1
|
Misaki K, Takano H, Kanazawa H, Inoue KI. Biological Response-Enhancing Activity with Antigens in A549 Cells Exposed to Representative Polycyclic Aromatic Hydrocarbons. ACS OMEGA 2021; 6:22224-22232. [PMID: 34497913 PMCID: PMC8412928 DOI: 10.1021/acsomega.1c02929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
The question of what kinds of airborne particles, including diesel exhaust particles and their adherent chemical constituents, exacerbate the activity of allergic and inflammatory respiratory diseases has not been elucidated in detail. Therefore, chemicals that have amplifying actions on Dermatophagoides farinae (Df) body extract-induced IL-8, the inflammatory cytokines of the innate immune system, were comprehensively examined using commonly used human alveolar epithelial cells, A549, as simple screening for 17 polycyclic aromatic hydrocarbons (PAHs), which are representative organic constituents in atmospheric samples. The significant amplifying actions of two PAHs, dibenzo[a,l]pyrene (DB[a,l]P) at 50 nM and dibenzo[a,i]pyrene (DB[a,i]P) at 2 μM for 48 h, for IL-8 protein release induced by mite antigens in epithelial cells were observed for the first time. In contrast, the enhancement of IL-8 was not observed in protein levels for these PAHs without the antigens. Meanwhile, the significant synergistic amplifying effect of DB[a,l]P at 50 nM on proinflammatory actions was measured in gene expression (i.e., IL-8, IL-6, ICAM-1, and TNF-α) levels in the experimental setting; for the results, the induction of TNF-α may have been the essential factor that enhanced the amplifying activity of DB[a,l]P for IL-8 gene expression and protein release. Examining the exacerbating effect on allergic pathophysiological states for DB[a,l]P is planned for further study.
Collapse
Affiliation(s)
- Kentaro Misaki
- School
of Nursing, University of Shizuoka, Yada 52-1, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hirohisa Takano
- Graduate
School of Global Environmental Studies, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan
- Department
of Urban Management, Graduate School of Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Hiroaki Kanazawa
- School
of Nursing, University of Shizuoka, Yada 52-1, Suruga-ku, Shizuoka 422-8526, Japan
| | - Ken-ichiro Inoue
- School
of Nursing, University of Shizuoka, Yada 52-1, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
2
|
Ali I, Dreij K, Baker S, Högberg J, Korhonen A, Stenius U. Application of Text Mining in Risk Assessment of Chemical Mixtures: A Case Study of Polycyclic Aromatic Hydrocarbons (PAHs). ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:67008. [PMID: 34165340 PMCID: PMC8318069 DOI: 10.1289/ehp6702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 05/08/2023]
Abstract
BACKGROUND Cancer risk assessment of complex exposures, such as exposure to mixtures of polycyclic aromatic hydrocarbons (PAHs), is challenging due to the diverse biological activities of these compounds. With the help of text mining (TM), we have developed TM tools-the latest iteration of the Cancer Risk Assessment using Biomedical literature tool (CRAB3) and a Cancer Hallmarks Analytics Tool (CHAT)-that could be useful for automatic literature analyses in cancer risk assessment and research. Although CRAB3 analyses are based on carcinogenic modes of action (MOAs) and cover almost all the key characteristics of carcinogens, CHAT evaluates literature according to the hallmarks of cancer referring to the alterations in cellular behavior that characterize the cancer cell. OBJECTIVES The objective was to evaluate the usefulness of these tools to support cancer risk assessment by performing a case study of 22 European Union and U.S. Environmental Protection Agency priority PAHs and diesel exhaust and a case study of PAH interactions with silica. METHODS We analyzed PubMed literature, comprising 57,498 references concerning priority PAHs and complex PAH mixtures, using CRAB3 and CHAT. RESULTS CRAB3 analyses correctly identified similarities and differences in genotoxic and nongenotoxic MOAs of the 22 priority PAHs and grouped them according to their known carcinogenic potential. CHAT had the same capacity and complemented the CRAB output when comparing, for example, benzo[a]pyrene and dibenzo[a,l]pyrene. Both CRAB3 and CHAT analyses highlighted potentially interacting mechanisms within and across complex PAH mixtures and mechanisms of possible importance for interactions with silica. CONCLUSION These data suggest that our TM approach can be useful in the hazard identification of PAHs and mixtures including PAHs. The tools can assist in grouping chemicals and identifying similarities and differences in carcinogenic MOAs and their interactions. https://doi.org/10.1289/EHP6702.
