1
|
Truong MA, Cané-Gasull P, Lens SMA. Modeling specific aneuploidies: from karyotype manipulations to biological insights. Chromosome Res 2023; 31:25. [PMID: 37640903 PMCID: PMC10462580 DOI: 10.1007/s10577-023-09735-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/11/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023]
Abstract
An abnormal chromosome number, or aneuploidy, underlies developmental disorders and is a common feature of cancer, with different cancer types exhibiting distinct patterns of chromosomal gains and losses. To understand how specific aneuploidies emerge in certain tissues and how they contribute to disease development, various methods have been developed to alter the karyotype of mammalian cells and mice. In this review, we provide an overview of both classic and novel strategies for inducing or selecting specific chromosomal gains and losses in human and murine cell systems. We highlight how these customized aneuploidy models helped expanding our knowledge of the consequences of specific aneuploidies to (cancer) cell physiology.
Collapse
Affiliation(s)
- My Anh Truong
- Oncode Institute and Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584, CG, Utrecht, The Netherlands
| | - Paula Cané-Gasull
- Oncode Institute and Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584, CG, Utrecht, The Netherlands
| | - Susanne M A Lens
- Oncode Institute and Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584, CG, Utrecht, The Netherlands.
| |
Collapse
|
2
|
Ohira T, Yoshimura K, Kugoh H. Human artificial chromosome carrying 3p21.3-p22.2 region suppresses hTERT transcription in oral cancer cells. Chromosome Res 2023; 31:17. [PMID: 37353691 PMCID: PMC10289923 DOI: 10.1007/s10577-023-09726-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/24/2023] [Accepted: 06/06/2023] [Indexed: 06/25/2023]
Abstract
Telomerase is a ribonucleoprotein ribonucleic enzyme that elongates telomere repeat sequences at the ends of chromosomes and contributes to cellular immortalization. The catalytic component of telomerase, human telomerase reverse transcriptase (hTERT), has been observed to be reactivated in immortalized cells. Notably, most cancer cells have been found to have active hTERT mRNA transcription, resulting in continuous cell division, which is crucial for malignant transformation. Therefore, discovering mechanisms underlying the regulation of hTERT transcription is an attractive target for cancer-specific treatments.Loss of heterozygosity (LOH) of chromosome 3p21.3 has been frequently observed in human oral squamous cell carcinoma (OSCC). Moreover, we previously reported that HSC3 OSCC microcell hybrid clones with an introduced human chromosome 3 (HSC3#3) showed inhibition of hTERT transcription compared with the parental HSC3 cells. This study examined whether hTERT transcription regulators are present in the 3p21.3 region. We constructed a human artificial chromosome (HAC) vector (3p21.3-HAC) with only the 3p21.3-p22.2 region and performed functional analysis using the 3p21.3-HAC. HSC3 microcell hybrid clones with an introduced 3p21.3-HAC exhibited significant suppression of hTERT transcription, similar to the microcell hybrid clones with an intact chromosome 3. In contrast, HSC3 clones with truncated chromosome 3 with deletion of the 3p21.3 region (3delp21.3) showed no effect on hTERT expression levels. These results provide direct evidence that hTERT suppressor gene(s) were retained in the 3p21.3 region, suggesting that the presence of regulatory factors that control telomerase enzyme activity may be involved in the development of OSCC.
Collapse
Affiliation(s)
- Takahito Ohira
- Department of Chromosome Biomedical Engineering, Tottori University, 86 Nishi-Cho, Yonago, Tottori, 683-8503, Japan
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-Cho, Yonago, Tottori, 683-8503, Japan
| | - Kaho Yoshimura
- Department of Chromosome Biomedical Engineering, Tottori University, 86 Nishi-Cho, Yonago, Tottori, 683-8503, Japan
| | - Hiroyuki Kugoh
- Department of Chromosome Biomedical Engineering, Tottori University, 86 Nishi-Cho, Yonago, Tottori, 683-8503, Japan.
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-Cho, Yonago, Tottori, 683-8503, Japan.
- Division of Genome and Cellular Function, Department of Molecular and Cellular Biology, Tottori University, 86 Nishi-Cho, Yonago, Tottori, 683-8503, Japan.
| |
Collapse
|
3
|
Choi JE, Jeon HS, Wee HJ, Lee JY, Lee WK, Lee SY, Yoo SS, Choi SH, Kim DS, Park JY. Epigenetic and genetic inactivation of tumor suppressor miR-135a in non-small-cell lung cancer. Thorac Cancer 2023; 14:1012-1020. [PMID: 36869643 PMCID: PMC10101835 DOI: 10.1111/1759-7714.14838] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Despite therapeutic advances, lung cancer prognosis remains poor. Loss of heterozygosity (LOH) in the 3p21 region is well documented in lung cancer, but the specific causative genes have not been identified. MATERIALS AND METHODS Here, we aimed to examine the clinical impact of miR-135a, located in the 3p21 region, in lung cancer. miR-135a expression was assessed using quantitative real-time polymerase chain reaction. LOH was analyzed at microsatellite loci D3S1076 and D3S1478, and promoter methylation status was determined by pyrosequencing of resected samples of primary non-small-cell lung cancer (NSCLC). The regulation of telomerase reverse transcriptase (TERT) was evaluated in lung cancer cells H1299 by luciferase report assays after treatment with miR-135a mimics. RESULTS miR-135a was significantly downregulated in squamous cell cancer (SCC) tumor tissues compared to normal tissues (p = 0.001). Low miR-135a expression was more frequent in patients with SCC (p = 2.9 × 10-4 ) and smokers (p = 0.01). LOH and hypermethylation were detected in 27.8% (37/133) and 17.3% (23/133) of the tumors, respectively. Overall, 36.8% (49/133) of the NSCLC cases harbored either miR-135a LOH or promoter hypermethylation. The frequencies of LOH and hypermethylation were significantly associated with SCCs (p = 2 × 10-4 ) and late-stage (p = 0.04), respectively. MiR-135a inhibited the relative luciferase activity of psiCHECK2-TERT-3'UTR. CONCLUSION These results suggest that miR-135a may act as a tumor suppressor to play an important role in lung cancer carcinogenesis, which will provide a new insight into the translational value of miR-135a. Further large-scale studies are required to confirm these findings.
Collapse
Affiliation(s)
- Jin Eun Choi
- Cell and Matrix Research Institute, School of Medicine, Kyungpook National UniversityDaeguSouth Korea
| | - Hyo Sung Jeon
- Cell and Matrix Research Institute, School of Medicine, Kyungpook National UniversityDaeguSouth Korea
| | - Hyun Jung Wee
- Cell and Matrix Research Institute, School of Medicine, Kyungpook National UniversityDaeguSouth Korea
| | - Ji Yun Lee
- Cell and Matrix Research Institute, School of Medicine, Kyungpook National UniversityDaeguSouth Korea
| | - Won Kee Lee
- Biostatistics, Medical Research Collaboration Center in Kyungpook National University Hospital and School of Medicine, Kyungpook National UniversityDaeguSouth Korea
| | - Shin Yup Lee
- Department of Internal MedicineSchool of Medicine, Kyungpook National UniversityDaeguSouth Korea
- Lung Cancer Center, Kyungpook National University Chilgok HospitalDaeguSouth Korea
| | - Seung Soo Yoo
- Department of Internal MedicineSchool of Medicine, Kyungpook National UniversityDaeguSouth Korea
- Lung Cancer Center, Kyungpook National University Chilgok HospitalDaeguSouth Korea
| | - Sun Ha Choi
- Department of Internal MedicineSchool of Medicine, Kyungpook National UniversityDaeguSouth Korea
- Lung Cancer Center, Kyungpook National University Chilgok HospitalDaeguSouth Korea
| | - Dong Sun Kim
- Cell and Matrix Research Institute, School of Medicine, Kyungpook National UniversityDaeguSouth Korea
- Department of AnatomySchool of Medicine, Kyungpook National UniversityDaeguSouth Korea
| | - Jae Yong Park
- Cell and Matrix Research Institute, School of Medicine, Kyungpook National UniversityDaeguSouth Korea
- Department of Internal MedicineSchool of Medicine, Kyungpook National UniversityDaeguSouth Korea
- Lung Cancer Center, Kyungpook National University Chilgok HospitalDaeguSouth Korea
| |
Collapse
|
4
|
Current advances in microcell-mediated chromosome transfer technology and its applications. Exp Cell Res 2020; 390:111915. [PMID: 32092294 DOI: 10.1016/j.yexcr.2020.111915] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/06/2020] [Accepted: 02/19/2020] [Indexed: 11/22/2022]
Abstract
Chromosomes and chromosomal gene delivery vectors, human/mouse artificial chromosomes (HACs/MACs), can introduce megabase-order DNA sequences into target cells and are used for applications including gene mapping, gene expression control, gene/cell therapy, and the development of humanized animals and animal models of human disease. Microcell-mediated chromosome transfer (MMCT), which enables chromosome transfer from donor cells to target cells, is a key technology for these applications. In this review, we summarize the principles of gene transfer with HACs/MACs; their engineering, characteristics, and utility; and recent advances in the chromosome transfer technology.
Collapse
|
5
|
Functional role of SETD2, BAP1, PARP-3 and PBRM1 candidate genes on the regulation of hTERT gene expression. Oncotarget 2017; 8:61890-61900. [PMID: 28977912 PMCID: PMC5617472 DOI: 10.18632/oncotarget.18712] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/15/2017] [Indexed: 11/25/2022] Open
Abstract
Narrowing the search for the critical hTERT repressor sequence(s) has identified three regions on chromosome 3p (3p12-p21.1, 3p21.2 and 3p21.3-p22). However, the precise location and identity of the sequence(s) responsible for hTERT transcriptional repression remains elusive. In order to identify critical hTERT repressor sequences located within human chromosome 3p12-p22, we investigated hTERT transcriptional activity within 21NT microcell hybrid clones containing chromosome 3 fragments. Mapping of chromosome 3 structure in a single hTERT-repressed 21NT-#3fragment hybrid clone, revealed a 490kb region of deletion localised to 3p21.3 and encompassing the histone H3, lysine 36 (H3K36) trimethyltransferase enzyme SETD2; a putative tumour suppressor gene in breast cancer. Three additional genes, BAP1, PARP-3 and PBRM1, were also selected for further investigation based on their location within the 3p21.1-p21.3 region, together with their documented role in the epigenetic regulation of target gene expression or hTERT regulation. All four genes (SETD2, BAP1, PARP-3 and PBRM1) were found to be expressed at low levels in 21NT. Gene copy number variation (CNV) analysis of SETD2, BAP1, PARP-3 and PBRM1 within a panel of nine breast cancer cell lines demonstrated single copy number loss of all candidate genes within five (56%) cell lines (including 21NT cells). Stable, forced overexpression of BAP1, but not PARP2, SETD2 or PBRM1, within 21NT cells was associated with a significant reduction in hTERT expression levels relative to wild-type controls. We propose that at least two sequences exist on human chromosome 3p, that function to regulate hTERT transcription within human breast cancer cells.
