1
|
Revisiting Traumatic Brain Injury: From Molecular Mechanisms to Therapeutic Interventions. Biomedicines 2020; 8:biomedicines8100389. [PMID: 33003373 PMCID: PMC7601301 DOI: 10.3390/biomedicines8100389] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/15/2022] Open
Abstract
Studying the complex molecular mechanisms involved in traumatic brain injury (TBI) is crucial for developing new therapies for TBI. Current treatments for TBI are primarily focused on patient stabilization and symptom mitigation. However, the field lacks defined therapies to prevent cell death, oxidative stress, and inflammatory cascades which lead to chronic pathology. Little can be done to treat the mechanical damage that occurs during the primary insult of a TBI; however, secondary injury mechanisms, such as inflammation, blood-brain barrier (BBB) breakdown, edema formation, excitotoxicity, oxidative stress, and cell death, can be targeted by therapeutic interventions. Elucidating the many mechanisms underlying secondary injury and studying targets of neuroprotective therapeutic agents is critical for developing new treatments. Therefore, we present a review on the molecular events following TBI from inflammation to programmed cell death and discuss current research and the latest therapeutic strategies to help understand TBI-mediated secondary injury.
Collapse
|
2
|
Lekomtseva Y. SOME METABOLIC PROCESSES IN THE PATIENTS WITH LONG-TERM CONSEQUENCES OF MILD TRAUMATIC BRAIN INJURY. INTERNATIONAL JOURNAL OF MEDICINE AND MEDICAL RESEARCH 2020. [DOI: 10.11603/ijmmr.2413-6077.2019.2.10459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background. Mild traumatic brain injury (mTBI) leads to disturbance of various metabolic processes significant in pathogenesis of the maintaining of long-term consequences after it.
The objective of the research was to analyse changes in the activity of some membrane-associated enzyme markers, which are involved in different redox reactions, reflecting main metabolic processes.
Methods. Forty-seven patients with long-term consequences of mTBI, thirty controls were enrolled. The levels of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, lactate dehydrogenase (LDH), gamma-glutamyl transpeptidase were evaluated in sera by gas-liquid chromatograph and calorimetric methods.
Results. The study revealed significant changes in metabolic processes observed for alkaline phosphatase and LDH, which were the indicators of membrane and redox processes disturbances, acidosis severity and impaired energy cell metabolism. The averages of LDH level was 662.7 versus 381.9 U/L, in the controls. The disease progression was followed by directly proportional LDH increase reaching very high values in the patients with disease duration more than 15 years (mean ±SD 144.6±16.3 versus 82.6±8.4 U/L, controls p<0.05). The long-term consequences of mTBI were characterized by statistically significant decrease of alkaline phosphatase and positive dependence (p<0.05) of it (r=+0.48) on the disease duration with the averages of alkaline phosphatase level of 152.5±11.21 versus 212.6±9.63 U/L, controls (p<0.01). The significance of changes in membrane-associated enzymes serum levels correlated with development of oxidative stress and metabolic processes dysfunction.
Conclusion. In the patients with long-term consequences of mTBI, dysregulation of enzymes activity was detected that might be a marker of nervous system energy impairment and membranes destruction.
Collapse
|
3
|
Liu J, Dan Q, Zhao N, Li J, Li J, Chang Q, Su P, Cen J. Functional implication of synaptophysin upregulation with traumatic brain injury adult rats. IBRAIN 2016. [DOI: 10.1002/j.2769-2795.2016.tb00005.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Jun Liu
- Department of NeurosurgeryKunming First People’s Hospital KunmingYunnanChina
| | - Qi‐Qin Dan
- Institute of Neurological Disease, West China Hospital, Sichuan UniversityChengduChina
| | - Nan Zhao
- Department of NeurosurgeryKunming First People’s Hospital KunmingYunnanChina
| | - Jun‐Yan Li
- Department of NeurosurgeryKunming First People’s Hospital KunmingYunnanChina
| | - Jin Li
- Department of NeurosurgeryKunming First People’s Hospital KunmingYunnanChina
| | - Qian Chang
- Department of NeurosurgeryKunming First People’s Hospital KunmingYunnanChina
| | - Ping Su
- Department of NeurosurgeryKunming First People’s Hospital KunmingYunnanChina
| | - Jiang‐Chang Cen
- Department of NeurosurgeryKunming First People’s Hospital KunmingYunnanChina
| |
Collapse
|
4
|
Collins SA, Gudelsky GA, Yamamoto BK. MDMA-induced loss of parvalbumin interneurons within the dentate gyrus is mediated by 5HT2A and NMDA receptors. Eur J Pharmacol 2015; 761:95-100. [PMID: 25936514 DOI: 10.1016/j.ejphar.2015.04.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 12/14/2022]
Abstract
MDMA is a widely abused psychostimulant which causes a rapid and robust release of the monoaminergic neurotransmitters dopamine and serotonin. Recently, it was shown that MDMA increases extracellular glutamate concentrations in the dorsal hippocampus, which is dependent on serotonin release and 5HT2A/2C receptor activation. The increased extracellular glutamate concentration coincides with a loss of parvalbumin-immunoreactive (PV-IR) interneurons of the dentate gyrus region. Given the known susceptibility of PV interneurons to excitotoxicity, we examined whether MDMA-induced increases in extracellular glutamate in the dentate gyrus are necessary for the loss of PV cells in rats. Extracellular glutamate concentrations increased in the dentate gyrus during systemic and local administration of MDMA. Administration of the NMDA receptor antagonist, MK-801, during systemic injections of MDMA, prevented the loss of PV-IR interneurons seen 10 days after MDMA exposure. Local administration of MDL100907, a selective 5HT2A receptor antagonist, prevented the increases in glutamate caused by reverse dialysis of MDMA directly into the dentate gyrus and prevented the reduction of PV-IR. These findings provide evidence that MDMA causes decreases in PV within the dentate gyrus through a 5HT2A receptor-mediated increase in glutamate and subsequent NMDA receptor activation.
