1
|
Estrada‐Ortiz N, Starokozhko V, van Steenwijk H, van der Heide C, Permentier H, van Heemskerk L, Prins GH, Heegsma J, Faber KN, Bressers S, Steiblen G, de Groot A, Groome S, van Miert E, Groothuis G, de Graaf IAM. Disruption of vitamin A homeostasis by the biocide tetrakis(hydroxymethyl) phosphonium sulphate in pregnant rabbits. J Appl Toxicol 2022; 42:1921-1936. [PMID: 35857281 PMCID: PMC9804500 DOI: 10.1002/jat.4364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/29/2022] [Accepted: 07/09/2022] [Indexed: 01/05/2023]
Abstract
The biocide tetrakis(hydroxymethyl)phosphonium sulphate (THPS) and other members of the tetrakis(hydroxymethyl) phosphonium salts (THPX) family are associated with liver toxicity in several mammalian species and teratogenicity in rabbits. Malformations include skeletal changes and abnormalities in eye development and are very similar to those seen with vitamin A deficiency or excess. For this reason, it was hypothesized that teratogenicity of THPS(X) might be attributed to disturbances in retinol availability and/or metabolism as a result of maternal toxicity, for example, either due to insufficient dietary intake by the mothers or due to liver toxicity. Therefore, in the present study, liver toxicity and vitamin A homeostasis were studied in pregnant rabbits that were exposed to 13.8 or 46.0 mg/kg THPS during organogenesis and in precision-cut liver slices of rats and rabbits exposed to 0-70 μM THPS. Results show that in vivo exposure to THPS leads to a marked reduction of food intake, increased plasma concentrations of γ-glutamytransferase, degenerative changes in the liver and to changes in retinoid content in liver and plasma in the rabbits during organogenesis. In addition, THPS, both in vivo and ex vivo, caused a change in expression of proteins related to vitamin A metabolism and transport. Together, these observations could explain the birth defects observed in earlier teratogenicity studies.
Collapse
Affiliation(s)
- Natalia Estrada‐Ortiz
- Groningen Research Institute of Pharmacy (GRIP)University of GroningenGroningenThe Netherlands
| | - Viktoriia Starokozhko
- Groningen Research Institute of Pharmacy (GRIP)University of GroningenGroningenThe Netherlands
| | - Hidde van Steenwijk
- Groningen Research Institute of Pharmacy (GRIP)University of GroningenGroningenThe Netherlands
| | - Cor van der Heide
- Groningen Research Institute of Pharmacy (GRIP)University of GroningenGroningenThe Netherlands
| | - Hjalmar Permentier
- Groningen Research Institute of Pharmacy (GRIP)University of GroningenGroningenThe Netherlands
| | - Lisanne van Heemskerk
- Groningen Research Institute of Pharmacy (GRIP)University of GroningenGroningenThe Netherlands
| | - Grietje Harmanna Prins
- Groningen Research Institute of Pharmacy (GRIP)University of GroningenGroningenThe Netherlands
| | - Janette Heegsma
- Department of Gastroenterology and Hepatology, University of GroningenUniversity Medi‐cal Center GroningenGroningenThe Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University of GroningenUniversity Medi‐cal Center GroningenGroningenThe Netherlands
| | | | - Guy Steiblen
- Solvay, Toxicological and Environmental Risk Assessment UnitGenasFrance
| | - Antoinette de Groot
- Solvay, Toxicological and Environmental Risk Assessment UnitBruxellesBelgium
| | | | - Erik van Miert
- Solvay, Toxicological and Environmental Risk Assessment UnitBruxellesBelgium
| | - Geny Groothuis
- Groningen Research Institute of Pharmacy (GRIP)University of GroningenGroningenThe Netherlands
| | - Inge Anne Maria de Graaf
- University Medical Center Groningen, Surgical Research LaboratoryUniversity of GroningenGroningenThe Netherlands,School of Science and EngineeringUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
2
|
Steinhoff JS, Wagner C, Taschler U, Wulff S, Kiefer MF, Petricek KM, Wowro SJ, Oster M, Flores RE, Yang N, Li C, Meng Y, Sommerfeld M, Weger S, Henze A, Raila J, Lass A, Schupp M. Acute retinol mobilization by retinol-binding protein 4 in mouse liver induces fibroblast growth factor 21 expression. J Lipid Res 2022; 63:100268. [PMID: 36030930 PMCID: PMC9493389 DOI: 10.1016/j.jlr.2022.100268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 11/22/2022] Open
Abstract
Hepatocytes secrete retinol-binding protein 4 (RBP4) into circulation, thereby mobilizing vitamin A from the liver to provide retinol for extrahepatic tissues. Obesity and insulin resistance are associated with elevated RBP4 levels in the blood. However, in a previous study, we observed that chronically increased RBP4 by forced Rbp4 expression in the liver does not impair glucose homeostasis in mice. Here, we investigated the effects of an acute mobilization of hepatic vitamin A stores by hepatic overexpression of RBP4 in mice. We show that hepatic retinol mobilization decreases body fat content and enhances fat turnover. Mechanistically, we found that acute retinol mobilization increases hepatic expression and serum levels of fibroblast growth factor 21 (FGF21), which is regulated by retinol mobilization and retinoic acid in primary hepatocytes. Moreover, we provide evidence that the insulin-sensitizing effect of FGF21 is associated with organ-specific adaptations in retinoid homeostasis. Taken together, our findings identify a novel crosstalk between retinoid homeostasis and FGF21 in mice with acute RBP4-mediated retinol mobilization from the liver.
Collapse
Affiliation(s)
- Julia S Steinhoff
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Berlin, Germany
| | - Carina Wagner
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Ulrike Taschler
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Sascha Wulff
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Berlin, Germany
| | - Marie F Kiefer
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Berlin, Germany
| | - Konstantin M Petricek
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Berlin, Germany
| | - Sylvia J Wowro
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Berlin, Germany
| | - Moritz Oster
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Berlin, Germany
| | - Roberto E Flores
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Berlin, Germany
| | - Na Yang
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Berlin, Germany
| | - Chen Li
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Berlin, Germany
| | - Yueming Meng
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Berlin, Germany
| | - Manuela Sommerfeld
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Berlin, Germany
| | - Stefan Weger
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Campus Benjamin Franklin, Berlin, Germany
| | - Andrea Henze
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Halle, Germany; Junior Research Group ProAID, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Jens Raila
- Department of Physiology and Pathophysiology, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Achim Lass
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Michael Schupp
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Berlin, Germany.
