1
|
Murray CH, Weafer J, de Wit H. Stability of acute responses to drugs in humans across repeated testing: Findings with alcohol and amphetamine. Drug Alcohol Depend 2020; 212:107989. [PMID: 32386922 PMCID: PMC7354676 DOI: 10.1016/j.drugalcdep.2020.107989] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 12/01/2022]
Abstract
BACKGROUND Controlled drug challenge studies provide valuable information about the acute behavioral effects of drugs, including individual differences that may affect risk for abuse. One question that arises in such studies is whether a single administration of a drug (and placebo) provides an accurate measure of response to the drug. METHODS Here, we examined data from two studies, one with alcohol and one with amphetamine, in which participants received two administrations of the drug and placebo. In this analysis we assess the stability of acute subjective and cardiovascular responses to the drugs across the two administrations. We examine i) systematic increases or decreases to the drugs from the first to the second administration, ii) test-retest reliability within individuals and iii) the accuracy of the acute drug responses to predict drug choice in a later session. RESULTS Responses were largely stable across sessions, although on the second session amphetamine "liking" was higher, and subjective responses to placebo including "liking" and "want more" decreased in both studies. Test-retest reliability within individuals was high. Responses during the first drug administration were as accurate in predicting drug choice as responses during both administrations combined. CONCLUSIONS Our findings indicate that a single administration of drug (and placebo) provides a good index of an individual's responses to alcohol or amphetamine, when participants are tested under controlled experimental conditions.
Collapse
Affiliation(s)
- Conor H. Murray
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago; 5841 S Maryland Ave MC3077 Chicago, IL, 60637 USA
| | - Jessica Weafer
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago; 5841 S Maryland Ave MC3077 Chicago, IL, 60637 USA,Present address: Department of Psychology, University of Kentucky; 205 Kastle Hall, Lexington, KY, 40506 USA
| | - Harriet de Wit
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, 5841 S Maryland Ave MC3077, Chicago, IL 60637 USA.
| |
Collapse
|
2
|
Nona CN, Hendershot CS, Lê AD. Behavioural sensitization to alcohol: Bridging the gap between preclinical research and human models. Pharmacol Biochem Behav 2018; 173:15-26. [DOI: 10.1016/j.pbb.2018.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 07/31/2018] [Accepted: 08/07/2018] [Indexed: 12/28/2022]
|
3
|
Faraone SV. The pharmacology of amphetamine and methylphenidate: Relevance to the neurobiology of attention-deficit/hyperactivity disorder and other psychiatric comorbidities. Neurosci Biobehav Rev 2018; 87:255-270. [PMID: 29428394 DOI: 10.1016/j.neubiorev.2018.02.001] [Citation(s) in RCA: 311] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/25/2018] [Accepted: 02/05/2018] [Indexed: 12/20/2022]
Abstract
Psychostimulants, including amphetamines and methylphenidate, are first-line pharmacotherapies for individuals with attention-deficit/hyperactivity disorder (ADHD). This review aims to educate physicians regarding differences in pharmacology and mechanisms of action between amphetamine and methylphenidate, thus enhancing physician understanding of psychostimulants and their use in managing individuals with ADHD who may have comorbid psychiatric conditions. A systematic literature review of PubMed was conducted in April 2017, focusing on cellular- and brain system-level effects of amphetamine and methylphenidate. The primary pharmacologic effect of both amphetamine and methylphenidate is to increase central dopamine and norepinephrine activity, which impacts executive and attentional function. Amphetamine actions include dopamine and norepinephrine transporter inhibition, vesicular monoamine transporter 2 (VMAT-2) inhibition, and monoamine oxidase activity inhibition. Methylphenidate actions include dopamine and norepinephrine transporter inhibition, agonist activity at the serotonin type 1A receptor, and redistribution of the VMAT-2. There is also evidence for interactions with glutamate and opioid systems. Clinical implications of these actions in individuals with ADHD with comorbid depression, anxiety, substance use disorder, and sleep disturbances are discussed.
Collapse
Affiliation(s)
- Stephen V Faraone
- Departments of Psychiatry and of Neuroscience and Physiology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States; K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway.
| |
Collapse
|
4
|
Boot E, Hollak CEM, Huijbregts SCJ, Jahja R, van Vliet D, Nederveen AJ, Nieman DH, Bosch AM, Bour LJ, Bakermans AJ, Abeling NGGM, Bassett AS, van Amelsvoort TAMJ, van Spronsen FJ, Booij J. Cerebral dopamine deficiency, plasma monoamine alterations and neurocognitive deficits in adults with phenylketonuria. Psychol Med 2017; 47:2854-2865. [PMID: 28552082 DOI: 10.1017/s0033291717001398] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Phenylketonuria (PKU), a genetic metabolic disorder that is characterized by the inability to convert phenylalanine to tyrosine, leads to severe intellectual disability and other cerebral complications if left untreated. Dietary treatment, initiated soon after birth, prevents most brain-related complications. A leading hypothesis postulates that a shortage of brain monoamines may be associated with neurocognitive deficits that are observable even in early-treated PKU. However, there is a paucity of evidence as yet for this hypothesis. METHODS We therefore assessed in vivo striatal dopamine D2/3 receptor (D2/3R) availability and plasma monoamine metabolite levels together with measures of impulsivity and executive functioning in 18 adults with PKU and average intellect (31.2 ± 7.4 years, nine females), most of whom were early and continuously treated. Comparison data from 12 healthy controls that did not differ in gender and age were available. RESULTS Mean D2/3R availability was significantly higher (13%; p = 0.032) in the PKU group (n = 15) than in the controls, which may reflect reduced synaptic brain dopamine levels in PKU. The PKU group had lower plasma levels of homovanillic acid (p < 0.001) and 3-methoxy-4-hydroxy-phenylglycol (p < 0.0001), the predominant metabolites of dopamine and norepinephrine, respectively. Self-reported impulsivity levels were significantly higher in the PKU group compared with healthy controls (p = 0.033). Within the PKU group, D2/3R availability showed a positive correlation with both impulsivity (r = 0.72, p = 0.003) and the error rate during a cognitive flexibility task (r = 0.59, p = 0.020). CONCLUSIONS These findings provide further support for the hypothesis that executive functioning deficits in treated adult PKU may be associated with cerebral dopamine deficiency.
Collapse
Affiliation(s)
- E Boot
- Department of Nuclear Medicine,Academic Medical Center,Amsterdam,The Netherlands
| | - C E M Hollak
- Division of Endocrinology and Metabolism, Department of Internal Medicine,Academic Medical Center,Amsterdam,The Netherlands
| | - S C J Huijbregts
- Department of Clinical Child and Adolescent Studies & Leiden,Institute for Brain and Cognition, Leiden University,Leiden,The Netherlands
| | - R Jahja
- Division of Metabolic Diseases,University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital,Groningen,The Netherlands
| | - D van Vliet
- Division of Metabolic Diseases,University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital,Groningen,The Netherlands
| | - A J Nederveen
- Department of Radiology,Academic Medical Center,Amsterdam,The Netherlands
| | - D H Nieman
- Department of Psychiatry,Academic Medical Center,Amsterdam,The Netherlands
| | - A M Bosch
- Department of Pediatrics,Emma Children's Hospital, Academic Medical Center,Amsterdam,The Netherlands
| | - L J Bour
- Department of Neurology and Clinical Neurophysiology,Academic Medical Center,Amsterdam,The Netherlands
| | - A J Bakermans
- Department of Radiology,Academic Medical Center,Amsterdam,The Netherlands
| | - N G G M Abeling
- Laboratory for Genetic Metabolic Diseases,Academic Medical Center,Amsterdam,The Netherlands
| | - A S Bassett
- The Dalglish Family 22q Clinic for Adults with 22q11.2 Deletion Syndrome, andCenter for Mental Health, University Health Network,Toronto, Ontario,Canada
| | - T A M J van Amelsvoort
- Department of Psychiatry and Psychology,Maastricht University,Maastricht,The Netherlands
| | - F J van Spronsen
- Division of Metabolic Diseases,University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital,Groningen,The Netherlands
| | - J Booij
- Department of Nuclear Medicine,Academic Medical Center,Amsterdam,The Netherlands
| |
Collapse
|
5
|
Effects of dexamphetamine-induced dopamine release on resting-state network connectivity in recreational amphetamine users and healthy controls. Brain Imaging Behav 2017; 10:548-58. [PMID: 26149196 PMCID: PMC4908160 DOI: 10.1007/s11682-015-9419-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Dexamphetamine (dAMPH) is not only used for the treatment of attention deficit hyperactivity disorder (ADHD), but also as a recreational drug. Acutely, dAMPH induces release of predominantly dopamine (DA) in the striatum, and in the cortex both DA and noradrenaline. Recent animal studies have shown that chronic dAMPH administration can induce changes in the DA system following long-term exposure, as evidenced by reductions in DA transporters, D2/3 receptors and endogenous DA levels. However, only a limited number of studies have investigated the effects of dAMPH in the human brain. We used a combination of resting-state functional magnetic resonance imaging (rs-fMRI) and [(123)I]IBZM single-photon emission computed tomography (SPECT) (to assess baseline D2/3 receptor binding and DA release) in 15 recreational AMPH users and 20 matched healthy controls to investigate the short-, and long-term effects of AMPH before and after an acute intravenous challenge with dAMPH. We found that acute dAMPH administration reduced functional connectivity in the cortico-striatal-thalamic network. dAMPH-induced DA release, but not DA D2/3 receptor binding, was positively associated with connectivity changes in this network. In addition, acute dAMPH reduced connectivity in default mode networks and salience-executive-networks networks in both groups. In contrast to our hypothesis, no significant group differences were found in any of the rs-fMRI networks investigated, possibly due to lack of sensitivity or compensatory mechanisms. Our findings thus support the use of ICA-based resting-state functional connectivity as a tool to investigate acute, but not chronic, alterations induced by dAMPH on dopaminergic processing in the striatum.