Collapse
Affiliation(s)
- Stuart A Collins
- Department of Neurosciences, The University of Toledo, Toledo, OH 43614, 3000 Arlington Avenue #1007, United States
| | - Gary A Gudelsky
- James Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, 3225 Eden Avenue #136, United States
| | - Bryan K Yamamoto
- Department of Neurosciences, The University of Toledo, Toledo, OH 43614, 3000 Arlington Avenue #1007, United States.
| |
Collapse
|
5
|
Walker KR, Tesco G. Molecular mechanisms of cognitive dysfunction following traumatic brain injury. Front Aging Neurosci 2013; 5:29. [PMID: 23847533 PMCID: PMC3705200 DOI: 10.3389/fnagi.2013.00029] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 06/18/2013] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) results in significant disability due to cognitive deficits particularly in attention, learning and memory, and higher-order executive functions. The role of TBI in chronic neurodegeneration and the development of neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic Lateral Sclerosis (ALS) and most recently chronic traumatic encephalopathy (CTE) is of particular importance. However, despite significant effort very few therapeutic options exist to prevent or reverse cognitive impairment following TBI. In this review, we present experimental evidence of the known secondary injury mechanisms which contribute to neuronal cell loss, axonal injury, and synaptic dysfunction and hence cognitive impairment both acutely and chronically following TBI. In particular we focus on the mechanisms linking TBI to the development of two forms of dementia: AD and CTE. We provide evidence of potential molecular mechanisms involved in modulating Aβ and Tau following TBI and provide evidence of the role of these mechanisms in AD pathology. Additionally we propose a mechanism by which Aβ generated as a direct result of TBI is capable of exacerbating secondary injury mechanisms thereby establishing a neurotoxic cascade that leads to chronic neurodegeneration.
Collapse
Affiliation(s)
- Kendall R Walker
- Alzheimer's Disease Research Laboratory, Department of Neuroscience, Tufts University School of Medicine Boston, MA, USA
| | | |
Collapse
|
6
|
Therapeutic Targeting of Astrocytes After Traumatic Brain Injury. Transl Stroke Res 2011; 2:633-42. [DOI: 10.1007/s12975-011-0129-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 10/21/2011] [Accepted: 10/25/2011] [Indexed: 10/15/2022]
|
7
|
Kabadi SV, Hilton GD, Stoica BA, Zapple DN, Faden AI. Fluid-percussion-induced traumatic brain injury model in rats. Nat Protoc 2010; 5:1552-63. [PMID: 20725070 PMCID: PMC3753081 DOI: 10.1038/nprot.2010.112] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Traumatic brain injury (TBI) is a major cause of mortality and morbidity. Various attempts have been made to replicate clinical TBI using animal models. The fluid-percussion model (FP) is one of the oldest and most commonly used models of experimentally induced TBI. Both central (CFP) and lateral (LFP) variations of the model have been used. Developed initially for use in larger species, the standard FP device was adapted more than 20 years ago to induce consistent degrees of brain injury in rodents. Recently, we developed a microprocessor-controlled, pneumatically driven instrument, micro-FP (MFP), to address operational concerns associated with the use of the standard FP device in rodents. We have characterized the MFP model with regard to injury severity according to behavioral and histological outcomes. In this protocol, we review the FP models and detail surgical procedures for LFP. The surgery involves tracheal intubation, craniotomy and fixation of Luer fittings, and induction of injury. The surgical procedure can be performed within 45-50 min.
