1
|
Markitantova YV, Grigoryan EN. Cellular and Molecular Triggers of Retinal Regeneration in Amphibians. Life (Basel) 2023; 13:1981. [PMID: 37895363 PMCID: PMC10608152 DOI: 10.3390/life13101981] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Understanding the mechanisms triggering the initiation of retinal regeneration in amphibians may advance the quest for prevention and treatment options for degenerating human retina diseases. Natural retinal regeneration in amphibians requires two cell sources, namely retinal pigment epithelium (RPE) and ciliary marginal zone. The disruption of RPE interaction with photoreceptors through surgery or injury triggers local and systemic responses for retinal protection. In mammals, disease-induced damage to the retina results in the shutdown of the function, cellular or oxidative stress, pronounced immune response, cell death and retinal degeneration. In contrast to retinal pathology in mammals, regenerative responses in amphibians have taxon-specific features ensuring efficient regeneration. These include rapid hemostasis, the recruitment of cells and factors of endogenous defense systems, activities of the immature immune system, high cell viability, and the efficiency of the extracellular matrix, cytoskeleton, and cell surface remodeling. These reactions are controlled by specific signaling pathways, transcription factors, and the epigenome, which are insufficiently studied. This review provides a summary of the mechanisms initiating retinal regeneration in amphibians and reveals its features collectively directed at recruiting universal responses to trauma to activate the cell sources of retinal regeneration. This study of the integrated molecular network of these processes is a prospect for future research in demand biomedicine.
Collapse
Affiliation(s)
| | - Eleonora N. Grigoryan
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| |
Collapse
|
2
|
Grigoryan EN, Markitantova YV. Cellular and Molecular Preconditions for Retinal Pigment Epithelium (RPE) Natural Reprogramming during Retinal Regeneration in Urodela. Biomedicines 2016; 4:E28. [PMID: 28536395 PMCID: PMC5344269 DOI: 10.3390/biomedicines4040028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/26/2016] [Accepted: 11/26/2016] [Indexed: 12/25/2022] Open
Abstract
Many regeneration processes in animals are based on the phenomenon of cell reprogramming followed by proliferation and differentiation in a different specialization direction. An insight into what makes natural (in vivo) cell reprogramming possible can help to solve a number of biomedical problems. In particular, the first problem is to reveal the intrinsic properties of the cells that are necessary and sufficient for reprogramming; the second, to evaluate these properties and, on this basis, to reveal potential endogenous sources for cell substitution in damaged tissues; and the third, to use the acquired data for developing approaches to in vitro cell reprogramming in order to obtain a cell reserve for damaged tissue repair. Normal cells of the retinal pigment epithelium (RPE) in newts (Urodela) can change their specialization and transform into retinal neurons and ganglion cells (i.e., actualize their retinogenic potential). Therefore, they can serve as a model that provides the possibility to identify factors of the initial competence of vertebrate cells for reprogramming in vivo. This review deals mainly with the endogenous properties of native newt RPE cells themselves and, to a lesser extent, with exogenous mechanisms regulating the process of reprogramming, which are actively discussed.
Collapse
Affiliation(s)
- Eleonora N Grigoryan
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia.
| | - Yuliya V Markitantova
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia.
