1
|
Thompson KI, Chau M, Lorenzetti MS, Hill LD, Fins AI, Tartar JL. Acute sleep deprivation disrupts emotion, cognition, inflammation, and cortisol in young healthy adults. Front Behav Neurosci 2022; 16:945661. [PMID: 36212194 PMCID: PMC9538963 DOI: 10.3389/fnbeh.2022.945661] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/31/2022] [Indexed: 11/19/2022] Open
Abstract
Chronic sleep deprivation has been demonstrated to diminish cognitive performance, alter mood states, and concomitantly dysregulate inflammation and stress hormones. At present, however, there is little understanding of how an acute sleep deprivation may collectively affect these factors and alter functioning. The present study aimed to determine the extent to which 24-h of sleep deprivation influences inflammatory cytokines, stress hormones, cognitive processing across domains, and emotion states. To that end, 23 participants (mean age = 20.78 years, SD = 2.87) filled out clinical health questionnaires measured by the Pittsburgh Sleep Quality Index, Morningness Eveningness Questionnaire, and Center for Epidemiological Studies Depression Scale. Actigraph was worn for seven days across testing to record sleep duration. At each session participants underwent a series of measures, including saliva and blood samples for quantification of leptin, ghrelin, IL-1β, IL-6, CRP, and cortisol levels, they completed a cognitive battery using an iPad, and an emotion battery. We found that an acute sleep deprivation, limited to a 24 h period, increases negative emotion states such as anxiety, fatigue, confusion, and depression. In conjunction, sleep deprivation results in increased inflammation and decreased cortisol levels in the morning, that are accompanied by deficits in vigilance and impulsivity. Combined, these results suggest that individuals who undergo 24 h sleep deprivation will induce systemic alterations to inflammation and endocrine functioning, while concomitantly increasing negative emotions.
Collapse
Affiliation(s)
- Kayla I. Thompson
- Department of Psychology and Neuroscience, Nova Southeastern University, Davie, FL, United States
- Department of Clinical and School Psychology, Nova Southeastern University, Davie, FL, United States
| | - Minh Chau
- Department of Psychology and Neuroscience, Nova Southeastern University, Davie, FL, United States
| | | | - Lauren D. Hill
- Department of Psychology, Florida International University, Miami, FL, United States
| | - Ana I. Fins
- Department of Clinical and School Psychology, Nova Southeastern University, Davie, FL, United States
| | - Jaime L. Tartar
- Department of Psychology and Neuroscience, Nova Southeastern University, Davie, FL, United States
- *Correspondence: Jaime L. Tartar
| |
Collapse
|
2
|
Honn KA, Halverson T, Jackson ML, Krusmark M, Chavali VP, Gunzelmann G, Van Dongen HPA. New insights into the cognitive effects of sleep deprivation by decomposition of a cognitive throughput task. Sleep 2021; 43:5813478. [PMID: 32227081 DOI: 10.1093/sleep/zsz319] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 12/09/2019] [Indexed: 12/16/2022] Open
Abstract
STUDY OBJECTIVES A cognitive throughput task known as the Digit Symbol Substitution Test (DSST) (or Symbol Digit Modalities Test) has been used as an assay of general cognitive slowing during sleep deprivation. Here, the effects of total sleep deprivation (TSD) on specific cognitive processes involved in DSST performance, including visual search, spatial memory, paired-associate learning, and motor response, were investigated through targeted task manipulations. METHODS A total of 12 DSST variants, designed to manipulate the use of specific cognitive processes, were implemented in two laboratory-based TSD studies with N = 59 and N = 26 subjects, respectively. In each study, the Psychomotor Vigilance Test (PVT) was administered alongside the DSST variants. RESULTS TSD reduced cognitive throughput on all DSST variants, with response time distributions exhibiting rightward skewing. All DSST variants showed practice effects, which were however minimized by inclusion of a pause between trials. Importantly, TSD-induced impairment on the DSST variants was not uniform, with a principal component analysis revealing three factors. Diffusion model decomposition of cognitive processes revealed that inter-individual differences during TSD on a two-alternative forced choice DSST variant were different from those on the PVT. CONCLUSIONS While reduced cognitive throughput has been interpreted to reflect general cognitive slowing, such TSD-induced impairment appears to reflect cognitive instability, like on the PVT, rather than general slowing. Further, comparisons between task variants revealed not one, but three distinct underlying processes impacted by sleep deprivation. Moreover, the practice effect on the task was found to be independent of the TSD effect and minimized by a task pacing manipulation.
