebrates: CFC proteins in zebrafish, Xenopus, chick, mouse and human have been characterized and indicate some common general functions in development. Cripto expression was first found in human and mouse embryonal carcinoma cells and male teratocarcinomas, and was demonstrated to be over-expressed in breast, cervical, ovarian, gastric, lung, colon, and pancreatic carcinomas in contrast to normal tissues where Cripto expression was invariably low or absent. Cripto may play a role in mammary tumorigenesis, since in vitro, Cripto induces mammary cell proliferation, reduces apoptosis, increases cell migration, and inhibits milk protein expression. This prediction is strengthened by observations of Cripto expression in 80% of human and mouse mammary tumors. At least three important roles for Cripto in development have created considerable interest, and each activity may be distinct in its mechanism of receptor signaling. One role is in the patterning of the anterior-posterior axis of the early embryo, a second is a crucial role in the development of the heart, and a third is in potentiating branching morphogenesis and modulating differentiation in the developing mammary gland. Whether these properties are functions of different forms of Cripto, different Cripto receptors or the distinct domains within this 15-38 kDa glycoprotein are examined here, but much remains to be revealed about this evolutionarily conserved gene product. Since all Cripto receptors have not yet been determined with certainty, future possible uses as therapeutic targets remain to be developed. Cripto is released or shed from expressing cells and may serve as an accessible marker gene in the early to mid-progressive stages of breast and other cancers. Meanwhile some speculations on possible receptor complexes for Cripto signaling in mammary cells are offered here as a spur to further discoveries.
Collapse
Affiliation(s)
- Eileen D Adamson
- La Jolla Cancer Research Center, The Burnham Institute, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
13
|
Imagawa W, Pedchenko VK, Helber J, Zhang H. Hormone/growth factor interactions mediating epithelial/stromal communication in mammary gland development and carcinogenesis. J Steroid Biochem Mol Biol 2002; 80:213-30. [PMID: 11897505 DOI: 10.1016/s0960-0760(01)00188-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Epithelial/mesenchymal interactions begin during embryonic development of the mammary gland and continue throughout mammary gland development into adult life. Stromal and epithelial growth factors that may mediate interactions between these compartments of the mammary gland are reviewed. Since mammogenic hormones are the primary regulators of mammary gland development, special consideration is given to hormonal regulation of growth factors in order to explore the integration of hormones and growth factors in the regulation of mammary gland growth and neoplasia. Examination of hormonal regulation of the fibroblast growth factor (FGF)-7/FGFR2-IIIb receptor system in the mammary gland reveals that mammogenic hormones differentially regulate the synthesis of stromal growth factors and their epithelial receptors. These effects serve to optimize the action of estrogen and progesterone on mammary gland development and illustrate that the ratio of these two hormones is critical in regulating this growth factor axis. The role of stromal/epithelial mitogenic microenvironments in modulating the genotype and phenotype of preneoplastic and neoplastic lesions by chemical carcinogens is discussed. Finally, changes in growth factor expression during mammary tumor progression are described to illustrate the relative roles that stromally-derived and epithelial-derived growth factors may play during progression to hormone independent tumor growth.
Collapse
Affiliation(s)
- Walter Imagawa
- Department of Molecular and Integrative Physiology, Kansas Cancer Institute, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160-7417, USA.