| |
Collapse
|
3
|
Castellano P, Nwagbo C, Martinez LR, Eugenin EA. Methamphetamine compromises gap junctional communication in astrocytes and neurons. J Neurochem 2016; 137:561-75. [PMID: 26953131 DOI: 10.1111/jnc.13603] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 02/22/2016] [Accepted: 02/26/2016] [Indexed: 12/18/2022]
Abstract
Methamphetamine (meth) is a central nervous system (CNS) stimulant that results in psychological and physical dependency. The long-term effects of meth within the CNS include neuronal plasticity changes, blood-brain barrier compromise, inflammation, electrical dysfunction, neuronal/glial toxicity, and an increased risk to infectious diseases including HIV. Most of the reported meth effects in the CNS are related to dysregulation of chemical synapses by altering the release and uptake of neurotransmitters, especially dopamine, norepinephrine, and epinephrine. However, little is known about the effects of meth on connexin (Cx) containing channels, such as gap junctions (GJ) and hemichannels (HC). We examined the effects of meth on Cx expression, function, and its role in NeuroAIDS. We found that meth altered Cx expression and localization, decreased GJ communication between neurons and astrocytes, and induced the opening of Cx43/Cx36 HC. Furthermore, we found that these changes in GJ and HC induced by meth treatment were mediated by activation of dopamine receptors, suggesting that dysregulation of dopamine signaling induced by meth is essential for GJ and HC compromise. Meth-induced changes in GJ and HC contributed to amplified CNS toxicity by dysregulating glutamate metabolism and increasing the susceptibility of neurons and astrocytes to bystander apoptosis induced by HIV. Together, our results indicate that connexin containing channels, GJ and HC, are essential in the pathogenesis of meth and increase the sensitivity of the CNS to HIV CNS disease. Methamphetamine (meth) is an extremely addictive central nervous system stimulant. Meth reduced gap junctional (GJ) communication by inducing internalization of connexin-43 (Cx43) in astrocytes and reducing expression of Cx36 in neurons by a mechanism involving activation of dopamine receptors (see cartoon). Meth-induced changes in Cx containing channels increased extracellular levels of glutamate and resulted in higher sensitivity of neurons and astrocytes to apoptosis in response to HIV infection.
Collapse
Affiliation(s)
- Paul Castellano
- Public Health Research Institute (PHRI), New Jersey Medical School, Rutgers University, Newark, New Jersey, USA.,Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Chisom Nwagbo
- Public Health Research Institute (PHRI), New Jersey Medical School, Rutgers University, Newark, New Jersey, USA.,Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Luis R Martinez
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Eliseo A Eugenin
- Public Health Research Institute (PHRI), New Jersey Medical School, Rutgers University, Newark, New Jersey, USA.,Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| |
Collapse
|
4
|
Chiba C. The retinal pigment epithelium: An important player of retinal disorders and regeneration. Exp Eye Res 2014; 123:107-14. [DOI: 10.1016/j.exer.2013.07.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 07/06/2013] [Accepted: 07/08/2013] [Indexed: 12/28/2022]
|
5
|
Layer PG, Araki M, Vogel-Höpker A. New concepts for reconstruction of retinal and pigment epithelial tissues. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/eop.10.42] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Yoshikawa T, Mizuno A, Yasumuro H, Inami W, Vergara MN, Del Rio-Tsonis K, Chiba C. MEK-ERK and heparin-susceptible signaling pathways are involved in cell-cycle entry of the wound edge retinal pigment epithelium cells in the adult newt. Pigment Cell Melanoma Res 2011; 25:66-82. [PMID: 22026648 DOI: 10.1111/j.1755-148x.2011.00935.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The onset mechanism of proliferation in mitotically quiescent retinal pigment epithelium (RPE) cells is still obscure in humans and newts, although it can be a clinical target for manipulating both retinal diseases and regeneration. To address this issue, we investigated factors or signaling pathways involved in the first cell-cycle entry of RPE cells upon retinal injury using a newt retina-less eye-cup culture system in which the cells around the wound edge of the RPE exclusively enter the cell cycle. We found that MEK-ERK signaling is necessary for their cell-cycle entry, and signaling pathways whose activities can be modulated by heparin, such as Wnt-, Shh-, and thrombin-mediated pathways, are capable of regulating the cell-cycle entry. Furthermore, we found that the cells inside the RPE have low proliferation competence even in the presence of serum, suggesting inversely that a loss of cell-to-cell contact would allow the cells to enter the cell cycle.
