1
|
Slivka EV, Shilova NV, Obraztsova EA, Kapustkina DS, Khaidukov SV, Nokel AY, Ryzhov IM, Henry SM, Bovin NV, Rapoport EM. Surface Glycans of Microvesicles Derived from Endothelial Cells, as Probed Using Plant Lectins. Int J Mol Sci 2024; 25:5725. [PMID: 38891913 PMCID: PMC11171894 DOI: 10.3390/ijms25115725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Glycans of MVs are proposed to be candidates for mediating targeting specificity or at least promoting it. In contrast to exosomes, glycomic studies of MVs are largely absent. We studied the glycoprofile of endothelial cell-derived MVs using 21 plant lectins, and the results show the dominance of oligolactosamines and their α2-6-sialylated forms as N-glycans and low levels of α2-3-sialylated glycans. The low levels of α2-3-sialosides could not be explained by the action of extracellular glycosidases. Additionally, the level of some Man-containing glycans was also decreased in MVs. Spatial masking as the causative relationship between these low level glycans (as glycosphingolipids) by integral proteins or proteoglycans (thus, their lack of interaction with lectins) seems unlikely. The results suggest that integral proteins do not pass randomly into MVs, but instead only some types, differing in terms of their specific glycosylation, are integrated into MVs.
Collapse
Affiliation(s)
- Ekaterina V. Slivka
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya Str., Moscow 117997, Russia; (E.V.S.); (N.V.S.); (I.M.R.); (E.M.R.)
| | - Nadezhda V. Shilova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya Str., Moscow 117997, Russia; (E.V.S.); (N.V.S.); (I.M.R.); (E.M.R.)
- National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Health of the Russian Federation, 4 Oparina Str., Moscow 117997, Russia
| | - Ekaterina A. Obraztsova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya Str., Moscow 117997, Russia; (E.V.S.); (N.V.S.); (I.M.R.); (E.M.R.)
| | - Daria S. Kapustkina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya Str., Moscow 117997, Russia; (E.V.S.); (N.V.S.); (I.M.R.); (E.M.R.)
| | - Sergey V. Khaidukov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya Str., Moscow 117997, Russia; (E.V.S.); (N.V.S.); (I.M.R.); (E.M.R.)
- National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Health of the Russian Federation, 4 Oparina Str., Moscow 117997, Russia
| | - Alexey Yu. Nokel
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya Str., Moscow 117997, Russia; (E.V.S.); (N.V.S.); (I.M.R.); (E.M.R.)
| | - Ivan M. Ryzhov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya Str., Moscow 117997, Russia; (E.V.S.); (N.V.S.); (I.M.R.); (E.M.R.)
| | - Stephen M. Henry
- School of Engineering, Auckland University of Technology, Auckland 1010, New Zealand;
| | - Nicolai V. Bovin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya Str., Moscow 117997, Russia; (E.V.S.); (N.V.S.); (I.M.R.); (E.M.R.)
| | - Eugenia M. Rapoport
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya Str., Moscow 117997, Russia; (E.V.S.); (N.V.S.); (I.M.R.); (E.M.R.)
| |
Collapse
|
2
|
Park JY, Abekura F, Cho SH. GM1a ganglioside-binding domain peptide inhibits host adhesion and inflammatory response of enterotoxigenic Escherichia coli heat-labile enterotoxin-B in HCT-8 cells. Sci Rep 2023; 13:16835. [PMID: 37803175 PMCID: PMC10558473 DOI: 10.1038/s41598-023-44220-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 10/05/2023] [Indexed: 10/08/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a major cause of illness and death but has no effective therapy. The heat-labile enterotoxin LT is a significant virulence factor produced by ETEC. The heat-labile enterotoxin-B (LT-B) subunit may enter host cells by binding to monosialotetrahexosylganglioside-a (GM1a), a monosialoganglioside found on the plasma membrane surface of animal epithelial cells. This research was conducted to develop conformationally comparable peptides to the carbohydrate epitope of GM1a for the treatment of ETEC. We used the LT-B subunit to select LT-B-binding peptides that structurally resemble GM1a. The ganglioside microarray and docking simulations were used to identify three GM1a ganglioside-binding domain (GBD) peptides based on LT-B recognition. Peptides had an inhibiting effect on the binding of LT-B to GM1a. The binding capacity, functional inhibitory activity, and in vitro effects of the GBD peptides were evaluated using HCT-8 cells, a human intestinal epithelial cell line, to evaluate the feasibility of deploying GBD peptides to combat bacterial infections. KILSYTESMAGKREMVIIT was the most efficient peptide in inhibiting cellular absorption of LT-B in cells. Our findings offer compelling evidence that GM1a GBD-like peptides might act as new therapeutics to inhibit LT-B binding to epithelial cells and avoid the subsequent physiological consequences of LT.
Collapse
Affiliation(s)
- Jun-Young Park
- Division of Zoonotic and Vector Borne Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Cheongju, Republic of Korea
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Fukushi Abekura
- Division of Zoonotic and Vector Borne Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Seung-Hak Cho
- Division of Zoonotic and Vector Borne Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Cheongju, Republic of Korea.
| |
Collapse
|
3
|
Han L, Nguyen L, Schmidt EN, Esmaili M, Kitova EN, Overduin M, Macauley MS, Klassen JS. How Choice of Model Membrane Affects Protein–Glycosphingolipid Interactions: Insights from Native Mass Spectrometry. Anal Chem 2022; 94:16042-16049. [PMID: 36367338 DOI: 10.1021/acs.analchem.2c03067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Interactions between glycan-binding proteins (GBPs) and glycosphingolipids (GSLs) are involved in numerous physiological and pathophysiological processes. Many model membrane systems are available for studying GBP-GSL interactions, but a systematic investigation has not been carried out on how the nature of the model membrane affects binding. In this work, we use electrospray ionization mass spectrometry (ESI-MS), both direct and competitive assays, to measure the binding of cholera toxin B subunit homopentamer (CTB5) to GM1 ganglioside in liposomes, bilayer islands [styrene maleic acid lipid particles (SMALPs), nanodiscs (NDs), and picodiscs (PDs)], and micelles. We find that direct ESI-MS analysis of CTB5 binding to GM1 is unreliable due to non-uniform response factors, incomplete extraction of bound GM1 in the gas phase, and nonspecific CTB5-GM1 interactions. Conversely, indirect proxy ligand ESI-MS measurements show that the intrinsic (per binding site) association constants of CTB5 for PDs, NDs, and SMALPs are similar and comparable to the affinity of soluble GM1 pentasaccharide (GM1os). The observed affinity decreases with increasing GM1 content due to molecular crowding stemming from GM1 clustering. Unlike the smaller model membranes, the observed affinity of CTB5 toward GM1 liposomes is ∼10-fold weaker than GM1os and relatively insensitive to the GM1 content. GM1 glycomicelles exhibit the lowest affinity, ∼35-fold weaker than GM1os. Together, the results highlight experimental design considerations for quantitative GBP-GSL binding studies involving multisubunit GBPs and factors to consider when comparing results obtained with different membrane systems. Notably, they suggest that bilayer islands with a low percentage of GSL, wherein clustering is minimized, are ideal for assessing intrinsic strength of GBP-GSL interactions in a membrane environment, while binding to liposomes, which is sub-optimal due to extensive clustering, may be more representative of authentic cellular environments.