| |
Collapse
|
3
|
Flores-Cortez YA, Barragán-Bonilla MI, Mendoza-Bello JM, GonzÁlez-Calixto C, Flores-Alfaro E, Espinoza-Rojo M. Interplay of retinol binding protein 4 with obesity and associated chronic alterations (Review). Mol Med Rep 2022; 26:244. [PMID: 35656886 PMCID: PMC9185696 DOI: 10.3892/mmr.2022.12760] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
Obesity is a multifactorial disease, defined as excessive fat deposition in adipose tissue. Adipose tissue is responsible for the production and secretion of numerous adipokines that induce metabolic disorders. Retinol‑binding protein 4 (RBP4) is an adipokine that transports vitamin A or retinol in the blood. High levels of RBP4 are associated with development of metabolic disease, including obesity, insulin resistance (IR), metabolic syndrome, and type 2 diabetes (T2D). The present review summarizes the role of RBP4 in obesity and associated chronic alterations. Excessive synthesis of RBP4 contributes to inflammatory characteristic of obesity by activation of immune cells and release of proinflammatory cytokines, such as TNFα and ILs, via the Toll‑like receptor/JNK pathway. The retinol‑RBP4 complex inhibits insulin signaling directly in adipocytes by activating Janus kinase 2 (JAK2)/STAT5/suppressor of cytokine signaling 3 signaling. This mechanism is retinol‑dependent and requires vitamin A receptor stimulation by retinoic acid 6 (STRA6). In muscle, RBP4 is associated with increased serine 307 phosphorylation of insulin receptor substrate‑1, which decreases its affinity to PI3K and promotes IR. In the liver, RBP4 increases hepatic expression of phosphoenolpyruvate carboxykinase, which increases production of glucose. Elevated serum RBP4 levels are associated with β‑cell dysfunction in T2D via the STRA6/JAK2/STAT1/insulin gene enhancer protein 1 pathway. By contrast, RBP4 induces endothelial inflammation via the NF‑κB/nicotinamide adenine dinucleotide phosphate oxidase pathway independently of retinol and STRA6, which stimulates expression of proinflammatory molecules, such as vascular cell adhesion molecule 1, E‑selectin, intercellular adhesion molecule 1, monocyte chemoattractant protein 1 and TNFα. RBP4 promotes oxidative stress by decreasing endothelial mitochondrial function; overall, it may serve as a useful biomarker in the diagnosis of obesity and prognosis of associated disease, as well as a potential therapeutic target for treatment of these diseases.
Collapse
Affiliation(s)
- Yaccil Adilene Flores-Cortez
- Laboratory of Molecular Biology and Genomic, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero 39087, Mexico
| | - Martha I. Barragán-Bonilla
- Laboratory of Molecular Biology and Genomic, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero 39087, Mexico
| | - Juan M. Mendoza-Bello
- Laboratory of Molecular Biology and Genomic, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero 39087, Mexico
| | | | - Eugenia Flores-Alfaro
- Laboratory of Clinical and Molecular Epidemiology, Faculty of Biological and Chemical Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero 39087, Mexico
| | - Mónica Espinoza-Rojo
- Laboratory of Molecular Biology and Genomic, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero 39087, Mexico
| |
Collapse
|
4
|
Steinhoff JS, Lass A, Schupp M. Retinoid Homeostasis and Beyond: How Retinol Binding Protein 4 Contributes to Health and Disease. Nutrients 2022; 14:1236. [PMID: 35334893 PMCID: PMC8951293 DOI: 10.3390/nu14061236] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 02/06/2023] Open
Abstract
Retinol binding protein 4 (RBP4) is the specific transport protein of the lipophilic vitamin A, retinol, in blood. Circulating RBP4 originates from the liver. It is secreted by hepatocytes after it has been loaded with retinol and binding to transthyretin (TTR). TTR association prevents renal filtration due to the formation of a higher molecular weight complex. In the circulation, RBP4 binds to specific membrane receptors, thereby delivering retinol to target cells, rendering liver-secreted RBP4 the major mechanism to distribute hepatic vitamin A stores to extrahepatic tissues. In particular, binding of RBP4 to 'stimulated by retinoic acid 6' (STRA6) is required to balance tissue retinoid responses in a highly homeostatic manner. Consequently, defects/mutations in RBP4 can cause a variety of conditions and diseases due to dysregulated retinoid homeostasis and cover embryonic development, vision, metabolism, and cardiovascular diseases. Aside from the effects related to retinol transport, non-canonical functions of RBP4 have also been reported. In this review, we summarize the current knowledge on the regulation and function of RBP4 in health and disease derived from murine models and human mutations.
Collapse
Affiliation(s)
- Julia S. Steinhoff
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular Metabolic Renal (CMR)-Research Center, 10115 Berlin, Germany;
| | - Achim Lass
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Heinrichstraße 31/II, A-8010 Graz, Austria;
- Field of Excellence BioHealth, University of Graz, Heinrichstraße 31/II, A-8010 Graz, Austria
| | - Michael Schupp
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular Metabolic Renal (CMR)-Research Center, 10115 Berlin, Germany;
| |
Collapse
|
5
|
Yoshida Y, Matsunaga N, Nakao T, Hamamura K, Kondo H, Ide T, Tsutsui H, Tsuruta A, Kurogi M, Nakaya M, Kurose H, Koyanagi S, Ohdo S. Alteration of circadian machinery in monocytes underlies chronic kidney disease-associated cardiac inflammation and fibrosis. Nat Commun 2021; 12:2783. [PMID: 33986294 PMCID: PMC8119956 DOI: 10.1038/s41467-021-23050-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 04/12/2021] [Indexed: 12/17/2022] Open
Abstract
Dysfunction of the circadian clock has been implicated in the pathogenesis of cardiovascular disease. The CLOCK protein is a core molecular component of the circadian oscillator, so that mice with a mutated Clock gene (Clk/Clk) exhibit abnormal rhythms in numerous physiological processes. However, here we report that chronic kidney disease (CKD)-induced cardiac inflammation and fibrosis are attenuated in Clk/Clk mice even though they have high blood pressure and increased serum angiotensin II levels. A search for the underlying cause of the attenuation of heart disorder in Clk/Clk mice with 5/6 nephrectomy (5/6Nx) led to identification of the monocytic expression of G protein-coupled receptor 68 (GPR68) as a risk factor of CKD-induced inflammation and fibrosis of heart. 5/6Nx induces the expression of GPR68 in circulating monocytes via altered CLOCK activation by increasing serum levels of retinol and its binding protein (RBP4). The high-GPR68-expressing monocytes have increased potential for producing inflammatory cytokines, and their cardiac infiltration under CKD conditions exacerbates inflammation and fibrosis of heart. Serum retinol and RBP4 levels in CKD patients are also sufficient to induce the expression of GPR68 in human monocytes. Our present study reveals an uncovered role of monocytic clock genes in CKD-induced heart failure.