Collapse
Affiliation(s)
- Kimberly A Honn
- Sleep and Performance Research Center, Washington State University, Spokane, WA.,Elson S. Floyd College of Medicine, Washington State University, Spokane, WA
| | - T Halverson
- Cognitive Models and Agents Branch, Air Force Research Laboratory, Wright-Patterson Air Force Base, OH.,Aptima, Inc., Woburn, MA
| | - M L Jackson
- Sleep and Performance Research Center, Washington State University, Spokane, WA.,Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | | | - V P Chavali
- Sleep and Performance Research Center, Washington State University, Spokane, WA.,University of Washington School of Medicine, Seattle, WA
| | - G Gunzelmann
- Cognitive Models and Agents Branch, Air Force Research Laboratory, Wright-Patterson Air Force Base, OH
| | - H P A Van Dongen
- Sleep and Performance Research Center, Washington State University, Spokane, WA.,Elson S. Floyd College of Medicine, Washington State University, Spokane, WA
| |
Collapse
|
3
|
Kalanadhabhatta M, Rahman T, Ganesan D. Effect of Sleep and Biobehavioral Patterns on Multidimensional Cognitive Performance: Longitudinal, In-the-Wild Study. J Med Internet Res 2021; 23:e23936. [PMID: 33599622 PMCID: PMC7932844 DOI: 10.2196/23936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/28/2020] [Accepted: 01/20/2021] [Indexed: 01/09/2023] Open
Abstract
Background With nearly 20% of the US adult population using fitness trackers, there is an increasing focus on how physiological data from these devices can provide actionable insights about workplace performance. However, in-the-wild studies that understand how these metrics correlate with cognitive performance measures across a diverse population are lacking, and claims made by device manufacturers are vague. While there has been extensive research leading to a variety of theories on how physiological measures affect cognitive performance, virtually all such studies have been conducted in highly controlled settings and their validity in the real world is poorly understood. Objective We seek to bridge this gap by evaluating prevailing theories on the effects of a variety of sleep, activity, and heart rate parameters on cognitive performance against data collected in real-world settings. Methods We used a Fitbit Charge 3 and a smartphone app to collect different physiological and neurobehavioral task data, respectively, as part of our 6-week-long in-the-wild study. We collected data from 24 participants across multiple population groups (shift workers, regular workers, and graduate students) on different performance measures (vigilant attention and cognitive throughput). Simultaneously, we used a fitness tracker to unobtrusively obtain physiological measures that could influence these performance measures, including over 900 nights of sleep and over 1 million minutes of heart rate and physical activity metrics. We performed a repeated measures correlation (rrm) analysis to investigate which sleep and physiological markers show association with each performance measure. We also report how our findings relate to existing theories and previous observations from controlled studies. Results Daytime alertness was found to be significantly correlated with total sleep duration on the previous night (rrm=0.17, P<.001) as well as the duration of rapid eye movement (rrm=0.12, P<.001) and light sleep (rrm=0.15, P<.001). Cognitive throughput, by contrast, was not found to be significantly correlated with sleep duration but with sleep timing—a circadian phase shift toward a later sleep time corresponded with lower cognitive throughput on the following day (rrm=–0.13, P<.001). Both measures show circadian variations, but only alertness showed a decline (rrm=–0.1, P<.001) as a result of homeostatic pressure. Both heart rate and physical activity correlate positively with alertness as well as cognitive throughput. Conclusions Our findings reveal that there are significant differences in terms of which sleep-related physiological metrics influence each of the 2 performance measures. This makes the case for more targeted in-the-wild studies investigating how physiological measures from self-tracking data influence, or can be used to predict, specific aspects of cognitive performance.
Collapse
Affiliation(s)
- Manasa Kalanadhabhatta
- College of Information and Computer Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Tauhidur Rahman
- College of Information and Computer Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Deepak Ganesan
- College of Information and Computer Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
4
|
Kolibius LD, Born J, Feld GB. Vast Amounts of Encoded Items Nullify but Do Not Reverse the Effect of Sleep on Declarative Memory. Front Psychol 2021; 11:607070. [PMID: 33488465 PMCID: PMC7821853 DOI: 10.3389/fpsyg.2020.607070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/30/2020] [Indexed: 11/13/2022] Open
Abstract
Sleep strengthens memories by repeatedly reactivating associated neuron ensembles. Our studies show that although long-term memory for a medium number of word-pairs (160) benefits from sleep, a large number (320) does not. This suggests an upper limit to the amount of information that has access to sleep-dependent declarative memory consolidation, which is possibly linked to the availability of reactivation opportunities. Due to competing processes of global forgetting that are active during sleep, we hypothesized that even larger amounts of information would enhance the proportion of information that is actively forgotten during sleep. In the present study, we aimed to induce such forgetting by challenging the sleeping brain with vast amounts of to be remembered information. For this, 78 participants learned a very large number of 640 word-pairs interspersed with periods of quiet awake rest over the course of an entire day and then either slept or stayed awake during the night. Recall was tested after another night of regular sleep. Results revealed comparable retention rates between the sleep and wake groups. Although this null-effect can be reconciled with the concept of limited capacities available for sleep-dependent consolidation, it contradicts our hypothesis that sleep would increase forgetting compared to the wake group. Additional exploratory analyses relying on equivalence testing and Bayesian statistics reveal that there is evidence against sleep having a detrimental effect on the retention of declarative memory at high information loads. We argue that forgetting occurs in both wake and sleep states through different mechanisms, i.e., through increased interference and through global synaptic downscaling, respectively. Both of these processes might scale similarly with information load.