Collapse
|
6
|
Krystal JH, Petrakis IL, O’Malley S, Krishnan-Sarin S, Pearlson G, Yoon G. NMDA Glutamate Receptor Antagonism and the Heritable Risk for Alcoholism: New Insights from a Study of Nitrous Oxide. Int J Neuropsychopharmacol 2017; 20:351-353. [PMID: 28158462 PMCID: PMC5409033 DOI: 10.1093/ijnp/pyw118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/21/2016] [Accepted: 01/16/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- John H Krystal
- Departments of Psychiatry and Neuroscience, Yale University School of Medicine, New Haven, Connecticut (Drs Krystal, Petrakis, O’Malley, Krishnan-Sarin, Pearlson, and Yoon); Psychiatry Services, VA Connecticut Healthcare System, West Haven, Connecticut (Drs Krystal, Petrakis, and Yoon); Behavioral Health Services, Yale-New Haven Hospital, New Haven, Connecticut (Drs Krystal, Petrakis, and Yoon); Olin Center for Neuropsychiatry Research, Institute of Living, Hartford, Connecticut (Dr Pearlson)
| | - Ismene L Petrakis
- Departments of Psychiatry and Neuroscience, Yale University School of Medicine, New Haven, Connecticut (Drs Krystal, Petrakis, O’Malley, Krishnan-Sarin, Pearlson, and Yoon); Psychiatry Services, VA Connecticut Healthcare System, West Haven, Connecticut (Drs Krystal, Petrakis, and Yoon); Behavioral Health Services, Yale-New Haven Hospital, New Haven, Connecticut (Drs Krystal, Petrakis, and Yoon); Olin Center for Neuropsychiatry Research, Institute of Living, Hartford, Connecticut (Dr Pearlson)
| | - Stephanie O’Malley
- Departments of Psychiatry and Neuroscience, Yale University School of Medicine, New Haven, Connecticut (Drs Krystal, Petrakis, O’Malley, Krishnan-Sarin, Pearlson, and Yoon); Psychiatry Services, VA Connecticut Healthcare System, West Haven, Connecticut (Drs Krystal, Petrakis, and Yoon); Behavioral Health Services, Yale-New Haven Hospital, New Haven, Connecticut (Drs Krystal, Petrakis, and Yoon); Olin Center for Neuropsychiatry Research, Institute of Living, Hartford, Connecticut (Dr Pearlson)
| | - Suchitra Krishnan-Sarin
- Departments of Psychiatry and Neuroscience, Yale University School of Medicine, New Haven, Connecticut (Drs Krystal, Petrakis, O’Malley, Krishnan-Sarin, Pearlson, and Yoon); Psychiatry Services, VA Connecticut Healthcare System, West Haven, Connecticut (Drs Krystal, Petrakis, and Yoon); Behavioral Health Services, Yale-New Haven Hospital, New Haven, Connecticut (Drs Krystal, Petrakis, and Yoon); Olin Center for Neuropsychiatry Research, Institute of Living, Hartford, Connecticut (Dr Pearlson)
| | - Godfrey Pearlson
- Departments of Psychiatry and Neuroscience, Yale University School of Medicine, New Haven, Connecticut (Drs Krystal, Petrakis, O’Malley, Krishnan-Sarin, Pearlson, and Yoon); Psychiatry Services, VA Connecticut Healthcare System, West Haven, Connecticut (Drs Krystal, Petrakis, and Yoon); Behavioral Health Services, Yale-New Haven Hospital, New Haven, Connecticut (Drs Krystal, Petrakis, and Yoon); Olin Center for Neuropsychiatry Research, Institute of Living, Hartford, Connecticut (Dr Pearlson)
| | - Gihyun Yoon
- Departments of Psychiatry and Neuroscience, Yale University School of Medicine, New Haven, Connecticut (Drs Krystal, Petrakis, O’Malley, Krishnan-Sarin, Pearlson, and Yoon); Psychiatry Services, VA Connecticut Healthcare System, West Haven, Connecticut (Drs Krystal, Petrakis, and Yoon); Behavioral Health Services, Yale-New Haven Hospital, New Haven, Connecticut (Drs Krystal, Petrakis, and Yoon); Olin Center for Neuropsychiatry Research, Institute of Living, Hartford, Connecticut (Dr Pearlson)
| |
Collapse
|
7
|
Abstract
In 2007, we proposed an explanation of delusion formation as aberrant prediction error-driven associative learning. Further, we argued that the NMDA receptor antagonist ketamine provided a good model for this process. Subsequently, we validated the model in patients with psychosis, relating aberrant prediction error signals to delusion severity. During the ensuing period, we have developed these ideas, drawing on the simple principle that brains build a model of the world and refine it by minimising prediction errors, as well as using it to guide perceptual inferences. While previously we focused on the prediction error signal per se, an updated view takes into account its precision, as well as the precision of prior expectations. With this expanded perspective, we see several possible routes to psychotic symptoms - which may explain the heterogeneity of psychotic illness, as well as the fact that other drugs, with different pharmacological actions, can produce psychotomimetic effects. In this article, we review the basic principles of this model and highlight specific ways in which prediction errors can be perturbed, in particular considering the reliability and uncertainty of predictions. The expanded model explains hallucinations as perturbations of the uncertainty mediated balance between expectation and prediction error. Here, expectations dominate and create perceptions by suppressing or ignoring actual inputs. Negative symptoms may arise due to poor reliability of predictions in service of action. By mapping from biology to belief and perception, the account proffers new explanations of psychosis. However, challenges remain. We attempt to address some of these concerns and suggest future directions, incorporating other symptoms into the model, building towards better understanding of psychosis.
Collapse
Affiliation(s)
| | | | - Paul C Fletcher
- Department of Psychiatry, University of Cambridge, Cambridge, UK .,Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
8
|
van der Zwaal EM, de Weijer BA, van de Giessen EM, Janssen I, Berends FJ, van de Laar A, Ackermans MT, Fliers E, la Fleur SE, Booij J, Serlie MJ. Striatal dopamine D2/3 receptor availability increases after long-term bariatric surgery-induced weight loss. Eur Neuropsychopharmacol 2016; 26:1190-200. [PMID: 27184782 DOI: 10.1016/j.euroneuro.2016.04.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 04/19/2016] [Accepted: 04/27/2016] [Indexed: 10/21/2022]
Abstract
In several studies reduced striatal dopamine D2/3 receptor (D2/3R) availability was reported in obese subjects compared to lean controls. Whether this is a reversible phenomenon remained uncertain. We previously determined the short-term effect of Roux-en-Y gastric bypass surgery (RYGB) on striatal D2/3R availability (using [(123)I]IBZM SPECT) in 20 morbidly obese women. Striatal D2/3R availability was lower compared to controls at baseline, and remained unaltered after 6 weeks, despite significant weight loss. To determine whether long-term bariatric surgery-induced weight loss normalizes striatal D2/3R binding, we repeated striatal D2/3R binding measurements at least 2 years after RYGB in 14 subjects of the original cohort. In addition, we assessed long-term changes in body composition, eating behavior and fasting plasma levels of leptin, ghrelin, insulin and glucose. Mean body mass index declined from 46±7kg/m(2) to 32±6kg/m(2), which was accompanied by a significant increase in striatal D2/3R availability (p=0.031). Striatal D2/3R availability remained significantly reduced compared to the age-matched controls (BMI 22±2kg/m(2); p=0.01). Changes in striatal D2/3R availability did not correlate with changes in body weight/fat, insulin sensitivity, ghrelin or leptin levels. Scores on eating behavior questionnaires improved and changes in the General Food Craving Questionnaire-State showed a borderline significant correlation with changes in striatal D2/3R availability. These findings show that striatal D2/3R availability increases after long-term bariatric-surgery induced weight loss, suggesting that reduced D2/3R availability in obesity is a reversible phenomenon.
Collapse
Affiliation(s)
| | - Barbara A de Weijer
- Department of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, The Netherlands
| | | | - Ignace Janssen
- Department of Surgery, Rijnstate Hospital, Arnhem, The Netherlands
| | - Frits J Berends
- Department of Surgery, Rijnstate Hospital, Arnhem, The Netherlands
| | | | - Mariette T Ackermans
- Department of Clinical Chemistry, laboratory of Endocrinology, Academic Medical Center, Amsterdam, The Netherlands
| | - Eric Fliers
- Department of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, The Netherlands
| | - Susanne E la Fleur
- Department of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, The Netherlands
| | - Jan Booij
- Department of Nuclear Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Mireille J Serlie
- Department of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
9
|
Dopaminergic system dysfunction in recreational dexamphetamine users. Neuropsychopharmacology 2015; 40:1172-80. [PMID: 25394786 PMCID: PMC4367461 DOI: 10.1038/npp.2014.301] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/30/2014] [Accepted: 10/31/2014] [Indexed: 11/08/2022]
Abstract
Dexamphetamine (dAMPH) is a stimulant drug that is widely used recreationally as well as for the treatment of attention-deficit hyperactivity disorder (ADHD). Although animal studies have shown neurotoxic effects of dAMPH on the dopaminergic system, little is known about such effects on the human brain. Here, we studied the dopaminergic system at multiple physiological levels in recreational dAMPH users and age, gender, and IQ-matched dAMPH-naïve healthy controls. We assessed baseline D2/3 receptor availability, in addition to changes in dopamine (DA) release using single-photon emission computed tomography and DA functionality using pharmacological magnetic resonance imaging, following a dAMPH challenge. Also, the subjective responses to the challenge were determined. dAMPH users displayed significantly lower striatal DA D2/3 receptor binding compared with healthy controls. In dAMPH users, we further observed a blunted DA release and DA functionality to an acute dAMPH challenge, as well as a blunted subjective response. Finally, the lower D2/3 availability, the more pleasant the dAMPH administration was experienced by control subjects, but not by dAMPH users. Thus, in agreement with preclinical studies, we show that the recreational use of dAMPH in human subjects is associated with dopaminergic system dysfunction. These findings warrant further (longitudinal) investigations and call for caution when using this drug recreationally and for ADHD.