Collapse
Affiliation(s)
- Yuya Yoshida
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoya Matsunaga
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
- Department of Glocal Healthcare Science, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Takaharu Nakao
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Kengo Hamamura
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideaki Kondo
- Center for Sleep Medicine, Saiseikai Nagasaki Hospital, Katafuchi, Nagasaki, Japan
| | - Tomomi Ide
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akito Tsuruta
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Masayuki Kurogi
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Michio Nakaya
- Department of Pharmacology and Toxicology, Facility of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Hitoshi Kurose
- Department of Pharmacology and Toxicology, Facility of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoru Koyanagi
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
- Department of Glocal Healthcare Science, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Shigehiro Ohdo
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
6
|
Steinhoff JS, Lass A, Schupp M. Biological Functions of RBP4 and Its Relevance for Human Diseases. Front Physiol 2021; 12:659977. [PMID: 33790810 PMCID: PMC8006376 DOI: 10.3389/fphys.2021.659977] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Retinol binding protein 4 (RBP4) is a member of the lipocalin family and the major transport protein of the hydrophobic molecule retinol, also known as vitamin A, in the circulation. Expression of RBP4 is highest in the liver, where most of the body’s vitamin A reserves are stored as retinyl esters. For the mobilization of vitamin A from the liver, retinyl esters are hydrolyzed to retinol, which then binds to RBP4 in the hepatocyte. After associating with transthyretin (TTR), the retinol/RBP4/TTR complex is released into the bloodstream and delivers retinol to tissues via binding to specific membrane receptors. So far, two distinct RBP4 receptors have been identified that mediate the uptake of retinol across the cell membrane and, under specific conditions, bi-directional retinol transport. Although most of RBP4’s actions depend on its role in retinoid homeostasis, functions independent of retinol transport have been described. In this review, we summarize and discuss the recent findings on the structure, regulation, and functions of RBP4 and lay out the biological relevance of this lipocalin for human diseases.
Collapse
Affiliation(s)
- Julia S Steinhoff
- Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Achim Lass
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Michael Schupp
- Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
7
|
Abstract
Hepatic stellate cells (HSCs) are resident non-parenchymal liver pericytes whose plasticity enables them to regulate a remarkable range of physiologic and pathologic responses. To support their functions in health and disease, HSCs engage pathways regulating carbohydrate, mitochondrial, lipid, and retinoid homeostasis. In chronic liver injury, HSCs drive hepatic fibrosis and are implicated in inflammation and cancer. To do so, the cells activate, or transdifferentiate, from a quiescent state into proliferative, motile myofibroblasts that secrete extracellular matrix, which demands rapid adaptation to meet a heightened energy need. Adaptations include reprogramming of central carbon metabolism, enhanced mitochondrial number and activity, endoplasmic reticulum stress, and liberation of free fatty acids through autophagy-dependent hydrolysis of retinyl esters that are stored in cytoplasmic droplets. As an archetype for pericytes in other tissues, recognition of the HSC's metabolic drivers and vulnerabilities offer the potential to target these pathways therapeutically to enhance parenchymal growth and modulate repair.
Collapse
Affiliation(s)
- Parth Trivedi
- Division of Liver Diseases, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shuang Wang
- Division of Liver Diseases, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Scott L Friedman
- Division of Liver Diseases, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
8
|
Saeed A, Bartuzi P, Heegsma J, Dekker D, Kloosterhuis N, de Bruin A, Jonker JW, van de Sluis B, Faber KN. Impaired Hepatic Vitamin A Metabolism in NAFLD Mice Leading to Vitamin A Accumulation in Hepatocytes. Cell Mol Gastroenterol Hepatol 2020; 11:309-325.e3. [PMID: 32698042 PMCID: PMC7768561 DOI: 10.1016/j.jcmgh.2020.07.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Systemic retinol (vitamin A) homeostasis is controlled by the liver, involving close collaboration between hepatocytes and hepatic stellate cells (HSCs). Genetic variants in retinol metabolism (PNPLA3 and HSD17B13) are associated with non-alcoholic fatty liver disease (NAFLD) and disease progression. Still, little mechanistic details are known about hepatic vitamin A metabolism in NAFLD, which may affect carbohydrate and lipid metabolism, inflammation, oxidative stress and the development of fibrosis and cancer, e.g. all risk factors of NAFLD. METHODS Here, we analyzed vitamin A metabolism in 2 mouse models of NAFLD; mice fed a high-fat, high-cholesterol (HFC) diet and Leptinob mutant (ob/ob) mice. RESULTS Hepatic retinol and retinol binding protein 4 (RBP4) levels were significantly reduced in both mouse models of NAFLD. In contrast, hepatic retinyl palmitate levels (the vitamin A storage form) were significantly elevated in these mice. Transcriptome analysis revealed a hyperdynamic state of hepatic vitamin A metabolism, with enhanced retinol storage and metabolism (upregulated Lrat, Dgat1, Pnpla3, Raldh's and RAR/RXR-target genes) in fatty livers, in conjunction with induced hepatic inflammation (upregulated Cd68, Tnfα, Nos2, Il1β, Il-6) and fibrosis (upregulated Col1a1, Acta2, Tgfβ, Timp1). Autofluorescence analyses revealed prominent vitamin A accumulation in hepatocytes rather than HSC in HFC-fed mice. Palmitic acid exposure increased Lrat mRNA levels in primary rat hepatocytes and promoted retinyl palmitate accumulation when co-treated with retinol, which was not detected for similarly-treated primary rat HSCs. CONCLUSION NAFLD leads to cell type-specific rearrangements in retinol metabolism leading to vitamin A accumulation in hepatocytes. This may promote disease progression and/or affect therapeutic approaches targeting nuclear receptors.
