1
|
Tanaka T, Moriya K, Tsunenaga M, Yanagawa T, Morita H, Minowa T, Tagawa YI, Hanagata N, Inagaki Y, Ikoma T. Visualized procollagen Iα1 demonstrates the intracellular processing of propeptides. Life Sci Alliance 2022; 5:5/5/e202101060. [PMID: 35181633 PMCID: PMC8860094 DOI: 10.26508/lsa.202101060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 12/26/2022] Open
Abstract
Procollagen Iα1 with two tags reveals the different fates of processed propeptides, the rate-limiting step in collagen secretion, and a link between defects in intracellular processing and diseases. The processing of type I procollagen is essential for fibril formation; however, the steps involved remain controversial. We constructed a live cell imaging system by inserting fluorescent proteins into type I pre-procollagen α1. Based on live imaging and immunostaining, the C-propeptide is intracellularly cleaved at the perinuclear region, including the endoplasmic reticulum, and subsequently accumulates at the upside of the cell. The N-propeptide is also intracellularly cleaved, but is transported with the repeating structure domain of collagen into the extracellular region. This system makes it possible to detect relative increases and decreases in collagen secretion in a high-throughput manner by assaying fluorescence in the culture medium, and revealed that the rate-limiting step for collagen secretion occurs after the synthesis of procollagen. In the present study, we identified a defect in procollagen processing in activated hepatic stellate cells, which secrete aberrant collagen fibrils. The results obtained demonstrated the intracellular processing of type I procollagen, and revealed a link between dysfunctional processing and diseases such as hepatic fibrosis.
Collapse
Affiliation(s)
- Toshiaki Tanaka
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama, Japan
| | - Koji Moriya
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama, Japan
| | - Makoto Tsunenaga
- Shiseido Global Innovation Center, 1-2-11 Takashima, Yokohama, Japan
| | - Takayo Yanagawa
- School of Medicine, Tokai University, 143 Shimo-kasuya, Isehara, Japan
| | - Hiromi Morita
- Nanotechnology Innovation Station, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Japan
| | - Takashi Minowa
- Nanotechnology Innovation Station, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Japan
| | - Yoh-Ichi Tagawa
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama, Japan
| | - Nobutaka Hanagata
- Nanotechnology Innovation Station, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Japan
| | - Yutaka Inagaki
- School of Medicine, Tokai University, 143 Shimo-kasuya, Isehara, Japan
| | - Toshiyuki Ikoma
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, Japan
| |
Collapse
|
2
|
Doan ND, Hosseini AS, Bikovtseva AA, Huang MS, DiChiara AS, Papa LJ, Koller A, Shoulders MD. Elucidation of proteostasis defects caused by osteogenesis imperfecta mutations in the collagen-α2(I) C-propeptide domain. J Biol Chem 2020; 295:9959-9973. [PMID: 32482890 DOI: 10.1074/jbc.ra120.014071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/26/2020] [Indexed: 01/07/2023] Open
Abstract
Intracellular collagen assembly begins with the oxidative folding of ∼30-kDa C-terminal propeptide (C-Pro) domains. Folded C-Pro domains then template the formation of triple helices between appropriate partner strands. Numerous C-Pro missense variants that disrupt or delay triple-helix formation are known to cause disease, but our understanding of the specific proteostasis defects introduced by these variants remains immature. Moreover, it is unclear whether or not recognition and quality control of misfolded C-Pro domains is mediated by recognizing stalled assembly of triple-helical domains or by direct engagement of the C-Pro itself. Here, we integrate biochemical and cellular approaches to illuminate the proteostasis defects associated with osteogenesis imperfecta-causing mutations within the collagen-α2(I) C-Pro domain. We first show that "C-Pro-only" constructs recapitulate key aspects of the behavior of full-length Colα2(I) constructs. Of the variants studied, perhaps the most severe assembly defects are associated with C1163R C-Proα2(I), which is incapable of forming stable trimers and is retained within cells. We find that the presence or absence of an unassembled triple-helical domain is not the key feature driving cellular retention versus secretion. Rather, the proteostasis network directly engages the misfolded C-Pro domain itself to prevent secretion and initiate clearance. Using MS-based proteomics, we elucidate how the endoplasmic reticulum (ER) proteostasis network differentially engages misfolded C1163R C-Proα2(I) and targets it for ER-associated degradation. These results provide insights into collagen folding and quality control with the potential to inform the design of proteostasis network-targeted strategies for managing collagenopathies.