Collapse
|
10
|
Teixeira‐Gomes A, Costa VM, Feio‐Azevedo R, Bastos MDL, Carvalho F, Capela JP. The neurotoxicity of amphetamines during the adolescent period. Int J Dev Neurosci 2014; 41:44-62. [PMID: 25482046 DOI: 10.1016/j.ijdevneu.2014.12.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 11/30/2014] [Accepted: 12/01/2014] [Indexed: 01/07/2023] Open
Affiliation(s)
- Armanda Teixeira‐Gomes
- REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de FarmáciaUniversidade do PortoRua de Jorge Viterbo Ferreira, 2284050‐313PortoPortugal
| | - Vera Marisa Costa
- REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de FarmáciaUniversidade do PortoRua de Jorge Viterbo Ferreira, 2284050‐313PortoPortugal
| | - Rita Feio‐Azevedo
- REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de FarmáciaUniversidade do PortoRua de Jorge Viterbo Ferreira, 2284050‐313PortoPortugal
| | - Maria de Lourdes Bastos
- REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de FarmáciaUniversidade do PortoRua de Jorge Viterbo Ferreira, 2284050‐313PortoPortugal
| | - Félix Carvalho
- REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de FarmáciaUniversidade do PortoRua de Jorge Viterbo Ferreira, 2284050‐313PortoPortugal
| | - João Paulo Capela
- REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de FarmáciaUniversidade do PortoRua de Jorge Viterbo Ferreira, 2284050‐313PortoPortugal
- Faculdade de Ciências da SaúdeUniversidade Fernando PessoaRua Carlos da Maia, 2964200‐150PortoPortugal
| |
Collapse
|
11
|
van de Giessen E, Celik F, Schweitzer DH, van den Brink W, Booij J. Dopamine D2/3 receptor availability and amphetamine-induced dopamine release in obesity. J Psychopharmacol 2014; 28:866-73. [PMID: 24785761 DOI: 10.1177/0269881114531664] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION The neurotransmitter dopamine is important in the regulation of food intake. It is hypothesised that obese people experience less reward from food due to lower striatal dopamine release, which consequently leads to overeating. This study is the first to assess whether obese subjects have blunted striatal dopamine release. METHOD We measured striatal dopamine D2/3 receptor (DRD2/3) availability and amphetamine-induced striatal dopamine release in 15 obese and 15 age-matched, normal-weight women using [(123)I]iodobenzamide single photon emission computed tomography (SPECT) imaging. In addition, correlations with food craving were examined. RESULTS Baseline striatal DRD2/3 availability was lower in obese subjects (0.91 ± 0.16) compared to controls (1.09 ± 0.16; p = 0.006). Amphetamine-induced dopamine release was significant in controls (7.5% ± 9.2; p = 0.007) and not in obese subjects (1.2% ± 17.7; p = 0.802), although the difference in release between groups (d=0.45) was not significant. Dopamine release positively correlated with the trait food craving in obese subjects. CONCLUSION This study replicates previous findings of lower striatal DRD2/3 availability in obesity and provides preliminary data that obesity is associated with blunted dopamine release. The positive correlation between dopamine release and food craving in obesity may seem contradictory with the latter finding but is presumably related to heterogeneity within the obese subjects.
Collapse
Affiliation(s)
- Elsmarieke van de Giessen
- Department of Nuclear Medicine, Academic Medical Center - University of Amsterdam, Amsterdam, The Netherlands
| | - Funda Celik
- Department of Internal Medicine, Slotervaart Hospital, Amsterdam, The Netherlands
| | - Dave H Schweitzer
- Department of Internal Medicine, Reinier de Graaf Group of Hospitals, Delft, The Netherlands
| | - Wim van den Brink
- Amsterdam Institute for Addiction Research, Academic Medical Center - University of Amsterdam, Amsterdam, The Netherlands
| | - Jan Booij
- Department of Nuclear Medicine, Academic Medical Center - University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Amphetamine-induced dopamine release and neurocognitive function in treatment-naive adults with ADHD. Neuropsychopharmacology 2014; 39:1498-507. [PMID: 24378745 PMCID: PMC3988554 DOI: 10.1038/npp.2013.349] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 12/04/2013] [Accepted: 12/05/2013] [Indexed: 01/12/2023]
Abstract
Converging evidence from clinical, preclinical, neuroimaging, and genetic research implicates dopamine neurotransmission in the pathophysiology of attention deficit hyperactivity disorder (ADHD). The in vivo neuroreceptor imaging evidence also suggests alterations in the dopamine system in ADHD; however, the nature and behavioral significance of those have not yet been established. Here, we investigated striatal dopaminergic function in ADHD using [(11)C]raclopride PET with a d-amphetamine challenge. We also examined the relationship of striatal dopamine responses to ADHD symptoms and neurocognitive function. A total of 15 treatment-free, noncomorbid adult males with ADHD (age: 29.87 ± 8.65) and 18 healthy male controls (age: 25.44 ± 6.77) underwent two PET scans: one following a lactose placebo and the other following d-amphetamine (0.3 mg/kg, p.o.), administered double blind and in random order counterbalanced across groups. In a separate session without a drug, participants performed a battery of neurocognitive tests. Relative to the healthy controls, the ADHD patients, as a group, showed greater d-amphetamine-induced decreases in striatal [(11)C]raclopride binding and performed more poorly on measures of response inhibition. Across groups, a greater magnitude of d-amphetamine-induced change in [(11)C]raclopride binding potential was associated with poorer performance on measures of response inhibition and ADHD symptoms. Our findings suggest an augmented striatal dopaminergic response in treatment-naive ADHD. Though in contrast to results of a previous study, this finding appears consistent with a model proposing exaggerated phasic dopamine release in ADHD. A susceptibility to increased phasic dopamine responsivity may contribute to such characteristics of ADHD as poor inhibition and impulsivity.
Collapse
|
13
|
Human abuse liability evaluation of CNS stimulant drugs. Neuropharmacology 2014; 87:81-90. [PMID: 24793872 DOI: 10.1016/j.neuropharm.2014.04.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/01/2014] [Accepted: 04/16/2014] [Indexed: 01/16/2023]
Abstract
Psychoactive drugs that increase alertness, attention and concentration and energy, while also elevating mood, heart rate and blood pressure are referred to as stimulants. Despite some overlapping similarities, stimulants cannot be easily categorized by their chemical structure, mechanism of action, receptor binding profile, effects on monoamine uptake, behavioral pharmacology (e.g., effects on locomotion, temperature, and blood pressure), therapeutic indication or efficacy. Because of their abuse liability, a pre-market assessment of abuse potential is required for drugs that show stimulant properties; this review article focuses on the clinical aspects of this evaluation. This includes clinical trial adverse events, evidence of diversion or tampering, overdoses and the results of a human abuse potential study. While there are different types of human experimental studies that can be employed to evaluate stimulant abuse potential (e.g., drug discrimination, self-administration), only the human abuse potential study and clinical trial adverse event data are required for drug approval. The principal advances that have improved human abuse potential studies include using study enrichment strategies (pharmacologic qualification), larger sample sizes, better selection of endpoints and measurement strategies and more carefully considered interpretation of data. Because of the methodological advances, comparisons of newer studies with historical data is problematic and may contribute to a biased regulatory framework for the evaluation of newer stimulant-like drugs, such as A2 antagonists. This article is part of the Special Issue entitled 'CNS Stimulants'.
Collapse
|
14
|
Deep brain stimulation induces striatal dopamine release in obsessive-compulsive disorder. Biol Psychiatry 2014; 75:647-52. [PMID: 23938318 DOI: 10.1016/j.biopsych.2013.06.021] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/22/2013] [Accepted: 06/14/2013] [Indexed: 11/20/2022]
Abstract
BACKGROUND Obsessive-compulsive disorder is a chronic psychiatric disorder related to dysfunctional dopaminergic neurotransmission. Deep brain stimulation (DBS) targeted at the nucleus accumbens (NAc) has recently become an effective treatment for therapy-refractory obsessive-compulsive disorder, but its effect on dopaminergic transmission is unknown. METHODS We measured the effects of NAc DBS in 15 patients on the dopamine D2/3 receptor availability in the striatum with [(123)I]iodobenzamide ([(123)I]IBZM) single photon emission computed tomography. We correlated changes in [(123)I]IBZM binding potential (BP) with plasma levels of homovanillic acid (HVA) and clinical symptoms. RESULTS Acute (1-hour) and chronic (1-year) DBS decreased striatal [(123)I]IBZM BP compared with the nonstimulated condition in the putamen. BP decreases were observed after 1 hour of stimulation, and chronic stimulation was related to concurrent HVA plasma elevations, implying DBS-induced dopamine release. BP decreases in the area directly surrounding the electrodes were significantly correlated with changes in clinical symptoms (45% symptom decrease). CONCLUSIONS NAc DBS induced striatal dopamine release, which was associated with increased HVA plasma levels and improved clinical symptoms, suggesting that DBS may compensate for a defective dopaminergic system.
Collapse
|
15
|
Schizophrenia: from dopaminergic to glutamatergic interventions. Curr Opin Pharmacol 2014; 14:97-102. [PMID: 24524997 DOI: 10.1016/j.coph.2014.01.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/15/2014] [Accepted: 01/15/2014] [Indexed: 01/06/2023]
Abstract
Schizophrenia might be considered a neurodevelopmental disease. However, the fundamental process(es) associated with this disease remain(s) uncertain. Many lines of evidence suggest that schizophrenia is associated with excessive stimulation of dopamine D2 receptors in the associative striatum, with a lack of stimulation of dopamine D1 receptors in prefrontal cortex, and with modifications in prefrontal neuronal connectivity involving glutamate transmission at N-methyl aspartate (NMDA) receptors. This article, whilst briefly discussing the current knowledge of the disease, mainly concentrates on the NMDA hypofunction hypothesis. However, there are also potential consequences for a Dopamine imbalance on NMDA function. Thus, it is proposed that schizophrenia has a complex aetiology associated with strongly interconnected aberrations of dopamine and glutamate transmission.
Collapse
|
16
|
Reproducibility of post-amphetamine [11C]FLB 457 binding to cortical D2/3 receptors. PLoS One 2013; 8:e76905. [PMID: 24098812 PMCID: PMC3786946 DOI: 10.1371/journal.pone.0076905] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 08/26/2013] [Indexed: 11/19/2022] Open
Abstract
In a recent positron emission tomography (PET) study, we demonstrated the ability to measure amphetamine-induced dopamine (DA) release in the human cortex with the relatively high affinity dopamine D2/3 radioligand [11C]FLB 457. Herein we report on reproducibility and reliability of [11C]FLB 457 binding potential relative to non-displaceable uptake (BPND) following an acute amphetamine challenge. Ten healthy human subjects were studied twice with [11C]FLB 457 following an acute amphetamine (oral, 0.5 mg kg-1 dose) challenge on two-separate days approximately one week apart. D2/3 receptor binding parameters were estimated using a two-tissue compartment kinetic analysis in the cortical regions of interest and cerebellum (reference region). The test-retest variability and intraclass correlation coefficient were assessed for distribution volume (VT), binding potential relative to plasma concentration (BPP), and BPND of [11C]FLB 457. The test-retest variability of [11C]FLB 457 VT, BPP and BPND were ≤ 17%, 22% and 11% respectively. These results, which are consistent with the published test-retest variability for this ligand measured under baseline conditions demonstrate that the post-amphetamine [11C]FLB 457 BPND is reproducible. These data further support the use [11C]FLB 457 and amphetamine to characterize cortical dopamine transmission in neuropsychiatric disorders.