Collapse
|
6
|
Studies of Tumor Suppressor Genes via Chromosome Engineering. Cancers (Basel) 2015; 8:cancers8010004. [PMID: 26729168 PMCID: PMC4728451 DOI: 10.3390/cancers8010004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/19/2015] [Accepted: 12/21/2015] [Indexed: 12/01/2022] Open
Abstract
The development and progression of malignant tumors likely result from consecutive accumulation of genetic alterations, including dysfunctional tumor suppressor genes. However, the signaling mechanisms that underlie the development of tumors have not yet been completely elucidated. Discovery of novel tumor-related genes plays a crucial role in our understanding of the development and progression of malignant tumors. Chromosome engineering technology based on microcell-mediated chromosome transfer (MMCT) is an effective approach for identification of tumor suppressor genes. The studies have revealed at least five tumor suppression effects. The discovery of novel tumor suppressor genes provide greater understanding of the complex signaling pathways that underlie the development and progression of malignant tumors. These advances are being exploited to develop targeted drugs and new biological therapies for cancer.
Collapse
|
7
|
Oshimura M, Uno N, Kazuki Y, Katoh M, Inoue T. A pathway from chromosome transfer to engineering resulting in human and mouse artificial chromosomes for a variety of applications to bio-medical challenges. Chromosome Res 2015; 23:111-33. [PMID: 25657031 PMCID: PMC4365188 DOI: 10.1007/s10577-014-9459-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Microcell-mediated chromosome transfer (MMCT) is a technique to transfer a chromosome from defined donor cells into recipient cells and to manipulate chromosomes as gene delivery vectors and open a new avenue in somatic cell genetics. However, it is difficult to uncover the function of a single specific gene via the transfer of an entire chromosome or fragment, because each chromosome or fragment contains a set of numerous genes. Thus, alternative tools are human artificial chromosome (HAC) and mouse artificial chromosome (MAC) vectors, which can carry a gene or genes of interest. HACs/MACs have been generated mainly by either a "top-down approach" (engineered creation) or a "bottom-up approach" (de novo creation). HACs/MACs with one or more acceptor sites exhibit several characteristics required by an ideal gene delivery vector, including stable episomal maintenance and the capacity to carry large genomic loci plus their regulatory elements, thus allowing the physiological regulation of the introduced gene in a manner similar to that of native chromosomes. The MMCT technique is also applied for manipulating HACs and MACs in donor cells and delivering them to recipient cells. This review describes the lessons learned and prospects identified from studies on the construction of HACs and MACs, and their ability to drive exogenous gene expression in cultured cells and transgenic animals via MMCT. New avenues for a variety of applications to bio-medical challenges are also proposed.
Collapse
Affiliation(s)
- Mitsuo Oshimura
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan,
| | | | | | | | | |
Collapse
|
8
|
Repression of hTERT transcription by the introduction of chromosome 3 into human oral squamous cell carcinoma. Biochem Biophys Res Commun 2015; 466:755-9. [PMID: 26410534 DOI: 10.1016/j.bbrc.2015.09.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 09/22/2015] [Indexed: 12/13/2022]
Abstract
Telomerase is a ribonucleoprotein enzyme that maintains telomere length. Telomerase activity is primarily attributed to the expression of telomerase reverse transcriptase (TERT). It has been reported that introduction of an intact human chromosome 3 into the human oral squamous cell carcinoma cell line HSC3 suppresses the tumorigenicity of these cells. However, the mechanisms that regulate tumorigenicity have not been elucidated. To determine whether this reduction in tumorigenicity was accompanied by a reduction in telomerase activity, we investigated the transcriptional activation of TERT in HSC3 microcell hybrid clones with an introduced human chromosome 3 (HSC3#3). HSC#3 cells showed inhibition of hTERT transcription compared to that of the parental HSC3 cells. Furthermore, cell fusion experiments showed that hybrids of HSC3 cells and cells of the RCC23 renal carcinoma cell line, which also exhibits suppression of TERT transcription by the introduction of human chromosome 3, also displayed suppressed TERT transcription. These results suggested that human chromosome 3 may carry functionally distinct, additional TERT repressor genes.
Collapse
|
9
|
Tanaka H, Beam MJ, Caruana K. The presence of telomere fusion in sporadic colon cancer independently of disease stage, TP53/KRAS mutation status, mean telomere length, and telomerase activity. Neoplasia 2014; 16:814-23. [PMID: 25379018 PMCID: PMC4212252 DOI: 10.1016/j.neo.2014.08.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 08/19/2014] [Accepted: 08/20/2014] [Indexed: 11/25/2022] Open
Abstract
Defects in telomere maintenance can result in telomere fusions that likely play a causative role in carcinogenesis by promoting genomic instability. However, this proposition remains to be fully understood in human colon carcinogenesis. In the present study, the temporal sequence of telomere dysfunction dynamics was delineated by analyzing telomere fusion, telomere length, telomerase activity, hotspot mutations in KRAS or BRAF, and TP53 of tissue samples obtained from 18 colon cancer patients. Our results revealed that both the deficiency of p53 and the shortening of mean telomere length were not necessary for producing telomere fusions in colon tissue. In five cases, telomere fusion was observed even in tissue adjacent to cancerous lesions, suggesting that genomic instability is initiated in pathologically non-cancerous lesions. The extent of mean telomere attrition increased with lymph node invasiveness of tumors, implying that mean telomere shortening correlates with colon cancer progression. Telomerase activity was relatively higher in most cancer tissues containing mutation(s) in KRAS or BRAF and/or TP53 compared to those without these hotspot mutations, suggesting that telomerase could become fully active at the late stage of colon cancer development. Interestingly, the majority of telomere fusion junctions in colon cancer appeared to be a chromatid-type containing chromosome 7q or 12q. In sum, this meticulous correlative study not only highlights the concept that telomere fusion is present in the early stages of cancer regardless of TP53/KRAS mutation status, mean telomere length, and telomerase activity, but also provides additional insights targeting key telomere fusion junctions which may have significant implications for colon cancer diagnoses.
Collapse
Affiliation(s)
- Hiromi Tanaka
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, IN, USA
| | - Matthew J Beam
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, IN, USA
| | - Kevin Caruana
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, IN, USA
| |
Collapse
|
10
|
Identification of PITX1 as a TERT suppressor gene located on human chromosome 5. Mol Cell Biol 2011; 31:1624-36. [PMID: 21300782 DOI: 10.1128/mcb.00470-10] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Telomerase, a ribonucleoprotein enzyme that maintains telomere length, is crucial for cellular immortalization and cancer progression. Telomerase activity is attributed primarily to the expression of telomerase reverse transcriptase (TERT). Using microcell-mediated chromosome transfer (MMCT) into the mouse melanoma cell line B16F10, we previously found that human chromosome 5 carries a gene, or genes, that can negatively regulate TERT expression (H. Kugoh, K. Shigenami, K. Funaki, J. Barrett, and M. Oshimura, Genes Chromosome Cancer 36:37-47, 2003). To identify the gene responsible for the regulation of TERT transcription, we performed cDNA microarray analysis using parental B16F10 cells, telomerase-negative B16F10 microcell hybrids with a human chromosome 5 (B16F10MH5), and its revertant clones (MH5R) with reactivated telomerase. Here, we report the identification of PITX1, whose expression leads to the downregulation of mouse tert (mtert) transcription, as a TERT suppressor gene. Additionally, both human TERT (hTERT) and mouse TERT (mtert) promoter activity can be suppressed by PITX1. We show that three and one binding site within the hTERT and mtert promoters, respectively, that express a unique conserved region are responsible for the transcriptional activation of TERT. Furthermore, we showed that PITX1 binds to the TERT promoter both in vitro and in vivo. Thus, PITX1 suppresses TERT transcription through direct binding to the TERT promoter, which ultimately regulates telomerase activity.
Collapse
|
11
|
Abe S, Tanaka H, Notsu T, Horike SI, Fujisaki C, Qi DL, Ohhira T, Gilley D, Oshimura M, Kugoh H. Localization of an hTERT repressor region on human chromosome 3p21.3 using chromosome engineering. Genome Integr 2010; 1:6. [PMID: 20678252 PMCID: PMC2907559 DOI: 10.1186/2041-9414-1-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 05/26/2010] [Indexed: 11/10/2022] Open
Abstract
Telomerase is a ribonucleoprotein enzyme that synthesizes telomeric DNA. The reactivation of telomerase activity by aberrant upregulation/expression of its catalytic subunit hTERT is a major pathway in human tumorigenesis. However, regulatory mechanisms that control hTERT expression are largely unknown. Previously, we and others have demonstrated that the introduction of human chromosome 3, via microcell-mediated chromosome transfer (MMCT), repressed transcription of the hTERT gene. These results suggested that human chromosome 3 contains a regulatory factor(s) involved in the repression of hTERT. To further localize this putative hTERT repressor(s), we have developed a unique experimental approach by introducing various truncated chromosome 3 regions produced by a novel chromosomal engineering technology into the renal cell carcinoma cell line (RCC23 cells). These cells autonomously express ectopic hTERT (exohTERT) promoted by a retroviral LTR promoter in order to permit cellular division after repression of endogenous hTERT. We found a telomerase repressor region located within a 7-Mb interval on chromosome 3p21.3. These results provide important information regarding hTERT regulation and a unique method to identify hTERT repressor elements.