Collapse
Affiliation(s)
- Imran Ali
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kristian Dreij
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Simon Baker
- Department of Theoretical and Applied Linguistics, University of Cambridge, Cambridge, UK
| | - Johan Högberg
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna Korhonen
- Department of Theoretical and Applied Linguistics, University of Cambridge, Cambridge, UK
| | - Ulla Stenius
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Dupont É, Wang B, Mamelak AJ, Howell BG, Shivji G, Zhuang L, Dimitriadou V, Falardeau P, Sauder DN. Modulation of the Contact Hypersensitivity Response by Æ-941 (Neovastat), a Novel Antiangiogenic Agent. J Cutan Med Surg 2016. [DOI: 10.1177/120347540300700304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: Æ-941 (Neovastat) is an angiogenesis inhibitor noted to have antiinflammatory properties. Objective: We tested Neovastat in a contact hypersensitivity (CHS) model to determine the mechanism of action of its antiinflammatory effects. Methods: Neovastat was orally administered (200 mg/kg/day) during the sensitization and challenge phases of a murine CHS assay and inflammatory responses were measured. Subsequent assays were performed on mice treated with Neovastat or Cortisone (120 mg/kg/day, IP) and differential mRNA expression of several pro- and antiinflammatory cytokines was quantified using RT-PCR. Results: Neovastat decreased inflammation by 39% when administered during sensitization but did not alter the CHS response when given during the challenge phase. Neovastat significantly induced IL-10 expression in skin and skin-draining lymph nodes (49% and 45%, respectively) and decreased IFNγ expression in the lymph nodes (35%). Conclusion: Antiinflammatory effects of Neovastat observed in CHS could be linked to modulation of cytokines early in the sensitization phase.
Collapse
Affiliation(s)
- É. Dupont
- Eterna Laboratories, Quebec, Quebec, Canada
| | - B. Wang
- Department of Dermatology, Johns Hopkins University, Johns Hopkins Outpatient Center, Baltimore, Maryland Online publication: 10 February 2003
| | - A. J. Mamelak
- Department of Dermatology, Johns Hopkins University, Johns Hopkins Outpatient Center, Baltimore, Maryland Online publication: 10 February 2003
| | - B. G. Howell
- Department of Dermatology, Johns Hopkins University, Johns Hopkins Outpatient Center, Baltimore, Maryland Online publication: 10 February 2003
| | - G. Shivji
- Department of Dermatology, Johns Hopkins University, Johns Hopkins Outpatient Center, Baltimore, Maryland Online publication: 10 February 2003
| | - L. Zhuang
- Department of Dermatology, Johns Hopkins University, Johns Hopkins Outpatient Center, Baltimore, Maryland Online publication: 10 February 2003
| | | | | | - D. N. Sauder
- Department of Dermatology, Johns Hopkins University, Johns Hopkins Outpatient Center, Baltimore, Maryland Online publication: 10 February 2003
| |
Collapse
|
4
|
Misaki K, Takamura-Enya T, Ogawa H, Takamori K, Yanagida M. Tumour-promoting activity of polycyclic aromatic hydrocarbons and their oxygenated or nitrated derivatives. Mutagenesis 2015; 31:205-13. [PMID: 26656082 DOI: 10.1093/mutage/gev076] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Various types of polycyclic aromatic compounds (PACs) in diesel exhaust particles are thought to contribute to carcinogenesis in mammals. Although the carcinogenicity, mutagenicity and tumour-initiating activity of these compounds have been evaluated, their tumour-promoting activity is unclear. In the present study, to determine the tumour-inducing activity of PACs, including previously known mutagenic compounds in atmospheric environments, a transformation assay for promoting activity mediated by the release of contact inhibition was conducted for six polycyclic aromatic hydrocarbons (PAHs), seven oxygenated PAHs (oxy-PAHs) and seven nitrated PAHs (nitro-PAHs) using mouse embryonic fibroblast cells transfected with the v-Ha-ras gene (Bhas 42 cells). Of these, two PAHs [benzo[k]fluoranthene (B[k]FA) and benzo[b]fluoranthene (B[b]FA)], one oxy-PAH [6H-benzo[cd]pyren-6-one (BPO)] and two nitro-PAHs (3-nitro-7H-benz[de]anthracen-7-one and 6-nitrochrysene) were found to exhibit particularly powerful tumour-promoting activity (≥10 foci following exposure to <100nM). In addition, clear mRNA expression of CYP1A1, which is associated with aryl hydrocarbon receptor (AhR)-mediated activation, was observed following the exposure of cells to two PAHs (B[k]FA and B[b]FA) and three oxy-PAHs (1,2-naphthoquinone, 11H-benzo[b]fluoren-11-one and BPO). Further, an HO-1 antioxidant response activation was observed following exposure to B[k]FA, B[b]FA and BPO, suggesting that the induction of tumour-promoting activity in these compounds is correlated with the dysfunction of signal transduction via AhR-mediated responses and/or oxidative stress responses.