Collapse
Affiliation(s)
- Ling Han
- Department of Chemistry, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| | - Linh Nguyen
- Department of Chemistry, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| | - Edward N. Schmidt
- Department of Chemistry, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| | - Mansoore Esmaili
- Department of Biochemistry, University of Alberta, Edmonton T6G 2R3, Canada
| | - Elena N. Kitova
- Department of Chemistry, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| | - Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton T6G 2R3, Canada
| | - Matthew S. Macauley
- Department of Chemistry, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton T6G 2E1, Alberta, Canada
| | - John S. Klassen
- Department of Chemistry, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| |
Collapse
|
4
|
Surface Sensitive Analysis Device using Model Membrane and Challenges for Biosensor-chip. BIOCHIP JOURNAL 2020. [DOI: 10.1007/s13206-019-4110-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Han L, Kitov PI, Li J, Kitova EN, Klassen JS. Probing Heteromultivalent Protein–Glycosphingolipid Interactions using Native Mass Spectrometry and Nanodiscs. Anal Chem 2020; 92:3923-3931. [DOI: 10.1021/acs.analchem.9b05419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ling Han
- Department of Chemistry, University of Alberta, Edmonton, Alberta Canada T6G 2G2
| | - Pavel I. Kitov
- Department of Chemistry, University of Alberta, Edmonton, Alberta Canada T6G 2G2
| | - Jianing Li
- Department of Chemistry, University of Alberta, Edmonton, Alberta Canada T6G 2G2
| | - Elena N. Kitova
- Department of Chemistry, University of Alberta, Edmonton, Alberta Canada T6G 2G2
| | - John S. Klassen
- Department of Chemistry, University of Alberta, Edmonton, Alberta Canada T6G 2G2
| |
Collapse
|
6
|
Ryu YS, Yun H, Chung T, Suh JH, Kim S, Lee K, Wittenberg NJ, Oh SH, Lee B, Lee SD. Kinetics of lipid raft formation at lipid monolayer-bilayer junction probed by surface plasmon resonance. Biosens Bioelectron 2019; 142:111568. [PMID: 31442945 DOI: 10.1016/j.bios.2019.111568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/27/2019] [Accepted: 08/02/2019] [Indexed: 02/06/2023]
Abstract
A label-free, non-dispruptive, and real-time analytical device to monitor the dynamic features of biomolecules and their interactions with neighboring molecules is an essential prerequisite for biochip- and diagonostic assays. To explore one of the central questions on the lipid-lipid interactions in the course of the liquid-ordered (lo) domain formation, called rafts, we developed a method of reconstituting continuous but spatially heterogeneous lipid membrane platforms with molayer-bilayer juntions (MBJs) that enable to form the lo domains in a spatiotemporally controlled manner. This allows us to detect the time-lapse dynamics of the lipid-lipid interactions during raft formation and resultant membrane phase changes together with the raft-associated receptor-ligand binding through the surface plasmon resonance (SPR). For cross-validation, using epifluorescence microscopy, we demonstrated the underlying mechanisms for raft formations that the infiltration of cholesterols into the sphingolipid-enriched domains plays a crucial roles in the membrane phase-separation. Our membrane platform, being capable of monitoring dynamic interactions among lipids and performing the systematic optical analysis, will unveil physiological roles of cholesterols in a variety of biological events.
Collapse
Affiliation(s)
- Yong-Sang Ryu
- School of Electrical and Computer Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea; Sensor System Research Center, Korea Institute of Science and Technology, Seongbuk-gu, Seoul, 02792, South Korea
| | - Hansik Yun
- School of Electrical and Computer Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Taerin Chung
- Inter-University Semiconductor Research Center, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Jeng-Hun Suh
- School of Electrical and Computer Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Sungho Kim
- School of Electrical and Computer Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Kyookeun Lee
- Inter-University Semiconductor Research Center, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Nathan J Wittenberg
- Department of Electrical and Computer Engineering, University of Minnesota, 200 Union St SE, Minneapolis, MN, 55455, USA; Department of Chemistry, Lehigh University, Bethlehem, PA, 18015, USA
| | - Sang-Hyun Oh
- Department of Electrical and Computer Engineering, University of Minnesota, 200 Union St SE, Minneapolis, MN, 55455, USA
| | - Byoungho Lee
- School of Electrical and Computer Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Sin-Doo Lee
- School of Electrical and Computer Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea; Inter-University Semiconductor Research Center, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|
7
|
Yeung SY, Sergeeva Y, Dam T, Jönsson P, Pan G, Chaturvedi V, Sellergren B. Lipid Bilayer-like Mixed Self-Assembled Monolayers with Strong Mobility and Clustering-Dependent Lectin Affinity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8174-8181. [PMID: 31117738 DOI: 10.1021/acs.langmuir.9b01452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Glycans at the surface of cellular membranes modulate biological activity via multivalent association with extracellular messengers. The lack of tuneable simplified models mimicking this dynamic environment complicates basic studies of these phenomena. We here present a series of mixed reversible self-assembled monolayers (rSAMs) that addresses this deficiency. Mixed rSAMs were prepared in water by simple immersion of a negatively charged surface in a mixture of sialic acid- and hydroxy-terminated benzamidine amphiphiles. Surface compositions derived from infrared reflection-absorption spectroscopy (IRAS) and film thickness information (atomic force microscopy, ellipsometry) suggest the latter to be statistically incorporated in the monolayer. These surfaces' affinity for the lectin hemagglutinin revealed a strong dependence of the affinity on the presentation, density, and mobility of the sialic acid ligands. Hence, a spacer length of 4 ethylene glycol and a surface density of 15% resulted in a dissociation constant Kd,multi of 1.3 × 10-13 M, on par with the best di- or tri-saccharide-based binders reported to date, whereas a density of 20% demonstrated complete resistance to hemagglutinin binding. These results correlated with ligand mobility measured by fluorescence recovery after photobleaching which showed a dramatic drop in the same interval. The results have a direct bearing on biological cell surface multivalent recognition involving lipid bilayers and may guide the design of model surfaces and sensors for both fundamental and applied studies.
Collapse
Affiliation(s)
- Sing Yee Yeung
- Department of Biomedical Sciences and Biofilms-Research Center for Biointerfaces (BRCB), Faculty of Health and Society , Malmö University , 205 06 Malmö , Sweden
| | - Yulia Sergeeva
- Department of Biomedical Sciences and Biofilms-Research Center for Biointerfaces (BRCB), Faculty of Health and Society , Malmö University , 205 06 Malmö , Sweden
| | - Tommy Dam
- Division of Physical Chemistry , Lund University , Box 124, 22100 Lund , Sweden
| | - Peter Jönsson
- Division of Physical Chemistry , Lund University , Box 124, 22100 Lund , Sweden
| | - Guoqing Pan
- Department of Biomedical Sciences and Biofilms-Research Center for Biointerfaces (BRCB), Faculty of Health and Society , Malmö University , 205 06 Malmö , Sweden
| | - Vivek Chaturvedi
- Department of Biomedical Sciences and Biofilms-Research Center for Biointerfaces (BRCB), Faculty of Health and Society , Malmö University , 205 06 Malmö , Sweden
| | - Börje Sellergren
- Department of Biomedical Sciences and Biofilms-Research Center for Biointerfaces (BRCB), Faculty of Health and Society , Malmö University , 205 06 Malmö , Sweden
| |
Collapse
|
8
|
Proteinous Polymeric Shell Decorated Nanocrystals for the Recognition of Immunoglobulin M. J Fluoresc 2019; 29:609-617. [PMID: 30963369 DOI: 10.1007/s10895-019-02373-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/25/2019] [Indexed: 10/27/2022]
Abstract
This study demonstrates the preparation of photosensitively orientated and crosslinked proteinous polymeric shell having quantum dot based nanocrystals through Amino acid Decorated and Light Underpinning Conjugation Approach (ANADOLUCA). ANADOLUCA is based on photo-electron transfer method and uses these decorated nanocrystals for specifically and effectively recognition and detection of Immunoglobulin M in the aqueous environment. The conjugation method effectively provides an orientation of affinity pairs on the surface of quantum dots nanocrystals. This photosensitive ruthenium-based amino acid monomer is a synthetic and inexpensive material for the preparation of bioconjugates. The nanocrystals give advantages for using a wide pH and temperature range. The construction and preparation method is applicable to silica materials, superparamagnetic particles, quantum dots, carbon nanotubes, Ag/Au nanoparticles, Au surfaces, and polymeric materials. This prepared proteinous polymeric shell decorated nanocrystals are of great potential in applications in life sciences and can be used in infection case studies or allergy symptoms.
Collapse
|
9
|
Li J, Han L, Li J, Kitova EN, Xiong ZJ, Privé GG, Klassen JS. Detecting Protein-Glycolipid Interactions Using CaR-ESI-MS and Model Membranes: Comparison of Pre-loaded and Passively Loaded Picodiscs. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1493-1504. [PMID: 29654535 DOI: 10.1007/s13361-018-1936-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 06/08/2023]
Abstract
Catch-and-release electrospray ionization mass spectrometry (CaR-ESI-MS), implemented using model membranes (MMs), is a promising approach for the discovery of glycolipid ligands of glycan-binding proteins (GBPs). Picodiscs (PDs), which are lipid-transporting complexes composed of the human sphingolipid activator protein saposin A and phospholipids, have proven to be useful MMs for such studies. The present work compares the use of conventional (pre-loaded) PDs with passively loaded PDs (PLPDs) for CaR-ESI-MS screening of glycolipids against cholera toxin B subunit homopentamer (CTB5). The pre-loaded PDs were prepared from a mixture of purified glycolipid and phospholipid or a mixture of lipids extracted from tissue, while the PLPDs were prepared by incubating PDs containing only phospholipid with glycolipid-containing lipid mixtures in aqueous solution. Time-dependent changes in the composition of the PLPDs produced by incubation with glycomicelles of the ganglioside GM1 were monitored using collision-induced dissociation of the gaseous PD ions and from the extent of ganglioside binding to CTB5 measured by ESI-MS. GM1 incorporation into PDs was evident within a few hours of incubation. At incubation times ≥ 10 days, GM1 binding to CTB5 was indistinguishable from that observed with pre-loaded PDs produced directly from GM1 at the same concentration. Comparison of ganglioside binding to CTB5 measured for pre-loaded PDs and PLPDs prepared from glycolipids extracted from pig and mouse brain revealed that the PLPDs allow for the detection of a greater number of ganglioside ligands. Together, the results of this study suggest PLPDs may have advantages over conventionally prepared PDs for screening glycolipids against GBPs using CaR-ESI-MS. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Jun Li
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Ling Han
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Jianing Li
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Elena N Kitova
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Zi Jian Xiong
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Gilbert G Privé
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada
| | - John S Klassen
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada.