Collapse
Affiliation(s)
- Satoshi Abe
- Department of Biomedical Science, Graduate School of Medical Science, and Chromosome Engineering Research Center, Tottori University, 86 Nishicho, Yonago 683-8503, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kyo S, Takakura M, Fujiwara T, Inoue M. Understanding and exploiting hTERT promoter regulation for diagnosis and treatment of human cancers. Cancer Sci 2008; 99:1528-38. [PMID: 18754863 PMCID: PMC11158053 DOI: 10.1111/j.1349-7006.2008.00878.x] [Citation(s) in RCA: 264] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Telomerase activation is a critical step for human carcinogenesis through the maintenance of telomeres, but the activation mechanism during carcinogenesis remains unclear. Transcriptional regulation of the human telomerase reverse transcriptase (hTERT) gene is the major mechanism for cancer-specific activation of telomerase, and a number of factors have been identified to directly or indirectly regulate the hTERT promoter, including cellular transcriptional activators (c-Myc, Sp1, HIF-1, AP2, ER, Ets, etc.) as well as the repressors, most of which comprise tumor suppressor gene products, such as p53, WT1, and Menin. Nevertheless, none of them can clearly account for the cancer specificity of hTERT expression. The chromatin structure via the DNA methylation or modulation of nucleosome histones has recently been suggested to be important for regulation of the hTERT promoter. DNA unmethylation or histone methylation around the transcription start site of the hTERT promoter triggers the recruitment of histone acetyltransferase (HAT) activity, allowing hTERT transcription. These facts prompted us to apply these regulatory mechanisms to cancer diagnostics and therapeutics. Telomerase-specific replicative adenovirus (Telomelysin, OBP-301), in which E1A and E1B genes are driven by the hTERT promoter, has been developed as an oncolytic virus that replicates specifically in cancer cells and causes cell death via viral toxicity. Direct administration of Telomelysin was proved to effectively eradicate solid tumors in vivo, without apparent adverse effects. Clinical trials using Telomelysin for cancer patients with progressive stages are currently ongoing. Furthermore, we incorporated green fluorescent protein gene (GFP) into Telomelysin (TelomeScan, OBP-401). Administration of TelomeScan into the primary tumor enabled the visualization of cancer cells under the cooled charged-coupled device (CCD) camera, not only in primary tumors but also the metastatic foci. This technology can be applied to intraoperative imaging of metastatic lymphnodes. Thus, we found novel tools for cancer diagnostics and therapeutics by utilizing the hTERT promoter.
Collapse
Affiliation(s)
- Satoru Kyo
- Department of Obstetrics and Gynecology, Kanazawa University, Graduate School of Medical Science, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8641, Japan.
| | | | | | | |
Collapse
|
13
|
Kost-Alimova M, Darai-Ramqvist E, Yau WL, Sandlund A, Fedorova L, Yang Y, Kholodnyuk I, Cheng Y, Li Lung M, Stanbridge E, Klein G, Imreh S. Mandatory chromosomal segment balance in aneuploid tumor cells. BMC Cancer 2007; 7:21. [PMID: 17257397 PMCID: PMC1794251 DOI: 10.1186/1471-2407-7-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Accepted: 01/26/2007] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Euploid chromosome balance is vitally important for normal development, but is profoundly changed in many tumors. Is each tumor dependent on its own structurally and numerically changed chromosome complement that has evolved during its development and progression? We have previously shown that normal chromosome 3 transfer into the KH39 renal cell carcinoma line and into the Hone1 nasopharyngeal carcinoma line inhibited their tumorigenicity. The aim of the present study was to distinguish between a qualitative and a quantitative model of this suppression. According to the former, a damaged or deleted tumor suppressor gene would be restored by the transfer of a normal chromosome. If so, suppression would be released only when the corresponding sequences of the exogenous normal chromosome are lost or inactivated. According to the alternative quantitative model, the tumor cell would not tolerate an increased dosage of the relevant gene or segment. If so, either a normal cell derived, or, a tumor derived endogenous segment could be lost. METHODS Fluorescence in Situ Hybridization based methods, as well as analysis of polymorphic microsatellite markers were used to follow chromosome 3 constitution changes in monochromosomal hybrids. RESULTS In both tumor lines with introduced supernumerary chromosomes 3, the copy number of 3p21 or the entire 3p tended to fall back to the original level during both in vitro and in vivo growth. An exogenous, normal cell derived, or an endogenous, tumor derived, chromosome segment was lost with similar probability. Identification of the lost versus retained segments showed that the intolerance for increased copy number was particularly strong for 3p14-p21, and weaker for other 3p regions. Gains in copy number were, on the other hand, well tolerated in the long arm and particularly the 3q26-q27 region. CONCLUSION The inability of the cell to tolerate an experimentally imposed gain in 3p14-p21 in contrast to the well tolerated gain in 3q26-q27 is consistent with the fact that the former is often deleted in human tumors, whereas the latter is frequently amplified. The findings emphasize the importance of even minor changes in copy number in seemingly unbalanced aneuploid tumors.
Collapse
Affiliation(s)
- Maria Kost-Alimova
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Box 280, 171 77 Stockholm, Sweden
| | - Eva Darai-Ramqvist
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Box 280, 171 77 Stockholm, Sweden
| | - Wing Lung Yau
- Department of Biology, Center for Cancer Research, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (Special Administrative Region), China
| | - Agneta Sandlund
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Box 280, 171 77 Stockholm, Sweden
| | - Ludmila Fedorova
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Box 280, 171 77 Stockholm, Sweden
| | - Ying Yang
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Box 280, 171 77 Stockholm, Sweden
| | - Irina Kholodnyuk
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Box 280, 171 77 Stockholm, Sweden
| | - Yue Cheng
- Department of Biology, Center for Cancer Research, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (Special Administrative Region), China
| | - Maria Li Lung
- Department of Biology, Center for Cancer Research, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (Special Administrative Region), China
| | - Eric Stanbridge
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California, USA
| | - George Klein
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Box 280, 171 77 Stockholm, Sweden
| | - Stefan Imreh
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Box 280, 171 77 Stockholm, Sweden
| |
Collapse
|
14
|
Lo PHY, Leung ACC, Kwok CYC, Cheung WSY, Ko JMY, Yang LC, Law S, Wang LD, Li J, Stanbridge EJ, Srivastava G, Tang JCO, Tsao SW, Lung ML. Identification of a tumor suppressive critical region mapping to 3p14.2 in esophageal squamous cell carcinoma and studies of a candidate tumor suppressor gene, ADAMTS9. Oncogene 2006; 26:148-57. [PMID: 16799631 DOI: 10.1038/sj.onc.1209767] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A gene critical to esophageal cancer has been identified. Functional studies using microcell-mediated chromosome transfer of intact and truncated donor chromosomes 3 into an esophageal cancer cell line and nude mouse tumorigenicity assays were used to identify a 1.61 Mb tumor suppressive critical region (CR) mapping to chromosome 3p14.2. This CR is bounded by D3S1600 and D3S1285 microsatellite markers. One candidate tumor suppressor gene, ADAMTS9, maps to this CR. Further studies showed normal expression levels of this gene in tumor-suppressed microcell hybrids, levels that were much higher than observed in the recipient cells. Complete loss or downregulation of ADAMTS9 gene expression was found in 15 out of 16 esophageal carcinoma cell lines. Promoter hypermethylation was detected in the cell lines that do not express this gene. Re-expression of ADAMTS9 was observed after demethylation drug treatment, confirming that hypermethylation is involved in gene downregulation. Downregulation of ADAMTS9 was also found in 43.5 and 47.6% of primary esophageal tumor tissues from Hong Kong and from the high-risk region of Henan, respectively. Thus, this study identifies and provides functional evidence for a CR associated with tumor suppression on 3p14.2 and provides the first evidence that ADAMTS9, mapping to this region, may contribute to esophageal cancer development.
Collapse
Affiliation(s)
- P H Y Lo
- Department of Biology and Center for Cancer Research, Hong Kong University of Science and Technology, Hong Kong, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Takakura M, Kyo S, Inoue M, Wright WE, Shay JW. Function of AP-1 in transcription of the telomerase reverse transcriptase gene (TERT) in human and mouse cells. Mol Cell Biol 2005; 25:8037-43. [PMID: 16135795 PMCID: PMC1234330 DOI: 10.1128/mcb.25.18.8037-8043.2005] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcriptional regulation of the human telomerase catalytic subunit (hTERT) plays a critical role in telomerase activity. Approximately 200 bp of the proximal core promoter is responsible for basic hTERT expression; however, the function of the distal regulatory elements remains unclear. The transcription factor activator protein 1 (AP-1) is involved in cellular proliferation, differentiation, carcinogenesis, and apoptosis and is expressed broadly in both cancer and normal cells. There are several putative AP-1 sites in the hTERT promoter, but their functions are unknown. The present study examined the regulatory role of AP-1 in hTERT gene transcription. Overexpression of AP-1 leads to transcriptional suppression of hTERT in cancer cells. The combination of c-Fos and c-Jun or c-Fos and JunD strongly suppresses hTERT promoter activity in transient-expression analyses. The hTERT promoter region between -2000 and -378 is responsible for this function. Gel shift and supershift analyses, as well as ChIP, show binding of JunD and c-Jun on two putative AP-1 sites within this region. Mutations in the AP-1 binding sites rescued suppressions caused by AP-1, suggesting this is a direct regulation of the hTERT promoter. In contrast, there was no effect on mTERT expression or mTERT promoter activity by AP-1 overexpression in mouse fibroblasts. The species-specific function of AP-1 in TERT expression may in part help explain the difference in telomerase activity between normal human and mouse cells.
Collapse
Affiliation(s)
- Masahiro Takakura
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9039, USA
| | | | | | | | | |
Collapse
|
16
|
Tanaka H, Horikawa I, Barrett JC, Oshimura M. Evidence for inactivation of distinct telomerase repressor genes in different types of human cancers. Int J Cancer 2005; 115:653-7. [PMID: 15688423 DOI: 10.1002/ijc.20879] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Telomerase activation, a critical event in human carcinogenesis, may result from defects in telomerase-repressing mechanisms. Data from microcell-mediated chromosome transfer (MMCT) suggests the presence of telomerase repressor genes that become inactivated during carcinogenic processes. The transfer of a normal human chromosome 3 represses telomerase activity of both human renal cell carcinoma (RCC) and breast carcinoma (BC) cells. For a genetic complementation analysis of telomerase repression, 2 RCC cell lines (KC12 and RCC23) and a BC cell line (21NT) were used to make somatic cell hybrids. All of the self-hybrids (KC12 x KC12 and 21NT x 21NT) and hybrids from 2 RCC cell lines (KC12 x RCC23) expressed the telomerase activity similarly to their parental cells, excluding the possibility of a ploidy-associated change in telomerase activity and suggesting the same genetic defect shared by the 2 RCC cell lines. In contrast, the fusion of BC and RCC cells (21NT x KC12 and 21NT x RCC23) produced a significant number of telomerase-negative hybrids, suggesting that the RCC and BC cells have different defects in the telomerase repression, which are functionally corrected through genetic complementation in the hybrids. This notion was supported by the mapping of the RCC telomerase repressor gene to a 5.7-Mb region on 3p21, which is different from the candidate region for the BC telomerase repressor gene on the same chromosomal band. These findings provide direct evidence for inactivation of distinct telomerase repressor genes in different types of human cancers and may have implications in the tissue-specific regulation of telomerase during human development and carcinogenesis.