Collapse
Affiliation(s)
- Kentaro Misaki
- Institute for Environmental and Gender Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Urayasu, Chiba 279-0021, Japan, School of Nursing, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan and
| | - Takeji Takamura-Enya
- Department of Applied Chemistry, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa 243-0292, Japan
| | - Hideoki Ogawa
- Institute for Environmental and Gender Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Urayasu, Chiba 279-0021, Japan
| | - Kenji Takamori
- Institute for Environmental and Gender Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Urayasu, Chiba 279-0021, Japan
| | - Mitsuaki Yanagida
- Institute for Environmental and Gender Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Urayasu, Chiba 279-0021, Japan
| |
Collapse
|
5
|
Obinaju BE, Graf C, Halsall C, Martin FL. Linking biochemical perturbations in tissues of the African catfish to the presence of polycyclic aromatic hydrocarbons in Ovia River, Niger Delta region. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 201:42-9. [PMID: 25765972 DOI: 10.1016/j.envpol.2015.02.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 02/13/2015] [Accepted: 02/15/2015] [Indexed: 05/28/2023]
Abstract
Petroleum hydrocarbons including polycyclic aromatic hydrocarbons (PAHs) are a pollution issue in the Niger Delta region due to oil industry activities. PAHs were measured in the water column of the Ovia River with concentrations ranging from 0.1 to 1055.6 ng L(-1). Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy detected alterations in tissues of the African catfish (Heterobranchus bidorsalis) from the region showed varying degrees of statistically significant (P<0.0001, P<0.001, P<0.05) changes to absorption band areas and shifts in centroid positions of peaks. Alteration patterns were similar to those induced by benzo[a]pyrene in MCF-7 cells. These findings have potential health implications for resident local communities as H. bidorsalis constitutes a key nutritional source. The study provides supporting evidence for the sensitivity of infrared spectroscopy in environmental studies and supports their potential application in biomonitoring.
Collapse
Affiliation(s)
- Blessing E Obinaju
- Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4YQ, UK
| | - Carola Graf
- Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4YQ, UK
| | - Crispin Halsall
- Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4YQ, UK
| | - Francis L Martin
- Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4YQ, UK.
| |
Collapse
|
6
|
Abstract
Early work on the hormonal basis of prostate cancer focused on the role of androgens, but more recently estrogens have been implicated as potential agents in the development and progression of prostate cancer. In this article, we review the epidemiological, laboratory and clinical evidence that estrogen may play a causative role in human prostate cancer, as well as rodent and grafted in vivo models. We then review recent literature highlighting potential mechanisms by which estrogen may contribute to prostate cancer, including estrogenic imprinting and epigenetic modifications, direct genotoxicity, hyperprolactinemia, inflammation and immunologic changes, and receptor-mediated actions. We discuss the work performed so far separating the actions of the different known estrogen receptors (ERs), ERα and ERβ, as well as G-protein-coupled receptor 30 and their specific roles in prostate disease. Finally, we predict that future work in this field will involve more investigations into epigenetic changes, experiments using new models of hormonal dysregulation in developing human prostate tissue, and continued delineation of the roles of the different ER subtypes, as well as their downstream signaling pathways that may serve as therapeutic targets.