| | | | | | | |
Collapse
|
14
|
Bianco C, Normanno N, De Luca A, Maiello MR, Wechselberger C, Sun Y, Khan N, Adkins H, Sanicola M, Vonderhaar B, Cohen B, Seno M, Salomon D. Detection and localization of Cripto-1 binding in mouse mammary epithelial cells and in the mouse mammary gland using an immunoglobulin-cripto-1 fusion protein. J Cell Physiol 2002; 190:74-82. [PMID: 11807813 DOI: 10.1002/jcp.10037] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Human Cripto-1 (CR-1), a member of the epidermal growth factor-CFC (EGF-CFC) family of peptides, is expressed in the developing mouse mammary gland and can modulate mammary epithelial cell migration, branching morphogenesis and milk protein expression in vitro. In order to screen for a CR-1 receptor and to identify potential CR-1 target tissues, we constructed a fusion protein comprising the EGF-like domain of CR-1 and the Fc domain of a human IgG1. The recombinant CR-1 fusion protein (CR-1-Fc) was biologically active as it was able to activate the ras/raf/mitogen activated protein kinase (MAPK) pathway and to inhibit transcription of the milk protein beta-casein in NMuMG and HC-11 mouse mammary epithelial cells. By using immunocytochemistry and by an in situ enzyme-linked immunosorbent assay (ELISA), CR-1-Fc was found to specifically bind to NMuMG and HC-11 cells. Finally, immunohistochemical analysis using CR-1-Fc showed a specific localization of CR-1 binding to tissue sections from mouse mammary gland. In particular, more than 60% of the epithelial cells were intensely stained with the CR-1-Fc fusion protein in the lactating mouse mammary gland, whereas approximately 25% of the mammary epithelial cells were stained in the gland from pregnant mouse. Since expression of mouse cripto-1 (Cr-1) in the pregnant and lactating mouse mammary gland as well as its presence in milk has been previously demonstrated, these data strongly suggest that an autocrine pathway involving Cr-1 and its putative receptor is operating in the mouse mammary gland during pregnancy and lactation.
Collapse
Affiliation(s)
- Caterina Bianco
- Tumor Growth Factor Section, Basic Research Laboratory, National Cancer Institute/NIH,, Bldg 10, Rm 5B39, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Wechselberger C, Ebert AD, Bianco C, Khan NI, Sun Y, Wallace-Jones B, Montesano R, Salomon DS. Cripto-1 enhances migration and branching morphogenesis of mouse mammary epithelial cells. Exp Cell Res 2001; 266:95-105. [PMID: 11339828 DOI: 10.1006/excr.2001.5195] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cripto-1 is an EGF-CFC protein that performs an important role during early vertebrate development and is overexpressed in several types of human cancer. In the present study mouse EpH4, NMuMG, and TAC-2 mammary epithelial cells that are negative for endogenous cripto-1 expression were transfected with the murine cripto-1 cDNA. Cripto-1-transfected cell lines exhibited functional and physiological differences from the original cell lines including enhanced anchorage-independent growth in soft agar (EpH4 cells), growth in serum-free medium, increased proliferation, and formation of branching, duct-like structures when grown in a three-dimensional collagen type I matrix. Furthermore, cripto-1-expressing cell lines showed elevated migration in vitro in Boyden chamber and wound-healing assays. These results indicate that cripto-1 can function through an autocrine pathway that enables mammary epithelial cells to undergo an epithelial to mesenchymal transition.
Collapse
Affiliation(s)
- C Wechselberger
- Laboratory of Tumor Immunology and Biology, Tumor Growth Factor Section, National Cancer Institute, National Institutes of Health, Building 10, Room 5B39, 10 Center Drive, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Overexpression of ErbB2, a receptor-like tyrosine kinase, is shared by several types of human carcinomas. In breast tumors the extent of overexpression has a prognostic value, thus identifying the oncoprotein as a target for therapeutic strategies. Already, antibodies to ErbB2 are used in combination with chemotherapy in the treatment of metastasizing breast cancer. The mechanisms underlying the oncogenic action of ErbB2 involve a complex network in which ErbB2 acts as a ligand-less signaling subunit of three other receptors that directly bind a large repertoire of stroma-derived growth factors. The major partners of ErbB2 in carcinomas are ErbB1 (also called EGFR) and ErbB3, a kinase-defective receptor whose potent mitogenic action is activated in the context of heterodimeric complexes. Why ErbB2-containing heterodimers are relatively oncopotent is a function of a number of processes. Apparently, these heterodimers evade normal inactivation processes, by decreasing the rate of ligand dissociation, internalizing relatively slowly and avoiding the degradative pathway by returning to the cell surface. On the other hand, the heterodimers strongly recruit survival and mitogenic pathways such as the mitogen-activated protein kinases and the phosphatidylinositol 3-kinase. Hyper-activated signaling through the ErbB-signaling network results in dysregulation of the cell cycle homeostatic machinery, with upregulation of active cyclin-D/CDK complexes. Recent data indicate that cell cycle regulators are also linked to chemoresistance in ErbB2-dependent breast carcinoma. Together with D-type cyclins, it seems that the CDK inhibitor p21waf1 plays an important role in evasion from apoptosis. These recent findings herald a preliminary understanding of the output layer which connects elevated ErbB-signaling to oncogenesis and chemoresistance.