Collapse
Affiliation(s)
- Shruti V Kabadi
- Department of Anesthesiology and the Center for Shock, Trauma and Anesthesiology Research (STAR), School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | |
Collapse
|
8
|
|
9
|
Gibson CJ, Meyer RC, Hamm RJ. Traumatic brain injury and the effects of diazepam, diltiazem, and MK-801 on GABA-A receptor subunit expression in rat hippocampus. J Biomed Sci 2010; 17:38. [PMID: 20482789 PMCID: PMC2893123 DOI: 10.1186/1423-0127-17-38] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 05/18/2010] [Indexed: 02/07/2023] Open
Abstract
Background Excitatory amino acid release and subsequent biochemical cascades following traumatic brain injury (TBI) have been well documented, especially glutamate-related excitotoxicity. The effects of TBI on the essential functions of inhibitory GABA-A receptors, however, are poorly understood. Methods We used Western blot procedures to test whether in vivo TBI in rat altered the protein expression of hippocampal GABA-A receptor subunits α1, α2, α3, α5, β3, and γ2 at 3 h, 6 h, 24 h, and 7 days post-injuy. We then used pre-injury injections of MK-801 to block calcium influx through the NMDA receptor, diltiazem to block L-type voltage-gated calcium influx, or diazepam to enhance chloride conductance, and re-examined the protein expressions of α1, α2, α3, and γ2, all of which were altered by TBI in the first study and all of which are important constituents in benzodiazepine-sensitive GABA-A receptors. Results Western blot analysis revealed no injury-induced alterations in protein expression for GABA-A receptor α2 or α5 subunits at any time point post-injury. Significant time-dependent changes in α1, α3, β3, and γ2 protein expression. The pattern of alterations to GABA-A subunits was nearly identical after diltiazem and diazepam treatment, and MK-801 normalized expression of all subunits 24 hours post-TBI. Conclusions These studies are the first to demonstrate that GABA-A receptor subunit expression is altered by TBI in vivo, and these alterations may be driven by calcium-mediated cascades in hippocampal neurons. Changes in GABA-A receptors in the hippocampus after TBI may have far-reaching consequences considering their essential importance in maintaining inhibitory balance and their extensive impact on neuronal function.
Collapse
Affiliation(s)
- Cynthia J Gibson
- Department of Psychology, Washington College, Chestertown, MD 21620, USA.
| | | | | |
Collapse
|
10
|
Wakade C, Sukumari-Ramesh S, Laird MD, Dhandapani KM, Vender JR. Delayed reduction in hippocampal postsynaptic density protein-95 expression temporally correlates with cognitive dysfunction following controlled cortical impact in mice. J Neurosurg 2010; 113:1195-201. [PMID: 20397893 DOI: 10.3171/2010.3.jns091212] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECT Traumatic brain injury (TBI) induces significant neurological damage, including deficits in learning and memory, which contribute to a poor clinical prognosis. Treatment options to limit cognitive decline and promote neurological recovery are lacking, in part due to a poor understanding of the secondary or delayed processes that contribute to brain injury. In the present study, the authors characterized the temporal and spatial changes in the expression of postsynaptic density protein-95 (PSD-95), a key scaffolding protein implicated in excitatory synaptic signaling, after controlled cortical impacts in mice. Neurological injury, as assessed by the open-field activity test and the novel object recognition test, was compared with changes in PSD-95 expression. METHODS Adult male CD-1 mice were subjected to controlled cortical impacts to simulate moderate TBI in humans. The spatial and temporal expression of PSD-95 was analyzed in the cerebral cortex and hippocampus at various time points following injury and sham operations. Neurological assessments were performed to compare changes in PSD-95 with cognitive deficits. RESULTS A significant decrease in PSD-95 expression was observed in the ipsilateral hippocampus beginning on Day 7 postinjury. The loss of PSD-95 corresponded with a concomitant reduction in immunoreactivity for NeuN (neuronal nuclei), a neuron-specific marker. Aside from the contused cortex, a significant loss of PSD-95 immunoreactivity was not observed in the cerebral cortex. The delayed loss of hippocampal PSD-95 directly correlated with the onset of behavioral deficits, suggesting a possible causative role for PSD-95 in behavioral abnormalities following head trauma. CONCLUSIONS A delayed loss of hippocampal synapses was observed following head trauma in mice. These data may suggest a cellular mechanism to explain the delayed learning and memory deficits in humans after TBI and provide a potential framework for further testing to implicate PSD-95 as a clinically relevant therapeutic target.