Collapse
Affiliation(s)
- Hiromi Tanaka
- Department of Molecular and Cell Genetics, School of Life Sciences, Faculty of Medicine, Tottori University, Tottori, Japan.
| | | | | | | |
Collapse
|
17
|
Siwicki JK, Berglund M, Rygier J, Pienkowska-Grela B, Grygalewicz B, Degerman S, Golovleva I, Chrzanowska KH, Lagercrantz S, Blennow E, Roos G, Larsson C. Spontaneously immortalized human T lymphocytes develop gain of chromosomal region 2p13-24 as an early and common genetic event. Genes Chromosomes Cancer 2004; 41:133-44. [PMID: 15287026 DOI: 10.1002/gcc.20059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
To gain further insight into the molecular events responsible for the extended life span and immortalization of human lymphoid cells, we analyzed a series of spontaneously immortalized, IL2-dependent human T-cell lines using molecular cytogenetic techniques. Two of the cell lines were derived from normal spleen and three from patients with Nijmegen breakage syndrome (NBS), a recessive disorder characterized by a high incidence of lymphoid malignancies. Here we show that spontaneous immortalization of the five T-cell lines was associated with the acquisition of copy number gains involving chromosomal region 2p13-24 as common early alterations. In addition, we found an amplification of 8q21-24 after prolonged propagations in all three NBS-derived cell lines as well as early development of near-tetraploidy in two of these lines. Gains involving the short arm of chromosome 2 recently were found in several lymphoid malignancies. Therefore, the cell lines described here can be used for identification and characterization of genes involved in the pathogenesis of lymphoid neoplasms and would also provide a useful tool for better understanding the mechanisms responsible for cell immortalization.
Collapse
Affiliation(s)
- Jan Konrad Siwicki
- Department of Immunology, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Shiomi H, Sugihara H, Kamitani S, Tokugawa T, Tsubosa Y, Okada K, Tamura H, Tani T, Kodama M, Hattori T. Cytogenetic heterogeneity and progression of esophageal squamous cell carcinoma. ACTA ACUST UNITED AC 2003; 147:50-61. [PMID: 14580771 DOI: 10.1016/s0165-4608(03)00159-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
It is widely believed that most human tumors, including esophageal squamous cell carcinoma (ESCC), arise through multistep genetic and cytogenetic alterations. The time sequence of these alterations, however, is still unknown. The present study was designed to differentiate common early changes from uncommon later ones with combined comparative genomic hybridization (CGH) and ploidy analyses in multiple or single samples of 12 ESCCs. We first demonstrated that the mean copy numbers of chromosomes 3 and 11, determined directly by fluorescence in situ hybridization, showed linear correlation with the mean copy numbers calculated from the G/R ratio of CGH and DNA ploidy (R(2)=0.714, P<0.0001). On this basis, we estimated the absolute copy numbers of chromosomal parts by applying the ploidy-dependent threshold criteria to the G/R ratio data after the criteria were corrected by the percentage of tumor cells in each sample. One-copy changes in the DNA-diploid stage may give large shifts of the G/R ratio, even after tetraploidization, whereas those after tetraploidization undergo small shift. Using the tumors with multiple samples, it was actually demonstrated that most of the gains common to the samples in individual tumors showed the large shifts. Though early changes varied from tumor to tumor in the nine informative cases, it was found that gains of 3q (5/7: number of cases with large-shift 3q+/total number of cases with 3q+), 8q (3/4), 11q13 (4/5), and 14q (3/4) were early events, while losses of 3p (2/8), 5q (1/5), 13q (1/5), and 21q (1/5), and gains of 1p (1/4) and Xq (1/4) were later events in progression of individual tumors.
Collapse
Affiliation(s)
- Hisanori Shiomi
- First Department of Pathology, Shiga University of Medical Science, 520-2192, Ohtsu, Shiga, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Horikawa I, Barrett JC. Transcriptional regulation of the telomerase hTERT gene as a target for cellular and viral oncogenic mechanisms. Carcinogenesis 2003; 24:1167-76. [PMID: 12807729 DOI: 10.1093/carcin/bgg085] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Malignant transformation from mortal, normal cells to immortal, cancer cells is generally associated with activation of telomerase and subsequent telomere maintenance. A major mechanism to regulate telomerase activity in human cells is transcriptional control of the telomerase catalytic subunit gene, human telomerase reverse transcriptase (hTERT). Several transcription factors, including oncogene products (e.g. c-Myc) and tumor suppressor gene products (e.g. WT1 and p53), are able to control hTERT transcription when over-expressed, although it remains to be determined whether a cancer-associated alteration of these factors is primarily responsible for the hTERT activation during carcinogenic processes. Microcell-mediated chromosome transfer experiments have provided evidence for endogenous factors that function to repress the telomerase activity in normal cells and are inactivated in cancer cells. At least one of those endogenous telomerase repressors, which is encoded by a putative tumor suppressor gene on chromosome 3p, acts through transcriptional repression of the hTERT gene. The hTERT gene is also a target site for viruses frequently associated with human cancers, such as human papillomavirus (HPV) and hepatitis B virus (HBV). HPV E6 protein contributes to keratinocyte immortalization and carcinogenesis through trans-activation of the hTERT gene transcription. In at least some hepatocellular carcinomas, the hTERT gene is a non-random integration site of HBV genome, which activates in cis the hTERT transcription. Thus, a variety of cellular and viral oncogenic mechanisms converge on transcriptional control of the hTERT gene. Regulation of chromatin structure through the modification of nucleosomal histones may mediate the action of these cellular and viral mechanisms. Further elucidation of the hTERT transcriptional regulation, including identification and characterization of the endogenous repressor proteins, should lead to better understanding of the complex regulation of human telomerase in normal and cancer cells and may open up new strategies for anticancer therapy.
Collapse
Affiliation(s)
- Izumi Horikawa
- Laboratory of Biosystems and Cancer, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 37, Room 5046, MSC-4264, Bethesda, MD 20892, USA.
| | | |
Collapse
|
20
|
Wu KD, Orme LM, Shaughnessy J, Jacobson J, Barlogie B, Moore MAS. Telomerase and telomere length in multiple myeloma: correlations with disease heterogeneity, cytogenetic status, and overall survival. Blood 2003; 101:4982-9. [PMID: 12609839 DOI: 10.1182/blood-2002-11-3451] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We have investigated the significance of telomerase activity (TA) and telomere length (TL) in multiple myeloma (MM). The analyses were undertaken on CD138+ MM cells isolated from the marrow of 183 patients either at diagnosis or in relapse. There was heterogeneity in telomerase expression; 36% of the patients had TA levels comparable to those detected in normal plasma cells, and 13% of patients had levels 1- to 4-fold greater than in a neuroblastoma cell line control. The TL of MM cells was significantly shorter than that of the patients' own leukocytes; in 25% of patients, the TL measured less than 4.0 kbp. Analysis of TL distribution indicated selective TA-mediated stabilization of shorter telomeres when mean TL fell below 5.5 kbp. Unusually long (10.8-15.0 kbp) telomeres were observed in 7 patients, and low TA was observed in 5 of 7 patients, suggesting the operation of a TA-independent pathway of telomere stabilization. A strong negative correlation existed between TA and TL or platelet count. TL negatively correlated with age and with interleukin-6 (IL-6) and beta2-microglobulin levels. Various cytogenetic abnormalities, including those associated with poor prognosis, strongly correlated with TA and, to a lesser extent, with short TL. High TA and short TL defined a subgroup of patients with poor prognosis. At 1 year the survival rate in patients with TA levels lower than 25% of neuroblastoma control and TL greater than 5.5 kbp was 82%, whereas in patients with higher TA and shorter TL the survival rate was 63% (P =.004). The 2-year survival rate for patients with TA levels lower than 25% was 81%, and it was 52% in those with higher TA levels (P <.0001).
Collapse
Affiliation(s)
- Kai-Da Wu
- Laboratory of Developmental Hematopoiesis, Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
21
|
Yawata T, Kamino H, Kugoh H, Katoh M, Nomura N, Oishi M, Horikawa I, Barrett JC, Oshimura M. Identification of a </= 600-kb region on human chromosome 1q42.3 inducing cellular senescence. Oncogene 2003; 22:281-90. [PMID: 12527897 DOI: 10.1038/sj.onc.1206143] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The introduction of a human chromosome 1 via microcell-mediated chromosome transfer (MMCT) induces the cellular senescence in mouse melanoma B16-F10 cells. The senescent cells maintained still the telomerase activity, which is frequently associated with immortal growth of human cells, suggesting that a telomerase-independent mechanism is involved in the senescence observed in this mouse cell line. To map the senescence-inducing gene to a specific chromosomal region, we took two experimental approaches: identification of a minimal region with the senescence-inducing activity via MMCT of a series of subchromosomal transferrable fragments (STFs), each consisting of a different profile of human chromosome 1-derived regions, and identification of a region commonly deleted from the transferred chromosome 1 in the revertant clones that escaped cellular senescence. These approaches identified a 2.7-3.0 Mb of senescence-inducing region shared among the active STFs and a 2.4-3.0 Mb of commonly deleted region in the revertant clones. These two regions overlapped each other to map the responsible gene at the 450 to 600-kb interval between UniSTS93710 and D1S3542 on chromosome 1q42.3. This study provides essential information and materials for cloning and characterization of a novel senescence-inducing gene that functions in a telomerase-independent pathway, which is likely to be conserved between mice and humans.