Collapse
Affiliation(s)
- Ngoc-Duc Doan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Azade S Hosseini
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Agata A Bikovtseva
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Michelle S Huang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Andrew S DiChiara
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Louis J Papa
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Antonius Koller
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Matthew D Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
3
|
Barnes AM, Ashok A, Makareeva EN, Brusel M, Cabral WA, Weis M, Moali C, Bettler E, Eyre DR, Cassella JP, Leikin S, Hulmes DJS, Kessler E, Marini JC. COL1A1 C-propeptide mutations cause ER mislocalization of procollagen and impair C-terminal procollagen processing. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2210-2223. [PMID: 31055083 DOI: 10.1016/j.bbadis.2019.04.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/15/2019] [Accepted: 04/30/2019] [Indexed: 10/26/2022]
Abstract
Mutations in the type I procollagen C-propeptide occur in ~6.5% of Osteogenesis Imperfecta (OI) patients. They are of special interest because this region of procollagen is involved in α chain selection and folding, but is processed prior to fibril assembly and is absent in mature collagen fibrils in tissue. We investigated the consequences of seven COL1A1 C-propeptide mutations for collagen biochemistry in comparison to three probands with classical glycine substitutions in the collagen helix near the C-propeptide and a normal control. Procollagens with C-propeptide defects showed the expected delayed chain incorporation, slow folding and overmodification. Immunofluorescence microscopy indicated that procollagen with C-propeptide defects was mislocalized to the ER lumen, in contrast to the ER membrane localization of normal procollagen and procollagen with helical substitutions. Notably, pericellular processing of procollagen with C-propeptide mutations was defective, with accumulation of pC-collagen and/or reduced production of mature collagen. In vitro cleavage assays with BMP-1 ± PCPE-1 confirmed impaired C-propeptide processing of procollagens containing mutant proα1(I) chains. Overmodified collagens were incorporated into the matrix in culture. Dermal fibrils showed alterations in average diameter and diameter variability and bone fibrils were disorganized. Altered ER-localization and reduced pericellular processing of defective C-propeptides are expected to contribute to abnormal osteoblast differentiation and matrix function, respectively.
Collapse
Affiliation(s)
- Aileen M Barnes
- Section of Heritable Disorders of Bone and Extracellular Matrix, NICHD, NIH, Bethesda, MD, United States of America
| | - Aarthi Ashok
- Section of Heritable Disorders of Bone and Extracellular Matrix, NICHD, NIH, Bethesda, MD, United States of America; University of Toronto Scarborough, Toronto, ON, Canada
| | - Elena N Makareeva
- Section on Physical Biochemistry, NICHD, NIH, Bethesda, MD, United States of America
| | - Marina Brusel
- Goldschleger Eye Research Institute, Tel Aviv University Sackler Faculty of Medicine, Tel-Hashomer, Israel
| | - Wayne A Cabral
- Section of Heritable Disorders of Bone and Extracellular Matrix, NICHD, NIH, Bethesda, MD, United States of America; Molecular Genetics Section, Medical Genomics and Metabolic Genetics Branch, NHGRI, NIH, Bethesda, MD, United States of America
| | - MaryAnn Weis
- Orthopaedic Research Labs, University of Washington, Seattle, WA, United States of America
| | - Catherine Moali
- Tissue Biology and Therapeutic Engineering Unit, UMR5305, CNRS/University of Lyon, Lyon, France
| | - Emmanuel Bettler
- Tissue Biology and Therapeutic Engineering Unit, UMR5305, CNRS/University of Lyon, Lyon, France
| | - David R Eyre
- Orthopaedic Research Labs, University of Washington, Seattle, WA, United States of America
| | - John P Cassella
- Department of Forensic and Crime Science, Staffordshire University, Staffordshire, UK
| | - Sergey Leikin
- Section on Physical Biochemistry, NICHD, NIH, Bethesda, MD, United States of America
| | - David J S Hulmes
- Tissue Biology and Therapeutic Engineering Unit, UMR5305, CNRS/University of Lyon, Lyon, France
| | - Efrat Kessler
- Goldschleger Eye Research Institute, Tel Aviv University Sackler Faculty of Medicine, Tel-Hashomer, Israel
| | - Joan C Marini
- Section of Heritable Disorders of Bone and Extracellular Matrix, NICHD, NIH, Bethesda, MD, United States of America.
| |
Collapse
|
4
|
Liu G, Chen J, Zhou Y, Zuo Y, Liu S, Chen W, Wu Z, Wu N. The genetic implication of scoliosis in osteogenesis imperfecta: a review. JOURNAL OF SPINE SURGERY 2017; 3:666-678. [PMID: 29354746 DOI: 10.21037/jss.2017.10.01] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Osteogenesis imperfecta (OI) is a kind of heritable connective tissue disorder, including blue sclerae, hearing loss, skeletal dysplasia causing bone fragility and deformities. It is typically caused by collagen related gene mutations, which could lead to bone formation abnormalities. Scoliosis is one of the most common and severe spinal phenotype which has been reported in approximately 26-74.5% of all OI patients. Recent breakthroughs have suggested that OI can be divided into more than 16 types based on genetic mutations with different degrees of scoliosis. In this review, we summarize the etiology of scoliosis in OI, especially the genetic studies of different types. We aim to provide a systematic review of the genetic etiology and clinical suggestions of scoliosis in OI.