Collapse
Affiliation(s)
- Jason L Nelles
- Department of Urology, University of Illinois at Chicago, 820 South Wood Street, MC 955, Chicago, IL 60612, USA
| | - Wen-Yang Hu
- Department of Urology, University of Illinois at Chicago, 820 South Wood Street, MC 955, Chicago, IL 60612, USA
| | - Gail S Prins
- Department of Urology, University of Illinois at Chicago, 820 South Wood Street, MC 955, Chicago, IL 60612, USA
| |
Collapse
|
7
|
Perera F, Herbstman J. Prenatal environmental exposures, epigenetics, and disease. Reprod Toxicol 2011; 31:363-73. [PMID: 21256208 DOI: 10.1016/j.reprotox.2010.12.055] [Citation(s) in RCA: 407] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 11/24/2010] [Accepted: 12/22/2010] [Indexed: 02/08/2023]
Abstract
This review summarizes recent evidence that prenatal exposure to diverse environmental chemicals dysregulates the fetal epigenome, with potential consequences for subsequent developmental disorders and disease manifesting in childhood, over the lifecourse, or even transgenerationally. The primordial germ cells, embryo, and fetus are highly susceptible to epigenetic dysregulation by environmental chemicals, which can thereby exert multiple adverse effects. The data reviewed here on environmental contaminants have potential implications for risk assessment although more data are needed on individual susceptibility to epigenetic alterations and their persistence before this information can be used in formal risk assessments. The findings discussed indicate that identification of environmental chemicals that dysregulate the prenatal epigenome should be a priority in health research and disease prevention.
Collapse
Affiliation(s)
- Frederica Perera
- Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, New York, NY, United States.
| | | |
Collapse
|
8
|
McKim JM, Keller DJ, Gorski JR. A newin vitromethod for identifying chemical sensitizers combining peptide binding with ARE/EpRE-mediated gene expression in human skin cells. Cutan Ocul Toxicol 2010; 29:171-92. [DOI: 10.3109/15569527.2010.483869] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
De Souza VRC, Cabrera WK, Galvan A, Ribeiro OG, De Franco M, Vorraro F, Starobinas N, Massa S, Dragani TA, Ibañez OM. Aryl hydrocarbon receptor polymorphism modulates DMBA-induced inflammation and carcinogenesis in phenotypically selected mice. Int J Cancer 2009; 124:1478-82. [PMID: 19065662 DOI: 10.1002/ijc.24066] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We tested the role of aryl hydrocarbon receptor (Ahr) gene polymorphism in the inflammatory response and in skin and lung tumorigenesis in 2 lines of mice phenotypically selected for maximum or minimum acute inflammatory reaction (AIRmax and AIRmin, respectively). Following 7,12-dimethylbenz[a]anthracene (DMBA) treatment, AIRmin but not AIRmax mice showed early skin reactions and eventually developed malignant skin tumors and lung adenocarcinomas. In skin tissue, transcript levels of IL1beta, Tnf, Il6, Tgfbeta1 and Cyp1b1 genes were upregulated in AIRmin but not AIRmax mice, consistent with the inflammatory responses to the carcinogen. These findings appeared to be related to the homozygosity status of the Ahr functional A375V polymorphism, which influences the binding capability of the receptor for DMBA: the 375A allele, encoding the high-affinity ligand-binding receptor (Ahr(b1)), segregated in AIRmin mice, whereas AIRmax mice carried the 375V, corresponding to the low-affinity binding receptor (Ahr(d)), to DMBA. The differential segregation of Ahr functional Ahr(d)versus Ahr(b1) alleles in AIRmax and AIRmin suggests a role for the Ahr gene in the control of inflammatory responsiveness and tumor development of these mouse lines.