Collapse
Affiliation(s)
- Ali Saeed
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan.
| | - Paulina Bartuzi
- Section of Molecular Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Janette Heegsma
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Laboratory Medicine, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Daphne Dekker
- Section of Molecular Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Niels Kloosterhuis
- Section of Molecular Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Alain de Bruin
- Section of Molecular Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Dutch Molecular Pathology Center, Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Johan W Jonker
- Section of Molecular Metabolism and Nutrition, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Bart van de Sluis
- Section of Molecular Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Laboratory Medicine, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
9
|
Farnesoid X receptor and bile acids regulate vitamin A storage. Sci Rep 2019; 9:19493. [PMID: 31862954 PMCID: PMC6925179 DOI: 10.1038/s41598-019-55988-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/29/2019] [Indexed: 12/18/2022] Open
Abstract
The nuclear receptor Farnesoid X Receptor (FXR) is activated by bile acids and controls multiple metabolic processes, including bile acid, lipid, carbohydrate, amino acid and energy metabolism. Vitamin A is needed for proper metabolic and immune control and requires bile acids for efficient intestinal absorption and storage in the liver. Here, we analyzed whether FXR regulates vitamin A metabolism. Compared to control animals, FXR-null mice showed strongly reduced (>90%) hepatic levels of retinol and retinyl palmitate and a significant reduction in lecithin retinol acyltransferase (LRAT), the enzyme responsible for hepatic vitamin A storage. Hepatic reintroduction of FXR in FXR-null mice induced vitamin A storage in the liver. Hepatic vitamin A levels were normal in intestine-specific FXR-null mice. Obeticholic acid (OCA, 3 weeks) treatment rapidly reduced (>60%) hepatic retinyl palmitate levels in mice, concurrent with strongly increased retinol levels (>5-fold). Similar, but milder effects were observed in cholic acid (12 weeks)-treated mice. OCA did not change hepatic LRAT protein levels, but strongly reduced all enzymes involved in hepatic retinyl ester hydrolysis, involving mostly post-transcriptional mechanisms. In conclusion, vitamin A metabolism in the mouse liver heavily depends on the FXR and FXR-targeted therapies may be prone to cause vitamin A-related pathologies.
Collapse
|
10
|
YAP integrates the regulatory Snail/HNF4α circuitry controlling epithelial/hepatocyte differentiation. Cell Death Dis 2019; 10:768. [PMID: 31601778 PMCID: PMC6787001 DOI: 10.1038/s41419-019-2000-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/29/2019] [Accepted: 06/24/2019] [Indexed: 12/17/2022]
Abstract
Yes-associated protein (YAP) is a transcriptional co-factor involved in many cell processes, including development, proliferation, stemness, differentiation, and tumorigenesis. It has been described as a sensor of mechanical and biochemical stimuli that enables cells to integrate environmental signals. Although in the liver the correlation between extracellular matrix elasticity (greatly increased in the most of chronic hepatic diseases), differentiation/functional state of parenchymal cells and subcellular localization/activation of YAP has been previously reported, its role as regulator of the hepatocyte differentiation remains to be clarified. The aim of this study was to evaluate the role of YAP in the regulation of epithelial/hepatocyte differentiation and to clarify how a transducer of general stimuli can integrate tissue-specific molecular mechanisms determining specific cell outcomes. By means of YAP silencing and overexpression we demonstrated that YAP has a functional role in the repression of epithelial/hepatocyte differentiation by inversely modulating the expression of Snail (master regulator of the epithelial-to-mesenchymal transition and liver stemness) and HNF4α (master regulator of hepatocyte differentiation) at transcriptional level, through the direct occupancy of their promoters. Furthermore, we found that Snail, in turn, is able to positively control YAP expression influencing protein level and subcellular localization and that HNF4α stably represses YAP transcription in differentiated hepatocytes both in cell culture and in adult liver. Overall, our data indicate YAP as a new member of the HNF4/Snail epistatic molecular circuitry previously demonstrated to control liver cell state. In this model, the dynamic balance between three main transcriptional regulators, that are able to control reciprocally their expression/activity, is responsible for the induction/maintenance of different liver cell differentiation states and its modulation could be the aim of therapeutic protocols for several chronic liver diseases.
Collapse
|
11
|
Ma C, Yang Y, Xu L, Tu W, Chen F, Wang J. Rce1 suppresses invasion and metastasis of hepatocellular carcinoma via epithelial-mesenchymal transition induced by the TGF-β1/H-Ras signaling pathway. J Cell Physiol 2019; 235:2506-2520. [PMID: 31506952 DOI: 10.1002/jcp.29155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022]
Abstract
Ras converting enzyme 1 (Rce1) plays an important role in invasion and metastasis of malignancy. However, the mechanism has not yet been fully explored in hepatocellular carcinoma (HCC). Primarily, we investigated the expression of Rce1 and H-Ras influence on patient prognosis through the clinical data. Further, we analyzed the regulatory effects of Rce1/H-Ras signal pathway on the epithelial-mesenchymal transition (EMT) in vitro and in vivo. Finally, we screened out the protein which bonds with Rce1 by CO-IP experiment to discuss the mechanism of Rce1 in EMT of HCC. This research revealed a significantly decreased expression of Rce1 in HCC compared with noncancerous tissues (p < .05). In contrast, H-Ras expression was increased in the tumor. The expression of them was a close association with the differentiation and tumor-node-metastasis (TNM) stage of the tumor (p < .001; p = .035, respectively) and Rce1 was an independent prognostic indicator (95%Cl: 0.193-0.821; p = .013). Through targeted regulation of Rce1 by cDNA or small interfering RNA, results show that the lower expression of Rce1 facilitated EMT and promoted the invasion and metastasis of HCC (p < .05). Furthermore, the CO-IP experiment unfolded that Rce1 could bond with farnesyltransferase-β (FNTB) which mediated the expression of H-Ras. Conclusions: Rce1 inhibits EMT via target regulation H-Ras and suppress the early invasion and metastasis of HCC. It may be a potential therapeutic target and prognostic indicator for HCC.