Collapse
Affiliation(s)
- Gang Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jia Chen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yangzhong Zhou
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China
| | - Yuzhi Zuo
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Sen Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China.,Research Center of Orthopedics/Rare Disease, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Weisheng Chen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China.,Research Center of Orthopedics/Rare Disease, Chinese Academy of Medical Sciences, Beijing 100730, China.,Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China.,Research Center of Orthopedics/Rare Disease, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
5
|
Yalak G, Olsen BR. Proteomic database mining opens up avenues utilizing extracellular protein phosphorylation for novel therapeutic applications. J Transl Med 2015; 13:125. [PMID: 25927841 PMCID: PMC4427915 DOI: 10.1186/s12967-015-0482-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 04/07/2015] [Indexed: 02/07/2023] Open
Abstract
Recent advances in extracellular signaling suggest that extracellular protein phosphorylation is a regulatory mechanism outside the cell. The list of reported active extracellular protein kinases and phosphatases is growing, and phosphorylation of an increasing number of extracellular matrix molecules and extracellular domains of trans-membrane proteins is being documented. Here, we use public proteomic databases, collagens – the major components of the extracellular matrix, extracellular signaling molecules and proteolytic enzymes as examples to assess what the roles of extracellular protein phosphorylation may be in health and disease. We propose that novel tools be developed to help assess the role of extracellular protein phosphorylation and translate the findings for biomedical applications. Furthermore, we suggest that the phosphorylation state of extracellular matrix components as well as the presence of extracellular kinases be taken into account when designing translational medical applications.
Collapse
Affiliation(s)
- Garif Yalak
- Department of Developmental Biology, Harvard Medical School/Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA, 02115, USA.
| | - Bjorn R Olsen
- Department of Developmental Biology, Harvard Medical School/Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
6
|
Symoens S, Hulmes DJS, Bourhis JM, Coucke PJ, De Paepe A, Malfait F. Type I procollagen C-propeptide defects: study of genotype-phenotype correlation and predictive role of crystal structure. Hum Mutat 2014; 35:1330-41. [PMID: 25146735 DOI: 10.1002/humu.22677] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/28/2014] [Accepted: 08/08/2014] [Indexed: 11/10/2022]
Abstract
The type I procollagen carboxyterminal(C-)propeptides are crucial in directing correct assembly of the procollagen heterotrimers. Defects in these domains have anecdotally been reported in patients with Osteogenesis Imperfecta (OI) and few genotype-phenotype correlations have been described. To gain insight in the functional consequences of C-propeptide defects, we performed a systematic review of clinical, molecular, and biochemical findings in all patients in whom we identified a type I procollagen C-propeptide defect, and compared this with literature data. We report 30 unique type I procollagen C-propeptide variants, 24 of which are novel. The outcome of COL1A1 nonsense and frameshift variants depends on the location of the premature termination codon. Those located prior to 50-55 nucleotides upstream of the most 3' exon-exon junction lead to nonsense-mediated mRNA decay (NMD) and cause mild OI. Those located beyond this boundary escape NMD, generally lead to production of stable, overmodified procollagen chains, which may partly be retained intracellularly, and are usually associated with severe-to-lethal OI. Proα1(I)-C-propeptide defects that permit chain association result in more severe phenotypes than those inhibiting chain association. We demonstrate that the crystal structure of the proα1(III)-C-propeptide is a reliable tool to predict phenotypic severity for most COL1A1-C-propeptide missense variants, whereas for COL1A2-C-propeptide variants, the phenotypic outcome is milder than predicted.