| |
Collapse
|
10
|
Cortázar TM, Wilson IBH, Hykollari A, Reyes EA, Vega NA. Differential recognition of natural and remodeled glycotopes by three Diocleae lectins. Glycoconj J 2018; 35:205-216. [PMID: 29374812 DOI: 10.1007/s10719-018-9812-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/05/2018] [Accepted: 01/10/2018] [Indexed: 10/18/2022]
Abstract
The carbohydrate specificities of Dioclea grandiflora lectins DGL-I1 and DGL-II, and Galactia lindenii lectin II (GLL-II) were explored by use of remodeled glycoproteins as well as by the lectin hemagglutinating activity against erythrocytes from various species with different glycomic profiles. The three lectins exhibited differences in glycan binding specificity but also showed overlapping recognition of some glycotopes (i.e. Tα glycotope for the three lectins; IIβ glycotope for DGL-II and GLL-II lectins); in many cases the interaction with distinct glycotopes was influenced by the structural context, i.e., by the neighbouring sugar residues. Our data complement and expand the existing knowledge about the binding specificity of these three Diocleae lectins, and taken together with results of previous studies, allow us to suggest a functional map of the carbohydrate recognition which illustrate the impact of modification of basic glycotopes enhancing, permiting, or inhibiting their recognition by each lectin.
Collapse
Affiliation(s)
- Tania M Cortázar
- Protein Research Group, Department of Chemistry, Universidad Nacional, Calle 45 # 30-03, Building 451. Lab. 201-1, Bogotá, Colombia.
| | - Iain B H Wilson
- Molecular Glycobiology Research Group, Department für Chemie, Universität für Bodenkultur (BOKU), Muthgasse 18, A-1190, Wien, Austria
| | - Alba Hykollari
- Molecular Glycobiology Research Group, Department für Chemie, Universität für Bodenkultur (BOKU), Muthgasse 18, A-1190, Wien, Austria
| | - Edgar A Reyes
- Protein Research Group, Department of Chemistry, Universidad Nacional, Calle 45 # 30-03, Building 451. Lab. 201-1, Bogotá, Colombia
| | - Nohora A Vega
- Protein Research Group, Department of Chemistry, Universidad Nacional, Calle 45 # 30-03, Building 451. Lab. 201-1, Bogotá, Colombia
| |
Collapse
|
11
|
Han L, Morales LC, Richards MR, Kitova EN, Sipione S, Klassen JS. Investigating the Influence of Membrane Composition on Protein–Glycolipid Binding Using Nanodiscs and Proxy Ligand Electrospray Ionization Mass Spectrometry. Anal Chem 2017; 89:9330-9338. [DOI: 10.1021/acs.analchem.7b02094] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ling Han
- Alberta
Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Luis C. Morales
- Department
of Pharmacology, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Michele R. Richards
- Alberta
Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Elena N. Kitova
- Alberta
Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Simonetta Sipione
- Department
of Pharmacology, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - John S. Klassen
- Alberta
Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| |
Collapse
|
12
|
Han L, Kitova EN, Klassen JS. Detecting Protein-Glycolipid Interactions Using Glycomicelles and CaR-ESI-MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1878-1886. [PMID: 27549393 DOI: 10.1007/s13361-016-1461-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/16/2016] [Accepted: 06/24/2016] [Indexed: 06/06/2023]
Abstract
This study reports on the use of the catch-and-release electrospray ionization mass spectrometry (CaR-ESI-MS) assay, combined with glycomicelles, as a method for detecting specific interactions between water-soluble proteins and glycolipids (GLs) in aqueous solution. The B subunit homopentamers of cholera toxin (CTB5) and Shiga toxin type 1 B (Stx1B5) and the gangliosides GM1, GM2, GM3, GD1a, GD1b, GT1b, and GD2 served as model systems for this study. The CTB5 exhibits broad specificity for gangliosides and binds to GM1, GM2, GM3, GD1a, GD1b, and GT1b; Stx1B5 does not recognize gangliosides. The CaR-ESI-MS assay was used to analyze solutions of CTB5 or Stx1B5 and individual gangliosides (GM1, GM2, GM3, GD1a, GD1b, GT1b, and GD2) or mixtures thereof. The high affinity interaction of CTB5 with GM1 was successfully detected. However, the apparent affinity, as determined from the mass spectra, is significantly lower than that of the corresponding pentasaccharide or when GM1 is presented in model membranes such as nanodiscs. Interactions between CTB5 and the low affinity gangliosides GD1a, GD1b, and GT1b, as well as GD2, which served as a negative control, were detected; no binding of CTB5 to GM2 or GM3 was observed. The CaR-ESI-MS results obtained for Stx1B5 reveal that nonspecific protein-ganglioside binding can occur during the ESI process, although the extent of binding varies between gangliosides. Consequently, interactions detected for CTB5 with GD1a, GD1b, and GT1b are likely nonspecific in origin. Taken together, these results reveal that the CaR-ESI-MS/glycomicelle approach for detecting protein-GL interactions is prone to false positives and false negatives and must be used with caution. Graphical Abstract <!-- [INSERT GRAPHICAL ABSTRACT TEXT HERE] -->.
Collapse
Affiliation(s)
- Ling Han
- Alberta Glycomics Center and Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Elena N Kitova
- Alberta Glycomics Center and Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - John S Klassen
- Alberta Glycomics Center and Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada.
| |
Collapse
|
13
|
Huang ML, Godula K. Nanoscale materials for probing the biological functions of the glycocalyx. Glycobiology 2016; 26:797-803. [PMID: 26916883 PMCID: PMC5018045 DOI: 10.1093/glycob/cww022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/31/2016] [Accepted: 02/16/2016] [Indexed: 12/23/2022] Open
Abstract
Glycans are among the most intriguing carriers of biological information in living systems. The structures of glycans not only convey the cells' physiological state, but also regulate cellular communication and responses by engaging receptors on neighboring cells and in the extracellular matrix. The assembly of simple monosaccharide building blocks into linear or branched oligo- and polysaccharides gives rise to a large repertoire of diverse glycan structures. Despite their structural complexity, individual glycans rarely engage their protein partners with high affinity. Yet, glycans modulate biological processes with exquisite selectivity and specificity. To correctly evaluate glycan interactions and their biological consequences, one needs to look beyond individual glycan structures and consider the entirety of the cell-surface landscape. There, glycans are presented on protein scaffolds, or are linked directly to membrane lipids, forming a complex, hierarchically organized network with specialized functions, called the glycocalyx. Nanoscale glycomaterials, which can mimic the various components of the glycocalyx, have been instrumental in revealing how the presentation of glycans can influence their biological functions. In this review, we wish to highlight some recent developments in this area, while placing emphasis on the applications of glycomaterials providing new insights into the mechanisms through which glycans mediate cellular functions.
Collapse
Affiliation(s)
- Mia L Huang
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093-0358, USA
| | - Kamil Godula
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093-0358, USA
| |
Collapse
|
14
|
Li J, Fan X, Kitova EN, Zou C, Cairo CW, Eugenio L, Ng KKS, Xiong ZJ, Privé GG, Klassen JS. Screening Glycolipids Against Proteins in Vitro Using Picodiscs and Catch-and-Release Electrospray Ionization-Mass Spectrometry. Anal Chem 2016; 88:4742-50. [PMID: 27049760 DOI: 10.1021/acs.analchem.6b00043] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This work describes the application of the catch-and-release electrospray ionization-mass spectrometry (CaR-ESI-MS) assay, implemented using picodiscs (complexes comprised of saposin A and lipids, PDs), to screen mixtures of glycolipids (GLs) against water-soluble proteins to detect specific interactions. To demonstrate the reliability of the method, seven gangliosides (GM1, GM2, GM3, GD1a, GD1b, GD2, and GT1b) were incorporated, either individually or as a mixture, into PDs and screened against two lectins: the B subunit homopentamer of cholera toxin (CTB5) and a subfragment of toxin A from Clostridium difficile (TcdA-A2). The CaR-ESI-MS results revealed that CTB5 binds to six of the gangliosides (GM1, GM2, GM3, GD1a, GD1b, and GT1b), while TcdA-A2 binds to five of them (GM1, GM2, GM3, GD1a, and GT1b). These findings are consistent with the measured binding specificities of these proteins for ganglioside oligosaccharides. Screening mixtures of lipids extracted from porcine brain and a human epithelial cell line against CTB5 revealed binding to multiple GM1 isoforms as well as to fucosyl-GM1, which is a known ligand. Finally, a comparison of the present results with data obtained with the CaR-ESI-MS assay implemented using nanodiscs (NDs) revealed that the PDs exhibited similar or superior performance to NDs for protein-GL binding measurements.