Collapse
Affiliation(s)
- Luca D. Kolibius
- School of Psychology, Cognition and Oscillations Lab, University of Birmingham, Birmingham, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
- Institute of Medical Psychology and Behavioral Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Centre for Cognitive Neuroimaging, Institute for Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, Eberhard Karls University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Institute for Diabetes Research & Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
| | - Gordon B. Feld
- Institute of Medical Psychology and Behavioral Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Department of Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Addiction Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
5
|
Kumari V, Ettinger U. Controlled sleep deprivation as an experimental medicine model of schizophrenia: An update. Schizophr Res 2020; 221:4-11. [PMID: 32402603 DOI: 10.1016/j.schres.2020.03.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/27/2020] [Accepted: 03/29/2020] [Indexed: 12/22/2022]
Abstract
In recent years there has been a surge of interest and corresponding accumulation of knowledge about the role of sleep disturbance in schizophrenia. In this review, we provide an update on the current status of experimentally controlled sleep deprivation (SD) as an experimental medicine model of psychosis, and also consider, given the complexity and heterogeneity of schizophrenia, whether this (state) model can be usefully combined with other state or trait model systems to more powerfully model the pathophysiology of psychosis. We present evidence of dose-dependent aberrations that qualitatively resemble positive, negative and cognitive symptoms of schizophrenia as well as deficits in a range of translational biomarkers for schizophrenia, including prepulse inhibition, smooth pursuit and antisaccades, following experimentally controlled SD, relative to standard sleep, in healthy volunteers. Studies examining the combination of SD and schizotypy, a trait model of schizophrenia, revealed only occasional, task-dependent superiority of the combination model, relative to either of the two models alone. Overall, we argue that experimentally controlled SD is a valuable experimental medicine model of schizophrenia to advance our understanding of the pathophysiology of the clinical disorder and discovery of more effective or novel treatments. Future studies are needed to test its utility in combination with other, especially state, model systems of psychosis such as ketamine.
Collapse
Affiliation(s)
- Veena Kumari
- Centre for Cognitive Neuroscience, College of Health and Life Sciences, Brunel University London, Uxbridge, UK.
| | | |
Collapse
|
6
|
Chen PC, Whitehurst LN, Naji M, Mednick SC. Autonomic Activity during a Daytime Nap Facilitates Working Memory Improvement. J Cogn Neurosci 2020; 32:1963-1974. [PMID: 32530384 DOI: 10.1162/jocn_a_01588] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent investigations have implicated the parasympathetic branch of the autonomic nervous system in higher-order executive functions. These actions are purported to occur through autonomic nervous system's modulation of the pFC, with parasympathetic activity during wake associated with working memory (WM) ability. Compared with wake, sleep is a period with substantially greater parasympathetic tone. Recent work has reported that sleep may also contribute to improvement in WM. Here, we examined the role of cardiac parasympathetic activity during sleep on WM improvement in healthy young adults. Participants were tested in an operation span task in the morning and evening, and during the intertest period, participants experienced either a nap or wake. We measured high-frequency heart rate variability as an index of cardiac, parasympathetic activity during both wake and sleep. Participants showed the expected boost in parasympathetic activity during nap, compared with wake. Furthermore, parasympathetic activity during sleep, but not wake, was significantly correlated with WM improvement. Together, these results indicate that the natural boost in parasympathetic activity during sleep may benefit gains in prefrontal executive function in young adults. We present a conceptual model illustrating the interaction between sleep, autonomic activity, and prefrontal brain function and highlight open research questions that will facilitate understanding of the factors that contribute to executive abilities in young adults as well as in cognitive aging.
Collapse
|
7
|
Frau R, Traccis F, Bortolato M. Neurobehavioural complications of sleep deprivation: Shedding light on the emerging role of neuroactive steroids. J Neuroendocrinol 2020; 32:e12792. [PMID: 31505075 PMCID: PMC6982588 DOI: 10.1111/jne.12792] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/06/2019] [Accepted: 09/05/2019] [Indexed: 01/05/2023]
Abstract
Sleep deprivation (SD) is associated with a broad spectrum of cognitive and behavioural complications, including emotional lability and enhanced stress reactivity, as well as deficits in executive functions, decision making and impulse control. These impairments, which have profound negative consequences on the health and productivity of many individuals, reflect alterations of the prefrontal cortex (PFC) and its connectivity with subcortical regions. However, the molecular underpinnings of these alterations remain elusive. Our group and others have begun examining how the neurobehavioural outcomes of SD may be influenced by neuroactive steroids, a family of molecules deeply implicated in sleep regulation and the stress response. These studies have revealed that, similar to other stressors, acute SD leads to increased synthesis of the neurosteroid allopregnanolone in the PFC. Whereas this up-regulation is likely aimed at counterbalancing the detrimental impact of oxidative stress induced by SD, the increase in prefrontal allopregnanolone levels contributes to deficits in sensorimotor gating and impulse control, signalling a functional impairment of PFC. This scenario suggests that the synthesis of neuroactive steroids during acute SD may be enacted as a neuroprotective response in the PFC; however, such compensation may in turn set off neurobehavioural complications by interfering with the corticolimbic connections responsible for executive functions and emotional regulation.