Collapse
Affiliation(s)
- Taro Yoshikawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | |
Collapse
|
7
|
Susaki K, Chiba C. MEK mediates in vitro neural transdifferentiation of the adult newt retinal pigment epithelium cells: Is FGF2 an induction factor? ACTA ACUST UNITED AC 2007; 20:364-79. [PMID: 17850510 DOI: 10.1111/j.1600-0749.2007.00407.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Adult newts can regenerate their entire retinas through transdifferentiation of the retinal pigment epithelium (RPE) cells. As yet, however, underlying molecular mechanisms remain virtually unknown. On the other hand, in embryonic/larval vertebrates, an MEK [mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase] pathway activated by fibroblast growth factor-2 (FGF2) is suggested to be involved in the induction of transdifferentiation of the RPE into a neural retina. Therefore, we examined using culture systems whether the FGF2/MEK pathway is also involved in the adult newt RPE transdifferentiation. Here we show that the adult newt RPE cells can switch to neural cells expressing pan-retinal-neuron (PRN) markers such as acetylated tubulin, and that an MEK pathway is essential for the induction of this process, whereas FGF2 seems an unlikely primary induction factor. In addition, we show by immunohistochemistry that the PRN markers are not expressed until the 1-3 cells thick regenerating retina, which contains retinal progenitor cells, appears. Our current results suggest that the activation of an MEK pathway in RPE cells might be involved in the induction process of retinal regeneration in the adult newt, however if this is the case, we must assume complementary mechanisms that repress the MEK-mediated misexpression of PRN markers in the initial process of transdifferentiation.
Collapse
Affiliation(s)
- Kanako Susaki
- Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | | |
Collapse
|
8
|
Chiba C, Hoshino A, Nakamura K, Susaki K, Yamano Y, Kaneko Y, Kuwata O, Maruo F, Saito T. Visual cycle protein RPE65 persists in new retinal cells during retinal regeneration of adult newt. J Comp Neurol 2006; 495:391-407. [PMID: 16485283 DOI: 10.1002/cne.20880] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Adult newts can regenerate their entire retina through transdifferentiation of the retinal pigment epithelium (RPE). The objective of this study was to redescribe the retina regeneration process by means of modern biological techniques. We report two different antibodies (RPE-No.112 and MAB5428) that recognize the newt homolog of RPE65, which is involved in the visual cycle and exclusively label the RPE cell-layer in the adult newt eye. We analyzed the process of retinal regeneration by immunohistochemistry and immunoblotting and propose that this process should be divided into nine stages. We found that the RPE65 protein is present in the RPE-derived new retinal rudiment at 14 days postoperative (po) and in the regenerating retinas at the 3-4 cell stage (19 days po). These observations suggest that certain characteristics of RPE cells overlap with those of retinal stem/progenitor cells during the period of transdifferentiation. However, RPE65 protein was not detected in either retinal stem/progenitor cells in the ciliary marginal zone (CMZ) of adult eyes or in neuroepithelium present during retina development, where it was first detected in differentiated RPE. Moreover, the gene expression of RPE65 was drastically downregulated in the early phase of transdifferentiation (by 10 days po), while those of Connexin43 and Pax-6, both expressed in regenerating retinas, were differently upregulated. These observations suggest that the RPE65 protein in the RPE-derived retinal rudiment may represent the remainder after protein degradation or discharge rather than newly synthesized protein.
Collapse
Affiliation(s)
- Chikafumi Chiba
- Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Chiba C, Oi H, Saito T. Changes in somatic sodium currents of ganglion cells during retinal regeneration in the adult newt. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2005; 154:25-34. [PMID: 15617752 DOI: 10.1016/j.devbrainres.2004.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/28/2004] [Indexed: 11/19/2022]
Abstract
Adult newts can regenerate their entire retinas following a complete removal of the original tissues. During retinal regeneration, ganglion cells differentiate first from the progenitor cells, and develop their capability of spike firing. In the present study, to understand the process of functional differentiation of ganglion cells, we investigated alterations of their voltage-gated sodium currents during retinal regeneration by a whole-cell patch-clamp technique. To minimize space clamp errors, sodium currents were recorded from neurite-free somata of presumptive ganglion cells that were mechanically isolated from living slices of regenerating retinas at different morphological stages. During retinal regeneration, the somatic sodium current density was increased 2.6-fold (48 to 123 pF/pA) and the half-activating voltage was shifted slightly to more hyperpolarizing membrane potentials (-10 to -13 mV), while steady-state inactivation was not changed obviously. Curve fitting analysis of currents revealed that the sodium current consists of two components with different inactivation time constants. During retinal regeneration, the ratio of slow to fast inactivating current component was increased 2.6-fold (0.11 to 0.29). These results suggest that the somatic sodium currents of ganglion cells may undergo modifications of their voltage dependence and kinetic properties during retinal regeneration. A small number of the presumptive ganglion cells in regenerating retinas with a segregating inner plexiform layer exhibited sodium currents comparable to those in the normal retina. This might suggest that maturational regulation of sodium channel function starts during a period of synaptic layer formation within the retina.