Collapse
Affiliation(s)
- Toshio Yawata
- Department of Molecular and Cell Genetics, Faculty of Medicine, School of Life Sciences, Tottori University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kugoh H, Shigenami K, Funaki K, Barrett JC, Oshimura M. Human chromosome 5 carries a putative telomerase repressor gene. Genes Chromosomes Cancer 2003; 36:37-47. [PMID: 12461748 DOI: 10.1002/gcc.10135] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Telomerase, the ribonucleoprotein enzyme that maintains the telomere, is active in human germ and stem cells and in a majority of tumor tissues and immortalized cell lines. In contrast, telomerase activity is not detected in most somatic cells, suggesting that normal human cells contain a regulatory factor(s) to repress this activity. To identify which human chromosomes carry a gene or genes that function as telomerase repressors, we investigated telomerase activity in hybrids of the B16-F10 cell line, which contain individual human chromosomes transferred previously by microcell fusion and therefore represent a hybrid panel for the entire genome except for the Y chromosome. Microcell hybrids with an introduced normal human chromosome 5 showed inhibition of telomerase activity, but clones at a late passage exhibited reactivation of telomerase activity. Reactivation of telomerase activity was accompanied by deletion and/or rearrangement of the transferred human chromosome 5. The introduction of other human chromosomes did not significantly affect the telomerase activity of B16-F10 cells. The effect of suppression of telomerase activity in microcell hybrids containing chromosome 5 was accompanied by a reduction in the level of mTERT mRNA, which encodes a component of the telomerase complex. The putative telomerase repressor gene was mapped to human chromosome bands 5p11-p13 by a combination of functional analysis using transfer of subchromosomal transferable fragments of chromosome 5 into B16-F10 cells and deletion mapping of revertant clones with reactivated telomerase activity. Thus, these results suggest that loss of a gene(s) on this chromosome was responsible for telomerase reactivation, indicating that human chromosome 5 contains a gene or genes that can regulate the expression of mTERT in B16-F10 cells.
Collapse
Affiliation(s)
- Hiroyuki Kugoh
- Department of Molecular and Cell Genetics, School of Life Sciences, Faculty of Medicine, Tottori University, Japan
| | | | | | | | | |
Collapse
|
23
|
Kugoh H, Nakamoto H, Inoue J, Funaki K, Barrett JC, Oshimura M. Multiple human chromosomes carrying tumor-suppressor functions for the mouse melanoma cell line B16-F10, identified by microcell-mediated chromosome transfer. Mol Carcinog 2002; 35:148-56. [PMID: 12410566 DOI: 10.1002/mc.10080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Many tumor-suppressor genes are involved in the development and progression of cellular malignancy. To understand the functional role of tumor-suppressor genes in melanoma and to identify the human chromosome that carries these genes, we transferred individually each normal human chromosome, except for the Y chromosome, into the mouse melanoma cell line B16-F10, by microcell fusion. We examined the tumorigenicity of hybrid cells in nude mice and their in vitro growth properties. The introduction of human chromosomes 1 and 2 elicited a remarkable change in cell morphologic features, and cellular senescence was induced at seven to 10 population doublings. The growth rates of tumors derived from microcell hybrid clones containing introduced human chromosome 5, 7, 9, 10, 11, 13, 14, 15, 16, 19, 20, 21, 22, or X were significantly slower than that of the parental B16-F10 cells, whereas the introduction of other human chromosomes had no effect on the tumorigenicity of these cells. The majority of microcell hybrid clones that exhibited suppressed tumorigenicity also showed a moderate reduction in doubling time compared with B16-F10 cells. Microcell hybrid clones with an introduced human chromosome 5 showed complete suppression of in vitro-transformed phenotypes, including cell growth, saturation density, and colony-forming efficiency in soft agar. Thus, these results indicated the presence of many cell senescence-related genes and putative tumor-suppressor genes for the mouse melanoma cell line B16-F10 and showed in vitro that many tumor-suppressor genes control the phenotypes of transformed cells in the multistep process of neoplastic development.
Collapse
Affiliation(s)
- Hiroyuki Kugoh
- Department of Molecular and Cell Genetics, School of Life Sciences, Faculty of Medicine, Tottori University, Tottori, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
The telomere is a special functional complex at the end of linear eukaryotic chromosomes, consisting of tandem repeat DNA sequences and associated proteins. It is essential for maintaining the integrity and stability of linear eukaryotic genomes. Telomere length regulation and maintenance contribute to normal human cellular aging and human diseases. The synthesis of telomeres is mainly achieved by the cellular reverse transcriptase telomerase, an RNA-dependent DNA polymerase that adds telomeric DNA to telomeres. Expression of telomerase is usually required for cell immortalization and long-term tumor growth. In humans, telomerase activity is tightly regulated during development and oncogenesis. The modulation of telomerase activity may therefore have important implications in antiaging and anticancer therapy. This review describes the currently known components of the telomerase complex and attempts to provide an update on the molecular mechanisms of human telomerase regulation.
Collapse
Affiliation(s)
- Yu-Sheng Cong
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9039, USA.
| | | | | |
Collapse
|
25
|
Horikawa I, Cable PL, Mazur SJ, Appella E, Afshari CA, Barrett JC. Downstream E-box-mediated regulation of the human telomerase reverse transcriptase (hTERT) gene transcription: evidence for an endogenous mechanism of transcriptional repression. Mol Biol Cell 2002; 13:2585-97. [PMID: 12181331 PMCID: PMC117927 DOI: 10.1091/mbc.e01-11-0107] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2001] [Revised: 04/01/2002] [Accepted: 05/01/2002] [Indexed: 01/02/2023] Open
Abstract
Regulation of the hTERT gene encoding the telomerase catalytic subunit plays an important role in human cell senescence, immortalization, and carcinogenesis. By examining the activity of various deleted or mutated hTERT promoter fragments, we show that an E-box element downstream of the transcription initiation site is critical to differential hTERT transcription between the telomerase/hTERT-positive renal cell carcinoma cell line (RCC23) and its telomerase/hTERT-negative counterpart containing a transferred, normal chromosome 3 (RCC23+3). This E-box element mediated repression of hTERT transcription in RCC23+3 but not in RCC23. A copy number-dependent enhancement of the repression suggested active repression, rather than loss of activation, in RCC23+3. Endogenous expression levels of c-Myc or Mad1, which could activate or repress hTERT transcription when overexpressed, did not account for the differential hTERT transcription. Gel mobility shift assays identified the upstream stimulatory factors (USFs) as a major E-box-binding protein complex in both RCC23 and RCC23+3 and, importantly, detected an RCC23+3-specific, E-box-binding factor that was distinct from the USF and Myc/Mad families. The E-box-mediated repression was also active in normal human fibroblasts and epithelial cells and inactive in some, but not all, telomerase/hTERT-positive cancer cells. These findings provide evidence for an endogenous, repressive mechanism that actively functions in telomerase/hTERT-negative normal cells and becomes defective during carcinogenic processes, e.g., by an inactivation of the telomerase repressor gene on chromosome 3.
Collapse
Affiliation(s)
- Izumi Horikawa
- Laboratory of Biosystems and Cancer, Cancer and Aging Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Cellular senescence or replicative senescence is a state of irreversible growth arrest that somatic cells enter as a result of replicative exhaustion. This can be mimicked by culture manipulations such as Ras oncogene overexpression or treatment with various agents such as sodium butyrate and 5-azacytidine. It is believed that cellular senescence is one of the protective mechanisms against tumor formation. Genetic analyses of cellular senescence have revealed that it is dominant over immortality because whole cell fusion of normal with immortal cells yields hybrids with limited division potential. Only four complementation groups for indefinite division have been identified from extensive studies fusing different immortal human cell lines with each other. The senescence-related genes for three of the complementation groups B-D have been identified on human chromosomes 4, 1, and 7, respectively, by microcell-mediated chromosome transfer, though the existence of senescence-related genes on other chromosomes has been suggested. MORF4 was cloned as the senescence-related gene on human chromosome 4 and is a member of a new gene family, which has multiple transcription factor-like motifs. This gene family may affect cell division by modulating gene expression. Study of this novel gene family should lead to new insights regarding the mechanisms and function of cellular senescence in aging and immortalization.
Collapse
Affiliation(s)
- Kaoru Tominaga
- Sam and Ann Barshop Center for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, STCBM, 15355 Lambda Drive, San Antonio, TX 78245-3207, USA
| | | | | | | |
Collapse
|
27
|
Fajkus J, Simícková M, Maláska J. Tiptoeing to chromosome tips: facts, promises and perils of today's human telomere biology. Philos Trans R Soc Lond B Biol Sci 2002; 357:545-62. [PMID: 12028791 PMCID: PMC1692969 DOI: 10.1098/rstb.2001.1053] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The past decade has witnessed an explosion of knowledge concerning the structure and function of chromosome terminal structures-telomeres. Today's telomere research has advanced from a pure descriptive approach of DNA and protein components to an elementary understanding of telomere metabolism, and now to promising applications in medicine. These applications include 'passive' ones, among which the use of analysis of telomeres and telomerase (a cellular reverse transcriptase that synthesizes telomeres) for cancer diagnostics is the best known. The 'active' applications involve targeted downregulation or upregulation of telomere synthesis, either to mortalize immortal cancer cells, or to rejuvenate mortal somatic cells and tissues for cellular transplantations, respectively. This article reviews the basic data on structure and function of human telomeres and telomerase, as well as both passive and active applications of human telomere biology.
Collapse
Affiliation(s)
- J Fajkus
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, CZ-612 65 Brno, Czech Republic.
| | | | | |
Collapse
|
28
|
Abstract
Epigenetics refers to the durable changes affecting the genome of an individual during development and aging, but which are not necessarily passed on to subsequent generations. Among the best studied of these epigenetic changes is the shortening of chromosome ends or telomeres. Telomeres are specialized structures, consisting of characteristic DNA repeat sequences and the complex of associated proteins, which cap and protect chromosome ends and serve to preserve genome integrity. In most somatic cells, progressive rounds of cell division are associated with telomere shortening. Such progressive attrition of telomere length eventuates in loss of replicative capacity (cellular senescence). In order to protect the germline and the subpopulation of stem cells from senescence, mechanisms have evolved to prevent telomere attrition in these cellular compartments. The most common and best studied mechanism involves the activation of a ribonucleoprotein enzyme complex, known as telomerase. Activity of telomerase circumvents loss of replicative capacity, by preserving telomere length and chromosome integrity. Hence the detailed mechanisms governing the expression and activity of telomerase have been intensively studied in development and differentiation. Early embryonic development and cellular differentiation are associated with a progressive diminution in telomerase activity. This decrease in activity is principally mediated at the level of the promoter for the gene encoding the catalytic unit of the telomerase complex. Unraveling the detailed mechanisms involved in the regulation of telomere length and telomerase activity will have important and far-reaching implications in understanding many aspects of human health and disease, ranging from accelerated aging syndromes to cancer pathogenesis, among others. Furthermore, insights gleaned from continuing research in this area will likely be applicable to the development of strategies to circumvent cellular senescence in regenerative medicine and stem cell therapeutics in the years to come.