Collapse
Affiliation(s)
- Roberto Frau
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Monserrato (CA), Italy
- National Institute of Neuroscience (INN), University of Cagliari, Monserrato (CA), Italy
| | - Francesco Traccis
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Monserrato (CA), Italy
| | - Marco Bortolato
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City (UT), USA
| |
Collapse
|
8
|
Stone LS, Tyson TL, Cravalho PF, Feick NH, Flynn-Evans EE. Distinct pattern of oculomotor impairment associated with acute sleep loss and circadian misalignment. J Physiol 2019; 597:4643-4660. [PMID: 31389043 PMCID: PMC6852126 DOI: 10.1113/jp277779] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/20/2019] [Indexed: 11/29/2022] Open
Abstract
Key points Inadequate sleep and irregular work schedules have not only adverse consequences for individual health and well‐being, but also enormous economic and safety implications for society as a whole. This study demonstrates that visual motion processing and coordinated eye movements are significantly impaired when performed after sleep loss and during the biological night, and thus may be contributing to human error and accidents. Because affected individuals are often unaware of their sensorimotor and cognitive deficits, there is a critical need for non‐invasive, objective indicators of mild, yet potentially unsafe, impairment due to disrupted sleep or biological rhythms. Our findings show that a set of eye‐movement measures can be used to provide sensitive and reliable indicators of such mild neural impairments.
Abstract Sleep loss and circadian misalignment have long been known to impair human cognitive and motor performance with significant societal and health consequences. It is well known that human reaction time to a visual cue is impaired following sleep loss and circadian misalignment, but it has remained unclear how more complex visuomotor control behaviour is altered under these conditions. In this study, we measured 14 parameters of the voluntary ocular tracking response of 12 human participants (six females) to systematically examine the effects of sleep loss and circadian misalignment using a constant routine 24‐h acute sleep‐deprivation paradigm. The combination of state‐of‐the‐art oculometric and sleep‐research methodologies allowed us to document, for the first time, large changes in many components of pursuit, saccades and visual motion processing as a function of time awake and circadian phase. Further, we observed a pattern of impairment across our set of oculometric measures that is qualitatively different from that observed previously with other mild neural impairments. We conclude that dynamic vision and visuomotor control exhibit a distinct pattern of impairment linked with time awake and circadian phase. Therefore, a sufficiently broad set of oculometric measures could provide a sensitive and specific behavioural biomarker of acute sleep loss and circadian misalignment. We foresee potential applications of such oculometric biomarkers assisting in the assessment of readiness‐to‐perform higher risk tasks and in the characterization of sub‐clinical neural impairment in the face of a multiplicity of potential risk factors, including disrupted sleep and circadian rhythms. Inadequate sleep and irregular work schedules have not only adverse consequences for individual health and well‐being, but also enormous economic and safety implications for society as a whole. This study demonstrates that visual motion processing and coordinated eye movements are significantly impaired when performed after sleep loss and during the biological night, and thus may be contributing to human error and accidents. Because affected individuals are often unaware of their sensorimotor and cognitive deficits, there is a critical need for non‐invasive, objective indicators of mild, yet potentially unsafe, impairment due to disrupted sleep or biological rhythms. Our findings show that a set of eye‐movement measures can be used to provide sensitive and reliable indicators of such mild neural impairments.
Collapse
Affiliation(s)
- Leland S Stone
- Visuomotor Control Laboratory, Human Systems Integration Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Terence L Tyson
- Visuomotor Control Laboratory, Human Systems Integration Division, NASA Ames Research Center, Moffett Field, CA, USA
| | | | | | - Erin E Flynn-Evans
- Fatigue Countermeasures Laboratory, Human Systems Integration Division, NASA Ames Research Center, Moffett Field, CA, USA
| |
Collapse
|
9
|
A daytime nap enhances visual working memory performance and alters event-related delay activity. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2018; 18:1105-1120. [DOI: 10.3758/s13415-018-0625-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
10
|
Patrick Y, Lee A, Raha O, Pillai K, Gupta S, Sethi S, Mukeshimana F, Gerard L, Moghal MU, Saleh SN, Smith SF, Morrell MJ, Moss J. Effects of sleep deprivation on cognitive and physical performance in university students. Sleep Biol Rhythms 2017; 15:217-225. [PMID: 28680341 PMCID: PMC5489575 DOI: 10.1007/s41105-017-0099-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 03/23/2017] [Indexed: 11/01/2022]
Abstract
Sleep deprivation is common among university students, and has been associated with poor academic performance and physical dysfunction. However, current literature has a narrow focus in regard to domains tested, this study aimed to investigate the effects of a night of sleep deprivation on cognitive and physical performance in students. A randomized controlled crossover study was carried out with 64 participants [58% male (n = 37); 22 ± 4 years old (mean ± SD)]. Participants were randomized into two conditions: normal sleep or one night sleep deprivation. Sleep deprivation was monitored using an online time-stamped questionnaire at 45 min intervals, completed in the participants' homes. The outcomes were cognitive: working memory (Simon game© derivative), executive function (Stroop test); and physical: reaction time (ruler drop testing), lung function (spirometry), rate of perceived exertion, heart rate, and blood pressure during submaximal cardiopulmonary exercise testing. Data were analysed using paired two-tailed T tests and MANOVA. Reaction time and systolic blood pressure post-exercise were significantly increased following sleep deprivation (mean ± SD change: reaction time: 0.15 ± 0.04 s, p = 0.003; systolic BP: 6 ± 17 mmHg, p = 0.012). No significant differences were found in other variables. Reaction time and vascular response to exercise were significantly affected by sleep deprivation in university students, whilst other cognitive and cardiopulmonary measures showed no significant changes. These findings indicate that acute sleep deprivation can have an impact on physical but not cognitive ability in young healthy university students. Further research is needed to identify mechanisms of change and the impact of longer term sleep deprivation in this population.