Collapse
Affiliation(s)
- Chikafumi Chiba
- Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan.
| | | | | |
Collapse
|
10
|
Ohmasa M, Saito T. GABAA-receptor-mediated increase in intracellular Ca2+ concentration in the regenerating retina of adult newt. Neurosci Res 2004; 49:219-27. [PMID: 15140564 DOI: 10.1016/j.neures.2004.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2003] [Accepted: 02/26/2004] [Indexed: 11/22/2022]
Abstract
We used optical recording with the Ca(2+)-sensitive dye, fura-2, in living slice preparations from the newt retina at different stages of regeneration. gamma-Aminobutyric acid (GABA) induced pronounced [Ca(2+)](i) rise in progenitor cells and differentiating ganglion cells in the 'intermediate' stage of retinal regeneration. This [Ca(2+)](i) rise became less pronounced at the beginning of synapse formation in the late regenerating retina. At the late period of the late regenerating retina with the IPL thickness comparable to that of the control retina, GABA-induced [Ca(2+)](i) rise became undetectable or sometimes a small decrease in [Ca(2+)](i) was observed in regenerated ganglion cells. In contrast, N-methyl-d-aspartate (NMDA)-induced [Ca(2+)](i) rise appeared in premature ganglion cells and became prominent gradually as the regeneration proceeded. The [Ca(2+)](i) rise to GABA was mediated by GABA(A) receptors. This was shown by inhibition of GABA-induced Ca(2+) response with the preincubation of the GABA(A) receptor antagonist, bicuculline. The [Ca(2+)](i) rise due to GABA was suppressed in the absence of extracellular Ca(2+) or in the presence of the L-type voltage-gated Ca(2+) channel blocker, verapamil, suggesting that Ca(2+) may be entered through L-type Ca(2+) channels. Transient appearance of [Ca(2+)](i) rise to GABA during regeneration and origin of GABA-induced [Ca(2+)](i) rise were similar to those in the developing retina [J. Neurobiol. 24 (1993) 1600]. These similarities may suggest that common mechanisms may control neurogenesis and/or synaptogenesis during development and regeneration.
Collapse
Affiliation(s)
- Motoko Ohmasa
- Institute of Biological Sciences, The University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | | |
Collapse
|
11
|
Hormuzdi SG, Filippov MA, Mitropoulou G, Monyer H, Bruzzone R. Electrical synapses: a dynamic signaling system that shapes the activity of neuronal networks. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1662:113-37. [PMID: 15033583 DOI: 10.1016/j.bbamem.2003.10.023] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2003] [Revised: 10/14/2003] [Accepted: 10/14/2003] [Indexed: 01/25/2023]
Abstract
Gap junctions consist of intercellular channels dedicated to providing a direct pathway for ionic and biochemical communication between contacting cells. After an initial burst of publications describing electrical coupling in the brain, gap junctions progressively became less fashionable among neurobiologists, as the consensus was that this form of synaptic transmission would play a minimal role in shaping neuronal activity in higher vertebrates. Several new findings over the last decade (e.g. the implication of connexins in genetic diseases of the nervous system, in processing sensory information and in synchronizing the activity of neuronal networks) have brought gap junctions back into the spotlight. The appearance of gap junctional coupling in the nervous system is developmentally regulated, restricted to distinct cell types and persists after the establishment of chemical synapses, thus suggesting that this form of cell-cell signaling may be functionally interrelated with, rather than alternative to chemical transmission. This review focuses on gap junctions between neurons and summarizes the available data, derived from molecular, biological, electrophysiological, and genetic approaches, that are contributing to a new appreciation of their role in brain function.