Collapse
|
29
|
Ducrest AL, Szutorisz H, Lingner J, Nabholz M. Regulation of the human telomerase reverse transcriptase gene. Oncogene 2002; 21:541-52. [PMID: 11850779 DOI: 10.1038/sj.onc.1205081] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Most somatic human cells lack telomerase activity because they do not express the telomerase reverse transcriptase (hTERT) gene. Conversely, most cancer cells express hTERT and are telomerase positive. For most tumors it is not clear whether hTERT expression is due to their origin from telomerase positive stem cells or to reactivation of the gene during tumorigenesis. Telomerase negative cells lack detectable cytoplasmic and nuclear hTERT transcripts; in telomerase positive cells 0.2 to 6 mRNA molecules/cell can be detected. This suggests that expression is regulated by changes in the rate of hTERT gene transcription. In tumor cell lines hTERT expression behaves like a recessive trait, indicating that lack of expression in normal cells is due to one or several repressors. Studies with monochromosomal hybrids indicate that several chromosomes may code for such repressors. A number of transcription factors, tumor suppressors, cell cycle inhibitors, cell fate determining molecules, hormone receptors and viral proteins have been implicated in the control of hTERT expression; but these studies have not yet provided a clear explanation for the tumor specific expression of the hTERT gene, and the cis-acting elements which are the targets of repression in normal cells still have to be identified.
Collapse
Affiliation(s)
- Anne-Lyse Ducrest
- Swiss Institute for Experimental Cancer Research (ISREC), CH-1066 Epalinges, Switzerland
| | | | | | | |
Collapse
|
30
|
Schwarze SR, Shi Y, Fu VX, Watson PA, Jarrard DF. Role of cyclin-dependent kinase inhibitors in the growth arrest at senescence in human prostate epithelial and uroepithelial cells. Oncogene 2001; 20:8184-92. [PMID: 11781834 DOI: 10.1038/sj.onc.1205049] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2001] [Revised: 09/19/2001] [Accepted: 10/09/2001] [Indexed: 02/07/2023]
Abstract
Cellular senescence has been proposed to be an in vitro and in vivo block that cells must overcome in order to immortalize and become tumorigenic. To characterize these pathways, we focused on changes in the cyclin-dependent kinase inhibitors and their binding partners that underlie the cell cycle arrest at senescence. As a model, we utilized normal human prostate epithelial cell (HPEC) and human uroepithelial cell (HUC) cultures. After 30-40 population doublings cells became growth-arrested in G0/1 with a threefold decrease in Cdk2-associated activity, a point defined as pre-senescence. Temporally following this growth arrest, the cells develop a senescence morphology and express senescence-associated beta-galactosidase (SA-beta-gal). Levels of p16(INK4a) and p57(KIP2) rise in HUCs during progressive passages, whereas only p16 increases in HPEC cultures. The induced expression of p57, similar to p16, produces a senescent-like phenotype. pRB, cyclin D, p19(INK4d) and p27(KIP1) decrease in both cell types. We find that p53, p21(CIP1) and p15(INK4b) are transiently elevated in HPECs and HUCs at the pre-senescent growth arrest, then return to low proliferating levels at terminal senescence. Analysis of p53, p21(CIP1), p15(INK4b), p16(INK4a), and p57(KIP2) reveals altered expression in immortalized, non-tumorigenic HPV16 E6 and E7 prostate lines and in tumorigenic prostate cancer cells. These results indicate: (i) the existence of a subset of growth inhibiting genes elevated at the onset of the senescence, (ii) a distinct class of genes involved in the maintenance of senescence, and (iii) the frequent inactivation of these pathways during immortalization.
Collapse
Affiliation(s)
- S R Schwarze
- Department of Surgery, University of Wisconsin Comprehensive Cancer Center and the University of Wisconsin Medical School, Madison, WI 53972, USA
| | | | | | | | | |
Collapse
|
31
|
Miura N, Onuki N, Rathi A, Virmani A, Nakamoto S, Kishimoto Y, Murawaki Y, Kawasaki H, Hasegawa J, Oshimura M, Travis WD, Gazdar AF. hTR repressor-related gene on human chromosome 10p15.1. Br J Cancer 2001; 85:1510-4. [PMID: 11720437 PMCID: PMC2363951 DOI: 10.1054/bjoc.2001.2121] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Somatic cells express genes that suppress telomerase activity and these genes may be inactivated in tumour cells. We postulated that cancer cells acquire immortality by activation of telomerase by the loss of such a gene. We have reported recently that a telomerase repressor gene may be located on 10p15.1 by deletion mapping using microcell-mediated chromosome transfer (MMCT), radiated microcell fusion (RMF), fluorescent in situ hybridization (FISH) and STS analysis. To independently confirm this result, we correlated expression of RNA component of telomerase (hTR) as a marker of telomerase expression by in situ hybridization with allelic loss in pulmonary carcinoid tumours. Unlike most malignant tumours, pulmonary carcinoids (which are low-grade malignant tumours) are heterogeneous for telomerase expression. Loss of 5 closely spaced polymorphic markers on 10p15.1, especially D10S1728, were highly correlated with hTR expression. In an additional experiment, 10p15.1 showed higher and more significant correlation than any region of 3p where it has been predicted as another chromosomal location of telomerase repressor with allelic loss of the region. Our findings strongly suggest that 10p15.1 harbours a gene involved in repression of telomerase RNA component in human somatic cells and each putative repressor (on 3p and 10p) may act independently.
Collapse
Affiliation(s)
- N Miura
- Hamon Center for Therapeutic Oncology Research, Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8593, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Horikawa I, Parker ES, Solomon GG, Barrett JC. Upregulation of the gene encoding a cytoplasmic dynein intermediate chain in senescent human cells. J Cell Biochem 2001; 82:415-21. [PMID: 11500918 DOI: 10.1002/jcb.1169] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Normal human somatic cells, unlike cancer cells, stop dividing after a limited number of cell divisions through the process termed cellular senescence or replicative senescence, which functions as a tumor-suppressive mechanism and may be related to organismal aging. By means of the cDNA subtractive hybridization, we identified eight genes upregulated during normal chromosome 3-induced cellular senescence in a human renal cell carcinoma cell line. Among them is the DNCI1 gene encoding an intermediate chain 1 of the cytoplasmic dynein, a microtubule motor that plays a role in chromosome movement and organelle transport. The DNCI1 mRNA was also upregulated during in vitro aging of primary human fibroblasts. In contrast, other components of cytoplasmic dynein showed no significant change in mRNA expression during cellular aging. Cell growth arrest by serum starvation, contact inhibition, or gamma-irradiation did not induce the DNCI1 mRNA, suggesting its specific role in cellular senescence. The DNCI1 gene is on the long arm of chromosome 7 where tumor suppressor genes and a senescence-inducing gene for a group of immortal cell lines (complementation group D) are mapped. This is the first report that links a component of molecular motor complex to cellular senescence, providing a new insight into molecular mechanisms of cellular senescence.
Collapse
Affiliation(s)
- I Horikawa
- Laboratory of Biosystems and Cancer, Cancer and Aging Section, National Cancer Institute, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
33
|
Abstract
In this paper, as a curious example of Schrodinger's cat, quantum cellular biology describes the similarity between a 'Schrodinger's cat' and a 'Schrodinger's cat-like state' of a single cell made by the microcell fusion method. Mutations result from quantum processes involving molecules that cross over an energy barrier from one stable configuration to a different stable configuration. As we allow in principle for the aspects of this phenomena, this insight may suggest a new quantum cellular biology.
Collapse
Affiliation(s)
- M Kameyama
- Department of Molecular and Cell Genetics, Faculty of Medicine, School of Life Sciences, Tottori University, Yonago Tottori, Japan.
| |
Collapse
|
34
|
Scheel C, Schaefer KL, Jauch A, Keller M, Wai D, Brinkschmidt C, van Valen F, Boecker W, Dockhorn-Dworniczak B, Poremba C. Alternative lengthening of telomeres is associated with chromosomal instability in osteosarcomas. Oncogene 2001; 20:3835-44. [PMID: 11439347 DOI: 10.1038/sj.onc.1204493] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2001] [Revised: 03/27/2001] [Accepted: 04/02/2001] [Indexed: 11/09/2022]
Abstract
Telomere maintenance is regarded as a key mechanism in overcoming cellular senescence in tumor cells and in most cases is achieved by the activation of telomerase. However there is at least one alternative mechanism of telomere lengthening (ALT) which is characterized by heterogeneous and elongated telomeres in the absence of telomerase activity (TA). We evaluated the prevalence of TA, gene expression of telomerase subunits and ALT in relation to telomere morphology and function in matrix producing bone tumors and in osteosarcoma cell lines and present evidence of a direct association of ALT with telomere dysfunction and chromosomal instability. Telomere fluorescence in situ hybridization (T-FISH) in ALT cells revealed elongated and shortened telomeres, partly in unusual configurations and loci, dicentric marker chromosomes and signal-free chromosome ends. Free ends give rise to end-to-end associations and may induce breakage-fusion-bridge cycles resulting in an increased number of complex chromosomal rearrangements, as detected by multiplex-FISH (M-FISH). We propose that ALT cannot be seen as an equivalent to telomerase activity in telomere maintenance. Its association with telomere dysfunction and chromosomal instability may have major implications for tumor progression.
Collapse
Affiliation(s)
- C Scheel
- Gerhard-Domagk-Institute of Pathology, Westfälische Wilhelms University, Münster, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Backsch C, Wagenbach N, Nonn M, Leistritz S, Stanbridge E, Schneider A, Dürst M. Microcell-mediated transfer of chromosome 4 into HeLa cells suppresses telomerase activity. Genes Chromosomes Cancer 2001; 31:196-8. [PMID: 11319808 DOI: 10.1002/gcc.1134] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Telomerase activity can be detected in most human cancers and immortal cell lines. In contrast, the lack of telomerase activity in normal diploid fibroblasts has been correlated with progressive reduction of telomere lengths to critically short sizes followed by the cessation of cell division and the onset of senescence. Several investigators have provided evidence for the localization of a telomerase suppressor gene on chromosome 3. The aim of our study was to determine whether other chromosomes are involved in telomerase repression. Beside human chromosome 3 (serving as positive control), chromosomes 4, 6, and 11 were introduced into HeLa cells via microcell-mediated chromosome transfer. Telomerase activity from different hybrid cell lysates was determined at an early time point after fusion using a Telomerase ELISA kit. Strong repression of telomerase activity was only found in a subset of HeLa hybrids in which chromosome 3 or chromosome 4 had been introduced. Telomerase suppression induced by chromosome 3 or 4 transfer was paralleled by a high frequency (30% or 43%, respectively) of a senescent-like phenotype. Chromosomes 6 and 11, the functional loss of which is also implicated in cervical cancer, had no effect. These results indicate that normal human chromosomes 3 and 4 carry a gene or genes that suppress telomerase activity and induce cellular senescence in HeLa cells.
