1
|
Anand PP, Shibu Vardhanan Y. Molecular cloning, expression, mRNA secondary structure and immunological characterization of mussel foot proteins (Mfps) (Mollusca: Bivalvia). J Biomol Struct Dyn 2023; 41:12242-12266. [PMID: 36688334 DOI: 10.1080/07391102.2023.2166996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/01/2023] [Indexed: 01/24/2023]
Abstract
The macroscale production of mussel foot proteins (Mfps) in the expression system has not succeeded to date. The principal reasons for this are low levels of expression and yield of Mfps, lack of post-translational modifications (PTMs), and immunological toxic effects on the host system. Identification of post-translational modification sites, suitable expression hosts, and immunological responses through an experimental approach is very costly and time-consuming. However, in the present study, in silico post-translation modification, antigenicity, allergenicity, and the immunological reaction of all available Mfps were characterized. Furthermore, all Mfps were codon optimized in three different expression systems to determine the best expression host. Finally, we performed the in-silico cloning of all codon-optimized Mfps in a suitable host (E. coli K12, pET28a(+) vector) and analyzed the secondary structure of mRNA and its structural stability. Among the 78 Mfps, six fps are considered potential allergenic proteins, six fps are considered non-allergenic proteins, and all other fps are probably allergenic. High antigenicity was observed in bacterial cells as compared to yeast and tumor cells. Nevertheless, the predicted expression of Mfps in a bacterial host is higher than in other expression hosts. Important to note that all Mfps showed significant immunological activity in the human system, and we concluded that these antigenic, allergenic, and immunological properties are directly correlated with their amino acid composition. The study's major goal is to provide a comprehensive understanding of Mfps and aid in the future genetic engineering and expression of Mfps and its diverse applications in different fields.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- P P Anand
- Biochemistry & Toxicology Division, Department of Zoology, University of Calicut, Thenhipalam, Kerala, India
| | - Y Shibu Vardhanan
- Biochemistry & Toxicology Division, Department of Zoology, University of Calicut, Thenhipalam, Kerala, India
| |
Collapse
|
2
|
Wang X, Feng X, Xue R, Xu H, Wang R, Zhang L, Li S. Promoting soluble expression of hybrid mussel foot proteins by SUMO-TrxA tags for production of mussel glue. Int J Biol Macromol 2023; 225:840-847. [PMID: 36402391 DOI: 10.1016/j.ijbiomac.2022.11.147] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Mussel foot proteins (Mfps) display application potential with strong adhesion, enabling mussels to adhere firmly to various surfaces. Mytilus galloprovincialis foot protein 3B (Mgfp-3B) exhibits this characteristic remarkably. However, it remains a challenge for further research due to the low soluble expression of heterologous production. In this study, a small ubiquitin-related modifier (SUMO) and thioredoxin A (TrxA), which catalyzed the proper folding of disulfide bridges, were selected to increase the soluble expression of mfps. An additional ribosome binding site was introduced between the molecular chaperones and Mgfp-3B (fp-3) to form a bicistronic translation-coupled expression vector for co-expression. The results revealed that the combination of SUMO-TrxA increased the soluble expression of fp-3 by 18.07 %. Furthermore, the SUMO-TrxA also boosted the soluble expression of hybrid mfps Mgfp-3B-Mfp-1 (fp-3-1) by 11.29 %, Mgfp-3B-Mgfp-3B (fp-3-3) by 19.91 %, and Mgfp-3B-Mgfp-5 (fp-3-5) by 14.03 %. Ultimately, by high cell density cultivation in a 5 L bioreactor, the yields of fp-3, fp-3-3, and fp-3-5 co-expressed with SUMO-TrxA reached 217.75 mg/L, 127.2 mg/L, and 97.28 mg/L, respectively. Consequently, soluble production of mfps holds great potential for the sustainable supply of protein adhesive materials.