Collapse
|
17
|
Reduced striatal ecto-nucleotidase activity in schizophrenia patients supports the "adenosine hypothesis". Purinergic Signal 2013; 9:599-608. [PMID: 23771238 DOI: 10.1007/s11302-013-9370-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 05/31/2013] [Indexed: 01/12/2023] Open
Abstract
Schizophrenia (SZ) is a major chronic neuropsychiatric disorder characterized by a hyperdopaminergic state. The hypoadenosinergic hypothesis proposes that reduced extracellular adenosine levels contribute to dopamine D2 receptor hyperactivity. ATP, through the action of ecto-nucleotidases, constitutes a main source of extracellular adenosine. In the present study, we examined the activity of ecto-nucleotidases (NTPDases, ecto-5'-nucleotidase, and alkaline phosphatase) in the postmortem putamen of SZ patients (n = 13) compared with aged-matched controls (n = 10). We firstly demonstrated, by means of artificial postmortem delay experiments, that ecto-nucleotidase activity in human brains was stable up to 24 h, indicating the reliability of this tissue for these enzyme determinations. Remarkably, NTPDase-attributable activity (both ATPase and ADPase) was found to be reduced in SZ patients, while ecto-5'-nucleotidase and alkaline phosphatase activity remained unchanged. In the present study, we also describe the localization of these ecto-enzymes in human putamen control samples, showing differential expression in blood vessels, neurons, and glial cells. In conclusion, reduced striatal NTPDase activity may contribute to the pathophysiology of SZ, and it represents a potential mechanism of adenosine signalling impairment in this illness.
Collapse
|
18
|
Shotbolt P, Tziortzi AC, Searle GE, Colasanti A, van der Aart J, Abanades S, Plisson C, Miller SR, Huiban M, Beaver JD, Gunn RN, Laruelle M, Rabiner EA. Within-subject comparison of [(11)C]-(+)-PHNO and [(11)C]raclopride sensitivity to acute amphetamine challenge in healthy humans. J Cereb Blood Flow Metab 2012; 32:127-36. [PMID: 21878947 PMCID: PMC3323295 DOI: 10.1038/jcbfm.2011.115] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
[(11)C]PHNO is a D(2)/D(3) agonist positron emission tomography radiotracer, with higher in vivo affinity for D(3) than for D(2) receptors. As [(11)C]-(+)-PHNO is an agonist, its in vivo binding is expected to be more affected by acute fluctuations in synaptic dopamine than that of antagonist radiotracers such as [(11)C]raclopride. In this study, the authors compared the effects of an oral dose of the dopamine releaser amphetamine (0.3 mg/kg) on in vivo binding of [(11)C]-(+)-PHNO and [(11)C]raclopride in healthy subjects, using a within-subjects, counterbalanced, open-label design. In the dorsal striatum, where the density of D(3) receptors is negligible and both tracers predominantly bind to D(2) receptors, the reduction of [(11)C]-(+)-PHNO binding potential (BP(ND)) was 1.5 times larger than that of [(11)C]raclopride. The gain in sensitivity associated with the agonist [(11)C]-(+)-PHNO implies that ∼65% of D(2) receptors are in the high-affinity state in vivo. In extrastriatal regions, where [(11)C]-(+)-PHNO predominantly binds to D(3) receptors, the amphetamine effect on [(11)C]-(+)-PHNO BP(ND) was even larger, consistent with the higher affinity of dopamine for D(3). This study indicates that [(11)C]-(+)-PHNO is superior to [(11)C]raclopride for studying acute fluctuations in synaptic dopamine in the human striatum. [(11)C]-(+)-PHNO also enables measurement of synaptic dopamine in D(3) regions.
Collapse
Affiliation(s)
- Paul Shotbolt
- GlaxoSmithKline Clinical Imaging Centre, Hammersmith Hospital, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kuepper R, Skinbjerg M, Abi-Dargham A. The dopamine dysfunction in schizophrenia revisited: new insights into topography and course. Handb Exp Pharmacol 2012:1-26. [PMID: 23129326 DOI: 10.1007/978-3-642-25761-2_1] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Schizophrenia has long been associated with an imbalance in dopamine (DA) neurotransmission, and brain imaging has played an important role in advancing our knowledge and providing evidence for the dopaminergic abnormalities. This chapter reviews the evidence for DA dysfunction in different brain regions in schizophrenia, in particular striatal, extrastriatal, and prefrontal regions, with emphasis on recently published findings. As opposed to the traditional view that most striatal dopaminergic excess, associated with the positive symptoms of schizophrenia, involves the dopaminergic mesolimbic pathway, recent evidence points to the nigrostriatal pathway as the area of highest dysregulation. Furthermore, evidence from translational research suggests that dopaminergic excess may be present in the prodromal phase, and may by itself, as suggested by the phenotype observed in transgenic mice with developmental overexpression of dorso-striatal D(2) receptors, be an early pathogenic condition, leading to irreversible cortical dysfunction.
Collapse
Affiliation(s)
- Rebecca Kuepper
- Department of Psychiatry and Psychology, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | | |
Collapse
|
20
|
Measuring Dopamine Synaptic Transmission with Molecular Imaging and Pharmacological Challenges: The State of the Art. MOLECULAR IMAGING IN THE CLINICAL NEUROSCIENCES 2012. [DOI: 10.1007/7657_2012_45] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
21
|
Corlett PR, Honey GD, Krystal JH, Fletcher PC. Glutamatergic model psychoses: prediction error, learning, and inference. Neuropsychopharmacology 2011; 36:294-315. [PMID: 20861831 PMCID: PMC3055519 DOI: 10.1038/npp.2010.163] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 08/16/2010] [Accepted: 08/18/2010] [Indexed: 01/01/2023]
Abstract
Modulating glutamatergic neurotransmission induces alterations in conscious experience that mimic the symptoms of early psychotic illness. We review studies that use intravenous administration of ketamine, focusing on interindividual variability in the profundity of the ketamine experience. We will consider this individual variability within a hypothetical model of brain and cognitive function centered upon learning and inference. Within this model, the brains, neural systems, and even single neurons specify expectations about their inputs and responding to violations of those expectations with new learning that renders future inputs more predictable. We argue that ketamine temporarily deranges this ability by perturbing both the ways in which prior expectations are specified and the ways in which expectancy violations are signaled. We suggest that the former effect is predominantly mediated by NMDA blockade and the latter by augmented and inappropriate feedforward glutamatergic signaling. We suggest that the observed interindividual variability emerges from individual differences in neural circuits that normally underpin the learning and inference processes described. The exact source for that variability is uncertain, although it is likely to arise not only from genetic variation but also from subjects' previous experiences and prior learning. Furthermore, we argue that chronic, unlike acute, NMDA blockade alters the specification of expectancies more profoundly and permanently. Scrutinizing individual differences in the effects of acute and chronic ketamine administration in the context of the Bayesian brain model may generate new insights about the symptoms of psychosis; their underlying cognitive processes and neurocircuitry.
Collapse
Affiliation(s)
- Philip R Corlett
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA.
| | | | | | | |
Collapse
|
22
|
Bullich S, Cot A, Gallego J, Gunn R, Suárez M, Pavía J, Ros D, Laruelle M, Catafau A. Impact of scatter correction on D2 receptor occupancy measurements using 123I-IBZM SPECT: Comparison to 11C-Raclopride PET. Neuroimage 2010; 50:1511-8. [DOI: 10.1016/j.neuroimage.2010.01.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 12/28/2009] [Accepted: 01/07/2010] [Indexed: 10/20/2022] Open
|
23
|
Frankle WG, Mason NS, Rabiner EA, Ridler K, May MA, Asmonga D, Chen CM, Kendro S, Cooper TB, Mathis CA, Narendran R. No effect of dopamine depletion on the binding of the high-affinity D2/3 radiotracer [11C]FLB 457 in the human cortex. Synapse 2010; 64:879-85. [DOI: 10.1002/syn.20806] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
24
|
Bertolino A, Taurisano P, Pisciotta NM, Blasi G, Fazio L, Romano R, Gelao B, Lo Bianco L, Lozupone M, Di Giorgio A, Caforio G, Sambataro F, Niccoli-Asabella A, Papp A, Ursini G, Sinibaldi L, Popolizio T, Sadee W, Rubini G. Genetically determined measures of striatal D2 signaling predict prefrontal activity during working memory performance. PLoS One 2010; 5:e9348. [PMID: 20179754 PMCID: PMC2825256 DOI: 10.1371/journal.pone.0009348] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 01/29/2010] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Variation of the gene coding for D2 receptors (DRD2) has been associated with risk for schizophrenia and with working memory deficits. A functional intronic SNP (rs1076560) predicts relative expression of the two D2 receptors isoforms, D2S (mainly pre-synaptic) and D2L (mainly post-synaptic). However, the effect of functional genetic variation of DRD2 on striatal dopamine D2 signaling and on its correlation with prefrontal activity during working memory in humans is not known. METHODS Thirty-seven healthy subjects were genotyped for rs1076560 (G>T) and underwent SPECT with [123I]IBZM (which binds primarily to post-synaptic D2 receptors) and with [123I]FP-CIT (which binds to pre-synaptic dopamine transporters, whose activity and density is also regulated by pre-synaptic D2 receptors), as well as BOLD fMRI during N-Back working memory. RESULTS Subjects carrying the T allele (previously associated with reduced D2S expression) had striatal reductions of [123I]IBZM and of [123I]FP-CIT binding. DRD2 genotype also differentially predicted the correlation between striatal dopamine D2 signaling (as identified with factor analysis of the two radiotracers) and activity of the prefrontal cortex during working memory as measured with BOLD fMRI, which was positive in GG subjects and negative in GT. CONCLUSIONS Our results demonstrate that this functional SNP within DRD2 predicts striatal binding of the two radiotracers to dopamine transporters and D2 receptors as well as the correlation between striatal D2 signaling with prefrontal cortex activity during performance of a working memory task. These data are consistent with the possibility that the balance of excitatory/inhibitory modulation of striatal neurons may also affect striatal outputs in relationship with prefrontal activity during working memory performance within the cortico-striatal-thalamic-cortical pathway.