Collapse
Affiliation(s)
- Jun Li
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta , Edmonton, Alberta, Canada T6G 2G2.,Department of Chemistry, University of Alberta , Edmonton, Alberta, Canada T6G 2G2
| | - Xuxin Fan
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta , Edmonton, Alberta, Canada T6G 2G2.,Department of Chemistry, University of Alberta , Edmonton, Alberta, Canada T6G 2G2
| | - Elena N Kitova
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta , Edmonton, Alberta, Canada T6G 2G2.,Department of Chemistry, University of Alberta , Edmonton, Alberta, Canada T6G 2G2
| | - Chunxia Zou
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta , Edmonton, Alberta, Canada T6G 2G2.,Department of Chemistry, University of Alberta , Edmonton, Alberta, Canada T6G 2G2
| | - Christopher W Cairo
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta , Edmonton, Alberta, Canada T6G 2G2.,Department of Chemistry, University of Alberta , Edmonton, Alberta, Canada T6G 2G2
| | - Luiz Eugenio
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta , Edmonton, Alberta, Canada T6G 2G2.,Department of Biological Sciences, University of Calgary , Calgary, Alberta, Canada T2N 1N4
| | - Kenneth K S Ng
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta , Edmonton, Alberta, Canada T6G 2G2.,Department of Biological Sciences, University of Calgary , Calgary, Alberta, Canada T2N 1N4
| | - Zi Jian Xiong
- Department of Biochemistry, University of Toronto , Toronto, Ontario, Canada M5S 1A8
| | - Gilbert G Privé
- Department of Biochemistry, University of Toronto , Toronto, Ontario, Canada M5S 1A8.,Princess Margaret Cancer Centre, University Health Network , Toronto, Ontario, Canada M5G 1L7
| | - John S Klassen
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta , Edmonton, Alberta, Canada T6G 2G2.,Department of Chemistry, University of Alberta , Edmonton, Alberta, Canada T6G 2G2
| |
Collapse
|
15
|
Surface plasmon resonance: a versatile technique for biosensor applications. SENSORS 2015; 15:10481-510. [PMID: 25951336 PMCID: PMC4481982 DOI: 10.3390/s150510481] [Citation(s) in RCA: 587] [Impact Index Per Article: 65.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/24/2015] [Accepted: 04/28/2015] [Indexed: 02/07/2023]
Abstract
Surface plasmon resonance (SPR) is a label-free detection method which has emerged during the last two decades as a suitable and reliable platform in clinical analysis for biomolecular interactions. The technique makes it possible to measure interactions in real-time with high sensitivity and without the need of labels. This review article discusses a wide range of applications in optical-based sensors using either surface plasmon resonance (SPR) or surface plasmon resonance imaging (SPRI). Here we summarize the principles, provide examples, and illustrate the utility of SPR and SPRI through example applications from the biomedical, proteomics, genomics and bioengineering fields. In addition, SPR signal amplification strategies and surface functionalization are covered in the review.
Collapse
|
16
|
Han L, Kitova EN, Li J, Nikjah S, Lin H, Pluvinage B, Boraston AB, Klassen JS. Protein–Glycolipid Interactions Studied in Vitro Using ESI-MS and Nanodiscs: Insights into the Mechanisms and Energetics of Binding. Anal Chem 2015; 87:4888-96. [DOI: 10.1021/acs.analchem.5b00678] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ling Han
- Alberta
Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Elena N. Kitova
- Alberta
Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Jun Li
- Alberta
Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Sanaz Nikjah
- Alberta
Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Hong Lin
- Alberta
Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Benjamin Pluvinage
- Department
of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada V8W 3P6
| | - Alisdair B. Boraston
- Department
of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada V8W 3P6
| | - John S. Klassen
- Alberta
Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| |
Collapse
|
17
|
Leney AC, Fan X, Kitova EN, Klassen JS. Nanodiscs and Electrospray Ionization Mass Spectrometry: A Tool for Screening Glycolipids Against Proteins. Anal Chem 2014; 86:5271-7. [DOI: 10.1021/ac4041179] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aneika C. Leney
- Alberta Glycomics Centre
and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Xuxin Fan
- Alberta Glycomics Centre
and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Elena N. Kitova
- Alberta Glycomics Centre
and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - John S. Klassen
- Alberta Glycomics Centre
and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
18
|
Nasir W, Nilsson J, Olofsson S, Bally M, Rydell GE. Parvovirus B19 VLP recognizes globoside in supported lipid bilayers. Virology 2014; 456-457:364-9. [DOI: 10.1016/j.virol.2014.04.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 03/24/2014] [Accepted: 04/03/2014] [Indexed: 11/30/2022]
|
19
|
Stipcevic T, Knight CP, Kippin TE. Stimulation of adult neural stem cells with a novel glycolipid biosurfactant. Acta Neurol Belg 2013; 113:501-6. [PMID: 23846482 DOI: 10.1007/s13760-013-0232-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 07/02/2013] [Indexed: 10/26/2022]
Abstract
Glycolipids are amphipathic molecules which are highly expressed on cell membranes in skin and brain where they mediate several key cellular processes. Neural stem cells are defined as undifferentiated, proliferative, multipotential cells with extensive self-renewal and are responsive to brain injury. Di-rhamnolipid: α-L-rhamnopyranosyl-(1-2)α-L-rhamnopyranosyl-3-hydroxydecanoyl-3-hydroxydecanoic acid, also referred to as di-rhamnolipid BAC-3, is a glycolipid isolated from the bacteria Pseudomonas aeruginosa. In the previous studies, di-rhamnolipid enhanced dermal tissue healing and regeneration. The present study provides the first assessment of di-rhamnolipid, and glycolipid biosurfactants in general, on the nervous system. Treatment of neural stem cells isolated from the lateral ventricle of adult mice and cultured in defined media containing growth factors at 0.5 and 1 μg/ml of di-rhamnolipid increased the number of neurospheres (2.7- and 2.8-fold, respectively) compared to controls and this effect remained even after passaging in the absence of di-rhamnolipid. In addition, neural stem cells treated with di-rhamnolipid at 50 and 100 μg/ml in defined media supplemented with fetal calf serum and without growth factors exhibited increased cell viability, indicating an interaction between di-rhamnolipid and serum components in the regulation of neural stem cells and neuroprogenitors. Intracerebroventricular administration of di-rhamnolipid at 300 and 120 ng/day increased the number of neurospheres (1.3- and 1.63-fold, respectively) that could be derived from the anterior lateral ventricles of adult mice. These results indicate that di-rhamnolipid stimulates proliferation of neural stem cells and increases their endogenous pools which may have therapeutic potential in managing neurodegenerative or neuropsychiatric disorders and promoting nervous tissue regeneration following injury.
Collapse
|
20
|
Datta P, Linhardt RJ, Sharfstein ST. An 'omics approach towards CHO cell engineering. Biotechnol Bioeng 2013; 110:1255-71. [DOI: 10.1002/bit.24841] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 12/19/2012] [Accepted: 01/02/2013] [Indexed: 12/15/2022]
|
21
|
Zeng X, Andrade CAS, Oliveira MDL, Sun XL. Carbohydrate–protein interactions and their biosensing applications. Anal Bioanal Chem 2011; 402:3161-76. [DOI: 10.1007/s00216-011-5594-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 11/02/2011] [Accepted: 11/20/2011] [Indexed: 01/16/2023]
|
22
|
Wang Y, Wang J, Yang F, Yang X. Probing Biomolecular Interactions with Dual Polarization Interferometry: Real-Time and Label-Free Coralyne Detection by Use of Homoadenine DNA Oligonucleotide. Anal Chem 2011; 84:924-30. [DOI: 10.1021/ac2019443] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yong Wang
- State Key
Laboratory of Electroanalytical
Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022,
China
- Graduate School of the Chinese Academy of Sciences, Beijing 100039,
China
| | - Juan Wang
- State Key
Laboratory of Electroanalytical
Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022,
China
- Graduate School of the Chinese Academy of Sciences, Beijing 100039,
China
| | - Fan Yang
- State Key
Laboratory of Electroanalytical
Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022,
China
| | - Xiurong Yang
- State Key
Laboratory of Electroanalytical
Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022,
China
| |
Collapse
|
23
|
Structure and Dynamics of Glycosphingolipids in Lipid Bilayers: Insights from Molecular Dynamics Simulations. ACTA ACUST UNITED AC 2011. [DOI: 10.1155/2011/950256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Glycolipids are important constituents of biological membranes, and understanding their structure and dynamics in lipid bilayers provides insights into their physiological and pathological roles. Experimental techniques have provided details into their behavior at model and biological membranes; however, computer simulations are needed to gain atomic level insights. This paper summarizes the insights obtained from MD simulations into the conformational and orientational dynamics of glycosphingolipids and their exposure, hydration, and hydrogen-bonding interactions in membrane environment. The organization of glycosphingolipids in raft-like membranes and their modulation of lipid membrane structure are also reviewed.