Collapse
Affiliation(s)
- Chaoqun Ma
- Department of Biliary and Pancreatic Surgery/Cancer Research Center, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Yang
- Department of Hepatobiliary Pancreatic Surgery, First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Lei Xu
- Department of Biliary and Pancreatic Surgery/Cancer Research Center, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Tu
- Department of Hepatobiliary Pancreatic Surgery, First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Feng Chen
- Department of Hepatobiliary Pancreatic Surgery, First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Jianming Wang
- Department of Biliary and Pancreatic Surgery/Cancer Research Center, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Hepatobiliary Pancreatic Surgery, Affiliated Tianyou Hospital, Wuhan University of Science & Technology, Wuhan, Hubei, China
| |
Collapse
|
12
|
Saeed A, Dullaart RPF, Schreuder TCMA, Blokzijl H, Faber KN. Disturbed Vitamin A Metabolism in Non-Alcoholic Fatty Liver Disease (NAFLD). Nutrients 2017; 10:nu10010029. [PMID: 29286303 PMCID: PMC5793257 DOI: 10.3390/nu10010029] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/13/2017] [Accepted: 12/19/2017] [Indexed: 12/22/2022] Open
Abstract
Vitamin A is required for important physiological processes, including embryogenesis, vision, cell proliferation and differentiation, immune regulation, and glucose and lipid metabolism. Many of vitamin A’s functions are executed through retinoic acids that activate transcriptional networks controlled by retinoic acid receptors (RARs) and retinoid X receptors (RXRs).The liver plays a central role in vitamin A metabolism: (1) it produces bile supporting efficient intestinal absorption of fat-soluble nutrients like vitamin A; (2) it produces retinol binding protein 4 (RBP4) that distributes vitamin A, as retinol, to peripheral tissues; and (3) it harbors the largest body supply of vitamin A, mostly as retinyl esters, in hepatic stellate cells (HSCs). In times of inadequate dietary intake, the liver maintains stable circulating retinol levels of approximately 2 μmol/L, sufficient to provide the body with this vitamin for months. Liver diseases, in particular those leading to fibrosis and cirrhosis, are associated with impaired vitamin A homeostasis and may lead to vitamin A deficiency. Liver injury triggers HSCs to transdifferentiate to myofibroblasts that produce excessive amounts of extracellular matrix, leading to fibrosis. HSCs lose the retinyl ester stores in this process, ultimately leading to vitamin A deficiency. Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic syndrome and is a spectrum of conditions ranging from benign hepatic steatosis to non-alcoholic steatohepatitis (NASH); it may progress to cirrhosis and liver cancer. NASH is projected to be the main cause of liver failure in the near future. Retinoic acids are key regulators of glucose and lipid metabolism in the liver and adipose tissue, but it is unknown whether impaired vitamin A homeostasis contributes to or suppresses the development of NAFLD. A genetic variant of patatin-like phospholipase domain-containing 3 (PNPLA3-I148M) is the most prominent heritable factor associated with NAFLD. Interestingly, PNPLA3 harbors retinyl ester hydrolase activity and PNPLA3-I148M is associated with low serum retinol level, but enhanced retinyl esters in the liver of NAFLD patients. Low circulating retinol in NAFLD may therefore not reflect true “vitamin A deficiency”, but rather disturbed vitamin A metabolism. Here, we summarize current knowledge about vitamin A metabolism in NAFLD and its putative role in the progression of liver disease, as well as the therapeutic potential of vitamin A metabolites.
Collapse
Affiliation(s)
- Ali Saeed
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
- Institute of Molecular Biology & Bio-Technology, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Robin P F Dullaart
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
| | - Tim C M A Schreuder
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
| | - Hans Blokzijl
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
| |
Collapse
|
13
|
Modulating the Substrate Stiffness to Manipulate Differentiation of Resident Liver Stem Cells and to Improve the Differentiation State of Hepatocytes. Stem Cells Int 2016; 2016:5481493. [PMID: 27057172 PMCID: PMC4737459 DOI: 10.1155/2016/5481493] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 12/14/2022] Open
Abstract
In many cell types, several cellular processes, such as differentiation of stem/precursor cells, maintenance of differentiated phenotype, motility, adhesion, growth, and survival, strictly depend on the stiffness of extracellular matrix that, in vivo, characterizes their correspondent organ and tissue. In the liver, the stromal rigidity is essential to obtain the correct organ physiology whereas any alteration causes liver cell dysfunctions. The rigidity of the substrate is an element no longer negligible for the cultivation of several cell types, so that many data so far obtained, where cells have been cultured on plastic, could be revised. Regarding liver cells, standard culture conditions lead to the dedifferentiation of primary hepatocytes, transdifferentiation of stellate cells into myofibroblasts, and loss of fenestration of sinusoidal endothelium. Furthermore, standard cultivation of liver stem/precursor cells impedes an efficient execution of the epithelial/hepatocyte differentiation program, leading to the expansion of a cell population expressing only partially liver functions and products. Overcoming these limitations is mandatory for any approach of liver tissue engineering. Here we propose cell lines as in vitro models of liver stem cells and hepatocytes and an innovative culture method that takes into account the substrate stiffness to obtain, respectively, a rapid and efficient differentiation process and the maintenance of the fully differentiated phenotype.
Collapse
|
14
|
The aPKCι blocking agent ATM negatively regulates EMT and invasion of hepatocellular carcinoma. Cell Death Dis 2014; 5:e1129. [PMID: 24651432 PMCID: PMC3973203 DOI: 10.1038/cddis.2014.91] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/08/2014] [Accepted: 02/10/2014] [Indexed: 12/23/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) has an important role in invasion and metastasis of hepatocellular carcinoma (HCC). To explore the regulatory mechanism of atypical protein kinase C ι (aPKCι) signaling pathways to HCC development, and find an agent for targeted therapy for HCC, immortalized murine hepatocytes were employed to establish an EMT cell model of HCC, MMH-RT cells. Our study showed that EMT took place in MMH-R cells under the effect of transforming growth factor-β1 (TGF-β1) overexpressing aPKCι. Furthermore, we showed that the aPKCι blocking agent aurothiomalate (ATM) inhibited EMT and decreased invasion of hepatocytes. Moreover, ATM selectively inhibited proliferation of mesenchymal cells and HepG2 cells and induced apoptosis. However, ATM increased proliferation of epithelial cells and had little effect on apoptosis and invasion of epithelial cells. In conclusion, our result suggested that aPKCι could be an important bio-marker of tumor EMT, and used as an indicator of invasion and malignancy. ATM might be a promising agent for targeted treatment of HCC.
Collapse
|
15
|
Rossi C, Guantario B, Ferruzza S, Guguen-Guillouzo C, Sambuy Y, Scarino ML, Bellovino D. Co-cultures of enterocytes and hepatocytes for retinoid transport and metabolism. Toxicol In Vitro 2012; 26:1256-64. [PMID: 22542753 DOI: 10.1016/j.tiv.2012.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 04/04/2012] [Accepted: 04/10/2012] [Indexed: 02/03/2023]
Abstract
Dietary retinoid bioavailability involves the interplay of the intestine (transport and metabolism) and the liver (secondary metabolism). To reproduce these processes in vitro, differentiated human intestinal Caco-2/TC7 cells were co-cultured with two hepatocyte cell lines. Murine 3A cells and the more highly differentiated human HepaRG hepatocytes were both shown to respond to β-carotene (BC) and retinol (ROH) treatment by secreting Retinol Binding Protein 4 (RBP4). In co-culture experiments, Caco-2/TC7 were differentiated on filter inserts and transferred for the time of the experiment to culture wells containing confluent 3A or differentiated HepaRG cells. Functionality of the co-cultures was assayed using as endpoints the retinol-dependent secretion of RBP4 and the retinoic acid-dependent induction of CYP26A1 in hepatocytes. BC and ROH added to intestinal Caco-2/TC7 induced a reduction in intracellular RBP4 levels in the underlying hepatocytes and its secretion into the medium. HepaRG hepatocytes were also shown to up-regulate the expression of CYP26A1 mRNA in response to retinoid treatment. This in vitro model represents a useful tool to analyze the absorption and metabolism of retinoids and could be further developed to investigate other dietary compounds and molecules of pharmacological interest.