Collapse
|
10
|
Tauchi M, Hida A, Negishi T, Katsuoka F, Noda S, Mimura J, Hosoya T, Yanaka A, Aburatani H, Fujii-Kuriyama Y, Motohashi H, Yamamoto M. Constitutive expression of aryl hydrocarbon receptor in keratinocytes causes inflammatory skin lesions. Mol Cell Biol 2005; 25:9360-8. [PMID: 16227587 PMCID: PMC1265822 DOI: 10.1128/mcb.25.21.9360-9368.2005] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Occupational and environmental exposure to polycyclic aromatic hydrocarbons (PAHs) has been suggested to provoke inflammatory and/or allergic disorders, including asthma, rhinitis, and dermatitis. The molecular mechanisms of this PAH-mediated inflammation remain to be clarified. Previous studies implied the involvement of PAHs as irritants and allergens, with the reactive oxygen species generated from the oxygenated PAHs believed to be an exacerbating factor. It is also possible that PAHs contribute to the pathogenesis through activation of aryl-hydrocarbon receptor (AhR)-mediated transcription, since PAHs are potent inducers of the AhR. To address this point, we generated transgenic mouse lines expressing the constitutive active form of the AhR in keratinocytes. In these lines of mice, the AhR activity was constitutively enhanced in the absence of ligands, so that any other direct effects of PAHs and their metabolites could be ignored. At birth, these transgenic mice were normal, but severe skin lesions with itching developed postnatally. The skin lesions were accompanied by inflammation and immunological imbalance and resembled typical atopic dermatitis. We demonstrate that constitutive activation of the AhR pathway causes inflammatory skin lesions and suggests a new mechanism for the exacerbation of inflammatory diseases after exposure to occupational and environmental xenobiotics.
Collapse
Affiliation(s)
- Masafumi Tauchi
- Graduate School of Comprehensive Human Sciences and Center for Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennoudai, Tsukuba 305-8577, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Khan GA, Bhattacharya G, Mailander PC, Meza JL, Hansen LA, Chakravarti D. Harvey-ras gene expression and epidermal cell proliferation in dibenzo[a,l]pyrene-treated early preneoplastic SENCAR mouse skin. J Invest Dermatol 2005; 125:567-74. [PMID: 16117800 DOI: 10.1111/j.0022-202x.2005.23845.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Topical application of dibenzo[a,l]pyrene (DB[a,l]P) to the dorsal skin of SENCAR mice induces codon 61 (CAA Gln to CTA Leu) mutations in the Harvey (H)-ras gene within 12 h after treatment. Between days 1 and 3, the frequency of these mutations increases rapidly, suggesting that skin cells carrying the codon 61 mutations proliferate in this period. We have investigated DB[a,l]P-treated mouse skin (12 h-7 d) for further evidence of H-ras expression and epidermal cell proliferation. Two waves of cell proliferation were observed: the first wave (1-2 d) correlated with the clonal proliferation of codon 61-mutated cells, and the second wave (3-7 d) correlated with DB[a,l]P-induced hyperplasia. DB[a,l]P-induced early preneoplastic cell proliferation correlated with H-ras and specific G1 cyclin expression. Total H-ras protein and cyclin D1 were found to increase during DB[a,l]P-induced hyperplasia, but the levels of guanosine triphosphate-bound (active) H-ras protein and cyclin E were increased during the putative clonal proliferation of codon 61-mutated cells. These results suggest that DB[a,l]P-induced oncogenically mutated cells proliferate in early preneoplastic skin. As this proliferation occurs in the absence of any promoting treatment, we propose that this phenomenon is a tumor initiation event.