Collapse
|
24
|
Cholesterol modulates glycolipid conformation and receptor activity. Nat Chem Biol 2011; 7:260-2. [PMID: 21460830 DOI: 10.1038/nchembio.551] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 02/08/2011] [Indexed: 02/07/2023]
Abstract
We document a new dimension of surface recognition in which communication is controlled through the collective behavior of lipids. Membrane cholesterol induces a tilt in glycolipid receptor headgroup, resulting in loss of access for ligand binding. This property appears to organize erythrocyte blood group presentation and glycolipid receptor function during the activation of sperm fertility, suggesting that lipid 'allostery' is a means to regulate membrane recognition processes.
Collapse
|
25
|
Hamamura K, Tsuji M, Hotta H, Ohkawa Y, Takahashi M, Shibuya H, Nakashima H, Yamauchi Y, Hashimoto N, Hattori H, Ueda M, Furukawa K, Furukawa K. Functional activation of Src family kinase yes protein is essential for the enhanced malignant properties of human melanoma cells expressing ganglioside GD3. J Biol Chem 2011; 286:18526-37. [PMID: 21454696 DOI: 10.1074/jbc.m110.164798] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The possible roles of Src family kinases in the enhanced malignant properties of melanomas related to GD3 expression were analyzed. Among Src family kinases only Yes, not Fyn or Src, was functionally involved in the increased cell proliferation and invasion of GD3-expressing transfectant cells (GD3+). Yes was located upstream of p130Cas and paxillin and at an equivalent level to focal adhesion kinase. Yes underwent autophosphorylation even before serum treatment and showed stronger kinase activity in GD3+ cells than in GD3- cells following serum treatment. Coimmunoprecipitation experiments revealed that Yes bound to focal adhesion kinase or p130Cas more strongly in GD3+ cells than in GD3- cells. As a possible mechanism for the enhancing effects of GD3 on cellular phenotypes, it was shown that majority of Yes was localized in glycolipid-enriched microdomain/rafts in GD3+ cells even before serum treatment, whereas it was scarcely detected in glycolipid-enriched microdomain/rafts in GD3- cells. An in vitro kinase assay of Yes revealed that coexistence of GD3 with Yes in membranous environments enhances the kinase activity of GD3- cell-derived Yes toward enolase, p125, and Yes itself. Knockdown of GD3 synthase resulted in the alleviation of tumor phenotypes and reduced activation levels of Yes. Taken together, these results suggest a role of GD3 in the regulation of Src family kinases.
Collapse
Affiliation(s)
- Kazunori Hamamura
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Rydell GE, Dahlin AB, Höök F, Larson G. QCM-D studies of human norovirus VLPs binding to glycosphingolipids in supported lipid bilayers reveal strain-specific characteristics. Glycobiology 2009; 19:1176-84. [PMID: 19625485 DOI: 10.1093/glycob/cwp103] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Susceptibility to norovirus infection has been linked to secretor status. Norovirus virus-like particles (VLPs; 0- 20 microg/mL) from the Norwalk (GI.1) and Dijon (GII.4) strains were assayed for binding to H type 1 and Lewis a pentaglycosylceramides, incorporated in laterally fluid supported lipid bilayers. Binding kinetics was monitored in real time in 40 microL stationary reaction chambers, using quartz crystal microbalance with dissipation (QCM-D) monitoring. Both strains displayed binding only to H type 1 and not to Lewis a glycosphingolipids, typical for epithelial cells of susceptible and resistant individuals, respectively. This binding specificity was confirmed by VLPs binding to the two glycosphingolipids chromatographed on TLC-plates. Experiments using bilayers with mixtures of H type 1 and Lewis a, with the total glycosphingolipid concentration constant at 10 wt%, showed that binding was only dependent on H type 1 concentrations and identical to experiments without additional Lewis a. Both strains showed a threshold concentration of H type 1 below which no binding was observable. The threshold was one order of magnitude higher for the Dijon strain (2 wt% versus 0.25 wt%) demonstrating that the interaction with a significantly larger number of glycosphingolipids was needed for the binding of the Dijon strain. The difference in threshold glycosphingolipid concentrations for the two strains suggests a lower affinity for the glycosphingolipid for the Dijon compared to the Norwalk strain. We propose that VLPs initially bind only a few glycosphingolipids but the binding is subsequently strengthened by lateral diffusion of additional glycosphingolipids moving into the interaction area.
Collapse
Affiliation(s)
- Gustaf E Rydell
- Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | | | | |
Collapse
|
27
|
Tessier MB, Demarco ML, Yongye AB, Woods RJ. Extension of the GLYCAM06 Biomolecular Force Field to Lipids, Lipid Bilayers and Glycolipids. MOLECULAR SIMULATION 2008; 34:349-363. [PMID: 22247593 DOI: 10.1080/08927020701710890] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
GLYCAM06 is a generalisable biomolecular force field that is extendible to diverse molecular classes in the spirit of a small-molecule force field. Here we report parameters for lipids, lipid bilayers and glycolipids for use with GLYCAM06. Only three lipid-specific atom types have been introduced, in keeping with the general philosophy of transferable parameter development. Bond stretching, angle bending, and torsional force constants were derived by fitting to quantum mechanical data for a collection of minimal molecular fragments and related small molecules. Partial atomic charges were computed by fitting to ensemble-averaged quantum-computed molecular electrostatic potentials.In addition to reproducing quantum mechanical internal rotational energies and experimental valence geometries for an array of small molecules, condensed-phase simulations employing the new parameters are shown to reproduce the bulk physical properties of a DMPC lipid bilayer. The new parameters allow for molecular dynamics simulations of complex systems containing lipids, lipid bilayers, glycolipids, and carbohydrates, using an internally consistent force field. By combining the AMBER parameters for proteins with the GLYCAM06 parameters, it is also possible to simulate protein-lipid complexes and proteins in biologically relevant membrane-like environments.
Collapse
Affiliation(s)
- Matthew B Tessier
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
28
|
Abstract
We report the effects of ligand presentation on the binding of aqueous proteins to solid supported lipid bilayers. Specifically, we show that the equilibrium dissociation constant can be strongly affected by ligand lipophilicity and linker length/structure. The apparent equilibrium dissociation constants (K(D)) were compared for two model systems, biotin/anti-biotin and 2,4-dinitrophenyl (DNP)/anti-DNP, in bulk solution and at model membrane surfaces. The binding constants in solution were obtained from fluorescence anisotropy measurements. The surface binding constants were determined by microfluidic techniques in conjunction with total internal reflection fluorescence microscopy. The results showed that the bulk solution equilibrium dissociation constants for anti-biotin and anti-DNP were almost identical, K(D)(bulk) = 1.7 +/- 0.2 nM vs. 2.9 +/- 0.1 nM. By contrast, the dissociation constant for anti-biotin antibody was three orders of magnitude tighter than for anti-DNP at a lipid membrane interface, K(D) = 3.6 +/- 1.1 nM vs. 2.0 +/- 0.2 microM. We postulate that the pronounced difference in surface binding constants for these two similar antibodies is due to differences in the ligands' relative lipophilicity, i.e., the more hydrophobic DNP molecules had a stronger interaction with the lipid bilayers, rendering them less available to incoming anti-DNP antibodies compared with the biotin/anti-biotin system. However, when membrane-bound biotin ligands were well screened by a poly(ethylene glycol) (PEG) polymer brush, the K(D) value for the anti-biotin antibody could also be weakened by three orders of magnitude, 2.4 +/- 1.1 microM. On the other hand, the dissociation constant for anti-DNP antibodies at a lipid interface could be significantly enhanced when DNP haptens were tethered to the end of very long hydrophilic PEG lipopolymers (K(D) = 21 +/- 10 nM) rather than presented on short lipid-conjugated tethers. These results demonstrate that ligand presentation strongly influences protein interactions with membrane-bound ligands.