Collapse
Affiliation(s)
- Sheriar G Hormuzdi
- Department of Clinical Neurobiology, Interdisciplinary Center for Neurosciences, University of Heidelberg, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
12
|
Pearson RA, Catsicas M, Becker DL, Bayley P, Lüneborg NL, Mobbs P. Ca2+ signalling and gap junction coupling within and between pigment epithelium and neural retina in the developing chick. Eur J Neurosci 2004; 19:2435-45. [PMID: 15128397 DOI: 10.1111/j.0953-816x.2004.03338.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Development of the neural retina is controlled in part by the adjacent retinal pigment epithelium (RPE). To understand better the mechanisms involved, we investigated calcium signalling and gap junctional coupling within and between the RPE and the neural retina in embryonic day (E) 5 chick. We show that the RPE and the ventricular zone (VZ) of the neural retina display spontaneous Ca(2+) transients. In the RPE, these often spread as waves between neighbouring cells. In the VZ, the frequency of both Ca(2+) transients and waves was lower than in RPE, but increased two-fold in its presence. Ca(2+) signals occasionally crossed the boundary between the RPE and VZ in either direction. In both tissues, the frequency of propagating Ca(2+) waves, but not of individual cell transients, was reduced by gap junction blockers. Use of the gap junction permeant tracer Neurobiotin showed that neural retina cells are coupled into clusters that span the thickness of the retina, and that RPE cells are both coupled together and to clusters of cells in the neural retina. Immunolabelling for Cx43 showed this gap junction protein is present at the junction between the RPE and VZ and thus could potentially mediate the coupling of the two tissues. Immunolabelling for beta-tubulin and vimentin showed that clusters of coupled cells in the neural retina comprised mainly progenitor cells. We conclude that gap junctions between progenitor cells, and between these cells and the RPE, may orchestrate retinal proliferation/differentiation, via the propagation of Ca(2+) or other signalling molecules.
Collapse
Affiliation(s)
- Rachael A Pearson
- Department of Physiology, University College London, Gower Street, London, WC1E 6BT
| | | | | | | | | | | |
Collapse
|
13
|
Oi H, Chiba C, Saito T. A decay of gap junctions associated with ganglion cell differentiation during retinal regeneration of the adult newt. Vision Res 2003; 43:2847-59. [PMID: 14568373 DOI: 10.1016/j.visres.2003.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Changes in the gap junctional coupling and maturation of voltage-activated Na(+) currents during regeneration of newt retinas were examined by whole-cell patch-clamping in slice preparations. Progenitor cells in regenerating retinas did not exhibit Na(+) currents but showed prominent electrical and tracer couplings. Cells identified by LY-fills were typically slender. Na(+) currents were detected in premature ganglion cells with round somata in the 'intermediate-II' regenerating retina. No electrical and tracer couplings were observed between these cells. Mature ganglion cells did not exhibit electrical coupling, but showed tracer coupling. On average, the maximum Na(+) current amplitude recorded from premature ganglion cells was roughly 2.5-fold smaller than that of mature ganglion cells. In addition, the activation threshold of the Na(+) current was nearly 11 mV more positive than that of mature cells. We provide morphological and physiological evidence showing that loss of gap junctions between progenitor cells is associated with ganglion cell differentiation during retinal regeneration and that new gap junctions are recreated between mature ganglion cells. Also we provide evidence suggesting that the loss of gap junctions correlates with the appearance of voltage-activated Na(+) currents in ganglion cells.