Collapse
Affiliation(s)
- D Harari
- Department of Biological Regulation, the Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
17
|
Darcy KM, Zangani D, Shea-Eaton W, Shoemaker SF, Lee PP, Mead LH, Mudipalli A, Megan R, Ip MM. Mammary fibroblasts stimulate growth, alveolar morphogenesis, and functional differentiation of normal rat mammary epithelial cells. In Vitro Cell Dev Biol Anim 2000; 36:578-92. [PMID: 11212143 DOI: 10.1007/bf02577526] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Stromal-epithelial interactions play a profound role in regulating normal and tumor development in the mammary gland. The molecular details of these events, however, are incompletely understood. A novel serum-free transwell coculture system was developed to study the natural paracrine interactions between mammary epithelial cells (MEC) and mammary fibroblasts (MFC) isolated from normal rats during puberty. The MEC were cultured within a reconstituted basement membrane (RBM) in transwell inserts with or without MFC in the lower well. The presence of MFC stimulated epithelial cell growth, induced alveolar morphogenesis, and enhanced casein accumulation, a marker of the functional differentiation of MEC, but did not induce ductal morphogenesis. Potent mitogenic, morphogenic, and lactogenic effects were observed when the MFC were cultured either on plastic or within a layer of RBM. Although most MFC maintained on plastic died after 1 wk in serum-free medium, fibroblast survival was enhanced significantly when the MFC were cultured within the RBM. Taken together, this in vitro model effectively reconstitutes a physiologically relevant three-dimensional microenvironment for MEC and MFC, and seems ideal for studying the locally derived factors that regulate the developmental fate of the epithelial and fibroblast compartments of the mammary gland.
Collapse
Affiliation(s)
- K M Darcy
- Department of Pharmacology and Therapeutics, Grace Cancer Drug Center, Roswell Park Cancer Institute, Buffalo, New York 14263,USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
De Santis ML, Martinez-Lacaci I, Bianco C, Seno M, Wallace-Jones B, Kim N, Ebert A, Wechselberger C, Salomon DS. Cripto-1 induces apoptosis in HC-11 mouse mammary epithelial cells. Cell Death Differ 2000; 7:189-96. [PMID: 10713733 DOI: 10.1038/sj.cdd.4400588] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Cripto-1 (CR-1) is an epidermal growth factor (EGF)-related protein. CR-1 can inhibit beta-casein and whey acidic protein expression in mouse mammary epithelial cells. The present study demonstrates that CR-1 can induce apoptosis in HC-11 mouse mammary epithelial cells, as measured by bis-benzimide stained nuclei, TUNEL assay and cell death ELISA. Apoptosis could be observed after 2 days of exposure of confluent HC-11 cells to CR-1 in the absence of the survival factors EGF and insulin, with maximum apoptosis occurring at 3 days. A reduction in poly(ADP-ribose) polymerase (PARP) expression and an increase in beta-catenin cleavage was found after 18 h of exposure to CR-1 suggesting that apoptosis was preceded by the induction of a caspase activity since the caspase inhibitor ZFAD.FMK could block the CR-1-induced reduction in PARP expression and CR-1-induced apoptosis. CR-1 was found to increase the expression of caspase-3-like protease. Although, the levels of p27kip1 and p21Bax did not change after exposure to CR-1 for 18 h, the levels of Bcl-xL became undetectable. These studies suggest that CR-1 promotes apoptosis by mediating the induction of caspase-3-like protease and downregulating the expression of Bcl-xL.
