1
|
Wu W, Gupta S, Sagan SA, Moseley CE, Zamvil SS, Pak JE. High-yield production of recombinant human myelin oligodendrocyte glycoprotein in SHuffle bacteria without a refolding step. J Immunol Methods 2024; 534:113764. [PMID: 39406335 DOI: 10.1016/j.jim.2024.113764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a model for central nervous system (CNS) autoimmune demyelinating diseases such as multiple sclerosis (MS) and MOG antibody-associated disease (MOGAD). Immunization with the extracellular domain of recombinant human MOG (rhMOG), which contains pathogenic antibody and T cell epitopes, induces B cell-dependent EAE for studies in mice. However, these studies have been hampered by rhMOG availability due to its insolubility when overexpressed in bacterial cells, and the requirement for inefficient denaturation and refolding. Here, we describe a new protocol for the high-yield production of soluble rhMOG in SHuffle cells, a commercially available E. coli strain engineered to facilitate disulfide bond formation in the cytoplasm. SHuffle cells can produce a soluble fraction of rhMOG yielding >100 mg/L. Analytical size exclusion chromatography multi-angle light scattering (SEC-MALS) and differential scanning fluorimetry of purified rhMOG reveals a homogeneous monomer with a high melting temperature, indicative of a well-folded protein. An in vitro proliferation assay establishes that purified rhMOG can be processed and recognized by T cells expressing a T cell receptor (TCR) specific for the immunodominant MOG35-55 peptide epitope. Lastly, immunization of wild-type, but not B cell deficient, mice with rhMOG resulted in robust induction of EAE, indicating a B cell-dependent induction. Our SHuffle cell method greatly simplifies rhMOG production by combining the high yield and speed of bacterial cell expression with enhanced disulfide bond formation and folding, which will enable further investigation of B cell-dependent EAE and expand human research of MOG in CNS demyelinating diseases.
Collapse
Affiliation(s)
- Wesley Wu
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA 94158, USA
| | - Sasha Gupta
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Sharon A Sagan
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Carson E Moseley
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Scott S Zamvil
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA; Program in Immunology, University of California, San Francisco 94143, USA
| | - John E Pak
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
2
|
Moseley CE, Virupakshaiah A, Forsthuber TG, Steinman L, Waubant E, Zamvil SS. MOG CNS Autoimmunity and MOGAD. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200275. [PMID: 38996203 PMCID: PMC11256982 DOI: 10.1212/nxi.0000000000200275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 04/30/2024] [Indexed: 07/14/2024]
Abstract
At one time considered a possible form of neuromyelitis optica (NMO) spectrum disorder (NMOSD), it is now accepted that myelin oligodendrocyte glycoprotein (MOG) antibody (Ab)-associated disorder (MOGAD) is a distinct entity from either NMO or multiple sclerosis (MS) and represents a broad spectrum of clinical phenotypes. Whereas Abs targeting aquaporin-4 (AQP4) in NMO are pathogenic, the extent that anti-MOG Abs contribute to CNS damage in MOGAD is unclear. Both AQP4-specific Abs in NMO and MOG-specific Abs in MOGAD are predominantly IgG1, a T cell-dependent immunoglobulin (Ig) subclass. Key insights in neuroimmunology and MOGAD pathogenesis have been learned from MOG experimental autoimmune encephalomyelitis (EAE), described 2 decades before the term MOGAD was introduced. MOG-specific T cells are required in MOG EAE, and while anti-MOG Abs can exacerbate EAE and CNS demyelination, those Abs are neither necessary nor sufficient to cause EAE. Knowledge regarding the spectrum of MOGAD clinical and radiologic presentations is advancing rapidly, yet our grasp of MOGAD pathogenesis is incomplete. Understanding both the humoral and cellular immunology of MOGAD has implications for diagnosis, treatment, and prognosis.