Collapse
Affiliation(s)
- Carlotta Rossi
- National Research Institute on Food and Nutrition (INRAN), Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
16
|
Guantario B, Conigliaro A, Amicone L, Sambuy Y, Bellovino D. The new murine hepatic 3A cell line responds to stress stimuli by activating an efficient Unfolded Protein Response (UPR). Toxicol In Vitro 2011; 26:7-15. [PMID: 22001960 DOI: 10.1016/j.tiv.2011.09.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 09/21/2011] [Accepted: 09/26/2011] [Indexed: 01/22/2023]
Abstract
In the present study we have investigated the properties of a novel cell line (3A cells) obtained from the liver of 14.5 days post coitum (dpc) wild-type mouse embryo. 3A cells morphology was characterized by fluorescent localization of F-actin and β-catenin. The expression of specific genes and proteins essential to liver function in these cells was comparable or even more efficient then in the differentiated hepatocytic cell line MMH-D6. 3A cells also showed the capability to excrete molecules in extracellular spaces resembling functional bile canaliculi, glycogen storage activity and the ability to control retinol-binding protein 4 secretion in response to retinol deprivation. Their response to the exogenous stress stimulus induced by tunicamycin was analysed by PCR Pathway Array containing 84 genes involved in the Unfolded Protein Response (UPR). 3A cells were shown to activate the UPR following a typical stressful event, indicating that this cellular model could be further exploited to investigate hepatic proteins secretion and specific reaction to different injuries.
Collapse
Affiliation(s)
- Barbara Guantario
- National Research Institute on Food and Nutrition (INRAN), Rome, Italy
| | | | | | | | | |
Collapse
|
17
|
Mancone C, Conti B, Amicone L, Bordoni V, Cicchini C, Calvo L, Perdomo AB, Fimia GM, Tripodi M, Alonzi T. Proteomic analysis reveals a major role for contact inhibition in the terminal differentiation of hepatocytes. J Hepatol 2010; 52:234-43. [PMID: 20031246 DOI: 10.1016/j.jhep.2009.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 09/15/2009] [Indexed: 01/09/2023]
Abstract
BACKGROUND & AIMS Hepatocytes are considered an exception of the paradigmatic inverse correlation between cell proliferation and terminal differentiation. In fact, hepatic vital functions are guaranteed by proliferating parenchymal cells during liver regeneration. However, a fine molecular characterization of the relationship between proliferation and differentiation in hepatocytes has been hampered by the lack of reliable in vivo or in vitro models. METHODS The hepatocyte terminal differentiation program was characterized in the immortalized, untransformed and differentiated hepatocytic cell line MMH, using several techniques. Particularly, two-dimensional difference gel electrophoresis combined to tandem mass spectrometry proteomic approach was used. Cell cycle and cell adhesion properties of MMH have been altered using either myc-overexpression and MEK1/2 inhibition or a constitutive active beta-catenin mutant, respectively. RESULTS The hepatocyte terminal differentiation program is stimulated by the exit from the cell cycle induced by cell-cell contact. Comparative proteomic analysis of proliferating versus quiescent hepatocytes validated the importance of contact inhibition, identifying 68 differently expressed gene products, representing 49 unique proteins. Notably, enzymes involved in important liver functions such as detoxification processes, lipid metabolism, iron and vitamin A storage and secretion, anti-inflammatory response and exocytosis were found significantly up-regulated in quiescent hepatocytes. Finally, we found that: (i) cell cycle arrest induced by MEK1/2 inhibition is not sufficient to induce hepatic product expression; (ii) constitutive activation of beta-catenin counteracts the contact inhibition-induced terminal differentiation. CONCLUSION The hepatocyte terminal differentiation program requires a quiescent state maintained by cell-cell contact through the E-cadherin/beta-catenin pathway, rather than the inhibition of proliferation.
Collapse
Affiliation(s)
- Carmine Mancone
- Laboratory of Gene Expression, National Institute for Infectious Diseases L. Spallanzani IRCCS, Via Portuense 292, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Landers KA, McKinnon BD, Li H, Subramaniam VN, Mortimer RH, Richard K. Carrier-mediated thyroid hormone transport into placenta by placental transthyretin. J Clin Endocrinol Metab 2009; 94:2610-6. [PMID: 19401362 DOI: 10.1210/jc.2009-0048] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
CONTEXT The serum protein transthyretin (TTR) plays an important role in the transport of thyroid hormone and retinol, which are critical for normal development of the human fetus. TTR is not only synthesized and secreted into the circulation by the liver and other tissues but is also synthesized by placental trophoblasts, which separate the maternal and fetal circulations. Whether it is secreted or taken up by these cells and whether it carries thyroid hormone is unknown. OBJECTIVE AND METHODS Our objective was to study placental handling of TTR and determine whether TTR participates in placental thyroid hormone transport. We investigated the capacity of human placenta and choriocarcinoma cell lines to secrete and internalize TTR and its ligands by Western blotting, immunofluorescence, and uptake of radiolabeled TTR. RESULTS Human placental explants and TTR expressing JEG-3 cells secrete TTR. JEG-3 cells grown in bicameral chambers secrete TTR, predominantly from the apical surface. Human placental explants and JEG-3 cells internalize Alexa Fluor488-labeled TTR and (125)I-TTR. Furthermore, binding to thyroid hormones (T(4), T(3)) increases (125)I-TTR uptake by enhancing tetramer formation. Cross-linking experiments confirm internalization of the TTR-(125)I-T(4) complex. CONCLUSIONS Our results suggest that human placenta and choriocarcinoma cells secrete transthyretin, which binds extracellular T(4), and that T(4) binding results in increased internalization of TTR-T(4) complex. TTR production by trophoblasts may represent a mechanism to allow transfer of maternal thyroid hormone to the fetal circulation that could have important implications for fetal development.