Collapse
Affiliation(s)
- C Backsch
- Gynäkologische Molekularbiologie, Abteilung Frauenheilkunde, Frauenklinik der FSU Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The development of malignant neoplasms is a multistep process and it is believed that multiple genetic alterations are involved. The progression of neoplastic lesions is also characterized by reactivation of telomerase, a ribonucleoprotein complex enzyme that adds telomere repeats at the ends of chromosomes. In view of the close association between telomerase and malignancy, this molecule may prove to be a useful marker for malignancy. This review focuses on the diagnostic and therapeutic potential of telomerase. The experimental data for telomerase assays with the potential for oral cancer detection and diagnosis are also reviewed.
Collapse
Affiliation(s)
- T Sumida
- Department of Oral and Maxillofacial Surgery, Ehime University School of Medicine, Shitsukawa, Shigenobu-cho, Onsen-gun, 791-0295, Ehime, Japan.
| | | |
Collapse
|
37
|
Szutorisz H, Palmqvist R, Roos G, Stenling R, Schorderet DF, Reddel R, Lingner J, Nabholz M. Rearrangements of minisatellites in the human telomerase reverse transcriptase gene are not correlated with its expression in colon carcinomas. Oncogene 2001; 20:2600-5. [PMID: 11420670 DOI: 10.1038/sj.onc.1204346] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2000] [Accepted: 02/05/2001] [Indexed: 02/08/2023]
Abstract
Telomerase activation is crucial in human carcinogenesis. The limiting component of telomerase, the catalytic subunit (hTERT), is undetectable in normal somatic cells but present in most tumor cells, including the earliest stages of colon carcinoma. The mechanisms involved in the differential expression in normal and tumor cells are not understood. In normal cells hTERT expression is shut down by a repressor, and upregulation could be a consequence of cis-acting changes in the hTERT gene, making it resistant to repression. We have identified a polymorphic and a monomorphic minisatellite in the second intron of the hTERT gene, and polymorphic one in intron 6. The polymorphic minisatellite in intron 2 contains binding sites for c-Myc, which has been shown to upregulate hTERT transcription. Screening colon carcinoma DNAs for rearrangements of hTERT minisatellites we detected no changes in 33 samples from tumors, most of which express hTERT. This indicates that size rearrangements of the hTERT minisatellites are not required for telomerase expression in colon carcinomas. Minor changes and one LOH were seen in five tumors.
Collapse
Affiliation(s)
- H Szutorisz
- Institute for Experimental Cancer Research, CH-1066 Epalinges, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Tanabe H, Nakagawa Y, Minegishi D, Hashimoto K, Tanaka N, Oshimura M, Sofuni T, Mizusawa H. Human monochromosome hybrid cell panel characterized by FISH in the JCRB/HSRRB. Chromosome Res 2001; 8:319-34. [PMID: 10919723 DOI: 10.1023/a:1009283529392] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The human monochromosome hybrid cell panel in the Japanese Collection of Research Bioresources (JCRB) consists of 23 mouse cell clones, each containing a different human chromosome (the Y chromosome is not yet included). The panel is currently distributed by the Human Science Research Resources Bank (HSRRB) in Osaka. In order to determine the state of the human chromosomes and to supply the information to investigators, we characterized the cells by fluorescence in-situ hybridization (FISH) with corresponding human chromosome-specific painting probes, and, in part, by reverse FISH with the hybrid total DNA hybridized onto human metaphase spreads. Here, we report the frequency of intact human chromosomes maintained in each hybrid and the retained subregions of corresponding human chromosomes with relative frequencies estimated by fluorescent intensity. We used specific painted patterns to classify each hybrid into tentative types with their frequencies showing the nature of each hybrid and the state of rearrangements. This characterization will provide valuable information to investigators using the panel.
Collapse
Affiliation(s)
- H Tanabe
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Nishimoto A, Miura N, Horikawa I, Kugoh H, Murakami Y, Hirohashi S, Kawasaki H, Gazdar AF, Shay JW, Barrett JC, Oshimura M. Functional evidence for a telomerase repressor gene on human chromosome 10p15.1. Oncogene 2001; 20:828-35. [PMID: 11314017 DOI: 10.1038/sj.onc.1204165] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2000] [Revised: 11/28/2000] [Accepted: 12/12/2000] [Indexed: 11/08/2022]
Abstract
Based on the sites of frequent allelic loss in hepatocellular carcinoma, five normal human chromosomes (2, 4, 5, 10 and 16) were transferred individually into a telomerase-positive human hepatocellular carcinoma cell line, Li7HM, by microcell-mediated chromosome transfer (MMCT). Chromosome 10, but not the others, repressed telomerase activity immediately and stopped cell growth after 50 population doublings (PDs). Loss of the transferred 10p loci resulted in the emergence of revertant cells that continued to proliferate and expressed telomerase activity, suggesting the presence of a telomerase repressor gene on this chromosomal arm. Transfer of a series of defined fragments from chromosome 10p successfully narrowed down the responsible region: a 28.9-cM region on 10p15 (between WI-4752 and D10S249), but not a 26.2-cM region (between D10S1728 and D10S249), caused repression of telomerase activity and progressive telomere shortening. A strong correlation between the expression level of telomerase catalytic subunit gene (hTERT) and telomerase activity was observed. These findings suggest that a novel telomerase repressor gene which controls the expression of hTERT is located on the 2.7-cM region (between WI-4752 and D10S1728) on chromosome 10p15.1.
Collapse
Affiliation(s)
- A Nishimoto
- Department of Molecular and Cell Genetics, School of Life Sciences, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Allen DG, White DJ, Hutchins AM, Scurry JP, Tabrizi SN, Garland SM, Armes JE. Progressive genetic aberrations detected by comparative genomic hybridization in squamous cell cervical cancer. Br J Cancer 2000; 83:1659-63. [PMID: 11104563 PMCID: PMC2363460 DOI: 10.1054/bjoc.2000.1509] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetic changes orchestrated by human papillomaviruses are the most important known factors in carcinogenesis of the uterine cervix. However, it is clear that additional genetic events are necessary for tumour progression. We have used comparative genomic hybridization to document non-random chromosomal gains and losses within a subset of 37 cervical carcinomas matched for clinical stage Ib, but with different lymph node status. There were significantly more chromosomal changes in the primary tumours when the lymph nodes were positive for metastases. The most frequent copy number alterations were loss of 3p, 11q, 6q and 10q and gain of 3q. The smallest areas of loss and gain on chromosome 3 were 3p14-22 and 3q24-26. The study identifies progressive DNA copy number changes associated with early-stage invasive cervical cancers with and without lymph node metastases, a factor of potential prognostic and therapeutic value.
Collapse
MESH Headings
- Adult
- Aged
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Chromosome Aberrations
- Chromosomes, Human, Pair 10/genetics
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 3/genetics
- Chromosomes, Human, Pair 6/genetics
- Disease Progression
- Female
- Humans
- Middle Aged
- Nucleic Acid Hybridization/methods
- Uterine Cervical Neoplasms/genetics
- Uterine Cervical Neoplasms/pathology
Collapse
Affiliation(s)
- D G Allen
- Departments of Gynaecological Oncology, Pathology, Mercy Hospital for Women, East Melbourne, Victoria, 3002, Australia
| | | | | | | | | | | | | |
Collapse
|
41
|
Tzukerman M, Shachaf C, Ravel Y, Braunstein I, Cohen-Barak O, Yalon-Hacohen M, Skorecki KL. Identification of a novel transcription factor binding element involved in the regulation by differentiation of the human telomerase (hTERT) promoter. Mol Biol Cell 2000; 11:4381-91. [PMID: 11102531 PMCID: PMC15080 DOI: 10.1091/mbc.11.12.4381] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Three different cell differentiation experimental model systems (human embryonic stem cells, mouse F9 cells, and human HL-60 promyelocytic cells) were used to determine the relationship between the reduction in telomerase activity after differentiation and the regulation of the promoter for the hTERT gene. Promoter constructs of three different lengths were subcloned into the PGL3-basic luciferase reporter vector. In all three experimental systems, all three promoter constructs drove high levels of reporter activity in the nondifferentiated state, with a marked and time-dependent reduction after the induction of differentiation. In all cases, the smallest core promoter construct (283 nt upstream of the ATG) gave the highest activity. Electrophoretic mobility shift assays revealed transcription factor binding to two E-box domains within the core promoter. There was also a marked time-dependent reduction in this binding with differentiation. In addition, a distinct and novel element was identified within the core promoter, which also underwent time-dependent reduction in transcription factor binding with differentiation. Site-directed mutagenesis of this novel element revealed a correlation between transcription factor binding and promoter activity. Taken together, the results indicate that regulation of overall telomerase activity with differentiation is mediated at least in part at the level of the TERT promoter and provides new information regarding details of the regulatory interactions that are involved in this process.
Collapse
Affiliation(s)
- M Tzukerman
- Laboratory of Molecular Medicine, Department of Nephrology, Rambam Medical Center, Haifa 31096, Israel.
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
BACKGROUND Studies have shown telomerase activity to be present in some B-cell non-Hodgkin lymphomas (B-NHLs). However, no large studies have assayed telomerase activity in a systematic and quantitative manner. Furthermore, the relation between telomerase and proliferation suggested by in vitro studies has not been adequately tested in B-NHLs in vivo. This information is necessary to understand the relation between proliferation and telomerase and to predict the efficacy of antitelomerase drugs currently in development. METHODS Eighteen benign biopsies and 111 B-NHLs of varying types were classified according to the revised European-American classification of lymphoid neoplasms (REAL classification) and assayed for telomerase activity and proliferation index (PI). RESULTS All B-NHLs contained telomerase activity except for low grade marginal zone B-cell lymphomas (MZBCLs) (96 of 111, 86%) (chi(2) 95.90, P < 0.001). Telomerase activity correlated with PI (r = 0.7536, r(2) = 0.5678, t = 10.51, P < 0.001) and showed a threshold whereby telomerase activity was not present below a PI of 9.2% (t = 4.875, P < 0.001). CONCLUSIONS The level of telomerase activity fell within characteristic ranges and generally correlated with the clinical aggressiveness of each B-NHL category. Low grade MZBCLs of extranodal, nodal, and splenic types were unique among the categories of B-NHL in lacking or containing very little telomerase activity. The association between telomerase activity and PI is evidence that telomerase is controlled in vivo along with the cell cycle and is not constitutively active in B-NHL. These data provide evidence that antitelomerase drugs may be efficacious in most types of B-NHL.