Collapse
Affiliation(s)
- Yusuf Patrick
- Imperial College School of Medicine, Imperial College London, South Kensington Campus, Sir Alexander Fleming Building, London, SW7 2DD UK
| | - Alice Lee
- Imperial College School of Medicine, Imperial College London, South Kensington Campus, Sir Alexander Fleming Building, London, SW7 2DD UK
| | - Oishik Raha
- Imperial College School of Medicine, Imperial College London, South Kensington Campus, Sir Alexander Fleming Building, London, SW7 2DD UK
| | - Kavya Pillai
- Imperial College School of Medicine, Imperial College London, South Kensington Campus, Sir Alexander Fleming Building, London, SW7 2DD UK
| | - Shubham Gupta
- Imperial College School of Medicine, Imperial College London, South Kensington Campus, Sir Alexander Fleming Building, London, SW7 2DD UK
| | - Sonika Sethi
- Imperial College School of Medicine, Imperial College London, South Kensington Campus, Sir Alexander Fleming Building, London, SW7 2DD UK
| | - Felicite Mukeshimana
- Imperial College School of Medicine, Imperial College London, South Kensington Campus, Sir Alexander Fleming Building, London, SW7 2DD UK
| | - Lothaire Gerard
- Imperial College School of Medicine, Imperial College London, South Kensington Campus, Sir Alexander Fleming Building, London, SW7 2DD UK
| | - Mohammad U. Moghal
- Academic Unit of Sleep and Breathing, National Heart and Lung Institute, Imperial College London, London, UK
- NIHR Respiratory Disease Biomedical Research Unit, Sleep and Ventilation, Royal Brompton and Harefield NHS Foundation Trust, Sydney Street, London, SW3 6NP UK
| | - Sohag N. Saleh
- Faculty of Medicine, Imperial College London, South Kensington Campus, Sir Alexander Fleming Building, London, SW7 2DD UK
| | - Susan F. Smith
- Medical Education Research Unit, Faculty of Medicine, Imperial College London, South Kensington Campus, Sir Alexander Fleming Building, London, SW7 2DD UK
| | - Mary J. Morrell
- Academic Unit of Sleep and Breathing, National Heart and Lung Institute, Imperial College London, London, UK
- NIHR Respiratory Disease Biomedical Research Unit, Sleep and Ventilation, Royal Brompton and Harefield NHS Foundation Trust, Sydney Street, London, SW3 6NP UK
| | - James Moss
- Academic Unit of Sleep and Breathing, National Heart and Lung Institute, Imperial College London, London, UK
- NIHR Respiratory Disease Biomedical Research Unit, Sleep and Ventilation, Royal Brompton and Harefield NHS Foundation Trust, Sydney Street, London, SW3 6NP UK
| |
Collapse
|
11
|
Meyhöfer I, Kumari V, Hill A, Petrovsky N, Ettinger U. Sleep deprivation as an experimental model system for psychosis: Effects on smooth pursuit, prosaccades, and antisaccades. J Psychopharmacol 2017; 31:418-433. [PMID: 28347256 DOI: 10.1177/0269881116675511] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Current antipsychotic medications fail to satisfactorily reduce negative and cognitive symptoms and produce many unwanted side effects, necessitating the development of new compounds. Cross-species, experimental behavioural model systems can be valuable to inform the development of such drugs. The aim of the current study was to further test the hypothesis that controlled sleep deprivation is a safe and effective model system for psychosis when combined with oculomotor biomarkers of schizophrenia. Using a randomized counterbalanced within-subjects design, we investigated the effects of 1 night of total sleep deprivation in 32 healthy participants on smooth pursuit eye movements (SPEM), prosaccades (PS), antisaccades (AS), and self-ratings of psychosis-like states. Compared with a normal sleep control night, sleep deprivation was associated with reduced SPEM velocity gain, higher saccadic frequency at 0.2 Hz, elevated PS spatial error, and an increase in AS direction errors. Sleep deprivation also increased intra-individual variability of SPEM, PS, and AS measures. In addition, sleep deprivation induced psychosis-like experiences mimicking hallucinations, cognitive disorganization, and negative symptoms, which in turn had moderate associations with AS direction errors. Taken together, sleep deprivation resulted in psychosis-like impairments in SPEM and AS performance. However, diverging somewhat from the schizophrenia literature, sleep deprivation additionally disrupted PS control. Sleep deprivation thus represents a promising but possibly unspecific experimental model that may be helpful to further improve our understanding of the underlying mechanisms in the pathophysiology of psychosis and aid the development of antipsychotic and pro-cognitive drugs.