Collapse
Affiliation(s)
- M L De Santis
- Department of Molecular Pathology, Walter Reed Army Institute of Research, Washington DC 20307, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Darcy KM, Zangani D, Wohlhueter AL, Huang RY, Vaughan MM, Russell JA, Ip MM. Changes in ErbB2 (her-2/neu), ErbB3, and ErbB4 during growth, differentiation, and apoptosis of normal rat mammary epithelial cells. J Histochem Cytochem 2000; 48:63-80. [PMID: 10653587 DOI: 10.1177/002215540004800107] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Studies were undertaken to examine the natural role of ErbB2, ErbB3, and ErbB4 during the development of normal rat mammary epithelial cells (MECs) in vivo and in vitro. Immunohistochemical analysis demonstrated that mammary gland terminal end buds expressed abundant ErbB2 and ErbB4 but limited ErbB3 in pubescent rats, whereas luminal epithelial cells in nulliparous rats expressed ErbB2, ErbB3, and/or ErbB4. During pregnancy, ductal epithelial cells and stromal cells expressed abundant ErbB3 but limited ErbB2. Although ErbB2 and ErbB3 were downregulated throughout lactation, both receptors were re-expressed during involution. In contrast, ErbB4 was downregulated throughout pregnancy, lactation, and involution. Immunoblotting and immunoprecipitation studies confirmed the developmental expression of ErbB2 and ErbB3 in the mammary gland and the co-localization of distinct ErbB receptors in the mammary gland of nulliparous rats. In agreement with our in vivo findings, primary culture studies demonstrated that ErbB2 and ErbB3 were expressed in functionally immature, terminally differentiated and apoptotic MECs, and downregulated in functionally differentiated MECs. ErbB receptor signaling was required for epithelial cell growth, functional differentiation, and morphogenesis of immature MECs, and the survival of terminally differentiated MECs. Finally, ErbB4 expression did not interfere with functional differentiation and apoptosis of normal MECs.
Collapse
Affiliation(s)
- K M Darcy
- Department of Pharmacology and Therapeutics, Grace Cancer Drug Center, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
DARCY KATHLEENM, ZANGANI DANILO, SHEA-EATON WENDY, SHOEMAKER SUZANNEF, LEE PINGPINGH, MEAD LAWRENCEH, MUDIPALLI ANURADHA, MEGAN ROBERTA, IP MARGOTM. MAMMARY FIBROBLASTS STIMULATE GROWTH, ALVEOLAR MORPHOGENESIS, AND FUNCTIONAL DIFFERENTIATION OF NORMAL RAT MAMMARY EPITHELIAL CELLS. ACTA ACUST UNITED AC 2000. [DOI: 10.1290/1071-2690(2000)036<0578:mfsgam>2.0.co;2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Ma L, Gauvillé C, Berthois Y, Millot G, Johnson GR, Calvo F. Antisense expression for amphiregulin suppresses tumorigenicity of a transformed human breast epithelial cell line. Oncogene 1999; 18:6513-20. [PMID: 10597254 DOI: 10.1038/sj.onc.1203042] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The epidermal growth factor (EFG) family of receptors and their respective ligands play a major role in breast cancer progression and are the targets of new therapeutic approaches. Following immortalization with SV40 T antigen of normal human breast epithelial cells, a transformed variant cell line (NS2T2A1) was selected for its increased tumorigenicity in nude mice. This cell line was shown to have a higher expression of EGF receptors (EGFR) and amphiregulin (AR) when compared to their normal counterparts or less aggressive transformed cells. Dual staining of EGFR and AR was observed in 50-60% of NS2T2A1 cells, while 30-40% cells expressed AR only. To explore the potential tumorigenic role of AR, a 1.1 kb AR cDNA in an antisense orientation was transfected in NS2T2A1 cells. Three clones, selected by hygromycin B, expressed AR antisense RNA (AR AS1, AR AS2 and AR AS3 cell lines) in which AR protein expression was reduced (ranging from about 50 to < 5%). The anchorage-independent growth of AR AS cell lines was reduced to levels ranging from 32.4-6.8% relative to the control cell line transfected with the vector alone. The clones expressing AR antisense RNA showed a reversion of the malignant phenotype when injected in nude mice, since a significant reduction of tumor intake was observed coincident with a significant tumor mass reduction (> 96%). Moreover, intra-tumoral vascularization decreased significantly in tumors derived from AR AS cells (26.7, 70.7 and 50.4% of control). These in vitro and in vivo data reveal the oncogenic nature of AR in transformed breast epithelial cells and imply a role for AR in tumor angiogenesis.