Collapse
Affiliation(s)
- Gausal A Khan
- Eppley Institute for Research in Cancer and Allied Diseases, Nebraska Medical Center, Omaha, Nebraska 68198-6805, USA
| | | | | | | | | | | |
Collapse
|
12
|
Platt KL, Dienes HP, Tommasone M, Luch A. Tumor formation in the neonatal mouse bioassay indicates that the potent carcinogen dibenzo[def,p]chrysene (dibenzo[a,l]pyrene) is activated in vivo via its trans-11,12-dihydrodiol. Chem Biol Interact 2004; 148:27-36. [PMID: 15223354 DOI: 10.1016/j.cbi.2004.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2004] [Indexed: 11/25/2022]
Abstract
The hexacyclic aromatic hydrocarbon dibenzo[def,p]chrysene, better known as dibenzo[a,l]pyrene (DBP) in the field of chemical carcinogenesis, is present in the environment as a combustion product of organic matter. This compound is probably the strongest chemical carcinogen ever tested. As ultimate genotoxic metabolites of DBP two electrophilically reactive species are discussed: (i) radical cations generated by one-electron oxidation, and (ii) fjord region dihydrodiol epoxides formed via the trans-11,12-dihydroxy 11,12-dihydro derivative of DBP (11,12-dihydrodiol). In order to delineate the metabolic pathway(s) involved in tumor formation by DBP, newborn Crl:CD-1(ICR)BR mice were intraperitoneally treated with the parent compound, its 11,12-dihydrodiol, and the two diastereomeric fjord region dihydrodiol epoxides. Due to severe acute and chronic toxicity, the total dose of DBP and of the 11,12-dihydrodiol was limited to 40 nmol. For the same reason the dihydrodiol epoxides could only be applied in doses up to 0.4 nmol. The tumor incidence was determined 55 +/- 1 weeks after treatment. Under these conditions, DBP and its 11,12-dihydrodiol induced lung tumors (incidence: 86.5% versus 92.0%; yield: 2.88 versus 7.44 tumors per mouse), liver (incidence: 57.7% versus 60.0%; yield: 3.63 versus 5.28 tumors per mouse) and other organs (incidence: 36.5% versus 32.0%; yield: 0.56 versus 0.52 tumors per mouse). By contrast, only lung tumors at low incidence were detected in mice treated with solvent only (incidence: 28.8%; yield: 0.58 tumors per mouse). As with the parent hydrocarbon, mice treated with low doses of diastereomeric syn- and anti-dihydrodiol epoxides of DBP showed increased tumor incidences in liver (incidence: 19.0 and 46.7%; yield: 0.36 and 1.47 tumors per mouse, respectively), and in various other organs (incidence: 7.1 and 20.0%; yield: 0.07 and 0.20 tumors per mouse, respectively). In consideration of the 100-fold differences in the doses of compounds applied in this study, the tumor-inducing potency increases in the order DBP < 11,12-dihydrodiol < anti-dihydrodiol epoxide. This result provides strong evidence that the potent carcinogen DBP is activated in vivo in the mouse via its 11,12-dihydrodiol and not preferentially through alternative pathways.
Collapse
Affiliation(s)
- Karl L Platt
- Institute of Toxicology, University of Mainz, Obere Zahlbacher Str. 67, D-55131, Germany.
| | | | | | | |
Collapse
|
13
|
Page TJ, MacWilliams PS, Suresh M, Jefcoate CR, Czuprynski CJ. 7-12 Dimethylbenz[a]anthracene-induced bone marrow hypocellularity is dependent on signaling through both the TNFR and PKR. Toxicol Appl Pharmacol 2004; 198:21-8. [PMID: 15207645 DOI: 10.1016/j.taap.2004.02.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2003] [Accepted: 02/19/2004] [Indexed: 02/08/2023]
Abstract
In addition to being carcinogenic, polycyclic aromatic hydrocarbons (PAHs) are known to cause deleterious effects on the immune system, including a marked reduction in bone marrow granulocytes and B lymphocytes. The molecular mechanisms underlying bone marrow hypocellularity are incompletely understood. Hematopoiesis is governed by the production of cytokines and the resultant signaling pathways that they initiate. Our hypothesis was that PAHs may disrupt cytokine production in the bone marrow resulting in the perturbation in bone marrow cellularity observed after PAH administration. TNF-alpha and IFN-gamma are two cytokines that are involved in the regulation of hematopoiesis. Based on observations made in previous research, we sought to determine if the effects of 7-12 dimethylbenz[a]anthracene (DMBA) on the murine bone marrow were mediated through the actions of these molecules. Transgenic mice that were null for either IFN-gamma or TNF-alpha receptors were injected with DMBA and the resulting bone marrow cellularity compared with wild-type mice. We observed that tumor necrosis factor alpha receptor (TNFR) null mice were protected against DMBA-induced bone marrow hypocellularity, while IFN-gamma null mice were not. In addition, we found that dsRNA-dependent protein kinase (PKR) null mice were also protected from DMBA-induced hypocellularity. PKR is an intracellular signaling molecule that has been demonstrated to be activated by TNFR-mediated signaling. Furthermore, we observed upregulation of PKR in the bone marrow after DMBA administration that was dependent on signaling through TNFR. These results point to a role for TNFR-dependent signaling, operating at least in part via PKR activation, as a mechanism for DMBA-induced bone marrow toxicity.