Collapse
Affiliation(s)
- S A Ely
- Department of Pathology, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
43
|
Abstract
The ends of linear chromosomes are capped by specialized nucleoprotein structures termed telomeres. Telomeres comprise tracts of noncoding hexanucleotide repeat sequences that, in combination with specific proteins, protect against degradation, rearrangement, and chromosomal fusion events. Due to the polarity of conventional DNA synthesis, a net loss of telomeric sequences occurs at each cell division. It has been proposed that this cumulative telomeric erosion is a limiting factor in replicative capacity and elicits a signal for the onset of cellular senescence. To proliferate beyond the senescent checkpoint, cells must restore telomere length. This can be achieved by telomerase, an enzyme with reverse-transcriptase activity. This enzyme is absent in differentiated somatic tissues, but telomerase reactivation has been detected in most tumors. Much investigative effort is focusing on telomere dynamics with a view to possible manipulation of cellular proliferative potential. In this article, we review the role of telomeres and telomerase in senescence and tumor progression, and we discuss the potential use of telomerase in diagnosis and treatment.
Collapse
Affiliation(s)
- V Urquidi
- Cancer Center, University of California, San Diego School of Medicine, La Jolla 92093, USA.
| | | | | |
Collapse
|
44
|
Chang JT, Liao CT, Jung SM, Wang TC, See LC, Cheng AJ. Telomerase activity is frequently found in metaplastic and malignant human nasopharyngeal tissues. Br J Cancer 2000; 82:1946-51. [PMID: 10864202 PMCID: PMC2363256 DOI: 10.1054/bjoc.2000.1194] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Telomerase is a specialized ribonucleoprotein polymerase that directs the synthesis of telomere repeats at chromosome ends. Accumulating evidence has indicated that telomerase is stringently repressed in normal human somatic tissues but reactivated in cancers and immortal cells, suggesting that reactivation of telomerase plays an important role in carcinogenesis. In this study, the status of telomerase activity in diseased human nasopharyngeal lesions was determined by the telomeric repeat amplification protocol (TRAP). Fifty-four patients participated including 17 inflammation or hyperplasia, eight with squamous metaplasia, and 29 with different stages of carcinomas. Telomerase activity was detected in 1 of 17 (5.9%) inflammatory or lymphoid hyperplastic tissues, 3 of 8 (37.5%) squamous metaplastic, and 25 of 29 (86.2%) carcinoma tissues. The differences in telomerase expression in these groups is statistically significant (P < 0.001). Levels of telomerase activity correlated with tumour stage (P = 0.024). These results suggest that telomerase reactivation plays a role in the carcinogenesis of nasopharyngeal cancer. Since telomerase activity is found in the majority of nasopharyngeal cancers and a subset of metaplasia, this enzyme may be served as a reference to monitoring the status of abnormal nasopharyngeal tissues.
Collapse
Affiliation(s)
- J T Chang
- Department of Radiation Oncology, Chang Guang Memorial Hospital, Taoyuan, Taiwan
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
Telomerase, a specialized RNA-directed DNA polymerase that extends telomeres of eukaryotic chromosomes, is repressed in normal human somatic cells but is activated during development and upon neoplasia. Whereas activation is involved in immortalization of neoplastic cells, repression of telomerase permits consecutive shortening of telomeres in a chromosome replication-dependent fashion. This cell cycle-dependent, unidirectional catabolism of telomeres constitutes a mechanism for cells to record the extent of DNA loss and cell division number; when telomeres become critically short, the cells terminate chromosome replication and enter cellular senescence. Although neither the telomere signaling mechanisms nor the mechanisms whereby telomerase is repressed in normal cells and activated in neoplastic cells have been established, inhibition of telomerase has been shown to compromise the growth of cancer cells in culture; conversely, forced expression of the enzyme in senescent human cells extends their life span to one typical of young cells. Thus, to switch telomerase on and off has potentially important implications in anti-aging and anti-cancer therapy. There is abundant evidence that the regulation of telomerase is multifactorial in mammalian cells, involving telomerase gene expression, post-translational protein-protein interactions, and protein phosphorylation. Several proto-oncogenes and tumor suppressor genes have been implicated in the regulation of telomerase activity, both directly and indirectly; these include c-Myc, Bcl-2, p21(WAF1), Rb, p53, PKC, Akt/PKB, and protein phosphatase 2A. These findings are evidence for the complexity of telomerase control mechanisms and constitute a point of departure for piecing together an integrated picture of telomerase structure, function, and regulation in aging and tumor development-Liu, J.-P. Studies of the molecular mechanisms in the regulation of telomerase activity.
Collapse
Affiliation(s)
- J P Liu
- Molecular Signaling Laboratory, Baker Medical Research Institute, Prahran, Victoria, Australia.
| |
Collapse
|
46
|
Jülicher K, Marquitan G, Werner N, Bardenheuer W, Vieten L, Bröcker F, Topal H, Seeber S, Opalka B, Schütte J. Novel tumor suppressor locus in human chromosome region 3p14.2. J Natl Cancer Inst 1999; 91:1563-8. [PMID: 10491433 DOI: 10.1093/jnci/91.18.1563] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Alterations of chromosome region 3p14 are observed in numerous human malignancies. Because the pattern of allelic losses suggests the existence of at least one tumor suppressor gene within this region, we established a library of yeast artificial chromosomes (YACs) containing contiguous human 3p14 sequences to permit a search for tumor suppressor loci within the 3p14 region by use of functional complementation. METHODS YACs specific for human chromosome region 3p14 were transduced by spheroplast fusion into cells of the human nonpapillary renal carcinoma cell line RCC-1, which shows a cytogenetically detectable 3p deletion and is tumorigenic in nude mice. RESULTS We identified a 3p14.2-specific YAC clone, located in the vicinity of the fragile histidine triad (FHIT) gene (but toward the telomere), that is capable of inducing sustained suppression of tumorigenicity in nude mice and of activating cellular senescence in vitro. Among 23 mice given injections of RCC-1 cells containing this YAC, 16 (70%) remained tumor free for at least 6 months, whereas tumor formation occurred after a median of 6 weeks in control mice given injections of either RCC-1 parental cells or a revertant cell line (in which the YAC had lost all human sequences) or RCC-1 parental cells containing other, unrelated YACs. Similar results were obtained following microcell-mediated transfer of the entire human chromosome 3. CONCLUSION These data provide strong evidence for the existence of a novel tumor suppressor locus adjacent to the previously identified candidate tumor suppressor gene, FHIT, in 3p14.2. Positional cloning of the novel suppressor element within the 3p14.2-specific YAC and the sequence's molecular and functional characterization should add to the understanding of the pathogenesis of renal cell carcinoma and other human tumors that exhibit 3p14 aberrations.
Collapse
Affiliation(s)
- K Jülicher
- Innere Klinik und Poliklinik (Tumorforschung), Universitätsklinikum Essen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Tanaka H, Horikawa I, Kugoh H, Shimizu M, Barrett JC, Oshimura M. Telomerase-independent senescence of human immortal cells induced by microcell-mediated chromosome transfer. Mol Carcinog 1999; 25:249-55. [PMID: 10449031 DOI: 10.1002/(sici)1098-2744(199908)25:4<249::aid-mc3>3.0.co;2-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Maintenance of telomeres, commonly through expression of telomerase activity, is necessary but may not be sufficient for human cells to escape from the cellular senescence program and become immortal. We report here that human tumor cells could undergo cellular senescence in the presence of telomerase activity when a specific normal human chromosome was introduced via microcell-mediated chromosome transfer. The cell models studied include SiHa (uterine cervical carcinoma cells expressing E6 and E7 oncoproteins of human papillomavirus type 16) with a transferred chromosome 2, CC1 (choriocarcinoma cells expressing an amino-terminally truncated p53 protein) with a transferred chromosome 7, and JTC-32 (bladder carcinoma cells) with a transferred chromosome 11. The microcell hybrids with the indicated chromosomes ceased to divide after five to 10 population doublings and showed senescence-associated beta-galactosidase activity but still expressed the genes encoding three components of human telomerase, consistent with the retention of telomerase activity. These results are evidence for barriers to human cell immortalization, which involve activation of unidentified senescence-inducing genes that function independently of inactivation of telomerase.
Collapse
Affiliation(s)
- H Tanaka
- Department of Molecular and Cell Genetics, School of Life Sciences, Faculty of Medicine, Tottori University, Yonago, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Zimonjic DB, Keck CL, Thorgeirsson SS, Popescu NC. Novel recurrent genetic imbalances in human hepatocellular carcinoma cell lines identified by comparative genomic hybridization. Hepatology 1999; 29:1208-14. [PMID: 10094966 DOI: 10.1002/hep.510290410] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
To search for recurrent and specific genomic alterations in human hepatocellular carcinoma (HCC), we examined 18 cell lines by comparative genomic hybridization (CGH), a molecular cytogenetic approach that allows positional identification of gains and losses of DNA sequences of the entire tumor genome. We report here a distinct pattern of multiple recurrent DNA copy-number gains and losses that include alterations frequently seen in other neoplasias as well as changes potentially specific for HCC. The most frequent gains were localized on 1p34.3-35, 1p33-34.1, 1q21-23, 1q31-32, 6p11-12, 7p21, 7q11.2, 8q24.1-24.2, 11q11-13, 12q11-13, 12q23, 17q11. 2-21, 17q23-24, and 20p11.1-q13.2. Recurrent losses were mapped on 3p12-14, 3q25, 4p12-14, 4q13-34, 5q21, 6q25-26, 8p11.2-23, 9p12-24, 11q23-24, 13q12-33, 14q12-13, 15q25-26, 18q11.2-22.2, and 21q21-22. Seventeen genomic imbalances are novel in HCC, thus extending significantly the map of genetic changes and providing a starting point for the isolation of new genes relevant in pathogenesis of liver neoplasia, as well as providing molecular probes for both diagnosis and monitoring treatment of the disease.
Collapse
Affiliation(s)
- D B Zimonjic
- Laboratory of Experimental Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | |
Collapse
|
49
|
|