Collapse
Affiliation(s)
- L Ma
- Laboratoire de Pharmacologie Expérimentale et Clinique, INSERM EP-9932, Institut de Génétique Moléculaire, Paris, France
| | | | | | | | | | | |
Collapse
|
22
|
Salomon DS, Bianco C, De Santis M. Cripto: a novel epidermal growth factor (EGF)-related peptide in mammary gland development and neoplasia. Bioessays 1999; 21:61-70. [PMID: 10070255 DOI: 10.1002/(sici)1521-1878(199901)21:1<61::aid-bies8>3.0.co;2-h] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Growth and morphogenesis in the mammary gland depend on locally derived growth factors such as those in the epidermal growth factor (EGF) superfamily. Cripto-1 (CR-1, human; Cr-1, mouse)--also known as teratocarcinoma-derived growth factor-1--is a novel EGF-related protein that induces branching morphogenesis in mammary epithelial cells both in vitro and in vivo and inhibits the expression of various milk proteins. In the mouse, Cr-1 is expressed in the growing terminal end buds in the virgin mouse mammary gland and expression increases during pregnancy and lactation. Cr-1/CR-1 is overexpressed in mouse and human mammary tumors and inappropriate overexpression of Cr-1 in mouse mammary epithelial cells can lead to the clonal expansion of ductal hyperplasias. Taken together, this evidence suggests that Cr-1/CR-1 performs a role in normal mammary gland development and that it might contribute to the early stages of mouse mammary tumorigenesis and the pathobiology of human breast cancer.
Collapse
Affiliation(s)
- D S Salomon
- Tumor Factor Growth Section, LTIB, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
23
|
Seno M, DeSantis M, Kannan S, Bianco C, Tada H, Kim N, Kosaka M, Gullick WJ, Yamada H, Salomon DS. Purification and characterization of a recombinant human cripto-1 protein. Growth Factors 1998; 15:215-29. [PMID: 9570042 DOI: 10.3109/08977199809002118] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cripto-1 (CR-1) is a novel protein that contains a modified EGF-like motif and that does not directly bind to any of the known erb B type-1 receptor tyrosine kinase receptors. To more clearly define the biological effects of CR-1 and to more adequately compare the structure-function relationships of CR-1 with other members of the EGF family of growth factors, we have expressed a modified, full-length recombinant human CR-1 protein (rhCR-1) in E. coli and have devised a procedure for the solubilization, refolding and purification of a biologically active form of this protein. We have generated the mature form of hCR-1 from computer assisted predictions of potential signal peptide cleavage sites. Expression of the modified rhCR-1 protein in E. coli was limited to the inclusion bodies. The rhCR-1 protein was found to be expressed at high levels in bacterial cells when fused to a histidine-tag sequence. Refolding of rhCR-1 was found to be difficult because of the large number of cysteine residues in the protein which results in protein aggregation. By chemically modifying the cysteine residues in the rhCR-1 protein with 3-trimethylammoniopropyl methanethiosulfonate, additional positive charges have been introduced into the protein by this disulfiding reagent. This modification facilitates solubilization of the protein when rhCR-1 is denatured. The solubilized, denatured protein was then purified by CM cation exchange and C4 reverse phase HPLC chromatography and refolded in a redox buffer. The refolded, modified rhCR-1 protein was found to be biologically active by its ability to inhibit beta-casein expression, to stimulate the tyrosine phosphorylation of Shc and the activation of MAPK and by its capacity to facilitate branching growth of mouse mammary epithelial cells in type I collagen gels.
Collapse
Affiliation(s)
- M Seno
- Department of Bioscience and Biotechnology, Faculty of Engineering, Okayama University, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|