Collapse
Affiliation(s)
- Carson E Moseley
- From the Department of Neurology (C.E.M., A.V., E.W., S.S.Z.), Weill Institute for Neurosciences, University of California, San Francisco; Department of Molecular Microbiology and Immunology (T.G.F.), University of Texas at San Antonio; Department of Neurology and Neurological Science (L.S.), Stanford University; and Program in Immunology (S.S.Z.), University of California, San Francisco, CA
| | - Akash Virupakshaiah
- From the Department of Neurology (C.E.M., A.V., E.W., S.S.Z.), Weill Institute for Neurosciences, University of California, San Francisco; Department of Molecular Microbiology and Immunology (T.G.F.), University of Texas at San Antonio; Department of Neurology and Neurological Science (L.S.), Stanford University; and Program in Immunology (S.S.Z.), University of California, San Francisco, CA
| | - Thomas G Forsthuber
- From the Department of Neurology (C.E.M., A.V., E.W., S.S.Z.), Weill Institute for Neurosciences, University of California, San Francisco; Department of Molecular Microbiology and Immunology (T.G.F.), University of Texas at San Antonio; Department of Neurology and Neurological Science (L.S.), Stanford University; and Program in Immunology (S.S.Z.), University of California, San Francisco, CA
| | - Lawrence Steinman
- From the Department of Neurology (C.E.M., A.V., E.W., S.S.Z.), Weill Institute for Neurosciences, University of California, San Francisco; Department of Molecular Microbiology and Immunology (T.G.F.), University of Texas at San Antonio; Department of Neurology and Neurological Science (L.S.), Stanford University; and Program in Immunology (S.S.Z.), University of California, San Francisco, CA
| | - Emmanuelle Waubant
- From the Department of Neurology (C.E.M., A.V., E.W., S.S.Z.), Weill Institute for Neurosciences, University of California, San Francisco; Department of Molecular Microbiology and Immunology (T.G.F.), University of Texas at San Antonio; Department of Neurology and Neurological Science (L.S.), Stanford University; and Program in Immunology (S.S.Z.), University of California, San Francisco, CA
| | - Scott S Zamvil
- From the Department of Neurology (C.E.M., A.V., E.W., S.S.Z.), Weill Institute for Neurosciences, University of California, San Francisco; Department of Molecular Microbiology and Immunology (T.G.F.), University of Texas at San Antonio; Department of Neurology and Neurological Science (L.S.), Stanford University; and Program in Immunology (S.S.Z.), University of California, San Francisco, CA
| |
Collapse
|
3
|
Wright AE, Nishiyama S, Han P, Kong P, Levy M. Administration methods and dosage of poly(lactic acid)-glycol intervention to myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalitis mice. BMC Neurosci 2024; 25:16. [PMID: 38468222 DOI: 10.1186/s12868-024-00859-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/28/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Myelin oligodendrocyte glycoprotein-associated disorders (MOGAD) is an autoimmune central nervous system disease. Antigen-specific immune tolerance using nanoparticles such as Polylactic-co-glycolic acid (PLGA) have recently been used as a new therapeutic tolerization approach for CNS autoimmune diseases. We examined whether MOG1-125 conjugated with PLGA could induce MOG-specific immune tolerance in an experimental autoimmune encephalitis (EAE) mouse model. EAE was induced in sixty C57BL/6 J wild-type mice using MOG1-125 peptide with complete Freund's Adjuvant. The mice were divided into 12 groups (n = 5 each) to test the ability of MOG1-125 conjugated PLGA intervention to mitigate the severity or improve the outcomes from EAE with and without rapamycin compared to antigen alone or PLGA alone. EAE score and serum MOG-IgG titers were compared among the interventions.Kindly check and confirm the processed Affiliation “4” is appropriate.I confirmed the Aff 4.Affiliation: Corresponding author information have been changed to present affiliation. Kindly check and confirm.I checked and confirmed the Corresponding author's information. RESULTS Mice with EAE that were injected intraperitoneally with MOG1-125 conjugated PLGA + rapamycin complex showed dose-dependent mitigation of EAE score. Intraperitoneal and intravenous administration resulted in similar clinical outcomes, whereas 80% of mice treated with subcutaneous injection had a recurrence of clinical score worsening after approximately 1 week. Although there was no significant difference in EAE scores between unconjugated-PLGA and MOG-conjugated PLGA, serum MOG-IgG tended to decrease in the MOG-conjugated PLGA group compared to controls. CONCLUSION Intraperitoneal administration of PLGA resulted in dose-dependent and longer-lasting immune tolerance than subcutaneous administration. The induction of immune tolerance using PLGA may represent a future therapeutic option for patients with MOGAD.