Collapse
Affiliation(s)
- Xinyi Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Xinxin Feng
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Rui Xue
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Rui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Lujia Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
3
|
Budisa N, Schneider T. Expanding the DOPA Universe with Genetically Encoded, Mussel-Inspired Bioadhesives for Material Sciences and Medicine. Chembiochem 2019; 20:2163-2190. [PMID: 30830997 DOI: 10.1002/cbic.201900030] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Indexed: 12/21/2022]
Abstract
Catechols are a biologically relevant group of aromatic diols that have attracted much attention as mediators of adhesion of "bio-glue" proteins in mussels of the genus Mytilus. These organisms use catechols in the form of the noncanonical amino acid l-3,4-dihydroxyphenylalanine (DOPA) as a building block for adhesion proteins. The DOPA is generated post-translationally from tyrosine. Herein, we review the properties, natural occurrence, and reactivity of catechols in the design of bioinspired materials. We also provide a basic description of the mussel's attachment apparatus, the interplay between its different molecules that play a crucial role in adhesion, and the role of post-translational modifications (PTMs) of these proteins. Our focus is on the microbial production of mussel foot proteins with the aid of orthogonal translation systems (OTSs) and the use of genetic code engineering to solve some fundamental problems in the bioproduction of these bioadhesives and to expand their chemical space. The major limitation of bacterial expression systems is their intrinsic inability to introduce PTMs. OTSs have the potential to overcome these challenges by replacing canonical amino acids with noncanonical ones. In this way, PTM steps are circumvented while the genetically programmed precision of protein sequences is preserved. In addition, OTSs should enable spatiotemporal control over the complex adhesion process, because the catechol function can be masked by suitable chemical protection. Such caged residues can then be noninvasively unmasked by, for example, UV irradiation or thermal treatment. All of these features make OTSs based on genetic code engineering in reprogrammed microbial strains new and promising tools in bioinspired materials science.
Collapse
Affiliation(s)
- Nediljko Budisa
- Institute of Chemistry, Technical University of Berlin, Müller-Breslau-Strasse 10, Berlin, 10623, Germany.,Chair of Chemical Synthetic Biology, Department of Chemistry, University of Manitoba, 144 Dysart Road, R3T 2N2, Winnipeg, MB, Canada
| | - Tobias Schneider
- Institute of Chemistry, Technical University of Berlin, Müller-Breslau-Strasse 10, Berlin, 10623, Germany
| |
Collapse
|
4
|
Zhang X, Huang H, He Y, Ruan Z, You X, Li W, Wen B, Lu Z, Liu B, Deng X, Shi Q. High-throughput identification of heavy metal binding proteins from the byssus of chinese green mussel (Perna viridis) by combination of transcriptome and proteome sequencing. PLoS One 2019; 14:e0216605. [PMID: 31071150 PMCID: PMC6508894 DOI: 10.1371/journal.pone.0216605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/24/2019] [Indexed: 12/27/2022] Open
Abstract
The Byssus, which is derived from the foot gland of mussels, has been proved to bind heavy metals effectively, but few studies have focused on the molecular mechanisms behind the accumulation of heavy metals by the byssus. In this study, we integrated high-throughput transcriptome and proteome sequencing to construct a comprehensive protein database for the byssus of Chinese green mussel (Perna viridis), aiming at providing novel insights into the molecular mechanisms by which the byssus binds to heavy metals. Illumina transcriptome sequencing generated a total of 55,670,668 reads. After filtration, we obtained 53,047,718 clean reads and subjected them to de novo assembly using Trinity software. Finally, we annotated 73,264 unigenes and predicted a total of 34,298 protein coding sequences. Moreover, byssal samples were analyzed by proteome sequencing, with the translated protein database from the foot transcriptome as the reference for further prediction of byssal proteins. We eventually determined 187 protein sequences in the byssus, of which 181 proteins are reported for the first time. Interestingly, we observed that many of these byssal proteins are rich in histidine or cysteine residues, which may contribute to the byssal accumulation of heavy metals. Finally, we picked one representative protein, Pvfp-5-1, for recombinant protein synthesis and experimental verification of its efficient binding to cadmium (Cd2+) ions.