Collapse
Affiliation(s)
- Inga Meyhöfer
- 1 Department of Psychology, University of Bonn, Bonn, Germany
| | - Veena Kumari
- 2 Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,3 NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust, London, UK
| | - Antje Hill
- 1 Department of Psychology, University of Bonn, Bonn, Germany.,4 Institute of Sport and Exercise Sciences, University of Münster, Münster, Germany
| | | | - Ulrich Ettinger
- 1 Department of Psychology, University of Bonn, Bonn, Germany
| |
Collapse
|
12
|
Frenda SJ, Fenn KM. Sleep Less, Think Worse: The Effect of Sleep Deprivation on Working Memory. JOURNAL OF APPLIED RESEARCH IN MEMORY AND COGNITION 2016. [DOI: 10.1016/j.jarmac.2016.10.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Giacobbo BL, Corrêa MS, Vedovelli K, de Souza CEB, Spitza LM, Gonçalves L, Paludo N, Molina RD, da Rosa ED, Argimon IIDL, Bromberg E. Could BDNF be involved in compensatory mechanisms to maintain cognitive performance despite acute sleep deprivation? An exploratory study. Int J Psychophysiol 2015; 99:96-102. [PMID: 26602839 DOI: 10.1016/j.ijpsycho.2015.11.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/01/2015] [Accepted: 11/18/2015] [Indexed: 01/18/2023]
Abstract
BACKGROUND Neuroimaging studies suggest that acute sleep deprivation can lead to adaptations, such as compensatory recruitment of cerebral structures, to maintain cognitive performance despite sleep loss. However, the understanding of the neurochemical alterations related to these adaptations remains incomplete. OBJECTIVE Investigate BDNF levels, cognitive performance and their relations in healthy subjects after acute sleep deprivation. METHODS Nineteen sleep deprived (22.11±3.21years) and twenty control (25.10±4.42years) subjects completed depression, anxiety and sleep quality questionnaires. Sleep deprived group spent a full night awake performing different playful activities to keep themselves from sleeping. Attention, response inhibition capacity and working memory (prefrontal cortex-dependent) were assessed with Stroop and Digit Span tests. Declarative memory (hippocampus-dependent) was assessed with Logical Memory test. Serum BDNF was measured by sandwich ELISA. Data were analyzed with independent samples T-test, ANOVA, ANCOVA and curve estimation regressions. p<0.05 was deemed statistically significant. RESULTS The sleep deprived group showed higher BDNF levels and normal performance on attention, response inhibition capacity and working memory. However, declarative memory was impaired. A sigmoidal relation between BDNF and Stroop Test scores was found. CONCLUSIONS Increased BDNF could be related, at least in part, to the maintenance of normal prefrontal cognitive functions after sleep deprivation. This potential relation should be further investigated.
Collapse
Affiliation(s)
- Bruno Lima Giacobbo
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil; National Institute for Translational Medicine (INCT-TM), Porto Alegre, Rio Grande do Sul 90035-003, Brazil
| | - Márcio Silveira Corrêa
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil; National Institute for Translational Medicine (INCT-TM), Porto Alegre, Rio Grande do Sul 90035-003, Brazil
| | - Kelem Vedovelli
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil; Institute of Geriatrics and Gerontology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil; National Institute for Translational Medicine (INCT-TM), Porto Alegre, Rio Grande do Sul 90035-003, Brazil
| | - Carlos Eduardo Bruhn de Souza
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil
| | - Letícia Martins Spitza
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil
| | - Lucas Gonçalves
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil
| | - Nathália Paludo
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil
| | - Rachel Dias Molina
- Institute of Geriatrics and Gerontology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil
| | - Eduarda Dias da Rosa
- Laboratory of Molecular Psychiatry, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil
| | - Irani Iracema de Lima Argimon
- Institute of Geriatrics and Gerontology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil
| | - Elke Bromberg
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil; National Institute for Translational Medicine (INCT-TM), Porto Alegre, Rio Grande do Sul 90035-003, Brazil.
| |
Collapse
|
14
|
Schönauer M, Grätsch M, Gais S. Evidence for two distinct sleep-related long-term memory consolidation processes. Cortex 2015; 63:68-78. [DOI: 10.1016/j.cortex.2014.08.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 05/19/2014] [Accepted: 08/05/2014] [Indexed: 11/25/2022]
|
15
|
de Almeida Valverde Zanini G, Tufik S, Andersen ML, da Silva RCM, Bueno OFA, Rodrigues CC, Pompéia S. Free recall of word lists under total sleep deprivation and after recovery sleep. Sleep 2012; 35:223-30. [PMID: 22294812 DOI: 10.5665/sleep.1626] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES One task that has been used to assess memory effects of prior total sleep deprivation (TSD) is the immediate free recall of word lists; however, results have been mixed. A possible explanation for this is task impurity, since recall of words from different serial positions reflects use of distinct types of memory (last words: short-term memory; first and intermediate words: episodic memory). Here we studied the effects of 2 nights of TSD on immediate free recall of semantically unrelated word lists considering the serial position curve. DESIGN Random allocation to a 2-night TSD protocol followed by one night of recovery sleep or to a control group. SETTING Study conducted under continuous behavioral monitoring. PARTICIPANTS 24 young, healthy male volunteers. INTERVENTION 2 nights of total sleep deprivation (TSD) and one night of recovery sleep. MEASUREMENTS AND RESULTS Participants were shown five 15 unrelated word-lists at baseline, after one and 2 nights of TSD, and after one night of recovery sleep. We also investigated the development of recall strategies (learning) and susceptibility to interference from previous lists. No free recall impairment occurred during TSD, irrespective of serial position. Interference was unchanged. Both groups developed recall strategies, but task learning occurred earlier in controls and was evident in the TSD group only after sleep recovery. CONCLUSION Prior TSD spared episodic memory, short-term phonological memory, and interference, allowed the development of recall strategies, but may have decreased the advantage of using these strategies, which returned to normal after recovery sleep.