Collapse
Affiliation(s)
- Amy E Wright
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Shuhei Nishiyama
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- , Cambridge, USA.
| | | | | | - Michael Levy
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Lu Y, Chiang J, Zhang R, Roche PA, Hodes RJ. TRAF6 and TRAF2/3 Binding Motifs in CD40 Differentially Regulate B Cell Function in T-Dependent Antibody Responses and Dendritic Cell Function in Experimental Autoimmune Encephalomyelitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1814-1822. [PMID: 37921511 PMCID: PMC10694030 DOI: 10.4049/jimmunol.2300607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/13/2023] [Indexed: 11/04/2023]
Abstract
Expression of the costimulatory molecule CD40 on both B cells and dendritic cells (DCs) is required for induction of experimental autoimmune encephalomyelitis (EAE), and cell-autonomous CD40 expression on B cells is required for primary T-dependent (TD) Ab responses. We now ask whether the function of CD40 expressed by different cell types in these responses is mediated by the same or different cytoplasmic domains. CD40 has been reported to possess multiple cytoplasmic domains, including distinct TRAF6 and TRAF2/3 binding motifs. To elucidate the in vivo function of these motifs in B cells and DCs involved in EAE and TD germinal center responses, we have generated knock-in mice containing distinct CD40 cytoplasmic domain TRAF-binding site mutations and have used these animals, together with bone marrow chimeric mice, to assess the roles that these motifs play in CD40 function. We found that both TRAF2/3 and TRAF6 motifs of CD40 are critically involved in EAE induction and demonstrated that this is mediated by a role of both motifs for priming of pathogenic T cells by DCs. In contrast, the TRAF2/3 binding motif, but not the TRAF6 binding motif, is required for B cell CD40 function in TD high-affinity Ab responses. These data demonstrate that the requirements for expression of specific TRAF-binding CD40 motifs differ for B cells or DCs that function in specific immune responses and thus identify targets for intervention to modulate these responses.
Collapse
Affiliation(s)
- Ying Lu
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Jeffrey Chiang
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Ray Zhang
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Paul A. Roche
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Richard J. Hodes
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
5
|
Wilhelm CR, Upadhye MA, Eschbacher KL, Karandikar NJ, Boyden AW. Proteolipid Protein-Induced Mouse Model of Multiple Sclerosis Requires B Cell-Mediated Antigen Presentation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:944-953. [PMID: 37548478 PMCID: PMC10528642 DOI: 10.4049/jimmunol.2200721] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 07/18/2023] [Indexed: 08/08/2023]
Abstract
The pathogenic role B cells play in multiple sclerosis is underscored by the success of B cell depletion therapies. Yet, it remains unclear how B cells contribute to disease, although it is increasingly accepted that mechanisms beyond Ab production are involved. Better understanding of pathogenic interactions between B cells and autoreactive CD4 T cells will be critical for novel therapeutics. To focus the investigation on B cell:CD4 T cell interactions in vivo and in vitro, we previously developed a B cell-dependent, Ab-independent experimental autoimmune encephalomyelitis (EAE) mouse model driven by a peptide encompassing the extracellular domains of myelin proteolipid protein (PLPECD). In this study, we demonstrate that B cell depletion significantly inhibited PLPECD-induced EAE disease, blunted PLPECD-elicited delayed-type hypersensitivity reactions in vivo, and reduced CD4 T cell activation, proliferation, and proinflammatory cytokine production. Further, PLPECD-reactive CD4 T cells sourced from B cell-depleted donor mice failed to transfer EAE to naive recipients. Importantly, we identified B cell-mediated Ag presentation as the critical mechanism explaining B cell dependence in PLPECD-induced EAE, where bone marrow chimeric mice harboring a B cell-restricted MHC class II deficiency failed to develop EAE. B cells were ultimately observed to restimulate significantly higher Ag-specific proliferation from PLP178-191-reactive CD4 T cells compared with dendritic cells when provided PLPECD peptide in head-to-head cultures. We therefore conclude that PLPECD-induced EAE features a required pathogenic B cell-mediated Ag presentation function, providing for investigable B cell:CD4 T cell interactions in the context of autoimmune demyelinating disease.