Collapse
Affiliation(s)
- Xinhui Zhang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | - Huiwei Huang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | | | - Zhiqiang Ruan
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | - Xinxin You
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | | | - Bo Wen
- BGI-Shenzhen, BGI, Shenzhen, China
| | - Zizheng Lu
- Shenzhen Horus Marine Technology Co. Ltd., Shenzhen, China
| | - Bing Liu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Xu Deng
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Qiong Shi
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
- Laboratory of Aquatic Bioinformatics, BGI-Zhenjiang Institute of Hydrobiology, BGI Marine, BGI, Zhenjiang, China
| |
Collapse
|
5
|
Wang J, Scheibel T. Recombinant Production of Mussel Byssus Inspired Proteins. Biotechnol J 2018; 13:e1800146. [DOI: 10.1002/biot.201800146] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 06/28/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Jia Wang
- Lehrstuhl BiomaterialienUniversität BayreuthUniversitätsstraße 3095440BayreuthGermany
| | - Thomas Scheibel
- Lehrstuhl BiomaterialienUniversität BayreuthUniversitätsstraße 3095440BayreuthGermany
- Forschungszentrum für Bio‐Makromoleküle (BIOmac)Universität BayreuthBayreuthGermany
- Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG)Universität BayreuthBayreuthGermany
- Bayreuther Materialzentrum (BayMat)Universität BayreuthBayreuthGermany
- Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB)Universität BayreuthBayreuthGermany
| |
Collapse
|
6
|
Kim HJ, Yang B, Park TY, Lim S, Cha HJ. Complex coacervates based on recombinant mussel adhesive proteins: their characterization and applications. SOFT MATTER 2017; 13:7704-7716. [PMID: 29034934 DOI: 10.1039/c7sm01735a] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Complex coacervates are a dense liquid phase of oppositely charged polyions formed by the associative separation of a mixture of polyions. Coacervates have been widely employed in many fields including the pharmaceutical, cosmetic, and food industries due to their intriguing interfacial and bulk material properties. More recently, attempts to develop an effective underwater adhesive have been made using complex coacervates that are based on recombinant mussel adhesive proteins (MAPs) due to the water immiscibility of complex coacervates and the adhesiveness of MAPs. MAP-based complex coacervates contribute to our understanding of the physical nature of complex coacervates and they provide a promising alternative to conventional invasive surgical repairs. Here, this review provides an overview of recombinant MAP-based complex coacervations, with an emphasis on their characterization and the uses of such materials for applications in the fields of biomedicine and tissue engineering.
Collapse
Affiliation(s)
- Hyo Jeong Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, 37673, Pohang, Korea.
| | | | | | | | | |
Collapse
|
7
|
Brennan MJ, Meredith HJ, Jenkins CL, Wilker JJ, Liu JC. Cytocompatibility studies of a biomimetic copolymer with simplified structure and high-strength adhesion. J Biomed Mater Res A 2016; 104:983-90. [PMID: 26714824 DOI: 10.1002/jbm.a.35633] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 11/12/2015] [Accepted: 12/18/2015] [Indexed: 01/04/2023]
Affiliation(s)
- M. Jane Brennan
- School of Chemical Engineering; Purdue University; West Lafayette Indiana 47907
| | - Heather J. Meredith
- School of Materials Engineering; Purdue University; West Lafayette Indiana 47907
| | | | - Jonathan J. Wilker
- School of Materials Engineering; Purdue University; West Lafayette Indiana 47907
- Department of Chemistry; Purdue University; West Lafayette Indiana 47907
| | - Julie C. Liu
- School of Chemical Engineering; Purdue University; West Lafayette Indiana 47907
- Weldon School of Biomedical Engineering; Purdue University; West Lafayette Indiana 47907
| |
Collapse
|
8
|
Roberts S, Dzuricky M, Chilkoti A. Elastin-like polypeptides as models of intrinsically disordered proteins. FEBS Lett 2015; 589:2477-86. [PMID: 26325592 PMCID: PMC4599720 DOI: 10.1016/j.febslet.2015.08.029] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/18/2015] [Accepted: 08/19/2015] [Indexed: 01/01/2023]
Abstract
Elastin-like polypeptides (ELPs) are a class of stimuli-responsive biopolymers inspired by the intrinsically disordered domains of tropoelastin that are composed of repeats of the VPGXG pentapeptide motif, where X is a "guest residue". They undergo a reversible, thermally triggered lower critical solution temperature (LCST) phase transition, which has been utilized for a variety of applications including protein purification, affinity capture, immunoassays, and drug delivery. ELPs have been extensively studied as protein polymers and as biomaterials, but their relationship to other disordered proteins has heretofore not been established. The biophysical properties of ELPs that lend them their unique material behavior are similar to the properties of many intrinsically disordered proteins (IDP). Their low sequence complexity, phase behavior, and elastic properties make them an interesting "minimal" artificial IDP, and the study of ELPs can hence provide insights into the behavior of other more complex IDPs. Motivated by this emerging realization of the similarities between ELPs and IDPs, this review discusses the biophysical properties of ELPs, their biomedical utility, and their relationship to other disordered polypeptide sequences.