Collapse
Affiliation(s)
- Chandramohan Wakade
- Department of Neurosurgery, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | | | | | |
Collapse
|
11
|
Ibolja Cernak, Zhengguo Wang, Jianx. Cognitive deficits following blast injury-induced neurotrauma: possible involvement of nitric oxide. Brain Inj 2009. [DOI: 10.1080/02699050119009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Falo MC, Reeves TM, Phillips LL. Agrin expression during synaptogenesis induced by traumatic brain injury. J Neurotrauma 2008; 25:769-83. [PMID: 18627255 DOI: 10.1089/neu.2008.0511] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Interaction between extracellular matrix proteins and regulatory proteinases can mediate synaptic integrity. Previously, we documented that matrix metalloproteinase 3 (MMP-3) expression and activity increase following traumatic brain injury (TBI). We now report protein and mRNA analysis of agrin, a MMP-3 substrate, over the time course of trauma-induced synaptogenesis. Agrin expression during the successful synaptic reorganization of unilateral entorhinal cortical lesion (UEC) was compared with expression when normal synaptogenesis fails (combined fluid percussion TBI and bilateral entorhinal lesion [BEC]). We observed that agrin protein was increased in both models at 2 and 7 days postinjury, and immuohistochemical (IHC) co-localization suggested reactive astrocytes contribute to that increase. Agrin formed defined boundaries for sprouting axons along deafferented dendrites in the UEC, but failed to do so after combined insult. Similarly, Western blot analysis revealed greater increase in UEC agrin protein relative to the combined TBI+BEC model. Both models showed increased agrin transcription at 7 days postinjury and mRNA normalization by 15 days. Attenuation of synaptic pathology with the NMDA antagonist MK-801 reduced 7-day UEC agrin transcript to a level not different from unlesioned controls. By contrast, MK-801 in the combined insult failed to significantly change 7-day agrin transcript, mRNA levels remaining elevated over uninjured sham cases. Together, these results suggest that agrin plays an important role in the sprouting phase of reactive synaptogenesis, and that both its expression and distribution are correlated with extent of successful recovery after TBI. Further, when pathogenic conditions which induce synaptic plasticity are reduced, increase in agrin mRNA is attenuated.
Collapse
Affiliation(s)
- M Cristina Falo
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, Virginia 23298, USA
| | | | | |
Collapse
|
13
|
Laird MD, Vender JR, Dhandapani KM. Opposing Roles for Reactive Astrocytes following Traumatic Brain Injury. Neurosignals 2008; 16:154-64. [DOI: 10.1159/000111560] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
14
|
Johnson EA, Daugherty KS, Gallagher SJ, Moran AV, DeFord SM. Glutamate receptor pathology is present in the hippocampus following repeated sub-lethal soman exposure in the absence of spatial memory deficits. Neurotoxicology 2007; 29:73-80. [PMID: 17942156 DOI: 10.1016/j.neuro.2007.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 09/05/2007] [Accepted: 09/06/2007] [Indexed: 11/25/2022]
Abstract
Much is still unknown about the long-term effects of repeated, sub-lethal exposure to organophosphorus (OP) nerve agents, such as soman (GD), on learning and memory tasks and related protein expression in the hippocampus. In the present study, guinea pigs were exposed to sub-lethal doses of GD for 10 days and cognitive performance assessed using the Morris water maze (MWM) up to 88 days post-exposure to investigate spatial learning. Additionally, hippocampal lysates were probed for cytoskeletal, synaptic and glutamate receptor proteins using Western blot analyses. No significant difference in MWM performance was observed between repeated sub-lethal GD exposed and saline control groups. However, Western blot analyses revealed significant changes in glutamate receptor protein immunoreactivity for subunits GluR2, NMDAR1, NMDAR2a and NMDAR2b in the hippocampi of GD-exposed guinea pigs. Levels of GluR2, NMDAR2a and NMDAR2b increased by 3 months post-initial exposure and returned to control levels by 6 months while NMDAR1 decreased by 6 months. No significant differences in neurofilament medium (NFM), neurofilament light (NFL) or synaptophysin densitometry were detected and alpha-II-spectrin proteolytic breakdown was also absent. These results reveal that repeated, sub-lethal exposure to GD affects glutamate receptor subunit expression but does not affect cytoskeletal protein immunoreactivity or the proteolytic state in the hippocampus. Though these changes do not affect spatial memory, they may contribute to other cognitive deficits previously observed following sub-lethal OP exposure.