Collapse
|
29
|
Albertorio F, Daniel S, Cremer. PS. Supported lipopolymer membranes as nanoscale filters: simultaneous protein recognition and size-selection assays. J Am Chem Soc 2007; 128:7168-9. [PMID: 16734463 PMCID: PMC2548332 DOI: 10.1021/ja062010r] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A technique for size-selective discrimination of protein analytes was developed by incorporating poly(ethylene glycol) (PEG) lipopolymers into supported lipid bilayers. The membranes also contained biotinylated lipids, which recognized both streptavidin and anti-biotin IgG. By employing various PEG lipopolymer concentrations, clear discrimination against anti-biotin (Mw = 150 000 Da) binding could be observed, which became more pronounced at higher polymer densities. On the other hand, streptavidin (Mw = 52 800) binding to the membrane remained unaffected even at PEG concentrations that were well into the mushroom-to-brush phase transition. These observations were exploited to create an on-chip ligand-receptor binding assay that favored streptavidin binding over anti-biotin by several orders of magnitude in the presence of the lipopolymer. Control experiments revealed that the two proteins are bound to similar extents from a multi-protein analyte solution in the absence of PEG.
Collapse
|
30
|
Patel RY, Balaji PV. Characterization of the conformational and orientational dynamics of ganglioside GM1 in a dipalmitoylphosphatidylcholine bilayer by molecular dynamics simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:1628-40. [PMID: 17408589 DOI: 10.1016/j.bbamem.2007.02.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 02/10/2007] [Accepted: 02/23/2007] [Indexed: 01/18/2023]
Abstract
The structure and dynamics of a single GM1 (Gal5-beta1,3-GalNAc4-beta1,4-(NeuAc3-alpha2,3)-Gal2-beta1,4-Glc1-beta1,1-Cer) embedded in a DPPC bilayer have been studied by MD simulations. Eleven simulations, each of 10 ns productive run, were performed with different initial conformations of GM1. Simulations of GM1-Os in water and of a DPPC bilayer were also performed to delineate the effects of the bilayer and GM1 on the conformational and orientational dynamics of each other. The conformation of the GM1 headgroup observed in the simulations is in agreement with those reported in literature; but the headgroup is restricted when embedded in the bilayer. NeuAc3 is the outermost saccharide towards the water phase. Glc1 and Gal2 prefer a parallel, and NeuAc3, GalNac4 and Gal5 prefer a perpendicular, orientation with respect to the bilayer normal. The overall characteristics of the bilayer are not affected by the presence of GM1; however, GM1 does influence the DPPC molecules in its immediate vicinity. The implications of these observations on the specific recognition and binding of GM1 embedded in a lipid bilayer by exogenous proteins as well as proteins embedded in lipids have been discussed.
Collapse
Affiliation(s)
- Ronak Y Patel
- School of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | | |
Collapse
|
31
|
Conway MCP, Whittal RM, Baldwin MA, Burlingame AL, Balhorn R. Electrospray mass spectrometry of NeuAc oligomers associated with the C fragment of the tetanus toxin. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2006; 17:967-976. [PMID: 16713287 DOI: 10.1016/j.jasms.2006.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2005] [Revised: 03/09/2006] [Accepted: 03/10/2006] [Indexed: 05/09/2023]
Abstract
The Clostridial neurotoxins, botulinum and tetanus, gain entry into motor neurons by binding to the sialic or N-acetylneuraminic acid (NeuAc) residues of gangliosides and specific protein receptors attached to the cell's surface. While the C-fragment of tetanus toxin (TetC) has been identified to be the ganglioside binding domain, remarkably little is known about how this domain discriminates between the structural features of different gangliosides. We have used electrospray ionization mass spectrometry (ESI-MS) to examine the formation of complexes between TetC and carbohydrates containing NeuAc groups to determine how NeuAc residues contribute to ganglioside binding. ESI-MS was used to obtain an estimate of the dissociation constants (KD values) for TetC binding to a number of related NeuAc-containing carbohydrates (sialyllactose and disialyllactose), as well as six (NeuAc)n oligomers (n = 1-6). KD values were found to range between approximately 10-35 microM. The strength of the interactions between the C fragment and (NeuAc)n are consistent with the topography of the targeting domain of tetanus toxin and the nature of its carbohydrate binding sites. These results suggest that the targeting domain of tetanus toxin contains two binding sites that can accommodate NeuAc (or a dimer) and that NeuAc may play an important role in ganglioside binding and molecular recognition, a process critical for normal cell function and one frequently exploited by toxins, bacteria, and viruses to facilitate their entrance into cells.
Collapse
Affiliation(s)
- Maria C Prieto Conway
- Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Randy M Whittal
- Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California, San Francisco, California, USA
| | - Michael A Baldwin
- Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California, San Francisco, California, USA
| | - A L Burlingame
- Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California, San Francisco, California, USA
| | - Rod Balhorn
- Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, 7000 East Avenue, 94550, Livermore, CA, USA.
| |
Collapse
|
32
|
Imura T, Ohta N, Inoue K, Yagi N, Negishi H, Yanagishita H, Kitamoto D. Naturally Engineered Glycolipid Biosurfactants Leading to Distinctive Self-Assembled Structures. Chemistry 2006; 12:2434-40. [PMID: 16374891 DOI: 10.1002/chem.200501199] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Self-assembling properties of "natural" glycolipid biosurfactants, mannosyl-erythritol lipids A and B (MEL-A, MEL-B), which are abundantly produced from yeast strains, were investigated by using the fluorescence-probe method, dynamic light-scattering (DLS) analysis, freeze-fracture transmission electron microscopy (FF-TEM), and synchrotron small/wide-angle X-ray scattering (SAXS/WAXS) analysis, among other methods. Both MEL-A and MEL-B exhibit excellent self-assembly properties at extremely low concentrations; they self-assemble into large unilamellar vesicles (LUV) just above their critical-aggregation concentration (CAC). The CAC(I) value was found to be 4.0x10(-6) M for MEL-A and 6.0x10(-6) M for MEL-B. Moreover, the self-assembled structure of MEL-A above a CAC(II) value of 2.0x10(-5) M was found to drastically change into sponge structures (L3) composed of a network of randomly connected bilayers that are usually obtained from a complicated multicomponent "synthetic" surfactant system. Interestingly, the average water-channel diameter of the sponge structure was 100 nm. This is relatively large compared with those obtained from "synthetic" surfactant systems. In addition, MEL-B, which has a hydroxyl group at the C-4' position on mannose instead of an acetyl group, gives only one CAC; the self-assembled structure of MEL-B seems to gradually move from LUV to multilamellar vesicles (MLV) with lattice constants of 4.4 nm, depending on the concentration. Furthermore, the lyotropic-liquid-crystal-phase observation at high concentrations demonstrates the formation of an inverted hexagonal phase (H2) for MEL-A, together with a lamella phase (L(alpha)) for MEL-B, indicating a difference between MEL-A and MEL-B molecules in the spontaneous curvature of the assemblies. These results clearly show that the difference in spontaneous curvature caused by the single acetyl group on the head group probably decides the direction of self-assembly of glycolipid biosurfactants. The unique and complex molecular structures with several chiral centers that are molecularly engineered by microorganisms must have led to the sophisticated self-assembling properties of the glycolipid biosurfactants.
Collapse
Affiliation(s)
- Tomohiro Imura
- Research Institute for Innovation in Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 5-2, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
To take its place alongside genomics and proteomics, glycoscience needs recognition from scientists
Collapse
|
34
|
Albertorio F, Diaz AJ, Yang T, Chapa VA, Kataoka S, Castellana ET, Cremer PS. Fluid and air-stable lipopolymer membranes for biosensor applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:7476-82. [PMID: 16042482 DOI: 10.1021/la050871s] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The behavior of poly(ethylene glycol) (PEG) conjugated lipids was investigated in planar supported egg phosphatidylcholine bilayers as a function of lipopolymer density, chain length of the PEG moiety, and type of alkyl chains on the PEG lipid. Fluorescence recovery after photobleaching measurements verified that dye-labeled lipids in the membrane as well as the lipopolymer itself maintained a substantial degree of fluidity under most conditions that were investigated. PEG densities exceeding the onset of the mushroom-to-brush phase transition were found to confer air stability to the supported membrane. On the other hand, substantial damage or complete delamination of the lipid bilayer was observed at lower polymer densities. The presence of PEG in the membrane did not substantially hinder the binding of streptavidin to biotinylated lipids present in the bilayer. Furthermore, above the onset of the transition into the brush phase, the protein binding properties of these membranes were found to be very resilient upon removal of the system from water, rigorous drying, and rehydration. These results indicate that supported phospholipid bilayers containing lipopolymers show promise as rugged sensor platforms for ligand-receptor binding.