Collapse
|
9
|
Hagenau A, Suhre MH, Scheibel TR. Nature as a blueprint for polymer material concepts: Protein fiber-reinforced composites as holdfasts of mussels. Prog Polym Sci 2014. [DOI: 10.1016/j.progpolymsci.2014.02.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Park JP, Choi MJ, Kim SH, Lee SH, Lee H. Preparation of sticky Escherichia coli through surface display of an adhesive catecholamine moiety. Appl Environ Microbiol 2014; 80:43-53. [PMID: 24123747 PMCID: PMC3911018 DOI: 10.1128/aem.02223-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 10/06/2013] [Indexed: 11/20/2022] Open
Abstract
Mussels attach to virtually all types of inorganic and organic surfaces in aqueous environments, and catecholamines composed of 3,4-dihydroxy-l-phenylalanine (DOPA), lysine, and histidine in mussel adhesive proteins play a key role in the robust adhesion. DOPA is an unusual catecholic amino acid, and its side chain is called catechol. In this study, we displayed the adhesive moiety of DOPA-histidine on Escherichia coli surfaces using outer membrane protein W as an anchoring motif for the first time. Localization of catecholamines on the cell surface was confirmed by Western blot and immunofluorescence microscopy. Furthermore, cell-to-cell cohesion (i.e., cellular aggregation) induced by the displayed catecholamine and synthesis of gold nanoparticles on the cell surface support functional display of adhesive catecholamines. The engineered E. coli exhibited significant adhesion onto various material surfaces, including silica and glass microparticles, gold, titanium, silicon, poly(ethylene terephthalate), poly(urethane), and poly(dimethylsiloxane). The uniqueness of this approach utilizing the engineered sticky E. coli is that no chemistry for cell attachment are necessary, and the ability of spontaneous E. coli attachment allows one to immobilize the cells on challenging material surfaces such as synthetic polymers. Therefore, we envision that mussel-inspired catecholamine yielded sticky E. coli that can be used as a new type of engineered microbe for various emerging fields, such as whole living cell attachment on versatile material surfaces, cell-to-cell communication systems, and many others.
Collapse
Affiliation(s)
- Joseph P. Park
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Min-Jung Choi
- Industrial Biochemicals Research Group, Research Center for Biobased Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Se Hun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Seung Hwan Lee
- Industrial Biochemicals Research Group, Research Center for Biobased Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Haeshin Lee
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| |
Collapse
|
11
|
Colorimetric sensing properties of catechol-functional polymerized vesicles in aqueous solution and at solid surfaces. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2013.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Duarte A, Coelho J, Bordado J, Cidade M, Gil M. Surgical adhesives: Systematic review of the main types and development forecast. Prog Polym Sci 2012. [DOI: 10.1016/j.progpolymsci.2011.12.003] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Jiang Z, Yu Y, Du L, Ding X, Xu H, Sun Y, Zhang Q. Peptide derived from Pvfp-1 as bioadhesive on bio-inert surface. Colloids Surf B Biointerfaces 2012; 90:227-35. [DOI: 10.1016/j.colsurfb.2011.10.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 10/17/2011] [Accepted: 10/20/2011] [Indexed: 10/15/2022]
|
14
|
Samyn P, Rühe J, Biesalski M. Polymerizable biomimetic vesicles with controlled local presentation of adhesive functional DOPA groups. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:8573-8581. [PMID: 20297782 DOI: 10.1021/la904629a] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Inspired by strong adhesive properties of mussel footprint proteins, which are largely governed by the presence of dihydroxy-phenylalanine (DOPA) amino acid moieties, we present a novel approach for presenting DOPA groups in a very defined way in order to modulate the adhesion between artificial interfaces. To this end, linear peptide amphiphiles are synthesized with attached DOPA functional groups and a polymerizable diacetylenic tail. The obtained amphiphiles can be coassembled with matrix amphiphiles into vesicles, which can be subsequently stabilized through UV-light-induced solid-state polymerization. Depending on the molar ratio of matrix and adhesive amphiphiles, the vesicles self-assemble into spherical, fibrilar, or planar nanostructures. The adhesive properties of the surface-adsorbed vesicles are evaluated by drop casting them onto a planar solid substrate and performing macroscopic shear tests in contact with a similar substrate. The shear forces are investigated as a function of substrate chemistry, vesicle polymerization conditions, vesicle concentration, and number of adhesive DOPA groups in the interface. Substrate adhesion is enhanced by surface-confined vesicles and greatly depends on the presentation of DOPA groups in the adhesive interface, either as a mono- or multilayer conformation. Because the adhesive structures can be transferred onto substrates from low-viscosity aqueous solution, they may serve as interesting nanoscale gluing pads in future applications, where the high viscosity of polymer-based glues renders the controlled formation of nanoscale adhesion pads difficult.