Collapse
Affiliation(s)
- Alessandro Bertolino
- Psychiatric Neuroscience Group, Department of Neurological and Psychiatric Sciences, University of Bari, Bari, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Noninvasive visualization of human dopamine dynamics from PET images. Neuroimage 2010; 51:135-44. [PMID: 20056162 DOI: 10.1016/j.neuroimage.2009.12.082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 11/18/2009] [Accepted: 12/20/2009] [Indexed: 11/23/2022] Open
Abstract
We recently introduced strategies for extracting temporal patterns of brain dopamine fluctuations from dynamic positron emission tomography (PET) data using the tracer [11C]-raclopride. Each of our methods yields a collection of time-concentration curves for endogenous dopamine. Given a spatially dense collection of curves (i.e., one at every voxel in a region of interest), we produce image volumes of dopamine (DA) concentration, DA(X, t), at multiple voxel locations and each time-frame. The volume over time-frames constitutes a 4D dataset that can be thought of as a DA "movie". There are a number of ways to visualize such data. Viewing cine loops of a slice through the DA volume is one way. Creating images of dopamine peak-time, Tpeak(X), derived from a movie, is another. Each visualization may reveal spatio-temporal patterns of neurotransmitter activity heretofore unobservable. We conducted an initial validation experiment in which identical DA responses were induced by an identical task, initiated at different times by the same subject, in two separate PET scans. A comparison of the resulting Tpeak(X) images revealed a large contiguous cluster of striatal voxels, on each side, whose DA timing was consistent with the relative timing of the tasks. Hence, the DA movies and their respective peak-time images were shown to be new types of functional images that contain bonafide timing information about a neurotransmitter's response to a stimulus.
Collapse
|
26
|
Abstract
In 1993, Robinson and Berridge published their first review that laid out the incentive sensitization theory of addiction (Robinson and Berridge 1993 Brain Res Rev 18:247). Its basic point is that repeated exposure to drugs of abuse causes hypersensitivity to drugs and drug-associated stimuli of the neural circuits mediating incentive salience, an important way in which motivational stimuli influence behavior. In laymen's terms, it states that this drug-induced hypersensitivity of motivational circuitry would mediate an increase in drug "wanting," thus being responsible for the dramatically exaggerated motivation for drugs displayed by addicts. This theory has been exceptionally influential, as evidenced by the fact that the original review paper about this theory (Robinson and Berridge 1993 Brain Res Rev 18:247) has been cited 2,277 times so far, and subsequent updates of this view (Robinson and Berridge 2000 Addiction 95(Suppl 2):S91; Robinson and Berridge 2001 Addiction 96:103; Robinson and Berridge 2003 Ann Rev Psychol 54:25) have been cited 274, 297, and 365 times, respectively, adding up to more than 3,200 citations within 15 years. The present chapter aims to delineate the merits and limitations of the incentive sensitization view of addiction, and whether incentive sensitization occurs in humans. We conclude that since incentive sensitization most prominently occurs after the first few drug exposures, it may represent an important initial step in the addiction process. During the expression of full-blown addiction, characterized by loss of control over drug intake and use of large quantities of drugs, the expression of incentive sensitization may be transiently suppressed. However, detoxification and the gradual disappearance of tolerance and withdrawal symptoms may unmask sensitization, which could then play an important role in the high risk of relapse.
Collapse
Affiliation(s)
- Louk J M J Vanderschuren
- Department of Neuroscience and Pharmacology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | |
Collapse
|
27
|
Narendran R, Frankle WG, Mason NS, Laymon CM, Lopresti BJ, Price JC, Kendro S, Vora S, Litschge M, Mountz JM, Mathis CA. Positron emission tomography imaging of D(2/3) agonist binding in healthy human subjects with the radiotracer [(11)C]-N-propyl-norapomorphine: preliminary evaluation and reproducibility studies. Synapse 2009; 63:574-84. [PMID: 19301416 DOI: 10.1002/syn.20633] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE (-)-N-[(11)C]-propyl-norapomorphine (NPA) is a full dopamine D(2/3) receptor agonist radiotracer suitable for imaging D(2/3) receptors configured in a state of high affinity for agonists using positron emission tomography. The aim of the present study was to define the optimal analytic method to derive accurate and reliable D(2/3) receptor parameters with [(11)C]NPA. METHODS Six healthy subjects (four females/two males) underwent two [(11)C]NPA scans in the same day. D(2/3) receptor-binding parameters were estimated using kinetic analysis (using one- and two-tissue compartment models) as well as simplified reference tissue method in the three functional subdivisions of the striatum (associative striatum, limbic striatum, and sensorimotor striatum). The test-retest variability and intraclass correlation coefficient were assessed for distribution volume (V(T)), binding potential relative to plasma concentration (BP(P)), and binding potential relative to nondisplaceable uptake (BP(ND)). RESULTS A two-tissue compartment kinetic model adequately described the functional subdivisions of the striatum as well as cerebellum time-activity data. The reproducibility of V(T) was excellent (<or=10%) in all regions, for this approach. The reproducibility of both BP(P) (<or=12%) and BP(ND) (<or=10%) was also excellent. The intraclass correlation coefficients of BP(P) and BP(ND) were acceptable as well (>0.75) in the three functional subdivisions of the striatum. Although SRTM led to an underestimation of BP(ND) values relative to that estimated by kinetic analysis by 8-13%, the values derived using both the methods were reasonably well correlated (r(2) = 0.89, n = 84). Both methods were similarly effective in detecting the differences in [(11)C]NPA BP(ND) between subjects. CONCLUSION The results of this study indicate that [(11)C]NPA can be used to measure D(2/3) receptors configured in a state of high affinity for the agonists with high reliability and reproducibility in the functional subdivisions of the human striatum.
Collapse
Affiliation(s)
- Rajesh Narendran
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Narendran R, Frankle WG, Mason NS, Rabiner EA, Gunn RN, Searle GE, Vora S, Litschge M, Kendro S, Cooper TB, Mathis CA, Laruelle M. Positron emission tomography imaging of amphetamine-induced dopamine release in the human cortex: a comparative evaluation of the high affinity dopamine D2/3 radiotracers [11C]FLB 457 and [11C]fallypride. Synapse 2009; 63:447-61. [PMID: 19217025 DOI: 10.1002/syn.20628] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The use of PET and SPECT endogenous competition binding techniques has contributed to the understanding of the role of dopamine in several neuropsychiatric disorders. An important limitation of these imaging studies is the fact that measurements of acute changes in synaptic dopamine have been restricted to the striatum. The ligands previously used, such as [(11)C]raclopride and [(123)I]IBZM, do not provide sufficient signal to noise ratio to quantify D(2) receptors in extrastriatal areas, such as cortex, where the concentration of D(2) receptors is much lower than in the striatum. Given the importance of cortical DA function in cognition, a method to measure cortical dopamine function in humans would be highly desirable. The goal of this study was to compare the ability of two high affinity DA D(2) radioligands [(11)C]FLB 457 and [(11)C]fallypride to measure amphetamine-induced changes in DA transmission in the human cortex. D(2) receptor availability was measured in the cortical regions of interest with PET in 12 healthy volunteers under control and postamphetamine conditions (0.5 mg kg(-1), oral), using both [(11)C]FLB 457 and [(11)C]fallypride (four scans per subjects). Kinetic modeling with an arterial input function was used to derive the binding potential (BP(ND)) in eight cortical regions. Under controlled conditions, [(11)C]FLB 457 BP(ND) was 30-70% higher compared with [(11)C]fallypride BP(ND) in cortical regions. Amphetamine induced DA release led to a significant decrease in [(11)C]FLB 457 BP(ND) in five out the eight cortical regions evaluated. In contrast, no significant decrease in [(11)C]fallypride BP(ND) was detected in cortex following amphetamine. The difference between [(11)C]FLB 457 and [(11)C]fallypride ability to detect changes in the cortical D(2) receptor availability following amphetamine is related to the higher signal to noise ratio provided by [(11)C]FLB 457. These findings suggest that [(11)C]FLB 457 is superior to [(11)C]fallypride for measurement of changes in cortical synaptic dopamine.
Collapse
Affiliation(s)
- Rajesh Narendran
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Cropley VL, Innis RB, Nathan PJ, Brown AK, Sangare JL, Lerner A, Ryu YH, Sprague KE, Pike VW, Fujita M. Small effect of dopamine release and no effect of dopamine depletion on [18F]fallypride binding in healthy humans. Synapse 2008; 62:399-408. [DOI: 10.1002/syn.20506] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
30
|
Pogarell O, Koch W, Pöpperl G, Tatsch K, Jakob F, Mulert C, Grossheinrich N, Rupprecht R, Möller HJ, Hegerl U, Padberg F. Acute prefrontal rTMS increases striatal dopamine to a similar degree as D-amphetamine. Psychiatry Res 2007; 156:251-5. [PMID: 17993266 DOI: 10.1016/j.pscychresns.2007.05.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 05/06/2007] [Accepted: 05/14/2007] [Indexed: 11/16/2022]
Abstract
Prefrontal repetitive transcranial magnetic stimulation (rTMS) has been shown to increase striatal dopaminergic activity. Here we investigated dopaminergic neurotransmission using single photon emission computed tomography (SPECT) and [(123)I]IBZM to indirectly assess the change in endogenous striatal dopamine concentration upon rTMS as compared with d-amphetamine challenge. SPECT imaging was performed twice each in five patients during rTMS, and in two patients who received 0.3 mg/kg D-amphetamine. Administration of rTMS led to a mean relative decrease in striatal IBZM binding by 9.6+/-6.2%, and d-amphetamine challenge (n=4) induced a mean relative reduction by 8+/-2.95% (difference not statistically significant). Acute rTMS challenge showed similar striatal dopaminergic effects to those associated with the administration of d-amphetamine, a substance known to increase synaptic dopamine.