Collapse
|
16
|
Abstract
There is rapidly accumulating evidence of a close relationship between sleep loss and cognition. Neuropsychologists need to become aware of this body of knowledge as the effects of sleep loss on brain functions are significant. The current study (a) outlines the extent to which insufficient sleep affects performance on cognitive tasks in otherwise healthy people, (b) discusses the relationship between sleep and neurocognitive disorders, and (c) highlights key issues that merit consideration for neuropsychologists. This review shows that sleep loss has a measurable impact on performance through decreases in cognitive functions and effects on biological pathways that support cognitive performance. Sleep loss reliably produces reductions in speed of processing and attention. Higher order cognitive functions are affected to a lesser extent, and there is sparing on tasks of crystallized abilities. Deficits worsen with increasing time awake, but may be overturned after normal sleep is resumed. The review also shows that sleep disorders are a major feature of neuropsychological conditions contributing to the pattern of cognitive impairment. Overall, neuropsychologists must be alert to sleep problems in their clients, so that sleep interventions, or referrals, are put in place in the rehabilitation plan of individuals with cognitive dysfunctions. Recommendations also include routine screening of sleep as part of cognitive assessment.
Collapse
|
17
|
Aleisa AM, Alzoubi KH, Alkadhi KA. Post-learning REM sleep deprivation impairs long-term memory: reversal by acute nicotine treatment. Neurosci Lett 2011; 499:28-31. [PMID: 21624432 DOI: 10.1016/j.neulet.2011.05.025] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 04/28/2011] [Accepted: 05/13/2011] [Indexed: 01/06/2023]
Abstract
Rapid eye movement sleep deprivation (REM-SD) is associated with spatial learning and memory impairment. During REM-SD, an increase in nicotine consumption among habitual smokers and initiation of tobacco use by non-smokers have been reported. We have shown recently that nicotine treatment prevented learning and memory impairments associated with REM-SD. We now report the interactive effects of post-learning REM-SD and/or nicotine. The animals were first trained on the radial arm water maze (RAWM) task, then they were REM-sleep deprived using the modified multiple platform paradigm for 24h. During REM-SD period, the rats were injected with saline or nicotine (1mg/kg s.c. every 12h: a total of 3 injections). The animals were tested for long-term memory in the RAWM at the end of the REM-SD period. The 24h post-learning REM-SD significantly impaired long-term memory. However, nicotine treatment reversed the post-learning REM-SD-induced impairment of long-term memory. On the other hand, post-learning treatment of normal rats with nicotine for 24h enhanced long-term memory. These results indicate that post-learning acute nicotine treatment prevented the deleterious effect of REM-SD on cognitive abilities.
Collapse
Affiliation(s)
- A M Aleisa
- Department of Pharmacology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | | |
Collapse
|
18
|
Lim J, Dinges DF. A meta-analysis of the impact of short-term sleep deprivation on cognitive variables. Psychol Bull 2011; 136:375-89. [PMID: 20438143 DOI: 10.1037/a0018883] [Citation(s) in RCA: 731] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A substantial amount of research has been conducted in an effort to understand the impact of short-term (<48 hr) total sleep deprivation (SD) on outcomes in various cognitive domains. Despite this wealth of information, there has been disagreement on how these data should be interpreted, arising in part because the relative magnitude of effect sizes in these domains is not known. To address this question, we conducted a meta-analysis to discover the effects of short-term SD on both speed and accuracy measures in 6 cognitive categories: simple attention, complex attention, working memory, processing speed, short-term memory, and reasoning. Seventy articles containing 147 cognitive tests were found that met inclusion criteria for this study. Effect sizes ranged from small and nonsignificant (reasoning accuracy: g = -0.125, 95% CI [-0.27, 0.02]) to large (lapses in simple attention: g = -0.776, 95% CI [-0.96, -0.60], p < .001). Across cognitive domains, significant differences were observed for both speed and accuracy; however, there were no differences between speed and accuracy measures within each cognitive domain. Of several moderators tested, only time awake was a significant predictor of between-studies variability, and only for accuracy measures, suggesting that heterogeneity in test characteristics may account for a significant amount of the remaining between-studies variance. The theoretical implications of these findings for the study of SD and cognition are discussed.