Collapse
Affiliation(s)
- Pieter Samyn
- University of Freiburg, Department for Microsystems Engineering (IMTEK), Chemistry and Physics of Interfaces, D-79110 Freiburg, Germany
| | | | | |
Collapse
|
15
|
Hwang DS, Gim Y, Cha HJ. Expression of Functional Recombinant Mussel Adhesive Protein Type 3A in Escherichia coli. Biotechnol Prog 2008; 21:965-70. [PMID: 15932281 DOI: 10.1021/bp050014e] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mussel adhesive proteins, including the 20-plus variants of foot protein type 3 (fp-3), have been suggested as potential environmentally friendly adhesives for use in aqueous conditions and in medicine. Here we report the novel production of a recombinant Mytilus galloprovincialis foot protein type 3 variant A (Mgfp-3A) fused with a hexahistidine affinity ligand in Escherichia coli and its approximately 99% purification with affinity chromatography. Recombinant Mgfp-3A showed a superior purification yield and better apparent solubility in 5% acetic acid (prerequisites for large-scale production and practical use) compared to those of the previously reported recombinant M. galloprovincialis foot protein type 5 (Mgfp-5). The adsorption abilities and adhesion forces of purified recombinant Mgfp-3A were compared with those of Cell-Tak (a commercial mussel extract adhesive) and recombinant Mgfp-5 using quartz crystal microbalance analysis and modified atomic force microscopy, respectively. These assays showed that the adhesive ability of recombinant Mgfp-3A was comparable to that of Cell-Tak but lower than that of recombinant Mgfp-5. Collectively, these results indicate that recombinant Mgfp-3A may be useful as a commercial bioadhesive or an adhesive ingredient in medical or underwater environments.
Collapse
Affiliation(s)
- Dong Soo Hwang
- Department of Chemical Engineering and Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | | | | |
Collapse
|
16
|
|
17
|
Yang M, Yamauchi K, Kurokawa M, Asakura T. Design of Silk-Like Biomaterials Inspired by Mussel-Adhesive Protein. ACTA ACUST UNITED AC 2007; 13:2941-7. [DOI: 10.1089/ten.2006.0448] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Mingying Yang
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kazuo Yamauchi
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | | | - Tetsuo Asakura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
18
|
Silverman HG, Roberto FF. Understanding marine mussel adhesion. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2007; 9:661-81. [PMID: 17990038 PMCID: PMC2100433 DOI: 10.1007/s10126-007-9053-x] [Citation(s) in RCA: 325] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 08/24/2007] [Accepted: 09/05/2007] [Indexed: 05/07/2023]
Abstract
In addition to identifying the proteins that have a role in underwater adhesion by marine mussels, research efforts have focused on identifying the genes responsible for the adhesive proteins, environmental factors that may influence protein production, and strategies for producing natural adhesives similar to the native mussel adhesive proteins. The production-scale availability of recombinant mussel adhesive proteins will enable researchers to formulate adhesives that are water-impervious and ecologically safe and can bind materials ranging from glass, plastics, metals, and wood to materials, such as bone or teeth, biological organisms, and other chemicals or molecules. Unfortunately, as of yet scientists have been unable to duplicate the processes that marine mussels use to create adhesive structures. This study provides a background on adhesive proteins identified in the blue mussel, Mytilus edulis, and introduces our research interests and discusses the future for continued research related to mussel adhesion.