Collapse
Affiliation(s)
- Fernando Albertorio
- Department of Chemistry, 3255 TAMU, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Affiliation(s)
- Raz Jelinek
- Department of Chemistry and Staedler Minerva Center for Mesoscopic Macromolecular Engineering, Ben Gurion University of the Negev, Beersheva 84105, Israel.
| | | |
Collapse
|
36
|
Abstract
Noroviruses cause the majority of acute viral gastroenteritis cases that occur worldwide. The increased recognition of noroviruses as the cause of outbreaks and sporadic disease is due to the recent availability of improved norovirus-specific diagnostics. Transmission of these viruses is facilitated by their high prevalence in the community, shedding of infectious virus particles from asymptomatic individuals and the high stability of the virus in the environment. Currently, the spectrum of clinical disease and the understanding of host susceptibility factors are changing. Cases of chronic norovirus gastroenteritis have been observed in transplant recipients and unusual clinical presentations have been recognized in otherwise healthy adults that are under physical stress. Recently, noroviruses were found to bind to gut-expressed carbohydrates, leading to a correlation between a person's genetically determined carbohydrate expression and their susceptibility to Norwalk virus infection. Greater community surveillance and further investigation of carbohydrate receptor-binding properties could provide further insights into norovirus transmission, susceptibility and pathogenesis, and should aid in developing vaccines and antiviral therapies for this common viral disease.
Collapse
Affiliation(s)
- Anne M Hutson
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, One Baylor Plaza BCM-385, Houston, TX 77030, USA
| | - Robert L Atmar
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, One Baylor Plaza BCM-385, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mary K Estes
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, One Baylor Plaza BCM-385, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
37
|
Ferracci G, Seagar M, Joël C, Miquelis R, Lévêque C. Real time analysis of intact organelles using surface plasmon resonance. Anal Biochem 2004; 334:367-75. [PMID: 15494144 DOI: 10.1016/j.ab.2004.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Indexed: 10/26/2022]
Abstract
Membrane proteins remain refractory to standard protein chip analysis. They are typically expressed at low densities in distinct subcellular compartments, their biological activity can depend on assembly into macromolecular complexes in a specific lipid environment. We report here a real-time, label-free method to analyze membrane proteins inserted in isolated native synaptic vesicles. Using surface plasmon resonance-based biomolecular interaction analysis (Biacore), organelle capture from minute quantities of 10,000 g brain supernatant (1-10 microg) was monitored. Immunological and morphological characterization indicated that pure intact synaptic vesicles were immobilized on sensor chips. Vesicle chips were stable for days, allowing repetitive use with multiple analytes. This method provides an efficient way in which to characterize organelle membrane components in their native context. Organelle chips allow a broad range of measurements, including interactions of exogenous ligands with the organelle surface (kinetics, Kd), and protein profiling.
Collapse
Affiliation(s)
- Géraldine Ferracci
- Unité de Méthodologie des Interactions Moléculaires, Institut Jean Roche, Faculté de Médecine secteur Nord, 13916 Marseille, France
| | | | | | | | | |
Collapse
|
38
|
MacKenzie CR, Jennings HJ. Characterization of polysaccharide conformational epitopes by surface plasmon resonance. Methods Enzymol 2003; 363:340-54. [PMID: 14579587 DOI: 10.1016/s0076-6879(03)01063-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
SPR techniques can provide a wealth of insight into the nature of protein-carbohydrate interactions. Information not obtained readily by other methodologies can be gathered relatively quickly in a label-free manner with low sample consumption. This chapter focused on two applications in which SPR has been used to map conformational epitopes on bacterial polysaccharides recognized by protective antibodies. In one example, methods for demonstrating the conformational nature of the epitope recognized by an anti-GBS antibody were described. Dramatic epitopic stabilization at 2 repeating units with further significant stabilization between 7 and 20 repeating units was demonstrated. In a second example, SPR methods were employed in characterization of the epitope recognized by a protective antibody against the group B meningococcus. It was shown that the antibody bound a long epitope, in excess of eight monosaccharides and probably helical, on NPr-GBMP but did not bind to GBMP. The binding of the protective antibody to GBMP only when GBMP is cell associated, or with an attached lipid, indicated that the protective GBM epitope consists of more than GBMP. NPr-GBMP mimics a cell surface complex consisting of extended helical portions of the GBMP in association with a second molecule, possibly a phosphoglycerolipid. SPR experiments indicated that the protective nature of certain antibodies induced by the NPr-GBMP vaccine is attributable to their recognition of an abundant internal epitope on NPr-GBMP and cell-associated GBMP. A nonprotective antibody, specific for NPr-GBMP, recognized a terminal and consequently minor epitope on the polysaccharide. Low levels of this nonprotective antibody binding to cells and unpurified polysaccharide confirmed recognition of a minor epitope on the natural antigen as well. In contrast, a protective antibody exhibited a high level of binding to the cell-associated antigen.
Collapse
Affiliation(s)
- C Roger MacKenzie
- Institute for Biological Sciences, National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A OR6, Canada
| | | |
Collapse
|
39
|
Laurent N, Lafont D, Dumoulin F, Boullanger P, Mackenzie G, Kouwer PHJ, Goodby JW. Synthesis of Amphiphilic Phenylazophenyl Glycosides and a Study of Their Liquid Crystal Properties. J Am Chem Soc 2003; 125:15499-506. [PMID: 14664596 DOI: 10.1021/ja037347x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several 4-(4'-N,N-didodecylaminophenylazo)phenyl 1,2-trans glycosides 5a-e with various carbohydrate heads (beta-D-gluco, beta-D-galacto, beta-lacto, beta-D-xylo, and alpha-D-manno) have been synthesized. The key step was the formation of phenyldiazonium tetrafluoroborates 2a-e from the per-O-acetylated 4-aminophenyl glycosides 1a-e. These salts were condensed with N,N-didodecylaniline under phase transfer conditions and the per-O-acetylated 4-(4'-N,N-didodecylaminophenylazo)phenyl 1,2-trans glycosides 4a-e were fully de-O-acetylated by the Zemplén method. The self-organizing liquid crystal properties of the compounds were investigated by a variety of techniques, including polarized light microscopy, differential scanning calorimetry, and X-ray diffraction. All but one of the materials exhibited smectic A, lamellar phases. Remarkably, the glucose derivative exhibited a rectangular disordered columnar phase. This result has implications with respect to the induced curvature created by the recognition processes of the glucose headgroup relative to the other sugar moieties and to the prevalence of various glycolipids in cell membranes
Collapse
Affiliation(s)
- Nicolas Laurent
- Laboratoire de Chimie Organique II, Unité Mixte de Recherche CNRS 5181, Université Lyon 1, Chimie Physique Electronique de Lyon, 43 Bd du 11 Novembre 1918, F 69622 Villeurbanne, France
| | | | | | | | | | | | | |
Collapse
|
40
|
Mozsolits H, Aguilar MI. Surface plasmon resonance spectroscopy: an emerging tool for the study of peptide-membrane interactions. Biopolymers 2003; 66:3-18. [PMID: 12228917 DOI: 10.1002/bip.10200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The interactions between peptides and membranes mediate a wide variety of biological processes, and characterization of the molecular details of these interactions is central to our understanding of cellular events such as protein trafficking, cellular signaling and ion-channel formation. A wide variety of biophysical techniques have been combined with the use of model membrane systems to study peptide-membrane interactions, and have provided important information on the relationship between membrane-active peptide structure and their biological function. However, what has generally not been reported is a detailed analysis of the affinity of peptide for different membrane systems, which has largely been due to the difficulty in obtaining this information. To address this issue, surface plasmon resonance (SPR) spectroscopy has recently been applied to the study of biomembrane-based systems using both planar mono- or bilayers or liposomes. This article provides an overview of these recent applications that demonstrate the potential of SPR to enhance our molecular understanding of membrane-mediated peptide function.
Collapse
Affiliation(s)
- Henriette Mozsolits
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | | |
Collapse
|
41
|
Investigating the interaction of the toxin ricin and its B-chain with immobilised glycolipids in supported phospholipid membranes by surface plasmon resonance. Colloids Surf B Biointerfaces 2003. [DOI: 10.1016/s0927-7765(03)00024-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Im JH, Yanagishita H, Ikegami T, Takeyama YI, Idemoto Y, Koura N, Kitamoto D. Mannosylerythritol lipids, yeast glycolipid biosurfactants, are potential affinity ligand materials for human immunoglobulin G. J Biomed Mater Res A 2003; 65:379-85. [PMID: 12746885 DOI: 10.1002/jbm.a.10491] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Three mannosylerythritol lipids (MEL-A, -B, and -C), yeast glycolipid biosurfactants, were independently attached to poly (2-hydroxyethyl methacrylate) beads (PHEMA), and the three obtained MEL-PHEMA composites were examined for their binding affinity to human immunoglobulin G (HIgG). Of the three composites, the composite bearing MEL-A exhibited the highest binding capacity for HIgG. The binding amount of HIgG increased with increased applied concentration, reaching 106 mg HIgG (per g of composite), with a binding yield of 81%. Interestingly, the protein binding to the composite appeared to follow two different modes (Langmuir type and Freundlich type) depending on the applied concentration. The binding amount of human serum albumin to the composite was much smaller than that of HIgG. The bound human serum albumin, however, had minimal effect on the subsequent binding of HIgG, indicating that the two proteins have different binding sites onto the composite. More significantly, the bound HIgG was efficiently recovered under significantly mild elution conditions: Approximately 90% of the protein was eluted from the composite with phosphate buffer at pH 7. These results indicate that the glycolipid biosurfactant may have great potential as an affinity ligand material for HIgG.