Collapse
Affiliation(s)
- Kelly A Landers
- Conjoint Endocrine Laboratory, Bancroft Centre, Royal Brisbane and Women's Hospital and Pathology Queensland, Herston, Queensland 4029, Australia
| | | | | | | | | | | |
Collapse
|
19
|
Roselli M, Finamore A, Britti MS, Konstantinov SR, Smidt H, de Vos WM, Mengheri E. The novel porcine Lactobacillus sobrius strain protects intestinal cells from enterotoxigenic Escherichia coli K88 infection and prevents membrane barrier damage. J Nutr 2007; 137:2709-16. [PMID: 18029488 DOI: 10.1093/jn/137.12.2709] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Lactobacilli have a potential to overcome intestinal disorders; however, the exact mode of action is still largely unknown. In this study, we have used the intestinal porcine intestinal IPEC-1 epithelial cells as a model to investigate a possible protective activity of a new Lactobacillus species, the L. sobrius DSM 16698(T), against intestinal injury induced by enterotoxigenic Escherichia coli (ETEC) K88 infection and the underlying mechanisms. Treatment of infected cells with L. sobrius strongly reduced the pathogen adhesion. L. sobrius was also able to prevent the ETEC-induced membrane damage by inhibiting delocalization of zonula occludens (ZO)-1, reduction of occludin amount, rearrangement of F-actin, and dephosphorylation of occludin caused by ETEC. RT-PCR and ELISA experiments showed that L. sobrius counteracted the ETEC-induced increase of IL-8 and upregulated the IL-10 expression. The involvement of IL-8 in the deleterious effects of ETEC was proven by neutralization of IL-8 with a specific antibody. A crucial role of IL-10 was indicated by blockage of IL-10 production with neutralizing anti-IL-10 antibody that fully abrogated the L. sobrius protection. L. sobrius was also able to inhibit the internalization of ETEC, which was likely favored by the leaking barrier. The protective effects were not found with L. amylovorus DSM 20531(T) treatment, a strain derived from cattle waste but phylogenetically closely related to L. sobrius. Together, the data indicate that L. sobrius exerts protection against the harmful effects of ETEC by different mechanisms, including pathogen adhesion inhibition and maintenance of membrane barrier integrity through IL-10 regulation.
Collapse
Affiliation(s)
- Marianna Roselli
- Istituto Nazionale di Ricerca per gli Alimenti e la Nutrizione, 00178 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
20
|
Finamore A, Britti MS, Roselli M, Bellovino D, Gaetani S, Mengheri E. Novel approach for food safety evaluation. Results of a pilot experiment to evaluate organic and conventional foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2004; 52:7425-7431. [PMID: 15563230 DOI: 10.1021/jf049097p] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
There is evidence that organic food often contains relatively high amounts of natural toxic compounds produced by fungi or plants, whereas corresponding conventional food tends to contain more synthetic toxins such as pesticide residues, but only a few studies have evaluated the impact of their consumption on health. This study proposes a novel approach to evaluate the potential health risk of organic compared to conventional food consumption, that is, the assay of sensitive markers of cell function in vulnerable conditions. The markers utilized were intestinal and splenic lymphocyte proliferative capacity and liver acute-phase reaction, both responding to the presence of toxins. The vulnerable conditions in which body defenses can be less efficient were weaning and protein-energy malnutrition. This study reports the results of a pilot experiment on one sample of eight varieties of organically and conventionally grown wheat. Weaned rats were assigned to two groups fed conventional (CV) or organic (ORG) wheat for 30 days. Each group was divided in two subgroups of well-nourished (WN) or protein-energy-malnourished (PEM) rats. For each rat, the lymphocyte proliferation was assayed by [(3)H]thymidine incorporation after stimulation of cells with a mitogen, in a culture medium containing either commercial fetal calf serum (FCS) or the corresponding rat serum (RS) to mimic the in vivo proliferative response. The acute-phase proteins (albumin, transthyretin, transferrin, ceruloplasmin, retinol-binding protein) were measured in plasma by Western blotting and immunostaining with specific antibodies. The proliferative response of lymphocytes cultured with FCS and the amount of acute-phase proteins of rats fed the ORG wheat sample, either WN or PEM, did not differ from those of rats fed the CV wheat sample. However, the proliferative response of lymphocytes cultured with RS was inhibited in PEM-CV compared with PEM-ORG. The content of mycotoxins was highest in the organic sample, and therefore the immunotoxic effect was probably due to other contaminants in the CV wheat. In conclusion, these results indicate that the conventional wheat sample tested represented a higher risk for lymphocyte function than the wheat sample organically grown, at least in vulnerable conditions.
Collapse
Affiliation(s)
- Alberto Finamore
- Istituto Nazionale di Ricerca per gli Alimenti e la Nutrizione, Via Ardeatina 546, 00178 Rome, Italy
| | | | | | | | | | | |
Collapse
|
21
|
Bordoni V, Alonzi T, Agrati C, Poccia F, Borsellino G, Mancino G, Fimia GM, Piacentini M, Fantoni A, Tripodi M. Murine hepatocyte cell lines promote expansion and differentiation of NK cells from stem cell precursors. Hepatology 2004; 39:1508-16. [PMID: 15185291 DOI: 10.1002/hep.20234] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
While fetal liver is a major hematopoietic organ, normal adult liver provides a suitable microenvironment for a variety of immune cells and, in several pathological conditions, may become a site of extramedullary hematopoiesis. The direct influence of hepatocytes on hematopoietic cell differentiation is poorly understood. We have previously reported that the Met murine hepatocyte (MMH) untransformed hepatocytic lines retain several morphological and functional features of hepatocytes in vivo and are able to support the survival, self-renewal, and differentiation of hematopoietic precursors in a cell-cell contact system. Here we report the effects of soluble factors released by MMH lines on bone marrow-derived cells. Lymphohematopoietic cells were cultured in two different cell contact-free systems: transwell inserts on MMH feeder layers, and MMH conditioned medium (MMH-CM). Both culture systems were able to promote a substantial expansion of bone marrow-derived cells and their differentiation to natural killer (NK) cells that express the NK1.1 and U5A2-13 markers. Purified hematopoietic stem cells (Sca-1+Lin-), either plated as a bulk population or as single cells, were also able to differentiate into NK cells, when cultured in MMH-CM; thus, soluble factors secreted by MMH lines promote the expansion and differentiation of NK precursor cells. MMH-CM-derived NK cells are functionally active; stimulation by interleukin (IL)-12 together with IL-18 was required to induce interferon-gamma (IFNgamma) expression and to enhance their cytotoxic activity. In conclusion, our findings may imply a direct role of hepatocytes in NK cell development, and the system we have used may provide a tool for studying the molecular mechanisms of NK cell differentiation.