Collapse
Affiliation(s)
- Heather G Silverman
- Biological Systems Department, Idaho National Laboratory, Idaho Falls, Idaho 83415, USA.
| | | |
Collapse
|
19
|
Hwang DS, Gim Y, Yoo HJ, Cha HJ. Practical recombinant hybrid mussel bioadhesive fp-151. Biomaterials 2007; 28:3560-8. [PMID: 17507090 DOI: 10.1016/j.biomaterials.2007.04.039] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Accepted: 04/30/2007] [Indexed: 10/23/2022]
Abstract
Mussel adhesive proteins (MAPs) have received increased attention as potential environmentally friendly adhesives under aqueous conditions and in medicine. However, attempts to produce functional recombinant MAPs (mainly foot protein type 1, fp-1) by several expression systems have failed. Even though we previously reported a functional expression of recombinant foot protein type 5 (fp-5) with significant adhesive ability in Escherichia coli, its practical use was limited by several problems such as low production yield, low purification yield, and high levels of post-purification insolubility. Here, to overcome these limitations, we designed and constructed the novel type of hybrid mussel bioadhesive fp-151, a fusion protein comprising six fp-1 decapeptide repeats at each fp-5 terminus. Using micro- and bulk-scale characterization and mammalian cell-adhesion analyses, we demonstrate that fp-151 has the potential to be a practical bioadhesive with strong adhesive ability, a simple purification process ( approximately 1g-purified protein per 1l-pilot-scale fed-batch bioreactor culture), proper manipulation properties ( approximately 330g/l solubility), and high biocompatibility.
Collapse
Affiliation(s)
- Dong Soo Hwang
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | | | | | | |
Collapse
|
20
|
Hatae S, Asakura T, Fukushima Y. Biosynthesis and Characterization of the Artificial Protein Consisting of Marine Mussel Adhesive Protein and Silk-Like Protein Sequences. Polym J 2007. [DOI: 10.1295/polymj.pj2006148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Hwang DS, Gim Y, Kang DG, Kim YK, Cha HJ. Recombinant mussel adhesive protein Mgfp-5 as cell adhesion biomaterial. J Biotechnol 2007; 127:727-35. [PMID: 16979252 DOI: 10.1016/j.jbiotec.2006.08.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 08/01/2006] [Accepted: 08/07/2006] [Indexed: 01/01/2023]
Abstract
Mytilus galloprovincialis foot protein type-5 (Mgfp-5) is one of the mussel adhesive proteins that participate in adhesion with the substratum. We previously reported the production of recombinant Mgfp-5 in Escherichia coli and showed that the recombinant protein had superior adhesion abilities versus those of Cell-Tak, a commercially available mussel adhesive protein mixture. In the present work, we investigated the feasibility of using recombinant Mgfp-5 as a cell adhesion agent. Purified and tyrosinase-modified recombinant Mgfp-5 was used to adhere living anchorage-independent cells such as insect Drosophila S2 cells and human MOLT-4 cells onto glass slides. Our results revealed that these cell lines efficiently attached to recombinant Mgfp-5-coated glass surfaces, and that surface-immobilized S2 cells were viable and able to undergo cell division for up to 1 week. Cytochemical studies with 4',6-diamidino-2-phenylindole (DAPI) staining of nuclei and immunofluorescence for secreted foreign human erythropoietin (hEPO) from recombinant S2 cells and quantitative comparative analyses of S2 cell binding ability with Cell-Tak and poly-L-lysine, the main cell adhesion agent, were performed to demonstrate successful usage of recombinant Mgfp-5 for cell biological applications. Collectively, these results indicate that recombinant Mgfp-5 may be a useful new cell adhesion biomaterial for anchorage-independent cells.
Collapse
Affiliation(s)
- Dong Soo Hwang
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | | | | | | | | |
Collapse
|
22
|
Abstract
Bone adhesives are degraded to non-toxic products and resorbed after fulfilling their function in contact with living tissue. There has been a growing interest in the use of such adhesives in all fields of medicine in recent years. The wish of trauma surgeons and orthopaedic for alternatives to osteosynthesis is reflected in the development of a variety of surrogates of biological or synthetic origin. Despite a longstanding history of research in this field, a clinically applicable alternative in the field of bone gluing has not yet been found. This application has consistently failed because these adhesives were not tailored to the conditions met within the living organism. The following article is meant to provide an overview of the development, the state of the art, and today's knowledge of bone adhesives. In addition, it points out the tremendous progress in this area, made possible by the joint efforts of basic researchers and surgeons. The results of this collaboration show that in the future a successful reconstructive surgery using synthetic biomaterials will become feasible.