Collapse
Affiliation(s)
- Erik A Johnson
- US Army Medical Research Institute of Chemical Defense, 3100 Ricketts Point Road, Comparative Medicine Division, Comparative Pathology Branch, Aberdeen Proving Ground, MD 21010-5400, USA.
| | | | | | | | | |
Collapse
|
15
|
Falo MC, Fillmore HL, Reeves TM, Phillips LL. Matrix metalloproteinase-3 expression profile differentiates adaptive and maladaptive synaptic plasticity induced by traumatic brain injury. J Neurosci Res 2006; 84:768-81. [PMID: 16862547 DOI: 10.1002/jnr.20986] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The interaction between extracellular matrix (ECM) and regulatory matrix metalloproteinases (MMPs) is important in establishing and maintaining synaptic connectivity. By using fluid percussion traumatic brain injury (TBI) and combined TBI and bilateral entorhinal cortical lesion (TBI + BEC), we previously demonstrated that hippocampal stromelysin-1 (MMP-3) expression and activity increased during synaptic plasticity. We now report a temporal analysis of MMP-3 protein and mRNA response to TBI during both degenerative (2 day) and regenerative (7, 15 day) phases of reactive synaptogenesis. MMP-3 expression during successful synaptic reorganization (following unilateral entorhinal cortical lesion; UEC) was compared with MMP-3 expression when normal synaptogenesis fails (after combined TBI + BEC insult). Increased expression of MMP-3 protein and message was observed in both models at 2 days postinjury, and immuohistochemical (IHC) colocalization suggested that reactive astrocytes contribute to that increase. By 7 days postinjury, model differences in MMP-3 were observed. UEC MMP-3 mRNA was equivalent to control, and MMP-3 protein was reduced within the deafferented region. In contrast, enzyme mRNA remained elevated in the maladaptive TBI + BEC model, accompanied by persistent cellular labeling of MMP-3 protein. At 15 days survival, MMP-3 mRNA was normalized in each model, but enzyme protein remained higher than paired controls. When TBI + BEC recovery was enhanced by the N-methyl-D-aspartate antagonist MK-801, 7-day MMP-3 mRNA was significantly reduced. Similarly, MMP inhibition with FN-439 reduced the persistent spatial learning deficits associated with TBI + BEC insult. These results suggest that MMP-3 might differentially affect the sequential phases of reactive synaptogenesis and exhibit an altered pattern when recovery is perturbed.
Collapse
Affiliation(s)
- M C Falo
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, 23298, USA
| | | | | | | |
Collapse
|
16
|
Kim HJ, Fillmore HL, Reeves TM, Phillips LL. Elevation of hippocampal MMP-3 expression and activity during trauma-induced synaptogenesis. Exp Neurol 2005; 192:60-72. [PMID: 15698619 DOI: 10.1016/j.expneurol.2004.10.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Revised: 10/15/2004] [Accepted: 10/20/2004] [Indexed: 11/24/2022]
Abstract
The matrix metalloproteinase (MMP) enzyme family contributes to the regulation of a variety of brain extracellular matrix molecules. In order to assess their role in synaptic plasticity following traumatic brain injury (TBI), we compared expression of stromelysin-1 (MMP-3) protein and mRNA in two rodent models of TBI exhibiting different levels of recovery: adaptive synaptic plasticity following central fluid percussion injury and maladaptive synaptic plasticity generated by combined TBI and bilateral entorhinal cortical lesion (TBI + BEC). We sampled the hippocampus at 7 days postinjury, targeting a selectively vulnerable brain region and a survival interval exhibiting rapid synaptogenesis. We report elevated expression of hippocampal MMP-3 mRNA and protein after TBI. MMP-3 immunohistochemical staining showed increased protein levels relative to sham-injured controls, primarily localized to cell bodies within the deafferented dendritic laminae. Injury-related differences in MMP-3 protein were also observed. TBI alone elevated MMP-3 immunobinding over the stratum lacunosum moleculare (SLM), inner molecular layer and hilus, while TBI + BEC generated more robust increases in MMP-3 reactivity within the deafferented SLM and dentate molecular layer (DML). Double labeling with GFAP confirmed the presence of MMP-3 within reactive astrocytes induced by each injury model. Semi-quantitative RT-PCR revealed that MMP-3 mRNA also increased after each injury, however, the combined insult induced a much greater elevation than fluid percussion alone: 1.9-fold vs. 79%, respectively. In the TBI + BEC model, MMP-3 up-regulation was spatio-temporally correlated with increased enzyme activity, an effect which was attenuated with the neuroprotective compound MK-801. These results show that distinct pathological conditions elicited by TBI can differentially affect MMP-3 expression during reactive synaptic plasticity. Notably, these effects are both transcriptional and translational and are correlated with functionally active enzyme.