Collapse
Affiliation(s)
- Sofie Symoens
- Center for Medical Genetics, Ghent University Hospital, 9000, Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
7
|
Wang H, Stefanovic B. Role of LARP6 and nonmuscle myosin in partitioning of collagen mRNAs to the ER membrane. PLoS One 2014; 9:e108870. [PMID: 25271881 PMCID: PMC4182744 DOI: 10.1371/journal.pone.0108870] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 09/01/2014] [Indexed: 02/07/2023] Open
Abstract
Type I collagen is extracellular matrix protein composed of two α1(I) and one α2(I) polypeptides that fold into triple helix. Collagen polypeptides are translated in coordination to synchronize the rate of triple helix folding to the rate of posttranslational modifications of individual polypeptides. This is especially important in conditions of high collagen production, like fibrosis. It has been assumed that collagen mRNAs are targeted to the membrane of the endoplasmic reticulum (ER) after translation of the signal peptide and by signal peptide recognition particle (SRP). Here we show that collagen mRNAs associate with the ER membrane even when translation is inhibited. Knock down of LARP6, an RNA binding protein which binds 5' stem-loop of collagen mRNAs, releases a small amount of collagen mRNAs from the membrane. Depolimerization of nonmuscle myosin filaments has a similar, but stronger effect. In the absence of LARP6 or nonmuscle myosin filaments collagen polypeptides become hypermodified, are poorly secreted and accumulate in the cytosol. This indicates lack of coordination of their synthesis and retro-translocation due to hypermodifications and misfolding. Depolimerization of nonmuscle myosin does not alter the secretory pathway through ER and Golgi, suggesting that the role of nonmuscle myosin is primarily to partition collagen mRNAs to the ER membrane. We postulate that collagen mRNAs directly partition to the ER membrane prior to synthesis of the signal peptide and that LARP6 and nonmuscle myosin filaments mediate this process. This allows coordinated initiation of translation on the membrane bound collagen α1(I) and α2(I) mRNAs, a necessary step for proper synthesis of type I collagen.
Collapse
Affiliation(s)
- Hao Wang
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States of America
| | - Branko Stefanovic
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States of America
| |
Collapse
|
8
|
Lu Y, Ren X, Wang Y, Li T, Li F, Wang S, Xu C, Wu G, Li H, Li G, Zhao F, Wang Z, Mo X, Han J. Mutational and structural characteristics of four novel heterozygous C-propeptide mutations in the proα1(I) collagen gene in Chinese osteogenesis imperfecta patients. Clin Endocrinol (Oxf) 2014; 80:524-31. [PMID: 24147872 DOI: 10.1111/cen.12354] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 07/22/2013] [Accepted: 09/29/2013] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Osteogenesis imperfecta (OI) with C-propeptide mutations in proα1(I) collagen gene are rarely reported. We report four novel C-propeptide mutations in COL1A1 gene from Chinese OI patients. METHODS Clinical characteristics and radiographic findings were described for four OI patients with C-propeptide mutations in proα1(I) collagen gene. Mutations were identified by traditional DNA sequencing based on PCR. The locations of mutations were mapped, and in silico prediction was conducted to analyse their effects on protein structure. Histology studies of skin, bone and muscle tissues were performed. RESULTS All four C-propeptide heterozygous mutations identified were in the COL1A1 gene. Heterozygous mutation of c.4021C>T (p.Q1341X) disrupted the chain recognition sequences and was found in patients with type IV OI. Mutations of c.3893C>A (p.T1298N) and c.3897C>A (p.C1299X) impeded the formation of disulphide bonds and were associated with type IV OI phenotype. Missense mutation of c.3835A>C (p.N1279H) disrupted Ca(2+) binding and led to a severe type III OI phenotype. In silico programs predicted damaging effects for the patients with type III OI and the creation of an exonic splicing enhancer hexamer sequence for the type IV patients. Expansion of the bone marrow cavity and disorganization of osteocyte alignment was evident in bone specimens; and muscle atrophy and enlargement of intramuscular connective tissue were found in muscle specimens. CONCLUSIONS Four novel C-propeptide mutations in proα1(I) collagen gene were identified in Chinese OI patients, and their clinical severity ranged from moderate type IV to severe type III. In silico prediction of the mutation effect and histological characteristics of tissue specimens was in accordance with the OI phenotypes.