Collapse
Affiliation(s)
- Hanako Oi
- Institute of Biological Sciences, The University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | | | | |
Collapse
|
14
|
Ohmasa M, Saito T. Muscarinic calcium mobilization in the regenerating retina of adult newt. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 145:61-9. [PMID: 14519494 DOI: 10.1016/s0165-3806(03)00214-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We used optical recording with a Ca(2+)-sensitive dye, fura2, in living slice preparations from the newt retina at different stages of regeneration. ACh produced the most pronounced [Ca2+]i rise in progenitor cells and premature ganglion cells of the earlier stage of retinal regeneration, but less pronounced Ca2+ response in ganglion cells just before, or at the beginning of, synaptogenesis. The [Ca2+]i rise to ACh was mediated by mAChRs. This was shown by inhibition of the ACh-induced Ca2+ response with a preincubation of the mAChR antagonist atropine as well as with direct stimulation of the [Ca2+]i rise by the mAChR agonist muscarine. This muscarine-induced [Ca2+]i rise was more greatly suppressed by the M1 and/or M3 preferring mAChR antagonists than by the M2 preferring mAChR antagonist. The [Ca2+]i rise due to muscarine was not suppressed in the absence of extracellular Ca2+, but suppressed in part in the presence of the L-type voltage-gated Ca2+ channel blockers, verapamil or nicardipine. Furthermore, thapsigargin (TG), a Ca-ATPase inhibitor, abolished the muscarine-induced [Ca2+]i rise in the absence of extracellular Ca2+. These results suggest that the mAChR-mediated [Ca2+]i rise is mainly a result of a release of Ca2+ from intracellular stores. TG produced a slow rise in the resting level of [Ca2+]i. This [Ca2+]i raise was suppressed as extracellular Ca2+ was omitted, whereas a rapid rise in [Ca2+]i occurred when extracellular Ca2+ was reintroduced, suggesting the occurrence of the capacitative Ca2+ influx in the progenitor cells and premature ganglion cells of the regenerating newt retina.
Collapse
Affiliation(s)
- Motoko Ohmasa
- Institute of Biological Sciences, The University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | | |
Collapse
|
15
|
Oi H, Chiba C, Saito T. The appearance and maturation of excitatory and inhibitory neurotransmitter sensitivity during retinal regeneration of the adult newt. Neurosci Res 2003; 47:117-29. [PMID: 12941453 DOI: 10.1016/s0168-0102(03)00190-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Using living slice preparations from newt retinas at different stages of regeneration, we examined the time course of appearance and maturation of neurotransmitter-induced currents with whole-cell patch-clamp methods. Neurons from which currents were recorded were identified by Lucifer Yellow fills. All progenitor cells examined at the regenerating retinas did not express any voltage-gated Na+ currents and responsiveness to excitatory amino acid analogues (AMPA and NMDA) and inhibitory amino acids (GABA and glycine). Voltage-gated Na+ currents were first detected in premature ganglion cells with round cell body located at the most proximal level of the 'intermediate-II' regenerating retina. AMPA- GABA- and glycine-induced currents were simultaneously observed in many premature ganglion cells expressing Na+ channels, but not all, suggesting that the onset of the Na+ channels is slightly earlier than that of excitatory and inhibitory amino acid receptors in regeneration. NMDA-evoked currents were first observed in the 'intermediate-III' regenerating retina just before the synaptogenesis. Pharmacological properties and reversal potential values of the excitatory and inhibitory amino acid responses did not change substantially between regenerating ganglion cells and mature ganglion cells, while rectification properties of current-voltage relations for AMPA and NMDA responses were somewhat different between them.
Collapse
Affiliation(s)
- Hanako Oi
- Institute of Biological Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | | | | |
Collapse
|
16
|
Umino Y, Saito T. Spatial and temporal patterns of distribution of the gap junctional protein connexin43 during retinal regeneration of adult newt. J Comp Neurol 2002; 454:255-62. [PMID: 12442316 DOI: 10.1002/cne.10429] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Newts possess the ability to regenerate a functional retina after complete removal of the original retina. We performed immunoblot and immunohistochemical analyses of newt retinas at different stages of regeneration by using an antibody against a gap junction channel protein, connexin43 (Cx43). The specificity of the antibody was shown on immunoblots as well as immunohistochemical staining pattern in the normal retina. Punctate Cx43 immunolabeling was detected intensely between proliferating cell nuclear antigen-immunoreactive progenitor cells in the regenerating retinas, and the amount of this labeling tended to be prominent along both scleral and vitreal sides. The amount of Cx43 became less abundant as regeneration proceeded. This temporal loss of Cx43 during regeneration was also shown on the immunoblot analysis. Furthermore, the loss of Cx43 was observed in a spatial manner in the peripheral retina, where progenitor cells clustered at the ciliary marginal zone (CMZ) are adding new cells of all types in order toward the central retina. Immunolabeling often extended longitudinally throughout the retina when regenerating retinas became thick. Double immunolabeling with Cx43 and glial fibrillary acidic protein indicated the overlapping between the Cx43 and Müller cell processes. At the beginning of the synaptic formation, immunolabeling almost disappeared in the entire retina. However, in the completely regenerated retina, Cx43 reappeared in the distal end of Müller cells and pigment epithelial cells in the same pattern as in the normal retina. The above observations lead us to speculate that Cx43-mediated gap junctions may play an important role in regenerating events. Possible roles of Cx43 during regeneration are discussed.