Collapse
MESH Headings
- 9,10-Dimethyl-1,2-benzanthracene/administration & dosage
- 9,10-Dimethyl-1,2-benzanthracene/toxicity
- Animals
- Bone Marrow/drug effects
- Bone Marrow/metabolism
- Bone Marrow/pathology
- Carcinogens/administration & dosage
- Carcinogens/toxicity
- Female
- Injections, Intraperitoneal
- Interferon-gamma/deficiency
- Interferon-gamma/genetics
- Interferon-gamma/metabolism
- Male
- Mice
- Mice, Inbred Strains
- Mice, Knockout
- Receptors, Tumor Necrosis Factor/deficiency
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/metabolism
- Signal Transduction
- eIF-2 Kinase/genetics
- eIF-2 Kinase/metabolism
Collapse
Affiliation(s)
- Todd J Page
- Department of Pathobiological Sciences, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
14
|
Nakatsuru Y, Wakabayashi K, Fujii-Kuriyama Y, Ishikawa T, Kusama K, Ide F. Dibenzo[A,L]pyrene-induced genotoxic and carcinogenic responses are dramatically suppressed in aryl hydrocarbon receptor-deficient mice. Int J Cancer 2004; 112:179-83. [PMID: 15352028 DOI: 10.1002/ijc.20365] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Dibenzo[a,l]pyrene (DB[a,l]P), a notorious air pollutant, is the most powerful carcinogenic polycyclic aromatic hydrocarbon (PAH) ever tested. Although the carcinogenicity of PAH may be primarily mediated by the aryl hydrocarbon receptor (AhR), the in vivo role of AhR in skin carcinogenesis remains to be defined. In this context, we investigated the genotoxic and carcinogenic responses of the AhR-deficient mouse skin to DB[a,l]P. A single painting resulted in a striking epidermal hyperplasia in AhR+/+ mice but not in AhR-/- mice. Bromodeoxyuridine-labeling index and accumulation of p53 protein in epidermal cells of AhR+/+ mice were 8- and 33-fold higher than those of AhR-/- mice, respectively. 32P-Postlabeling assay for DB[a,l]P-DNA adducts displayed a 2-fold increase in the AhR+/+ mouse skin. After DB[a,l]P exposure, AhR-/- mice arranged a nearly 60% reduction in the induction of epidermal cytochrome P450 (CYP)1A1, but CYP1B1 was constitutively expressed in both genotypes of mice, irrespective of DB[a,l]P treatment. As compared with AhR+/+ mice, AhR-/- mice had both significantly lower incidence (100% vs. 33%) and multiplicity (2.7 vs. 0.46) of skin tumors by the complete carcinogenesis study. These observations indicate that a reduced tumor yield in AhR-/- mice may be secondary to reduction of inducible CYP1A1 activation and subsequent DNA adduction. It is evident from our continuous work that although AhR is likely to play a central role in epidermal proliferation and possibly neoplastic transformation, the relative importance of AhR for carcinogenesis may be different among PAH examined.