Collapse
Affiliation(s)
- Yanqin Lu
- Key Laboratory for Biotech-Drugs Ministry of Health, Key Laboratory for Modern Medicine and Technology of Shandong Province, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Key Laboratory for Virology of Shandong Province, Shandong Medicinal Biotechnology Centre, Shandong Academy of Medical Sciences, Jinan, China; School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Stefanovic B. RNA protein interactions governing expression of the most abundant protein in human body, type I collagen. WILEY INTERDISCIPLINARY REVIEWS. RNA 2013; 4:535-45. [PMID: 23907854 PMCID: PMC3748166 DOI: 10.1002/wrna.1177] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Type I collagen is the most abundant protein in human body. The protein turns over slowly and its replacement synthesis is low. However, in wound healing or in pathological fibrosis the cells can increase production of type I collagen several hundred fold. This increase is predominantly due to posttranscriptional regulation, including increased half-life of collagen messenger RNAs (mRNAs) and their increased translatability. Type I collagen is composed of two α1 and one α2 polypeptides that fold into a triple helix. This stoichiometry is strictly regulated to prevent detrimental synthesis of α1 homotrimers. Collagen polypeptides are co-translationally modified and the rate of modifications is in dynamic equilibrium with the rate of folding, suggesting coordinated translation of collagen α1(I) and α2(I) polypeptides. Collagen α1(I) mRNA has in the 3' untranslated region (UTR) a C-rich sequence that binds protein αCP, this binding stabilizes the mRNA in collagen producing cells. In the 5' UTR both collagen mRNAs have a conserved stem-loop (5' SL) structure. The 5' SL is critical for high collagen expression, knock in mice with disruption of the 5' SL are resistant to liver fibrosis. the 5' SL binds protein LARP6 with strict sequence specificity and high affinity. LARP6 recruits RNA helicase A to facilitate translation initiation and associates collagen mRNAs with vimentin and nonmuscle myosin filaments. Binding to vimentin stabilizes collagen mRNAs, while nonmuscle myosin regulates coordinated translation of α1(I) and α2(I) mRNAs. When nonmuscle myosin filaments are disrupted the cells secrete only α1 homotrimers. Thus, the mechanism governing high collagen expression involves two RNA binding proteins and development of cytoskeletal filaments.
Collapse
Affiliation(s)
- Branko Stefanovic
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
10
|
Bourhis JM, Mariano N, Zhao Y, Harlos K, Exposito JY, Jones EY, Moali C, Aghajari N, Hulmes DJS. Structural basis of fibrillar collagen trimerization and related genetic disorders. Nat Struct Mol Biol 2012; 19:1031-6. [PMID: 23001006 PMCID: PMC3465578 DOI: 10.1038/nsmb.2389] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 08/23/2012] [Indexed: 02/07/2023]
Abstract
The C propeptides of fibrillar procollagens have crucial roles in tissue growth and repair by controlling both the intracellular assembly of procollagen molecules and the extracellular assembly of collagen fibrils. Mutations in C propeptides are associated with several, often lethal, genetic disorders affecting bone, cartilage, blood vessels and skin. Here we report the crystal structure of a C-propeptide domain from human procollagen III. It reveals an exquisite structural mechanism of chain recognition during intracellular trimerization of the procollagen molecule. It also gives insights into why some types of collagen consist of three identical polypeptide chains, whereas others do not. Finally, the data show striking correlations between the sites of numerous disease-related mutations in different C-propeptide domains and the degree of phenotype severity. The results have broad implications for understanding genetic disorders of connective tissues and designing new therapeutic strategies.
Collapse
Affiliation(s)
- Jean-Marie Bourhis
- Formation de Recherche en Evolution 3310, Institut de Biologie et Chimie des Protéines, Centre National de la Recherche Scientifique, Université Lyon 1, Lyon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Xu Z, Li Y, Zhang X, Zeng F, Yuan M, Liu M, Wang QK, Liu JY. Identification and molecular characterization of two novel mutations in COL1A2 in two Chinese families with osteogenesis imperfecta. J Genet Genomics 2011; 38:149-56. [PMID: 21530898 DOI: 10.1016/j.jgg.2011.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 01/21/2011] [Accepted: 03/06/2011] [Indexed: 01/30/2023]
Abstract
Osteogenesis imperfecta (OI, also known as brittle bone disease) is caused mostly by mutations in two type I collagen genes, COL1A1 and COL1A2 encoding the pro-α1 (I) and pro-α2 (I) chains of type I collagen, respectively. Two Chinese families with autosomal dominant OI were identified and characterized. Linkage analysis revealed linkage of both families to COL1A2 on chromosome 7q21.3-q22.1. Mutational analysis was carried out using direct DNA sequence analysis. Two novel missense mutations, c.3350A>G and c.3305G>C, were identified in exon 49 of COL1A2 in the two families, respectively. The c.3305G>C mutation resulted in substitution of a glycine residue (G) by an alanine residue (A) at codon 1102 (p.G1102A), which was found to be mutated into serine (S), argine (R), aspartic acid (D), or valine (V) in other families. The c.3350A>G variant may be a de novo mutation resulting in p.Y1117C. Both mutations co-segregated with OI in respective families, and were not found in 100 normal controls. The G1102 and Y1117 residues were evolutionarily highly conserved from zebrafish to humans. Mutational analysis did not identify any mutation in the COX-2 gene (a modifier gene of OI). This study identifies two novel mutations p.G1102A and p.Y1117C that cause OI, significantly expands the spectrum of COL1A2 mutations causing OI, and has a significant implication in prenatal diagnosis of OI.