Collapse
Affiliation(s)
- H J Kim
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University Medical Center, Medical Sciences Building Room #736, 1217 E. Marshall Street, PO Box 980709, Richmond, VA 23298, USA
| | | | | | | |
Collapse
|
17
|
Berends AC, Luiten PGM, Nyakas C. A review of the neuroprotective properties of the 5-HT1A receptor agonist repinotan HCl (BAYx3702) in ischemic stroke. CNS DRUG REVIEWS 2005; 11:379-402. [PMID: 16614737 PMCID: PMC6741728 DOI: 10.1111/j.1527-3458.2005.tb00055.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Repinotan HCl (repinotan, BAYx3702), a highly selective 5-HT1A receptor agonist with a good record of safety was found to have pronounced neuroprotective effects in experimental models that mimic various aspects of brain injury. Repinotan caused strong, dose-dependent infarct reductions in permanent middle cerebral artery occlusion, transient middle cerebral artery occlusion, and traumatic brain injury paradigms. The specific 5-HT1A receptor antagonist WAY 100635 blocked these effects, indicating that the neuroprotective properties of repinotan are mediated through the 5-HT1A receptor. The proposed neuroprotective mechanisms of repinotan are thought to be the result of neuronal hyperpolarization via the activation of G protein-coupled inwardly rectifying K+ channels upon binding to both pre- and post-synaptic 5-HT1A receptors. Hyperpolarization results in inhibition of neuron firing and reduction of glutamate release. These mechanisms, leading to protection of neurons against overexcitation, could explain the neuroprotective efficacy of repinotan per se, but not necessarily the efficacy by delayed administration. The therapeutic time window of repinotan appeared to be at least 5 h in in vivo animal models, but may be even longer at higher doses of the drug. Experimental studies indicate that repinotan affects various mechanisms involved in the pathogenesis of brain injury. In addition to the direct effect of repinotan on neuronal hyperpolarization and suppression of glutamate release this compound affects the death-inhibiting protein Bcl-2, serotonergic glial growth factor S-100beta and Nerve Growth Factor. It also suppresses the activity of caspase-3 through MAPK and PKCalpha; this effect may contribute to its neuroprotective efficacy. The dose- and time-dependent neuroprotective efficacy of repinotan indicates that the drug is a promising candidate for prevention of secondary brain damage in brain-injured patients suffering from acute ischemic stroke. Unfortunately, however, the first, randomized, double blind, placebo-controlled clinical trial did not demonstrate the efficacy of repinotan in acute ischemic stroke.
Collapse
Affiliation(s)
- A C Berends
- Department of Molecular Neurobiology, Graduate School of Behavioral and Cognitive Neurosciences, University of Groningen, P.O. Box 149750 AA Haren, The Netherlands
| | | | | |
Collapse
|
18
|
Prins ML, Povlishock JT, Phillips LL. The effects of combined fluid percussion traumatic brain injury and unilateral entorhinal deafferentation on the juvenile rat brain. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 140:93-104. [PMID: 12524180 DOI: 10.1016/s0165-3806(02)00588-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The current study was designed to address the effects of traumatic brain injury (TBI) on plasticity and reorganization in the juvenile brain. Given that two of the major pathological sequelae of TBI involve a generalized neuroexcitation insult and diffuse axonal injury, we have employed models of these pathologies, delivered either independently or in combination, to examine their effects on injury-induced synaptic reorganization of the dentate gyrus in the developing rat. Postnatal day 28 rats received either sham, central fluid percussion traumatic brain injury (TBI), unilateral entorhinal cortical lesion (UEC), or TBI+UEC (TUEC) injury. Cognitive performance was assessed in the Morris water maze (MWM) between 11 and 15 days post-injury and the brains were processed for synaptophysin immunohistochemistry and routine electron microscopy. The MWM results revealed that TBI or UEC lesions delivered independently do not produce significant morbidity in P28 rats. However, when these injuries are combined, they reveal significant deficits in the MWM, accompanied by measurable changes in the distribution of presynaptic synaptophysin immunoreactivity over the deafferented dentate molecular layer. These observations are further supported by qualitative ultrastructural alterations in synaptic architecture in the same subregions of the dentate neuropil. The present findings show that the resilience of the immature brain following TBI is reduced when neuroexcitatory insult is combined with deafferentation. Moreover, when deafferented tissue is assessed morphologically, evidence exists for aberrant plasticity and abnormal synaptic reorganization in the juvenile brain.