Collapse
Affiliation(s)
- Oliver Pogarell
- Department of Psychiatry, Ludwig-Maximilians-University of Munich, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
In animal models considerable evidence suggests that increased motivation to seek and ingest drugs of abuse are related to conditioned and sensitized activations of the mesolimbic dopamine (DA) system. Direct evidence for these phenomena in humans, though, is sparse. However, recent studies support the following. First, the acute administration of drugs of abuse across pharmacological classes increases extracellular DA levels within the human ventral striatum. Second, individual differences in the magnitude of this response correlate with rewarding effects of the drugs and the personality trait of novelty seeking. Third, transiently diminishing DA transmission in humans decreases drug craving, the propensity to preferentially respond to reward-paired stimuli, and the ability to sustain responding for future drug reward. Finally, very recent studies suggest that repeated exposure to stimulant drugs, either on the street or in the laboratory, can lead to conditioned and sensitized behavioral responses and DA release. In contrast to these findings, though, in individuals with a long history of substance abuse, drug-induced DA release is decreased. This diminished DA release could reflect two different phenomena. First, it is possible that drug withdrawal related decrements in DA cell function persist longer than previously suspected. Second, drug-paired stimuli may gain marked conditioned control over the release of DA and the expression of sensitization leading to reduced DA release when drug-related cues are absent. Based on these observations a two-factor hypothesis of the role of DA in drug abuse is proposed. In the presence of drug cues, conditioned and sensitized DA release would occur leading to focused drug-seeking behavior. In comparison, in the absence of drug-related stimuli DA function would be reduced, diminishing the ability of individuals to sustain goal-directed behavior and long-term objectives. This conditioned control of the expression of sensitized DA release could aggravate susceptibility to relapse, narrow the range of interests and perturb decision-making, accounting for a wide range of addiction related phenomena.
Collapse
Affiliation(s)
- Marco Leyton
- Department of Psychiatry, McGill University, 1033 Pine Avenue West, Montreal, Quebec, CANADA H3A 1A1.
| |
Collapse
|
32
|
Bradberry CW. Cocaine sensitization and dopamine mediation of cue effects in rodents, monkeys, and humans: areas of agreement, disagreement, and implications for addiction. Psychopharmacology (Berl) 2007; 191:705-17. [PMID: 17031707 DOI: 10.1007/s00213-006-0561-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Accepted: 08/10/2006] [Indexed: 11/24/2022]
Abstract
BACKGROUND Sensitization of mesocorticolimbic dopamine projections has been a valuable model of neurobiological adaptation to chronic exposure to cocaine and other psychostimulants. DISCUSSIONS In addition to providing an explanation of exaggerated responses to drugs that might explain their increased ability to serve as reinforcers, sensitization has also been incorporated into influential theories of how drug associated cues can acquire increased salience and incentive motivation. However, almost all of the work exploring behavioral and neurochemical sensitization has been conducted in rodents. Importantly, the relatively small amount of work conducted in human and nonhuman primates differs from the rodent work in some important regards. This review will examine areas of convergence and divergence between the rodent and primate literature on sensitization and the ability of drug associated environmental cues to elicit dopamine release. The implications of this comparison for expanding addiction research beyond dopaminergic mechanisms in the striatum/nucleus accumbens will be considered.
Collapse
Affiliation(s)
- Charles W Bradberry
- Department of Psychiatry and Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
33
|
Test–retest variability and reliability of123I-IBZM SPECT measurement of striatal dopamine D2 receptor availability in healthy volunteers and influence of iterative reconstruction algorithms. Synapse 2007; 62:62-9. [DOI: 10.1002/syn.20465] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
34
|
Berger HJ, van der Werf SP, Horstink CA, Cools AR, Oyen WJ, Horstink MW. Writer's cramp: restoration of striatal D2-binding after successful biofeedback-based sensorimotor training. Parkinsonism Relat Disord 2006; 13:170-3. [PMID: 17107822 DOI: 10.1016/j.parkreldis.2006.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Revised: 08/28/2006] [Accepted: 09/12/2006] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Previous studies of writer's cramp have detected cerebral sensorimotor abnormalities in this disorder and, more specifically, a reduced striatal D2-binding as assessed by [(123)I]IBZM SPECT. However, empirical data were lacking about the influence of effective biofeedback-based sensorimotor training on D2 receptor binding. METHODS To determine whether there is a restoration of D2-binding after successful sensorimotor treatment, pre- and posttreatment SPECTs were compared in five patients with writer's cramp and correlated with improvement in handwriting. RESULTS After treatment, the clinical and electromyographic picture appeared substantially improved connected with a significant increase in D2-binding to nearly normal levels similar to normative data in age/sex-matched healthy subjects. CONCLUSION The current study supported the view that writer's cramp results from a plastic adaptation of a rectifiable nigrostriatal dopaminergic system and that effective sensorimotor training leads to increased efficacy of striatal dopaminergic transmission.
Collapse
Affiliation(s)
- Hans J Berger
- Department of Medical Psychology, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
35
|
Riccardi P, Li R, Ansari MS, Zald D, Park S, Dawant B, Anderson S, Doop M, Woodward N, Schoenberg E, Schmidt D, Baldwin R, Kessler R. Amphetamine-induced displacement of [18F] fallypride in striatum and extrastriatal regions in humans. Neuropsychopharmacology 2006; 31:1016-26. [PMID: 16237395 DOI: 10.1038/sj.npp.1300916] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This study examined D-amphetamine (D-AMPH)-induced displacements of [18F] fallypride in striatal and extrastriatal regions and the correlations of these displacements with cognition, affect, and sensation-seeking behavior. In all, 14 normal subjects, six females and eight males (ages 21-32, mean age 25.9 years), underwent positron emission tomography (PET) with [18F]fallypride before and 3 h after a 0.43 mg/kg oral dose of D-AMPH. Levels of dopamine (DA) D2 receptor density were calculated with the reference region method of Lammerstma. Percent displacements in striatal and extrastriatal regions were calculated for the caudate, putamen, ventral striatum, medial thalamus, amygdala, substantia nigra, and temporal cortex. Correlations of changes in cognition, affect, and sensation seeking with parametric images of D-AMPH-induced DA release were computed. Significant displacements were seen in the caudate, putamen, ventral striatum substantia nigra, and temporal cortex with a trend level change in the amygdala. Greatest displacements were seen in striatal subdivisions-5.6% in caudate, 11.2% in putamen, 7.2% in ventral striatum, and 6.6% in substantia nigra. Lesser decrements were seen in amygdala-4.4%, temporal cortex-3.7%, and thalamus-2.8%. Significant clusters of correlations of regional DA release with cognition and sensation-seeking behavior were observed. The current study demonstrates that [18F]fallypride PET studies using oral D-AMPH (0.43 mg/kg) can be used to study D-AMPH-induced DA release in the striatal and extrastriatal regions in humans, and their relationship with cognition and sensation-seeking behavior.
Collapse
Affiliation(s)
- Patrizia Riccardi
- Department of Radiology, Vanderbilt University, Nashville, TN 37232-2675, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Udo de Haes JI, Kortekaas R, Van Waarde A, Maguire RP, Pruim J, den Boer JA. Assessment of methylphenidate-induced changes in binding of continuously infused [(11)C]-raclopride in healthy human subjects: correlation with subjective effects. Psychopharmacology (Berl) 2005; 183:322-30. [PMID: 16220327 DOI: 10.1007/s00213-005-0193-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Accepted: 09/05/2005] [Indexed: 11/27/2022]
Abstract
RATIONALE The dopaminergic system has been implicated in the pathogenesis and treatment of a variety of neuropsychiatric disorders. It has been shown that information on endogenous dopamine (DA) release can be obtained noninvasively by combining positron emission tomography with a dopaminergic challenge. This approach is based on the assumption that an injected radiolabeled ligand competes with the neurotransmitter for the same receptor. Increases in DA release will therefore result in a decreased binding of the radioligand. OBJECTIVES We investigated the effect of the DA reuptake blocker methylphenidate (MP) on the binding of the D(2) receptor ligand [(11)C]-raclopride (RAC). METHODS The effect of a 0.25 mg/kg intravenous dose of MP was studied in six healthy volunteers. RAC was administered as a bolus followed by constant infusion, and subjective effects were assessed using verbal rating scales. RESULTS Control scans without MP administration showed that the mean RAC binding reached stable values approximately 30 min after start of the infusion. MP administration induced a 24% decrease in RAC binding in the total striatum. Correlations were found between the MP-induced change in euphoria and the percent change in binding potential (DeltaBP) in the dorsal striatum and between baseline anxiety and DeltaBP in the dorsal and middle striatum. We also found a negative correlation between baseline BP in the dorsal striatum and change in euphoria. CONCLUSIONS Our results comply with previous findings, indicating the feasibility of the bolus infusion design combined with a relatively low MP dose to study dopaminergic (dys)function.
Collapse
Affiliation(s)
- J I Udo de Haes
- Department of Biological Psychiatry, University Medical Center Groningen, 30.001, 9700 RB Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
37
|
Winterer G, Hariri AR, Goldman D, Weinberger DR. Neuroimaging and Human Genetics. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2005; 67:325-83. [PMID: 16291027 DOI: 10.1016/s0074-7742(05)67010-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Georg Winterer
- Genes, Cognition and Psychosis Program, National Institute of Mental Health National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
38
|
Frankle WG, Slifstein M, Talbot PS, Laruelle M. Neuroreceptor Imaging in Psychiatry: Theory and Applications. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2005; 67:385-440. [PMID: 16291028 DOI: 10.1016/s0074-7742(05)67011-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- W Gordon Frankle
- Departments of Psychiatry, Columbia University College of Physicians and Surgeons and New York State Psychiatric Institute, New York, New York 10032, USA
| | | | | | | |
Collapse
|
39
|
Abi-Dargham A, Kegeles LS, Zea-Ponce Y, Mawlawi O, Martinez D, Mitropoulou V, O'Flynn K, Koenigsberg HW, Van Heertum R, Cooper T, Laruelle M, Siever LJ. Striatal amphetamine-induced dopamine release in patients with schizotypal personality disorder studied with single photon emission computed tomography and [123I]iodobenzamide. Biol Psychiatry 2004; 55:1001-6. [PMID: 15121484 DOI: 10.1016/j.biopsych.2004.01.018] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2003] [Revised: 01/05/2004] [Accepted: 01/16/2004] [Indexed: 11/27/2022]
Abstract
BACKGROUND Previous imaging studies demonstrated that schizophrenia is associated with increased amphetamine-induced dopamine (DA) release in the striatum, most pronounced during episodes of illness exacerbation. Schizotypal personality disorder (SPD) is a schizophrenia spectrum disorder, genetically related to schizophrenia. The goal of this study was to investigate striatal DA function in patients with SPD. METHODS In our study, 13 SPD patients and 13 matched healthy control subjects underwent single photon emission computed tomography (SPECT) scan during bolus plus constant infusion of the D2/3 radiotracer [123I]iodobenzamide (IBZM). Striatal specific to nonspecific equilibrium partition coefficient (V(3)") was measured at baseline and following amphetamine administration (.3 mg/kg). RESULTS No significant differences were observed in baseline V(3)" between groups. Amphetamine induced a larger decrease in [123I]IBZM V(3)" in SPD patients (-12 +/- 5%) compared with control subjects (-7 +/- 5%, p =.03). CONCLUSIONS The reduction in [123I]IBZM V(3)" induced by amphetamine in SPD was similar to that observed in remitted schizophrenia patients (-10 +/- 9%, n = 17), but significantly lower than that observed during illness exacerbation (-24 +/- 13%, n = 17). This suggests that DA dysregulation in schizophrenia spectrum disorders might have a trait component, present in remitted patients with schizophrenia and in SPD, and a state component, associated with psychotic exacerbations but not SPD.