Collapse
Affiliation(s)
- Jae Hong Im
- Research Institute for Green Technology, National Institute of Advanced Industrial Science and Technology, Central 5-2, Higashi 1-1, Tsukuba, Ibaraki 305-8565, Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
Kitamoto D, Isoda H, Nakahara T. Functions and potential applications of glycolipid biosurfactants — from energy-saving materials to gene delivery carriers —. J Biosci Bioeng 2002. [DOI: 10.1016/s1389-1723(02)80149-9] [Citation(s) in RCA: 314] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Siguier JP, Major M, Balland O. Development of a new method to characterize (SMBV) antigen formulations using surface plasmon resonance technology. Int J Pharm 2002; 242:411-5. [PMID: 12176290 DOI: 10.1016/s0378-5173(02)00227-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Supra Molecular Biovectors (SMBV) are nanoparticles composed by a polysaccharidic core surrounded by a lipid bilayer. They are designed for drug delivery and vaccine and can be administrated by nasal route. The association rate and the stability of association between active principle (AP) or antigens (Ag) with SMBV can be evaluated using the plasmon resonance technology using a BIAcore X system and a HPA hydrophobic sensor chip. AP, Ag and/or adjuvant molecule solutions are injected over SMBV saturated HPA sensor chip surface. Using a very small quantity of material, this technique allows us to quickly have an overview of complex formulations using SMBV. It is also the fastest screening technique to select the best SMBV for each Ag and the best formulation process.
Collapse
Affiliation(s)
- J P Siguier
- Biovector Therapeutics S.A., Chemin du Chene Vert, 31676 Cedex, Labege, France.
| | | | | |
Collapse
|
45
|
|
46
|
Comparative analysis of ganglioside conformations by MD simulations: implications for specific recognition by proteins. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s0166-1280(01)00813-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Vasudevan SV, Balaji PV. Molecular dynamics simulations of alpha2 --> 8-linked disialoside: conformational analysis and implications for binding to proteins. Biopolymers 2002; 63:168-80. [PMID: 11787005 DOI: 10.1002/bip.10019] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Computational methods have played a key role in elucidating the various three-dimensional structures of oligosaccharides. Such structural information, together with other experimental data, leads to a better understanding of the role of oligosaccharide in various biological processes. The disialoside Neu5Ac-alpha2-->8-Neu5Ac appears as the terminal glycan in glycoproteins and glycolipids, and is known to play an important role in various events of cellular communication. Neurotoxins such as botulinum and tetanus require Neu5Ac-alpha2 --> 8-Neu5Ac for infecting the host. Glycoconjugates containing this disialoside and the enzymes catalyzing their biosynthesis are also regulated during cell growth, development, and differentiation. Unlike other biologically relevant disaccharides that have only two linkage bonds, the alpha2-->8-linked disialoside has four: C2-O, O-C8', C8'-C7', and C7'-C6'. The present report describes the results from nine 1 ns MD simulations of alpha2-->8-linked disialoside (Neu5Ac-alpha2-->8-Neu5Ac); simulations were run using GROMOS96 by explicitly considering the solvent molecules. Conformations around the O-C8' bond are restricted to the +sc/+ap regions due to stereochemical reasons. In contrast, conformations around the C2-O and C8'-C7' bonds were found to be largely unrestricted and all the three staggered regions are accessible. The conformations around the C7'-C6' bond were found to be in either the -sc or the anti region. These results are in excellent agreement with the available NMR and potential energy calculation studies. Overall, the disaccharide is flexible and adopts mainly two ensembles of conformations differing in the conformation around the C7'-C6' bond. The flexibility associated with this disaccharide allows for better optimization of intermolecular contacts while binding to proteins and this may partially compensate for the loss of conformational entropy that may be incurred due to disaccharide's flexibility.
Collapse
Affiliation(s)
- Sheeja V Vasudevan
- Biotechnology Center, Indian Institute of Technology, Bombay, Powai, Mumbai 400 076, India
| | | |
Collapse
|
48
|
Unravelling Carbohydrate Interactions with Biosensors Using Surface Plasmon Resonance (SPR) Detection. ACTA ACUST UNITED AC 2001. [DOI: 10.1007/3-540-45010-6_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
49
|
Im JH, Nakane T, Yanagishita H, Ikegami T, Kitamoto D. Mannosylerythritol lipid, a yeast extracellular glycolipid, shows high binding affinity towards human immunoglobulin G. BMC Biotechnol 2001; 1:5. [PMID: 11604104 PMCID: PMC57981 DOI: 10.1186/1472-6750-1-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2001] [Accepted: 09/11/2001] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND There have been many attempts to develop new materials with stability and high affinity towards immunoglobulins. Some of glycolipids such as gangliosides exhibit a high affinity toward immunoglobulins. However, it is considerably difficult to develop these glycolipids into the practical separation ligand due to their limited amounts. We thus focused our attention on the feasible use of "mannosylerythritol lipid A", a yeast glycolipid biosurfactant, as an alternative ligand for immunoglobulins, and undertook the investigation on the binding between mannosylerythritol lipid A (MEL-A) and human immunoglobulin G (HIgG). RESULTS In ELISA assay, MEL-A showed nearly the same binding affinity towards HIgG as that of bovine ganglioside GM1. Fab of human IgG was considered to play a more important role than Fc in the binding of HIgG by MEL-A. The bound amount of HIgG increased depending on the attached amount of MEL-A onto poly (2-hydroxyethyl methacrylate) (polyHEMA) beads, whereas the amount of human serum albumin slightly decreased. Binding-amount and -selectivity of HIgG towards MEL-A were influenced by salt species, salt concentration and pH in the buffer solution. The composite of MEL-A and polyHEMA, exhibited a significant binding constant of 1.43 x 10(6) (M(-1)) for HIgG, which is approximately 4-fold greater than that of protein A reported. CONCLUSIONS MEL-A shows high binding-affinity towards HIgG, and this is considered to be due to "multivalent effect" based on the binding molar ratio. This is the first report on the binding of a natural human antibody towards a yeast glycolipid.
Collapse
Affiliation(s)
- Jae Hong Im
- New Energy and Industrial Technology Development Organization (NEDO), Japan
| | - Takashi Nakane
- Research Institute of Green Technology, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 5, 1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Hiroshi Yanagishita
- Research Institute of Green Technology, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 5, 1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Toru Ikegami
- Research Institute of Green Technology, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 5, 1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Dai Kitamoto
- Research Institute of Green Technology, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 5, 1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
50
|
Fisher MI, Tjärnhage T. Structure and activity of lipid membrane biosensor surfaces studied with atomic force microscopy and a resonant mirror. Biosens Bioelectron 2001; 15:463-71. [PMID: 11419641 DOI: 10.1016/s0956-5663(00)00105-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Three variants of the liposome fusion (coalescence) method to produce supported lipid bilayers, containing the ganglioside GM1 on silicon nitride surfaces, were studied. The first procedure involved attachment and fusion of liposomes containing DMPC, GM1 and a small amount of biotinylated lipid (Biotin-LC-DPPE) to a streptavidin coated surface. Direct fusion of liposomes composed of a mixture of DPPC, DPPG, DPPE, GM1 and cholesterol to the surface were the second variant. The final method utilised the second type of liposomes, fused onto a streptavidin layer with a small amount of exposed hydrophobic tails. The methods produced similar lipid layers, but with different ways of attachment to the surface. The binding of cholera toxin B-subunit (CTB) towards these sensor surfaces was measured in a resonant mirror biosensor instrument and the activity and longer-term stability of the layers were examined. The prepared surfaces were also imaged by atomic force microscopy (AFM) in liquid to characterise the topography of the lipid layers. The binding efficiency of CTB towards these surfaces was discussed in terms of lipid fluidity and surface roughness.
Collapse
Affiliation(s)
- M I Fisher
- DERA Porton Down, Salisbury, Wiltshire, UK
| | | |
Collapse
|