Collapse
Affiliation(s)
- Zhenping Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Center for Human Genome Research, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Cai L, Fritz D, Stefanovic L, Stefanovic B. Nonmuscle myosin-dependent synthesis of type I collagen. J Mol Biol 2010; 401:564-78. [PMID: 20603131 DOI: 10.1016/j.jmb.2010.06.057] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 06/09/2010] [Accepted: 06/25/2010] [Indexed: 01/15/2023]
Abstract
Type I collagen, synthesized in all tissues as the heterotrimer of two alpha1(I) polypeptides and one alpha2(I) polypeptide, is the most abundant protein in the human body. Here we show that intact nonmuscle myosin filaments are required for the synthesis of heterotrimeric type I collagen. Conserved 5' stem-loop in collagen alpha1(I) and alpha2(I) mRNAs binds the RNA-binding protein LARP6. LARP6 interacts with nonmuscle myosin through its C-terminal domain and associates collagen mRNAs with the filaments. Dissociation of nonmuscle myosin filaments results in secretion of collagen alpha1(I) homotrimer, diminished intracellular colocalization of collagen alpha1(I) and alpha2(I) polypeptides (required for folding of the heterotrimer), and their increased intracellular degradation. Inhibition of the motor function of myosin has similar collagen-specific effects, while disruption of actin filaments has a general effect on protein secretion. Nonmuscle myosin copurifies with polysomes, and there is a subset of polysomes involved in myosin-dependent translation of collagen mRNAs. These results indicate that association of collagen mRNAs with nonmuscle myosin filaments is necessary to coordinately synthesize collagen alpha1(I) and alpha2(I) polypeptides. We postulate that LARP6/myosin-dependent mechanism regulates the synthesis of heterotrimeric type I collagen by coordinating the translation of collagen mRNAs.
Collapse
Affiliation(s)
- Le Cai
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL 32306, USA
| | | | | | | |
Collapse
|
13
|
Pace JM, Wiese M, Drenguis AS, Kuznetsova N, Leikin S, Schwarze U, Chen D, Mooney SH, Unger S, Byers PH. Defective C-propeptides of the proalpha2(I) chain of type I procollagen impede molecular assembly and result in osteogenesis imperfecta. J Biol Chem 2008; 283:16061-7. [PMID: 18375391 DOI: 10.1074/jbc.m801982200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type I procollagen is a heterotrimer composed of two proalpha1(I) chains and one proalpha2(I) chain, encoded by the COL1A1 and COL1A2 genes, respectively. Mutations in these genes usually lead to dominantly inherited forms of osteogenesis imperfecta (OI) by altering the triple helical domains, but a few affect sequences in the proalpha1(I) C-terminal propeptide (C-propeptide), and one, which has a phenotype only in homozygotes, alters the proalpha2(I) C-propeptide. Here we describe four dominant mutations in the COL1A2 gene that alter sequences of the proalpha2(I) C-propeptide in individuals with clinical features of a milder form of the disease, OI type IV. Three of the four appear to interfere with disulfide bonds that stabilize the C-propeptide conformation and its interaction with other chains in the trimer. Cultured cells synthesized proalpha2(I) chains that were slow to assemble with proalpha1(I) chains to form heterotrimers and that were retained intracellularly. Some alterations led to the uncharacteristic formation of proalpha1(I) homotrimers. These findings show that the C-propeptide of proalpha2(I), like that of the proalpha1(I) C-propeptide, is essential for efficient assembly of type I procollagen heterotrimers. The milder OI phenotypes likely reflect a diminished amount of normal type I procollagen, small populations of overmodified heterotrimers, and proalpha1(I) homotrimers that are compatible with normal skeletal growth.
Collapse
Affiliation(s)
- James M Pace
- Department of Pathology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Pace JM, Chitayat D, Atkinson M, Wilcox WR, Schwarze U, Byers PH. A single amino acid substitution (D1441Y) in the carboxyl-terminal propeptide of the proalpha1(I) chain of type I collagen results in a lethal variant of osteogenesis imperfecta with features of dense bone diseases. J Med Genet 2002; 39:23-9. [PMID: 11826020 PMCID: PMC1734955 DOI: 10.1136/jmg.39.1.23] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Osteogenesis imperfecta (OI) is characterised by brittle bones and caused by mutations in the type I collagen genes, COL1A1 and COL1A2. We identified a mutation in the carboxyl-terminal propeptide coding region of one COL1A1 allele in an infant who died with an OI phenotype that differed from the usual lethal form and had regions of increased bone density. The newborn female had dysmorphic facial features, including loss of mandibular angle. Bilateral upper and lower limb contractures were present with multiple fractures in the long bones and ribs. The long bones were not compressed and their ends were radiographically dense. She died after a few hours and histopathological studies identified extramedullary haematopoiesis in the liver, little lamellar bone formation, decreased osteoclasts, abnormally thickened bony trabeculae with retained cartilage in long bones, and diminished marrow spaces similar to those seen in dense bone diseases such as osteopetrosis and pycnodysostosis. The child was heterozygous for a COL1A1 4321G-->T transversion in exon 52 that changed a conserved aspartic acid to tyrosine (D1441Y). Abnormal proalpha1(I) chains were slow to assemble into dimers and trimers, and abnormal molecules were retained intracellularly for an extended period. The secreted type I procollagen molecules synthesised by cultured dermal fibroblasts were overmodified along the full length but had normal thermal stability. These findings suggest that the unusual phenotype reflected both a diminished amount of secreted type I procollagen and the presence of a population of stable and overmodified molecules that might support increased mineralisation or interfere with degradation of bone.