Collapse
Affiliation(s)
- Anissa Abi-Dargham
- Department of Psychiatry, Columbia University, and New York State Psychiatric Institute, New York, 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Laruelle M, Kegeles LS, Abi-Dargham A. Glutamate, dopamine, and schizophrenia: from pathophysiology to treatment. Ann N Y Acad Sci 2004; 1003:138-58. [PMID: 14684442 DOI: 10.1196/annals.1300.063] [Citation(s) in RCA: 340] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The fundamental pathological process(es) associated with schizophrenia remain(s) uncertain, but multiple lines of evidence suggest that this condition is associated with (1) excessive stimulation of striatal dopamine (DA) D2 receptors, (2) deficient stimulation of prefrontal DA D1 receptors and, (3) alterations in prefrontal connectivity involving glutamate (GLU) transmission at N-methyl-d-aspartate (NMDA) receptors. This chapter first briefly discusses the current knowledge status for these abnormalities, with emphasis on results derived from clinical molecular imaging studies. The evidence for hyperstimulation of striatal D2 receptors rests on strong pharmacological evidence and has recently received support from brain imaging studies. The hypothesis of deficient prefrontal cortex (PFC) D1 receptor stimulation is almost entirely derived from preclinical studies. Preliminary imaging data compatible with this hypothesis have recently emerged. The NMDA hypofunction hypothesis originates mainly from indirect pharmacological data. The interactions between DA and GLU systems relevant to schizophrenia are then reviewed. Animal and imaging data supporting the general model that the putative DA imbalance in schizophrenia (striatal excess and cortical deficiency) might be secondary to NMDA hypofunction in the PFC and its connections are presented. Equally important are the potential consequences of this DA imbalance for NMDA function in the striatum and the cortex, which are subsequently discussed. In conclusion, it is proposed that schizophrenia is associated with strongly interconnected abnormalities of GLU and DA transmission: NMDA hypofunction in the PFC and its connections might generate a pattern of dysregulation of DA systems that, in turn, further weakens NMDA-mediated connectivity and plasticity.
Collapse
Affiliation(s)
- Marc Laruelle
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA.
| | | | | |
Collapse
|
41
|
Javitt DC, Balla A, Burch S, Suckow R, Xie S, Sershen H. Reversal of phencyclidine-induced dopaminergic dysregulation by N-methyl-D-aspartate receptor/glycine-site agonists. Neuropsychopharmacology 2004; 29:300-7. [PMID: 14560321 DOI: 10.1038/sj.npp.1300313] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
N-methyl-D-aspartate (NMDA) receptors may play a critical role in the pathophysiology of schizophrenia. In rodents, NMDA receptor antagonists, such as phencyclidine (PCP), induce dopaminergic dysregulation that resembles the pattern observed in schizophrenia. The present study investigates the degree to which concurrent treatment with NMDA modulators, such as glycine and the recently developed glycine transport antagonist N[3-(4"-fluorophenyl)-3-(4"-phenylphenoxy)propyl]sarcosine (NFPS) prevents dopaminergic dysregulation observed following chronic (3 months) or subchronic (2 weeks) PCP administration. Both chronic and subchronic treatment with PCP in the absence of glycine or NFPS led to significant potentiation of amphetamine-induced dopamine release in the prefrontal cortex and striatum, similar to that observed in schizophrenia. Treatment with either high-dose glycine or NFPS along with PCP prevented PCP effects. These findings demonstrate effective doses of glycine for use in animal models of schizophrenia, and support recent clinical studies showing the effectiveness of NMDA agonists in the treatment of persistent symptoms of schizophrenia.
Collapse
Affiliation(s)
- Daniel C Javitt
- Nathan Kline Institute for Psychiatric Research, NYU School of Medicine, Orangeburg, NY, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
Evolution of the prefrontal cortex was an essential precursor to civilization. During the past decade, it became increasingly obvious that human prefrontal function is under substantial genetic control. In particular, heritability studies of frontal lobe-related neuropsychological function, electrophysiology and neuroimaging have greatly improved our insight. Moreover, the first genes that are relevant for prefrontal function such as catechol-O-methyltransferase (COMT) are currently discovered. In this review, we summarize the present knowledge on the genetics of human prefrontal function. For historical reasons, we discuss the genetics of prefrontal function within the broader concept of general cognitive ability (intelligence). Special emphasis is also given to methodological concerns that need to be addressed when conducting research on the genetics of prefrontal function in humans.
Collapse
Affiliation(s)
- Georg Winterer
- Clinical Brain Disorders Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
43
|
Narendran R, Hwang DR, Slifstein M, Talbot PS, Erritzoe D, Huang Y, Cooper TB, Martinez D, Kegeles LS, Abi-Dargham A, Laruelle M. In vivo vulnerability to competition by endogenous dopamine: Comparison of the D2 receptor agonist radiotracer (-)-N-[11C]propyl-norapomorphine ([11C]NPA) with the D2 receptor antagonist radiotracer [11C]-raclopride. Synapse 2004; 52:188-208. [PMID: 15065219 DOI: 10.1002/syn.20013] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
(-)-N-Propyl-norapomorphine (NPA) is a full dopamine (DA) D2 receptor agonist and [11C]NPA is a suitable radiotracer to image D2 receptors configured in a state of high affinity for agonists with positron emission tomography (PET). In this study the vulnerability of the in vivo binding of [11C]NPA to acute fluctuation in synaptic DA was assessed with PET in baboons and compared to that of the reference D2 receptor antagonist radiotracer [11C]raclopride. Three male baboons were studied with [11C]raclopride and [11C]NPA under baseline conditions and following administration of the potent DA releaser amphetamine (0.3, 0.5, and 1.0 mg kg(-1) i.v.). Kinetic modeling with an arterial input function was used to derive the striatal specific-to-nonspecific equilibrium partition coefficient (V3"). [11C]Raclopride V3" was reduced by 24 +/- 10%, 32 +/- 6%, and 44 +/- 9% following amphetamine doses of 0.3, 0.5, and 1.0 mg kg(-1), respectively. [11C]NPA V3" was reduced by 32 +/- 2%, 45 +/- 3%, and 53 +/- 9% following amphetamine doses of 0.3, 0.5, and 1.0 mg kg(-1), respectively. Thus, endogenous DA was more effective at competing with [11C]NPA binding compared to [11C]raclopride binding, a finding consistent with the pharmacology of these tracers (agonist vs. antagonist). These results also suggest that 71% of D2 receptors are configured in a state of high affinity for agonists in vivo. In conclusion, [11C]NPA might provide a superior radiotracer to probe presynaptic DA function with PET in health and disease.
Collapse
Affiliation(s)
- Rajesh Narendran
- Department of Psychiatry, Columbia University College of Physicians and Surgeons and the New York State Psychiatric Institute, New York, NY 10032, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Slifstein M, Narendran R, Hwang DR, Sudo Y, Talbot PS, Huang Y, Laruelle M. Effect of amphetamine on [18F]fallypride in vivo binding to D2 receptors in striatal and extrastriatal regions of the primate brain: Single bolus and bolus plus constant infusion studies. Synapse 2004; 54:46-63. [PMID: 15300884 DOI: 10.1002/syn.20062] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
[(18)F]fallypride is a new positron emission tomography (PET) dopamine D(2) receptor radiotracer that provides visualization of D(2) receptors in both striatal and extrastriatal areas. Here, the vulnerability of [(18)F]fallypride binding to endogenous dopamine (DA) levels was evaluated by examining the effect of amphetamine on [(18)F]fallypride binding in striatal and extrastriatal regions. Data were acquired in three male baboons at three different doses of i.v. amphetamine, using two different [(18)F]fallypride administration protocols (single bolus and bolus plus constant infusion). Scans were performed following a single bolus of [(18)F]fallypride under control conditions and following 1 mg/kg i.v. amphetamine and with an [(18)F]fallypride bolus plus constant infusion design under control, 0.5 mg/kg, and 0.3 mg/kg amphetamine i.v. conditions. Significant decreases in [(18)F]fallypride binding potential were seen in striatum (-49%, -18%, and -14%), thalamus (-25%, -23%, and -14%), and hippocampus (-36%, -24%, and -12%) following 1 mg/kg, 0.5 mg/kg, and 0.3 mg/kg doses of amphetamine, respectively. Additional analyses were performed suggesting that these results were not artifacts of nonreceptor-related effects such as regional flow changes or partial volume effects. In conclusion, [(18)F]fallypride binding is vulnerable to endogenous competition by DA in striatum as well as extrastriatal regions, suggesting that this ligand may be suitable for the study presynaptic DA function in striatal and extrastriatal areas.
Collapse
Affiliation(s)
- Mark Slifstein
- Department of Psychiatry, Columbia University College of Physicians and Surgeons and the New York State Psychiatric Institute, New York, New York 10032, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Abi-Dargham A, Kegeles LS, Martinez D, Innis RB, Laruelle M. Dopamine mediation of positive reinforcing effects of amphetamine in stimulant naïve healthy volunteers: results from a large cohort. Eur Neuropsychopharmacol 2003; 13:459-68. [PMID: 14636962 DOI: 10.1016/j.euroneuro.2003.08.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A positive experience during a first encounter with a drug of abuse is predictive of subsequent use and might represent a vulnerability factor to develop addiction. This paper presents a meta-analysis of data acquired in 60 healthy volunteers who underwent a low-dose amphetamine challenge (0.3 mg/kg, i.v.) during imaging of dopamine D2 receptor availability with SPECT and the D2/D3 radiotracer [123I]IBZM. Amphetamine-stimulated DA release induced a small, significant and highly variable decrease in striatal D2 receptor availability (-8.3 +/- 6.7%). The magnitude of the decrease in D2 receptor availability was significantly associated with the positive reinforcing effects of the drug reported by the subject (r2 = 0.14, p = 0.003). Age was associated with decreased potency of dopamine to elicit positive reinforcing effects. This study indicates that both a large dopaminergic response and young age during a first encounter with a drug of abuse potential contribute to higher positive reinforcing effects.