Collapse
Affiliation(s)
- Julian Lim
- Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania School of Medicine, 423 Guardian Drive, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
19
|
Grace PM, Stanford T, Gentgall M, Rolan PE. Utility of saccadic eye movement analysis as an objective biomarker to detect the sedative interaction between opioids and sleep deprivation in opioid-naive and opioid-tolerant populations. J Psychopharmacol 2010; 24:1631-40. [PMID: 20142307 DOI: 10.1177/0269881109352704] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Analysis of saccadic eye movements (SEMs) has previously been used to detect drug- and sleep-deprivation-induced sedation, but never in combination. We compared the effects of sleep deprivation and opioids on 10 opioid-naive with nine opioid-tolerant participants. The naive-participant study evaluated the effects of sleep deprivation alone, morphine alone and the combination; the tolerant-participant study compared day-to-day effects of alternate-daily-dosed buprenorphine and the combination of buprenorphine on the dosing day with sleep deprivation. Psychomotor impairment was measured using SEMs, a 5-minute pupil adaptation test (PAT), pupil light reflex (PLR) and alertness visual analogue scale (AVAS). The PAT and PLR did not detect sleep deprivation, in contrast to previous studies. Whilst consistently detecting sleep deprivation, the AVAS also detected buprenorphine in the tolerant study, but not morphine in the naive study. SEMs detected morphine alone and sleep deprivation alone as well as an additive interaction in the naive study and the effect of sleep deprivation in the tolerant study. The alternate-day buprenorphine dosing did not alter SEMs. The current study revealed greater SEMs, but not AVAS impairment in tolerant versus naive participants. The current study demonstrates that objective measures provide additional information to subjective measures and thus should be used in combination.
Collapse
Affiliation(s)
- Peter M Grace
- Discipline of Pharmacology, School of Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | | | | | | |
Collapse
|
20
|
Aleisa AM, Helal G, Alhaider IA, Alzoubi KH, Srivareerat M, Tran TT, Al-Rejaie SS, Alkadhi KA. Acute nicotine treatment prevents REM sleep deprivation-induced learning and memory impairment in rat. Hippocampus 2010; 21:899-909. [PMID: 20865738 DOI: 10.1002/hipo.20806] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2010] [Indexed: 11/10/2022]
Abstract
Rapid eye movement (REM) sleep deprivation (SD) is implicated in impairment of spatial learning and memory and hippocampal long-term potentiation (LTP). An increase in nicotine consumption among habitual smokers and initiation of tobacco use by nonsmokers was observed during SD. Although nicotine treatment was reported to attenuate the impairment of learning and memory and LTP associated with several mental disorders, the effect of nicotine on SD-induced learning and memory impairment has not been studied. Modified multiple platform paradigm was used to induce SD for 24 or 48 h during which rats were injected with saline or nicotine (1 mg kg(-1) s.c.) twice a day. In the radial arm water maze (RAWM) task, 24- or 48-h SD significantly impaired learning and short-term memory. In addition, extracellular recordings from CA1 and dentate gyrus (DG) regions of the hippocampus in urethane anesthetized rats showed a significant impairment of LTP after 24- and 48-h SD. Treatment of normal rats with nicotine for 24 or 48 h did not enhance spatial learning and memory or affect magnitude of LTP in the CA1 and DG regions. However, concurrent, acute treatment of rats with nicotine significantly attenuated SD-induced impairment of learning and STM and prevented SD-induced impairment of LTP in the CA1 and DG regions. These results show that acute nicotine treatment prevented the deleterious effect of sleep loss on cognitive abilities and synaptic plasticity.
Collapse
Affiliation(s)
- A M Aleisa
- Department of Pharmacology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Ohayon MM, Ferini-Strambi L, Plazzi G, Smirne S, Castronovo V. How age influences the expression of narcolepsy. J Psychosom Res 2005; 59:399-405. [PMID: 16310022 DOI: 10.1016/j.jpsychores.2005.06.065] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Accepted: 06/09/2005] [Indexed: 11/16/2022]
Abstract
OBJECTIVES The aim of this study was to investigate the influence of age on the manifestation of narcolepsy symptoms and cognitive difficulties in patients with narcolepsy. METHODS A total of 321 participants were included in the study: 157 were patients with narcolepsy from two Sleep Disorders Clinics and 164 were control participants. Narcoleptic patients were evaluated and diagnosed at the Sleep Disorders Clinic. All participants were interviewed by telephone using the Sleep-EVAL System. The interview comprised, among else, a detailed evaluation of narcolepsy symptoms and of cognitive difficulties. RESULTS The first manifestation of the disease appeared early in life for most narcoleptic patients: 54.1% had their first symptom before the age of 20 years. Daytime sleepiness was the first symptom to appear in 65.5% of cases. In narcoleptics 60 years or older, cataplexy was more likely to be the first symptom to appear (47.4%) compared with other narcoleptic patients (21.4%; P<.05). Reported cognitive difficulties (attention-concentration, praxis, delay recall, orientation for persons, temporal orientation, and prospective memory) were higher in narcoleptic patients compared with the controls. The severity of daytime sleepiness and the presence of a major depressive disorder partly explained the cognitive difficulties. However, attention-concentration deficits and difficulties in prospective memory remained significant. Age was unrelated to cognitive difficulties in narcoleptics patients. CONCLUSIONS The first manifestation of narcolepsy appears early in life. Reported cognitive difficulties are important in narcoleptic patients and are only partly explained by age, severity of daytime sleepiness, and major depressive disorder.
Collapse
Affiliation(s)
- Maurice M Ohayon
- Stanford Sleep Epidemiology Research Center, School of Medicine, Stanford University, Suite 102, 3430 W. Bayshore Road, Palo Alto, CA 94303, USA.
| | | | | | | | | |
Collapse
|