Collapse
Affiliation(s)
- C Heiss
- Klinik und Poliklinik für Unfallchirurgie, Justus-Liebig-Universität Giessen.
| | | |
Collapse
|
23
|
Haemers S, van der Leeden MC, Frens G. Coil dimensions of the mussel adhesive protein Mefp-1. Biomaterials 2005; 26:1231-6. [PMID: 15475052 DOI: 10.1016/j.biomaterials.2004.04.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2004] [Accepted: 04/08/2004] [Indexed: 11/29/2022]
Abstract
To obtain a better understanding of factors controlling cross-linking rates of Mussel adhesive proteins, we study the conformation of the Mussel Adhesive Protein Mefp-1. The dimensions of Mefp-1 in solution are determined by dynamic light scattering. Under physiological conditions, the hydrodynamic radius RH of Mefp-1 is found to be 10.5+/-1.1 nm. Measured Mefp-1 dimensions are compared with theoretical dimensions of Mefp-1 in random coil conformations. We have strong indications that Mefp-1, under dilute and physiological conditions, has a self-avoiding random walk conformation with helix-like deca-peptide segments. With a number of segments of approximately 90, the segment length is found to be 2.7 nm.
Collapse
Affiliation(s)
- Sander Haemers
- Department of Radiochemistry, Interfaculty Reactor Institute, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands
| | | | | |
Collapse
|
24
|
Berglin M, Delage L, Potin P, Vilter H, Elwing H. Enzymatic cross-linking of a phenolic polymer extracted from the marine alga Fucus serratus. Biomacromolecules 2004; 5:2376-83. [PMID: 15530054 DOI: 10.1021/bm0496864] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have shown that a phenolic polymer (PP) extracted from Fucus serratus can be cross-linked using a vanadium-dependent bromoperoxidase (BPO). The methanol extracted PP was adsorbed to a quartz crystal sensor and the cross-linking was initiated by the addition of BPO, KBr, and H2O2. The decreased dissipation upon addition of the cross-linking agents, as measured with the quartz crystal microbalance with dissipation monitoring (QCM-D) method, was interpreted as intramolecular cross-links were formed between different phloroglucinol units in the PP. With surface plasmon resonance, it was shown that no desorption occurred from the sensor surface during the cross-linking. UV/vis spectroscopy verified the results achieved with QCM-D that all components, i.e., BPO, KBr, and H2O2, were necessary in order to achieve intramolecular oxidative cross-linking of the polymer.
Collapse
Affiliation(s)
- Mattias Berglin
- Cell and Molecular Biology, Interface Biophysics, Göteborg University, Box 462, SE-405 30 Sweden.
| | | | | | | | | |
Collapse
|
25
|
Hwang DS, Yoo HJ, Jun JH, Moon WK, Cha HJ. Expression of functional recombinant mussel adhesive protein Mgfp-5 in Escherichia coli. Appl Environ Microbiol 2004; 70:3352-9. [PMID: 15184131 PMCID: PMC427802 DOI: 10.1128/aem.70.6.3352-3359.2004] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mussel adhesive proteins have been suggested as a basis for environmentally friendly adhesives for use in aqueous conditions and in medicine. However, attempts to produce functional and economical recombinant mussel adhesive proteins (mainly foot protein type 1) in several systems have failed. Here, the cDNA coding for Mytilus galloprovincialis foot protein type 5 (Mgfp-5) was isolated for the first time. Using this cDNA, we produced a recombinant Mgfp-5 fused with a hexahistidine affinity ligand, which was expressed in a soluble form in Escherichia coli and was highly purified using affinity chromatography. The adhesive properties of purified recombinant Mgfp-5 were compared with the commercial extracted mussel adhesive Cell-Tak by investigating adhesion force using atomic force microscopy, material surface coating, and quartz crystal microbalance. Even though further macroscale assays are needed, these microscale assays showed that recombinant Mgfp-5 has significant adhesive ability and may be useful as a bioadhesive in medical or underwater environments.
Collapse
Affiliation(s)
- Dong Soo Hwang
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 790-784, Korea
| | | | | | | | | |
Collapse
|
26
|
Monahan J, Wilker JJ. Cross-linking the protein precursor of marine mussel adhesives: bulk measurements and reagents for curing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2004; 20:3724-9. [PMID: 15875406 DOI: 10.1021/la0362728] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Marine mussels affix themselves to surfaces by use of a highly cross-linked, protein-based adhesive. Metal levels (e.g., Fe, Zn, Cu, Mn) of the cured glue are significantly concentrated relative to surrounding waters. Specific details on the reagents used by mussels to induce protein cross-linking are not known at this time. To provide insight on the cross-linking agents and reactions taking place while curing mussel glues, we performed a study in which various compounds were tested for the ability to bring about protein curing. A precursor to adhesion, with proteins containing the unusual amino acid 3,4-dihydroxyphenylalanine, was extracted from mussel feet. Potential cross-linking agents were mixed with this gelatinous pellet. The compressibility and shear properties of the resulting material were investigated by use of a penetration test. The reagents examined included simple metal ions (e.g., Na+, Zn2+), oxidizing transition metals (e.g., Fe3+, Cr2O7(2-)), nonmetallic oxidants (e.g., H2O2,IO4-), and oxidizing enzymes (e.g., tyrosinase). We found that protein curing was brought about by simple oxidants and transition metal ions. The results show that optimal curing occurs when the reagent is an oxidizing metal ion (e.g., MnO4-, Fe3+). We conclude that marine mussels are likely to employ Mn3+ and Fe3+ for protein cross-linking and adhesive synthesis.