Collapse
Affiliation(s)
- Mayumi L Prins
- Department of Anatomy and Neurobiology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA.
| | | | | |
Collapse
|
19
|
Matzilevich DA, Rall JM, Moore AN, Grill RJ, Dash PK. High-density microarray analysis of hippocampal gene expression following experimental brain injury. J Neurosci Res 2002; 67:646-63. [PMID: 11891777 DOI: 10.1002/jnr.10157] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Behavioral, biophysical, and pharmacological studies have implicated the hippocampus in the formation and storage of spatial memory. Traumatic brain injury (TBI) often causes spatial memory deficits, which are thought to arise from the death as well as the dysfunction of hippocampal neurons. Cell death and dysfunction are commonly associated with and often caused by altered expression of specific genes. The identification of the genes involved in these processes, as well as those participating in postinjury cellular repair and plasticity, is important for the development of mechanism-based therapies. To monitor the expression levels of a large number of genes and to identify genes not previously implicated in TBI pathophysiology, a high-density oligonucleotide array containing 8,800 genes was interrogated. RNA samples were prepared from ipsilateral hippocampi 3 hr and 24 hr following lateral cortical impact injury and compared to samples from sham-operated controls. Cluster analysis was employed using statistical algorithms to arrange the genes according to similarity in patterns of expression. The study indicates that the genomic response to TBI is complex, affecting approximately 6% (at the time points examined) of the total number of genes examined. The identity of the genes revealed that TBI affects many aspects of cell physiology, including oxidative stress, metabolism, inflammation, structural changes, and cellular signaling. The analysis revealed genes whose expression levels have been reported to be altered in response to injury as well as several genes not previously implicated in TBI pathophysiology.
Collapse
Affiliation(s)
- David A Matzilevich
- The Vivian L. Smith Center for Neurologic Research, Departments of Neurobiology and Anatomy, Neurosurgery, The University of Texas Medical School, Houston, Texas 77225, USA
| | | | | | | | | |
Collapse
|
20
|
Kline AE, Yu J, Horváth E, Marion DW, Dixon CE. The selective 5-HT(1A) receptor agonist repinotan HCl attenuates histopathology and spatial learning deficits following traumatic brain injury in rats. Neuroscience 2002; 106:547-55. [PMID: 11591455 DOI: 10.1016/s0306-4522(01)00300-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The selective 5-HT(1A) receptor agonist Repinotan HCl (BAY x3702) has been reported to attenuate cortical damage and improve functional performance in experimental models of cerebral ischemia and acute subdural hematoma. Using a clinically relevant contusion model of traumatic brain injury, we tested the hypothesis that a 4-h continuous infusion of Repinotan HCl (10 microg/kg/h i.v.) commencing 5 min post-injury would ameliorate functional outcome and attenuate histopathology. Forty isoflurane-anesthetized male adult rats were randomly assigned to receive either a controlled cortical impact (2.7 mm tissue deformation, 4 m/s) or sham injury (Injury/Vehicle=10, Injury/MK-801=10, Injury/Repinotan HCl=10, Sham/Vehicle=10), then tested for vestibulomotor function on post-operative days 1-5 and for spatial learning on days 14-18. Neither Repinotan HCl nor the non-competitive N-methyl-D-aspartate receptor antagonist MK-801, which served as a positive control, improved vestibulomotor function on beam balance and beam walk tasks relative to the Injury/Vehicle group, but both did significantly attenuate spatial learning and memory deficits on a water maze task. Repinotan HCl also reduced hippocampal CA(1) and CA(3) neuronal loss, as well as cortical tissue damage, compared to the Injury/Vehicle group at 4 weeks post-trauma. No significant difference in histological outcome was revealed between the Repinotan HCl- and MK-801-treated groups.These findings extend the therapeutic efficacy of Repinotan HCl to a contusion model of experimental brain injury and demonstrate for the first time that 5-HT(1A) receptor agonists confer neuroprotection and attenuate spatial learning deficits following controlled cortical impact injury. This treatment strategy may be beneficial in a clinical context where memory impairments are common following human traumatic brain injury.
Collapse
Affiliation(s)
- A E Kline
- Brain Tumor Research Center, Department of Neurosurgery, University of Pittsburgh, PA 15260, USA
| | | | | | | | | |
Collapse
|
21
|
Antonow-Schlorke I, Kühn B, Müller T, Schubert H, Sliwka U, Nathanielsz PW, Schwab M. Antenatal betamethasone treatment reduces synaptophysin immunoreactivity in presynaptic terminals in the fetal sheep brain. Neurosci Lett 2001; 297:147-50. [PMID: 11137749 DOI: 10.1016/s0304-3940(00)01605-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Knowledge of morphofunctional effects on the fetal brain induced by exogenous glucocorticoids is limited. Recently, we reported alterations of both the neuronal cytoskeleton and electrocortical function in the ovine fetal brain after antenatal betamethasone treatment in doses used in perinatal medicine. In the present study we examined whether these changes are accompanied by morphological alterations of synapses. Chronically instrumented fetal sheep at 0.87 of gestation were treated either with isotonic saline (n=7) or 10 microg/h betamethasone (n=7) over 48 h administered directly to the fetal jugular vein. Paraffin sections of the frontal neocortex, caudate putamen and hippocampus were stained with a monoclonal antibody against synaptophysin, a specific membrane protein of presynaptic vesicles and quantified morphometrically. Synaptophysin-like immunoreactivity (synaptophysin-LI) showed a widespread granular pattern in the neuropil. Betamethasone exposure reduced synaptophysin-LI in the frontal neocortex, caudate putamen and hippocampus by 46.9, 41.0 and 55.4%, respectively, (P<0.05) that was not accompanied by irreversible neuronal damage. These results suggest that clinical doses of betamethasone have acute effects on presynaptic terminals in the fetal sheep brain that could contribute to the altered complexity of electrocortical function that we have shown previously to occur following fetal exposure to betamethasone.