Collapse
Affiliation(s)
- J M Pace
- Department of Pathology, University of Washington, Seattle, WA, USA
| | | | | | | | | | | |
Collapse
|
15
|
Pace JM, Atkinson M, Willing MC, Wallis G, Byers PH. Deletions and duplications of Gly-Xaa-Yaa triplet repeats in the triple helical domains of type I collagen chains disrupt helix formation and result in several types of osteogenesis imperfecta. Hum Mutat 2001; 18:319-26. [PMID: 11668615 DOI: 10.1002/humu.1193] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Triple helix formation is a prerequisite for the passage of type I procollagen from the endoplasmic reticulum and secretion from the cell to form extracellular fibrils that will support mineral deposition in bone. Analysis of cDNA from 11 unrelated individuals with osteogenesis imperfecta (OI) revealed the presence of 11 novel, short in-frame deletions or duplications of three, nine, or 18 nucleotides in the helical coding regions of the COL1A1 and COL1A2 collagen genes. Triple helix formation was impaired, type I collagen alpha chains were post-translationally overmodified, and extracellular secretion was markedly reduced. With one exception, the obligate Gly-Xaa-Yaa repeat pattern of amino acids in the helical domains was not altered, but the Xaa- and Yaa position residues were out of register relative to the amino acid sequences of adjacent chains in the triple helix. Thus, the identity of these amino acids, in addition to third position glycines, is important for normal helix formation. These findings expand the known repertoire of uncommon in-frame deletions and duplications in OI, and provide insight into normal collagen biosynthesis and collagen triple helix formation.
Collapse
Affiliation(s)
- J M Pace
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | | | | | | | | |
Collapse
|
16
|
Campbell BG, Wootton JA, Macleod JN, Minor RR. Canine COL1A2 mutation resulting in C-terminal truncation of pro-alpha2(I) and severe osteogenesis imperfecta. J Bone Miner Res 2001; 16:1147-53. [PMID: 11393792 DOI: 10.1359/jbmr.2001.16.6.1147] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
RNA and type I collagen were analyzed from cultured skin fibroblasts of a Beagle puppy with fractures consistent with type III osteogenesis imperfecta (OI). In a nonisotopic RNAse cleavage assay (NIRCA), the proband's RNA had a unique cleavage pattern in the region of COL1A2 encoding the C-propeptide. DNA sequence analyses identified a mutation in which nucleotides 3991-3994 ("CTAG") were replaced with "TGTCATTGG." The first seven bases of the inserted sequence were identical to nucleotides 4002-4008 of the normal canine COL1A2 sequence. The resulting frameshift changed 30 amino acids and introduced a premature stop codon. Reverse-transcription polymerase chain reaction (RT-PCR) with primers flanking the mutation site amplified two complementary DNA (cDNA) fragments for the proband and a single product for the control. Restriction enzyme digestions also were consistent with a heterozygous mutation in the proband. Type I procollagen labeled with [3H]proline was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Increased density of pC-alpha2(I) suggested comigration with the similarly sized pro-alpha2(I) derived from the mutant allele. Furthermore, a-chains were overhydroxylated and the ratio of alpha1(I):alpha2(I) was 3.2:1, consistent with the presence of alpha1(I) homotrimers. Analyses of COL1A2 and type I collagen were both consistent with the described heterozygous mutation affecting the pro-alpha2(I) C-propeptide and confirmed a diagnosis of OI.