Collapse
Affiliation(s)
- Yumiko Umino
- Institute of Biological Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | | |
Collapse
|
17
|
Tamalu F, Chiba C, Saito T. Gap junctional coupling between progenitor cells at the retinal margin of adult goldfish. JOURNAL OF NEUROBIOLOGY 2001; 48:204-14. [PMID: 11466707 DOI: 10.1002/neu.1051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We prepared living slice preparations of the peripheral retina of adult goldfish to examine electrical membrane properties of progenitor cells at the retinal margin. Cells were voltage-clamped near resting potential and then stepped to either hyperpolarizing or depolarizing test potentials using whole-cell voltage-clamp recordings. Electrophysiologically examined cells were morphologically identified by injecting both Lucifer Yellow (LY) and biocytin. All progenitor cells examined (n = 37) showed a large amount of passively flowing currents of either sign under suppression of the nonjunctional currents flowing through K(+) and Ca(2+) channels in the cell membrane. They did not exhibit any voltage-gated Na(+) currents. Cells identified by LY fills were typically slender. As the difference between the test potential and the resting potential increased, 13 out of 37 cells exhibited symmetrically voltage- and time-dependent current decline on either sign at the resting potential. The symmetric current profile suggests that the current may be driven and modulated by the junctional potential difference between the clamping cell and its neighbors. The remaining 24 cells did not exhibit voltage dependency. A gap junction channel blocker, halothane, suppressed the currents. A decrease in extracellular pH reduced coupling currents and its increase enhanced them. Dopamine, cAMP, and retinoic acid did not influence coupling currents. Injection of biocytin into single progenitor cells revealed strong tracer coupling, which was restricted in the marginal region. Immature ganglion cells closely located to the retinal margin exhibited voltage-gated Na(+) currents. They did not reveal apparent tracer coupling. These results demonstrate that the marginal progenitor cells couple with each other via gap junctions, and communicate biochemical molecules, which may subserve or interfere with cellular differentiation.
Collapse
Affiliation(s)
- F Tamalu
- Institute of Biological Sciences, University of Tsukuba, Ibaraki, 305-8572, Japan
| | | | | |
Collapse
|
18
|
Kaneko Y, Hirota K, Matsumoto G, Hanyu Y. Expression pattern of a newt Notch homologue in regenerating newt retina. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2001; 128:53-62. [PMID: 11356262 DOI: 10.1016/s0165-3806(01)00147-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We isolated part of a newt Notch homologue, N-Notch, from regenerating newt retina. The spatio-temporal pattern of N-Notch expression was studied by in situ hybridization at different stages of newt retinal regeneration. Proliferating cells were confirmed by the injection of bromodeoxyuridine (BrdU). In the early stage of regeneration, when the retina was one to two cells thick, all proliferating retinal progenitors expressed N-Notch. As the thickness of the retina increased with regeneration, N-Notch expression decreased in BrdU-positive cells on the vitreal side of the retina. Subsequently, presumptive retinal ganglion cells that were BrdU-negative cells appeared at the vitreal edge of the regenerating retina. These differentiating cells did not express N-Notch. Later, N-Notch expression decreased in the BrdU-positive cells on the scleral surface of the retina. Subsequently, presumptive photoreceptor cells that were BrdU-negative cells appeared in this region. These differentiating cells also did not express N-Notch. The proliferating retinal progenitors ceased expressing N-Notch and then stopped dividing during the differentiation of ganglion cells and photoreceptor cells. It was found that retinal regeneration involves the expression of an important developmental signaling molecule, Notch, in retinal progenitors and the expression of Notch ceased as cell differentiation proceeded during retinal regeneration.
Collapse
Affiliation(s)
- Y Kaneko
- Laboratory for Brain-Operative Expression, Brain Science Institute (BSI), RIKEN, Wako, 351-0198, Saitama, Japan
| | | | | | | |
Collapse
|