Collapse
Affiliation(s)
- Veronica Bordoni
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Bellovino D, Apreda M, Gragnoli S, Massimi M, Gaetani S. Vitamin A transport: in vitro models for the study of RBP secretion. Mol Aspects Med 2003; 24:411-20. [PMID: 14585312 DOI: 10.1016/s0098-2997(03)00037-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Retinol-binding protein (RBP) is the specific plasma carrier of retinol, encharged of the vitamin transport from the liver to target cells. Ligand binding influences the RBP affinity for transthyretin (TTR), a homotetrameric protein involved in the RBP/TTR circulating complex, and the secretion rate of RBP. In fact, in vitamin A deficiency, the RBP release from the hepatocytes dramatically decreases and the protein accumulates in the cells, until retinol is available again. The mechanism is still not clear and new cellular models are needed to understand in detail how the soluble RBP can be retained inside the cell. In fish, a vitamin A transport system similar to that of higher vertebrates is emerging, although with significant differences.
Collapse
Affiliation(s)
- D Bellovino
- Istituto Nazionale di Ricerca per gli Alimenti e la Nutrizione (INRAN), Rome, Italy.
| | | | | | | | | |
Collapse
|
23
|
Gaetani S, Bellovino D, Apreda M, Devirgiliis C. Hepatic synthesis, maturation and complex formation between retinol-binding protein and transthyretin. Clin Chem Lab Med 2002; 40:1211-20. [PMID: 12553421 DOI: 10.1515/cclm.2002.211] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The retinol/retinol-binding protein/transthyretin complex, that carries and delivers hydrophobic retinol molecules to target cells, is assembled in the hepatocyte endoplasmic reticulum. In this paper, we review data related to events that lead to the formation of this complex, including transthyretin oligomerization and retinol-binding protein secretion. Our studies on transthyretin oligomerization have demonstrated that cleavage of signal peptide and the environment of endoplasmic reticulum influence transthyretin oligomerization. In vitro, mutated transthyretin without signal sequence fails to form dimers, while wild-type transthyretin is translocated into the microsomes where it forms dimers and small amounts of tetramers. In vivo, tetramers were detected in HepG2 cells but not in transfected Cos cells, suggesting that tissue-specific factors affect tetramer stability. In vitamin A deficiency, retinol-binding protein secretion is blocked and the protein accumulates in the endoplasmic reticulum, from where it is promptly released after retinol repletion. We use MMH cells to identify factors involved in complex formation, retention and secretion, the crucial steps to understand the molecular mechanisms underlying vitamin A homeostasis. In parallel, studies on vitamin A transport in fish are in progress; retinol-binding protein and transthyretin have already been characterized in different fish species.
Collapse
Affiliation(s)
- Sancia Gaetani
- Istituto Nazionale di Ricerca per gli Alimenti e la Nutrizione, Roma, Italy.
| | | | | | | |
Collapse
|
24
|
Pasquetto V, Wieland SF, Uprichard SL, Tripodi M, Chisari FV. Cytokine-sensitive replication of hepatitis B virus in immortalized mouse hepatocyte cultures. J Virol 2002; 76:5646-53. [PMID: 11991993 PMCID: PMC137053 DOI: 10.1128/jvi.76.11.5646-5653.2002] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We have previously shown that alpha/beta interferon (IFN-alpha/beta) and gamma interferon (IFN-gamma) inhibit hepatitis B virus (HBV) replication by eliminating pregenomic RNA containing viral capsids from the hepatocyte. We have also shown that HBV-specific cytotoxic T lymphocytes that induce IFN-gamma and tumor necrosis factor alpha (TNF-alpha) in the liver can inhibit HBV gene expression by destabilizing preformed viral mRNA. In order to further study the antiviral activity of IFN-alpha/beta, IFN-gamma, and TNF-alpha at the molecular level, we sought to reproduce these observations in an in vitro system. Accordingly, hepatocytes were derived from the livers of HBV-transgenic mice that also expressed the constitutively active cytoplasmic domain of the human hepatocyte growth factor receptor (c-Met). Here, we show that the resultant well-differentiated, continuous hepatocyte cell lines (HBV-Met) replicate HBV and that viral replication in these cells is efficiently controlled by IFN-alpha/beta or IFN-gamma, which eliminate pregenomic RNA-containing capsids from the cells as they do in the liver. Furthermore, we demonstrate that IFN-gamma, but not IFN-alpha/beta, is capable of inhibiting HBV gene expression in this system, especially when it acts synergistically with TNF-alpha. These cells should facilitate the analysis of the intracellular signaling pathways and effector mechanisms responsible for these antiviral effects.
Collapse
Affiliation(s)
- Valérie Pasquetto
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
25
|
Jessen KA, Satre MA. Mouse retinol binding protein gene: cloning, expression and regulation by retinoic acid. Mol Cell Biochem 2000; 211:85-94. [PMID: 11055551 DOI: 10.1023/a:1007136612749] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A full-length cDNA clone encoding the retinol binding protein (RBP) was isolated from a mouse liver cDNA library by hybridization screening. The nucleotide sequence of murine RBP is 85 and 95% homologous to that of human and rat RBP, respectively, with a deduced amino acid sequence > or = 83% homologous to both species. Analysis of the tissue expression pattern of RBP mRNA in the female mouse indicated relatively abundant expression in the liver, with lesser amounts in extrahepatic tissues including adipose, kidney, spleen and uterus, suggesting that these tissues may have a significant role in retinol homeostasis. Mouse liver cell RBP regulation by retinoids was also investigated. Both all-trans retinoic acid (AT-RA) and 9-cis retinoic acid (9c-RA) induced RBP mRNA expression in a dose- and time-dependent manner. Maximal levels (up to 4-fold above controls) were observed at > or = 48 h following treatment of both mouse hepatoma cells in vitro and in vivo in mice receiving a single, oral dose of either retinoid. Interestingly, 9c-RA was more potent at RBP induction in both in vivo and in vitro systems. Given the extent and temporal pattern of RBP induction, we suggest that the RA-mediated increase in liver RBP is part of a cellular protection mechanism. Increased levels of RBP would facilitate sequestration and possibly cellular export of RA in cells receiving prolonged exposure to high levels of RA, thus minimizing toxicity.
Collapse
Affiliation(s)
- K A Jessen
- Department of Nutrition, University of California, Davis 95616, USA
| | | |
Collapse
|