Collapse
Affiliation(s)
- Yoko Nakatsuru
- Department of Pathology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Brochmann EJ, Duarte ME, Zaidi HA, Murray SS. Effects of dietary restriction on total body, femoral, and vertebral bone in SENCAR, C57BL/6, and DBA/2 mice. Metabolism 2003; 52:1265-73. [PMID: 14564677 DOI: 10.1016/s0026-0495(03)00194-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Dietary restriction (DR) increases the life span and retards aging, in part, by limiting free radical generation and oxidative damage. DR also reduces body mass, a major determinant of bone mass across the life span. We tested the hypothesis that DR has its most beneficial effects on bone in mouse strains with high free radical generation (sensitive to carcinogenesis [SENCAR] > C57 > DBA) versus the hypothesis that bone mass at weight-bearing sites is determined by body mass in DR and ad libitum (AL)-fed mice. Male mice of each strain were killed at 10 weeks of age (t(0)) or randomized to an AL-fed or 30% DR feeding regimen for 6 months. Food consumption by AL-fed mice was measured daily, and DR mice received 70% of the amount of food consumed by their respective AL-fed mice the previous day. Body fat (%) and bone mineral density (BMD) and content (BMC) were determined by PIXImus densitometry. There were strain-dependent effects on body mass, crown-to-rump length, percent body fat, and total body, femoral, and vertebral BMD and BMC under all conditions. SENCAR mice were heavier, longer, had larger bones, and generally exhibited higher total body, femoral, and vertebral BMC and BMD than C57 and DBA mice. DR had beneficial effects on BMD and BMC in the vertebrae of the SENCAR mouse model of high free radical generation and in the obese, diabetes-prone C57 mouse model of high end-stage protein glycation. DR DBA and SENCAR mice had lower femoral BMDs and BMCs than their respective AL-fed controls. Regression analysis confirmed linear relationships between total and lean body mass and total body and femoral BMDs and BMCs, suggesting that physiologic adaptation to a lower body mass accounts for the lower femoral bone mineral values observed in DR versus AL-fed mice. Thus, both hypotheses are, at least, partially valid. DR is beneficial in the trabeculae-rich vertebrae of animal models of high oxidant stress, and total/lean body mass determines BMD and BMC in the weight-bearing femur in DR and AL-fed mice.
Collapse
Affiliation(s)
- Elsa J Brochmann
- Geriatric Research Education and Clinical Center, Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, CA 91343, USA
| | | | | | | |
Collapse
|
16
|
Casale GP, Singhal M, Bhattacharya S, RamaNathan R, Roberts KP, Barbacci DC, Zhao J, Jankowiak R, Gross ML, Cavalieri EL, Small GJ, Rennard SI, Mumford JL, Shen M. Detection and quantification of depurinated benzo[a]pyrene-adducted DNA bases in the urine of cigarette smokers and women exposed to household coal smoke. Chem Res Toxicol 2001; 14:192-201. [PMID: 11258968 DOI: 10.1021/tx000012y] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAH) are metabolized to electrophiles that can bind to DNA bases and destabilize the N-glycosyl bond, causing rapid depurination of the adducted bases. Recent studies support depurination of DNA as a mechanism central to the genesis of H-ras mutations in PAH-treated mouse skin. Depurinating adducts account for 71% of all DNA adducts formed in mouse skin treated with benzo[a]pyrene (BP). This study analyzed urine of cigarette smokers, coal smoke-exposed women, and nonexposed controls for the presence and quantities of the depurinated BP-adducted DNA bases, 7-(benzo[a]pyren-6-yl)guanine (BP-6-N7Gua) and 7-(benzo[a]pyren-6-yl)adenine (BP-6-N7Ade). Since these adducted bases originate from reaction of the BP radical cation with double-stranded DNA and not with RNA or denatured DNA, their presence in urine is indicative of DNA damage. Urine samples were fractionated by a combination of SepPak extraction and reverse-phase HPLC, and then analyzed by tandem mass spectrometry and capillary electrophoresis with laser-induced fluorescence. BP-adducted bases were detected in the urine from three of seven cigarette smokers and three of seven women exposed to coal smoke, but were not detected in urine from the 13 control subjects. Concentrations were estimated to be 60-340 and 0.1-0.6 fmol/mg of creatinine equivalent of urine for coal smoke-exposed women (maximum possible BP intake of ca. 23 000 ng/day) and cigarette smokers (BP intake of ca. 800 ng/day), respectively, exhibiting a sensitive response to BP exposures. BP-6-N7Gua was present at ca. 20-300 times the concentration of BP-6-N7Ade in the urine of coal smoke-exposed women, but was not detected in the urine of cigarette smokers. This difference may be due to the remarkably different BP exposures experienced by the two groups of PAH-exposed individuals. These results justify more extensive studies of depurinated BP-adducted DNA bases as potential biomarkers of PAH-associated cancer risk.
Collapse
Affiliation(s)
- G P Casale
- Eppley Institute for Research in Cancer, 986805, University of Nebraska Medical Center, Omaha, Nebraska 68198-6805, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|