Collapse
Affiliation(s)
- B G Campbell
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
17
|
Sarathchandra P, Pope FM, Kayser MV, Ali SY. A light and electron microscopic study of osteogenesis imperfecta bone samples, with reference to collagen chemistry and clinical phenotype. J Pathol 2000; 192:385-95. [PMID: 11054723 DOI: 10.1002/1096-9896(2000)9999:9999<::aid-path704>3.0.co;2-u] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A detailed morphological study was carried out using light and electron microscopy on 36 bone specimens from patients suffering from osteogenesis imperfecta (OI) and 20 age- and site-matched control bone specimens. The findings were grouped into the clinical types of OI according to the Sillence classification. The morphological and ultrastructural alterations observed in OI bone correlate well with clinical severity. Thus, OI type I, the mildest type, showed the least abnormalities in bone ultrastructure. OI type IV closely resembled type I, with only minor abnormalities in the bone cells and osteoid. OI type III showed abnormalities in the structure and distribution of osteoid collagen fibrils, whilst OI type II, the lethal form, revealed many varied abnormalities such as thin cortical bone, sparse trabecular bone, increased numbers of osteoclasts and osteocytes, thin osteoid with thin collagen fibrils, and patchy mineralization.
Collapse
Affiliation(s)
- P Sarathchandra
- Department of Experimental Pathology, Institute of Orthopaedics (University of London), Royal National Orthopaedic Hospital, Stanmore, Middlesex, HA7 4LP, UK.
| | | | | | | |
Collapse
|
18
|
|
19
|
Camacho NP, Hou L, Toledano TR, Ilg WA, Brayton CF, Raggio CL, Root L, Boskey AL. The material basis for reduced mechanical properties in oim mice bones. J Bone Miner Res 1999; 14:264-72. [PMID: 9933481 DOI: 10.1359/jbmr.1999.14.2.264] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Osteogenesis imperfecta (OI), a heritable disease caused by molecular defects in type I collagen, is characterized by skeletal deformities and brittle bones. The heterozygous and homozygous oim mice (oim/+ and oim/oim) exhibit mild and severe OI phenotypes, respectively, serving as controlled animal models of this disease. In the current study, bone geometry, mechanics, and material properties of 1-year-old mice were evaluated to determine factors that influence the severity of phenotype in OI. The oim/oim mice exhibited significantly smaller body size, femur length, and moment of area compared with oim/+ and wild-type (+/+) controls. The oim/oim femur mechanical properties of failure torque and stiffness were 40% and 30%, respectively, of the +/+ values, and 53% and 36% of the oim/+ values. Collagen content was reduced by 20% in the oim/oim compared with +/+ bone and tended to be intermediate to these values for the oim/+. Mineral content was not significantly different between the oim/oim and +/+ bones. However, the oim/oim ash content was significantly reduced compared with that of the oim/+. Mineral carbonate content was reduced by 23% in the oim/oim bone compared with controls. Mineral crystallinity was reduced in the oim/oim and oim/+ bone compared with controls. Overall, for the majority of parameters examined (geometrical, mechanical, and material), the oim/+ values were intermediate to those of the oim/oim and +/+, a finding that parallels the phenotypes of the mice. This provides evidence that specific material properties, such as mineral crystallinity and collagen content, are indicative and possibly predictive of bone fragility in this mouse model, and by analogy in human OI.
Collapse
Affiliation(s)
- N P Camacho
- Research Division, The Hospital of Special Surgery, New York, New York 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Campbell BG, Wootton JA, MacLeod JN, Minor RR. Sequence of canine COL1A2 cDNA: nucleotide substitutions affecting the cyanogen bromide peptide map of the alpha 2(I) chain. Arch Biochem Biophys 1998; 357:67-75. [PMID: 9721184 DOI: 10.1006/abbi.1998.0774] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The alpha2 chain of canine type I collagen was characterized with both sequence analysis of COL1A2 cDNA and chemical analysis of alpha2(I) chains. The complete sequence of canine COL1A2 cDNA was determined from reverse-transcribed and polymerase chain reaction-amplified total RNA from cultured skin fibroblasts. Pepsin-digested and cyanogen bromide-digested type I collagen peptides were analyzed with chromatography, gel electrophoresis, and mass spectrometry. Identity between the sequences of canine and human COL1A2 cDNA was 90.9%, predicting conservation of the 3 cysteine residues required for C-propeptide registration and of cleavage sites for signal peptidase, procollagen N-proteinase, vertebrate collagenase, and procollagen C-proteinase. Conservation of all 50 lysine residues was also predicted, including preservation of the 1:2 asymmetry in the X:Y distribution of the 31 lysine residues in the alpha2(I) triple helix. The human and canine sequences differed in the location of Y-position proline residues and the presence of two unique canine cyanogen bromide peptides, alpha2 CB3b and alpha2 CB3c,5. Knowledge of the conserved and unique features of canine COL1A2 will be valuable for analysis of the expression, synthesis, and structure of type I collagen as well as studies of canine osteogenesis imperfecta.
Collapse
Affiliation(s)
- B G Campbell
- College of Veterinary Medicine, Cornell University, Ithaca, New York, 14853, USA.
| | | | | | | |
Collapse
|