Collapse
Affiliation(s)
- Jennifer Monahan
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
27
|
Taylor SW. Chemoenzymatic synthesis of peptidyl 3,4-dihydroxyphenylalanine for structure-activity relationships in marine invertebrate polypeptides. Anal Biochem 2002; 302:70-4. [PMID: 11846377 DOI: 10.1006/abio.2001.5522] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An improved method for hydroxylating tyrosine-containing sequences in polypeptides to peptidyl 3,4-dihydroxyphenylalanine (DOPA) using mushroom tyrosinase at relatively high enzyme-to-substrate ratios is described. The new method involves incorporating borate into the reaction mixture to stop formation of the unwanted side product 3,4,5-trihydroxyphenylalanine. Using this method, a model for the palindromic central sequence for the antimicrobial peptide family, the styelins, Y*Y*KHKY*Y* (where Y* is DOPA), was successfully synthesized in high yield from YYKHKYY. This sequence represents a particularly challenging target because of the cluster of four precursor tyrosine residues are in close proximity. The method should be readily applied to larger polypeptides produced by either solid-phase synthesis or recombinant techniques and give greater insight into the roles of this unusual posttranslational modification in marine invertebrates such as mussels and ascidians.
Collapse
Affiliation(s)
- Steven W Taylor
- Center for Marine Biotechnology and Biomedicine, University of California, San Diego, La Jolla, California, 92093-0204, USA.
| |
Collapse
|
28
|
Burzio LA, Waite JH. Cross-linking in adhesive quinoproteins: studies with model decapeptides. Biochemistry 2000; 39:11147-53. [PMID: 10998254 DOI: 10.1021/bi0002434] [Citation(s) in RCA: 317] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mytilus edulis foot protein-1 (mefp1) is a major component of the byssus, an adhesive holdfast in mussels. The recent report of 5, 5'-di(dihydroxyphenyl-L-alanine) (diDOPA) cross-links in byssus [McDowell et al. (1999) J. Biol. Chem. 274, 20293] has raised questions about the relationship of these to mefp1. About 80% of the primary structure of mefp1 consists of a tandemly repeated consensus sequence Ala(1)-Lys(2)-Pro(3)-Ser(4)-Tyr(5)-Pro(6)-Pro(7)-Thr(8)-Tyr(9)-Lys(10 ) with varying degrees of posttranslational hydroxylation to hydroxyprolines in positions 3, 6, and 7 and to DOPA in positions 5 and 9. Six natural or synthetic variants of this decapeptide were subjected to oxidation by tyrosinase or periodate. DOPA is the only residue to suffer losses in all oxidized peptides. Moreover, using MALDI TOF mass spectrometry, oxidized decapeptides all showed evidence of multimer formation and a mass loss of 6 Da per coupled pair of peptides. Multimer formation was inhibited by addition of DOPA-like o-diphenols, but addition of simple amines such as free Lys had no effect. The results are consistent with aryloxy coupling to diDOPA followed by reoxidation to diDOPA quinone. There are subtle but noteworthy variations, however, in multimer formation among the peptide congeners. Decapeptides with Pro(3) modified to trans-4-hydroxyproline do not form multimers beyond dimers; they also exhibit significant Lys losses following oxidation of DOPA. Moreover, in Ala-Lys-Hyp-Ser-Tyr-DiHyp-Hyp-Thr-DOPA-Lys, Tyr appears to be protected from oxidation by tyrosinase.
Collapse
Affiliation(s)
- L A Burzio
- Marine Science Institute/MCDB Department, University of California, Santa Barbara, California 93106, USA
| | | |
Collapse
|