Collapse
Affiliation(s)
- I Antonow-Schlorke
- Department of Neurology, Friedrich Schiller University Jena, D-07740, Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
22
|
Zhu J, Hamm RJ, Reeves TM, Povlishock JT, Phillips LL. Postinjury administration of L-deprenyl improves cognitive function and enhances neuroplasticity after traumatic brain injury. Exp Neurol 2000; 166:136-52. [PMID: 11031090 DOI: 10.1006/exnr.2000.7484] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The rat model of combined central fluid percussion traumatic brain injury (TBI) and bilateral entorhinal cortical lesion (BEC) produces profound, persistent cognitive deficits, sequelae associated with human TBI. In contrast to percussive TBI alone, this combined injury induces maladaptive hippocampal plasticity. Recent reports suggest a potential role for dopamine in CNS plasticity after trauma. We have examined the effect of the dopamine enhancer l-deprenyl on cognitive function and neuroplasticity following TBI. Rats received fluid percussion TBI, BEC alone, or combined TBI + BEC lesion and were treated once daily for 7 days with l-deprenyl, beginning 24 h after TBI alone and 15 min after BEC or TBI + BEC. Postinjury motor assessment showed no effect of l-deprenyl treatment. Cognitive performance was assessed on days 11-15 postinjury and brains from the same cases examined for dopamine beta-hydroxylase immunoreactivity (DBH-IR) and acetylcholinesterase (AChE) histochemistry. Significant cognitive improvement relative to untreated injured cases was observed in both TBI groups following l-deprenyl treatment; however, no drug effects were seen with BEC alone. l-Deprenyl attenuated injury-induced loss in DBH-IR over CA1 and CA3 after TBI alone. However, after combined TBI + BEC, l-deprenyl was only effective in protecting CA1 DBH-IR. AChE histostaining in CA3 was significantly elevated with l-deprenyl in both injury models. After TBI + BEC, l-deprenyl also increased AChE in the dentate molecular layer relative to untreated injured cases. These results suggest that dopaminergic/noradrenergic enhancement facilitates cognitive recovery after brain injury and that noradrenergic fiber integrity is correlated with enhanced synaptic plasticity in the injured hippocampus.
Collapse
Affiliation(s)
- J Zhu
- Department of Anatomy, Medical College of Virginia, Richmond, Virginia 23298-0709, USA
| | | | | | | | | |
Collapse
|
23
|
Abstract
Pathological processes affecting presynaptic terminals may contribute to morbidity following traumatic brain injury (TBI). Posttraumatic widespread neuronal depolarization and elevated extracellular potassium and glutamate are predicted to alter the transduction of action potentials in terminals into reliable synaptic transmission and postsynaptic excitation. Evoked responses to orthodromic single- and paired-pulse stimulation were examined in the CA1 dendritic region of hippocampal slices removed from adult rats following fluid percussion TBI. The mean duration of the extracellularly recorded presynaptic volley (PV) increased from 1.08 msec in controls to 1.54 msec in slices prepared at 1 hr postinjury. There was a time-dependent recovery of this injury effect, and PV durations at 2 and 7 days postinjury were not different from controls. In slices removed at 1 hr postinjury, the initial slopes of field excitatory postsynaptic potentials (fEPSPs) were reduced to 36% of control values, and input/output plots revealed posttraumatic deficits in the transfer of excitation from pre- to postsynaptic elements. Manipulating potassium currents with 1.0 mM tetraethylammonium or elevating potassium ion concentration to 7.5 mM altered evoked responses but did not replicate the injury effects to PV duration. Paired-pulse facilitation of fEPSP slopes was significantly elevated at all postinjury survivals: 1 hr, 2 days, and 7 days. These results suggest two pathological processes with differing time courses: 1) a transient impairment of presynaptic terminal functioning affecting PV durations and the transduction of afferent activity in the terminals to reliable synaptic excitation and 2) a more protracted deficit to the plasticity mechanisms underlying paired-pulse facilitation.
Collapse
Affiliation(s)
- T M Reeves
- Department of Anatomy, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | | | | | | | | |
Collapse
|