Collapse
|
46
|
Erritzoe D, Talbot P, Frankle WG, Abi-Dargham A. Positron emission tomography and single photon emission CT molecular imaging in schizophrenia. Neuroimaging Clin N Am 2003; 13:817-32. [PMID: 15024964 DOI: 10.1016/s1052-5149(03)00089-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We reviewed findings from PET and SPECT studies that have contributed to our understanding of the pathophysiology and treatment of schizophrenia. The most robust set of findings pertains to imaging of presynaptic dopaminergic function in the striatum. The results of these studies have been consistent in showing that schizophrenia, at least during episodes of illness exacerbation, is associated with increased activity of DA neurons; this increased presynaptic activity is associated with positive symptoms and good therapeutic response. Studies of cortical DA function are less numerous and less consistent. In the future, technical advances in PET instrumentation and radioligand development should contribute to a clarification of the role of prefrontal DA in the cognitive impairment that is presented by these patients. An important drawback of the literature in this field is the generally low number of subjects that are included in studies (typically less than 20 per group). Small samples are necessitated by the cost of these investigations, but also, in some instances, to the difficulty in recruiting appropriate clinical subjects (such as drug-free patients who have schizophrenia). In conditions that are characterized by marked heterogeneity, such as major depressive disorders, this factor is bound to yield divergent results across studies. Another source of discrepancy is the variety of technical approaches to data acquisition and analysis. For example, analytical methods range from "empirical" or "semiquantitative" (typically a region of interest to a region of reference ratio measured at one time point) to model-based methods that use an arterial input function. The limitations that are associated with empirical analytical methods might account for artifactual results, especially when the effect size of the between-group difference and the number of subjects are small [149]. In addressing these limitations it will be important to increase the availability of these techniques beyond a few academic centers, to promote multi-center studies in well-characterized populations, and to standardize analytical methods. Until recently, SPECT was the only widely available technique, and SPECT studies have provided a substantial contribution to this field. With the current increase in PET camera availability, the development of [18F]-based molecular imaging probes will provide unique opportunities for further dissemination of these techniques. The article reviewed seminal findings obtained with PET and SPECT molecular imaging of schizophrenia. These techniques do not play a major role in the diagnosis and treatment of this disorder, remain essentially research tools. The results that have been produced by this field to date suggest that PET will significantly contribute to unraveling the biologic bases of psychiatric disorders and may contribute to their clinical management. Moreover, it is foreseeable that PET will become increasingly involved in the development of new psychiatric medications. Expanding the availability of PET and the current radiopharmaceutical portfolio will be critical for these predictions to become reality.
Collapse
Affiliation(s)
- David Erritzoe
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 31, New York, NY 10032, USA
| | | | | | | |
Collapse
|
47
|
Abstract
Imaging of brain function and neurotransmission is an important bridge between basic and clinical research. Regional cerebral energy metabolism and blood flow are normally coupled to regional cerebral function. Positron tomography (PET) studies of cerebral glucose metabolism and blood flow, single photon tomography (SPECT) and MRI studies of cerebral perfusion, have been used to image cerebral development and aging in man. The sensitivity, temporal resolution, spatial resolution and lack of radiation have led to the widespread utilization of blood oxygen level dependent (BOLD) and MRI perfusion techniques. PET and SPECT methods for studying cerebral neurotransmission include studies of dopaminergic, serotonergic, cholinergic, opiate and GABAergic neurotransmission in man. Studies of cerebral neurotransmission in man have helped to delineate the mechanisms of action of antipsychotic and antidepressant drugs, the diagnosis and progression of Parkinson's disease, and to evaluate neuroprotective drugs. The strengths, limitations, and application of these modalities are reviewed. The application of these methods to cerebral development and aging are briefly discussed.
Collapse
Affiliation(s)
- Robert M Kessler
- Department of Radiology, Vanderbilt University Medical Center, 21st and Garland, VUH 920, Nashville, TN 37232-2675, USA.
| |
Collapse
|
48
|
Martinez D, Slifstein M, Broft A, Mawlawi O, Hwang DR, Huang Y, Cooper T, Kegeles L, Zarahn E, Abi-Dargham A, Haber SN, Laruelle M. Imaging human mesolimbic dopamine transmission with positron emission tomography. Part II: amphetamine-induced dopamine release in the functional subdivisions of the striatum. J Cereb Blood Flow Metab 2003; 23:285-300. [PMID: 12621304 DOI: 10.1097/01.wcb.0000048520.34839.1a] [Citation(s) in RCA: 380] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The human striatum is functionally organized into limbic, associative, and sensorimotor subdivisions, which process information related to emotional, cognitive, and motor function. Dopamine projections ascending from the midbrain provide important modulatory input to these striatal subregions. The aim of this study was to compare activation of dopamine D2 receptors after amphetamine administration in the functional subdivisions of the human striatum. D2 receptor availability (V3") was measured with positron emission tomography and [11C]raclopride in 14 healthy volunteers under control conditions and after the intravenous administration of amphetamine (0.3 mg/kg). For each condition, [11C]raclopride was administered as a priming bolus followed by constant infusion, and measurements of D2 receptor availability were obtained under sustained binding equilibrium conditions. Amphetamine induced a significantly larger reduction in D2 receptor availability (DeltaV3") in limbic (ventral striatum, -15.3 +/- 11.8%) and sensorimotor (postcommissural putamen, -16.1 +/- 9.6%) regions compared with associative regions (caudate and precommissural putamen, -8.1 +/- 7.2%). Results of this region-of-interest analysis were confirmed by a voxel-based analysis. Correction for the partial volume effect showed even greater differences in DeltaV3" between limbic (-17.8 +/- 13.8%), sensorimotor (-16.6 +/- 9.9%), and associative regions (-7.5 +/- 7.5%). The increase in euphoria reported by subjects after amphetamine was associated with larger DeltaV3" in the limbic and sensorimotor regions, but not in the associative regions. These results show significant differences in the dopamine response to amphetamine between the functional subdivisions of the human striatum. The mechanisms potentially accounting for these regional differences in amphetamine-induced dopamine release within the striatum remain to be elucidated, but may be related to the asymmetrical feed-forward influences mediating the integration of limbic, cognitive, and sensorimotor striatal function via dopamine cell territories in the ventral midbrain.
Collapse
Affiliation(s)
- Diana Martinez
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
BACKGROUND Brain dopamine has been the focus of numerous studies owing to its crucial role in motor function and in neurological and psychiatric disease processes. Whilst early work relied on postmortem data, functional imaging has allowed a more sophisticated approach to the quantification of receptor density, affinity and functional capacity. This review aims to summarise changes in the nigrostriatal dopaminergic system which accompany normal ageing. METHODS A literature search focussed on postmortem and neuroimaging studies of normal ageing within the nigrostriatal dopaminergic tract. The functional significance of age-related effects was also considered. RESULTS There are significant reductions in pre- and post-synaptic markers of brain dopamine activity during normal ageing: However the rate of decline (linear or exponential), the effects of gender and heterogeneity and the mechanisms by which these changes occur remain undetermined. Limited data suggest there is a significant association between postsynaptic receptor density and specific aspects of motor and cognitive function. CONCLUSION The identification of strategies to improve dopaminergic transmission may delay the onset of motor and cognitive deficits associated with normal ageing. In order to develop effective preventative strategies, the causative mechanisms underlying age-related changes and the interaction between synaptic structure and function need to be more clearly elucidated.
Collapse
Affiliation(s)
- S Reeves
- Section of Old Age Psychiatry, Institute of Psychiatry, London, UK.
| | | | | |
Collapse
|
50
|
Kegeles LS, Martinez D, Kochan LD, Hwang DR, Huang Y, Mawlawi O, Suckow RF, Van Heertum RL, Laruelle M. NMDA antagonist effects on striatal dopamine release: positron emission tomography studies in humans. Synapse 2002; 43:19-29. [PMID: 11746730 DOI: 10.1002/syn.10010] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Previous brain imaging studies with [(11)C]raclopride have suggested that the psychotogenic effects of the noncompetitive N-methyl-D-aspartate antagonist ketamine in humans might be mediated by increased dopamine (DA) release and increased stimulation of DA D(2) receptors in the striatum. The goal of the present study was to assess the effect of ketamine on D(2) receptor availability in subregions of the striatum (dorsal caudate, DCA; dorsal putamen, DPU; ventral striatum, VST) in humans. Ten healthy subjects were studied twice. In a first group of five subjects, PET scanning was obtained twice for 90 min during bolus plus constant infusion of [(11)C]raclopride. No significant differences were observed in [(11)C]raclopride specific-to-nonspecific activity ratios (V(")(3)) measured during an early interval (30-50 min) and late interval (70-90 min), confirming that a state of sustained equilibrium had been established from 30-90 min (end of infusion). In a second group of five subjects, a similar experiment was performed twice, except that ketamine was administered beginning at 50 min (0.12 mg/kg i.v. bolus followed by 0.65 mg/kg/h i.v. infusion for 70 min). Raclopride V(")(3) measured before ketamine (30-50-min interval) was compared to [(11)C]raclopride V(")(3) measured during ketamine infusion (70-90-min interval). Ketamine induced a robust dissociative state. However, no significant differences were observed in D(2) receptor availability measured before and during the ketamine infusion (n = 10) in any of the regions examined (DCA, DPU, and VST). These data fail to demonstrate an effect of ketamine on [(11)C]raclopride BP and are consistent with microdialysis studies in rodents and nonhuman primates which reported only small effects of acute NMDA receptor blockade on extracellular striatal DA concentration.
Collapse
Affiliation(s)
- Lawrence S Kegeles
- Department of Psychiatry, Columbia University College of Physicians and Surgeons and the New York State Psychiatric Institute, New York, NY 10032, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|