Collapse
Affiliation(s)
- Connor R. Wilhelm
- Iowa City Veterans Affairs Medical Center
- Department of Pathology Graduate Program, University of Iowa, Iowa City, IA USA
| | - Mohit A. Upadhye
- Iowa City Veterans Affairs Medical Center
- Department of Pathology Graduate Program, University of Iowa, Iowa City, IA USA
| | | | - Nitin J. Karandikar
- Department of Pathology, University of Iowa Carver College of Medicine
- Iowa City Veterans Affairs Medical Center
- Department of Pathology Graduate Program, University of Iowa, Iowa City, IA USA
| | - Alexander W. Boyden
- Department of Pathology, University of Iowa Carver College of Medicine
- Iowa City Veterans Affairs Medical Center
| |
Collapse
|
6
|
Nuesslein-Hildesheim B, Ferrero E, Schmid C, Huck C, Smith P, Tisserand S, Rubert J, Bornancin F, Eichlisberger D, Cenni B. Remibrutinib (LOU064) inhibits neuroinflammation driven by B cells and myeloid cells in preclinical models of multiple sclerosis. J Neuroinflammation 2023; 20:194. [PMID: 37633912 PMCID: PMC10463946 DOI: 10.1186/s12974-023-02877-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/18/2023] [Indexed: 08/28/2023] Open
Abstract
BACKGROUND Bruton's tyrosine kinase (BTK) is a key signaling node in B cell receptor (BCR) and Fc receptor (FcR) signaling. BTK inhibitors (BTKi) are an emerging oral treatment option for patients suffering from multiple sclerosis (MS). Remibrutinib (LOU064) is a potent, highly selective covalent BTKi with a promising preclinical and clinical profile for MS and other autoimmune or autoallergic indications. METHODS The efficacy and mechanism of action of remibrutinib was assessed in two different experimental autoimmune encephalomyelitis (EAE) mouse models for MS. The impact of remibrutinib on B cell-driven EAE pathology was determined after immunization with human myelin oligodendrocyte glycoprotein (HuMOG). The efficacy on myeloid cell and microglia driven neuroinflammation was determined in the RatMOG EAE. In addition, we assessed the relationship of efficacy to BTK occupancy in tissue, ex vivo T cell response, as well as single cell RNA-sequencing (scRNA-seq) in brain and spinal cord tissue. RESULTS Remibrutinib inhibited B cell-dependent HuMOG EAE in dose-dependent manner and strongly reduced neurological symptoms. At the efficacious oral dose of 30 mg/kg, remibrutinib showed strong BTK occupancy in the peripheral immune organs and in the brain of EAE mice. Ex vivo MOG-specific T cell recall response was reduced, but not polyclonal T cell response, indicating absence of non-specific T cell inhibition. Remibrutinib also inhibited RatMOG EAE, suggesting that myeloid cell and microglia inhibition contribute to its efficacy in EAE. Remibrutinib did not reduce B cells, total Ig levels nor MOG-specific antibody response. In brain and spinal cord tissue a clear anti-inflammatory effect in microglia was detected by scRNA-seq. Finally, remibrutinib showed potent inhibition of in vitro immune complex-driven inflammatory response in human microglia. CONCLUSION Remibrutinib inhibited EAE models by a two-pronged mechanism based on inhibition of pathogenic B cell autoreactivity, as well as direct anti-inflammatory effects in microglia. Remibrutinib showed efficacy in both models in absence of direct B cell depletion, broad T cell inhibition or reduction of total Ig levels. These findings support the view that remibrutinib may represent a novel treatment option for patients with MS.
Collapse
Affiliation(s)
| | - Enrico Ferrero
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Cindy Schmid
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Catherine Huck
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | - Sarah Tisserand
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Joelle Rubert
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | | | - Bruno Cenni
- Novartis Institutes for Biomedical Research, Basel, Switzerland.
| |
Collapse
|
7
|
Telesford KM, Smith C, Mettlen M, Davis MB, Cowell L, Kittles R, Vartanian T, Monson N. Neuron-binding antibody responses are associated with Black ethnicity in multiple sclerosis during natalizumab treatment. Brain Commun 2023; 5:fcad218. [PMID: 37601407 PMCID: PMC10433937 DOI: 10.1093/braincomms/fcad218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/28/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023] Open
Abstract
Multiple sclerosis is an inflammatory degenerative condition of the central nervous system that may result in debilitating disability. Several studies over the past twenty years suggest that multiple sclerosis manifests with a rapid, more disabling disease course among individuals identifying with Black or Latin American ethnicity relative to those of White ethnicity. However, very little is known about immunologic underpinnings that may contribute to this ethnicity-associated discordant clinical severity. Given the importance of B cells to multiple sclerosis pathophysiology, and prior work showing increased antibody levels in the cerebrospinal fluid of Black-identifying, compared to White-identifying multiple sclerosis patients, we conducted a cohort study to determine B cell subset dynamics according to both self-reported ethnicity and genetic ancestry over time. Further, we determined relationships between ethnicity, ancestry, and neuron-binding IgG levels. We found significant associations between Black ethnicity and elevated frequencies of class-switched B cell subsets, including memory B cells; double negative two B cells; and antibody-secreting cells. The frequencies of these subsets positively correlated with West African genetic ancestry. We also observed significant associations between Black ethnicity and increased IgG binding to neurons. Our data suggests significantly heightened T cell-dependent B cell responses exhibiting increased titres of neuron-binding antibodies among individuals with multiple sclerosis identifying with the Black African diaspora. Factors driving this immunobiology may promote the greater demyelination, central nervous system atrophy and disability more often experienced by Black-, and Latin American-identifying individuals with multiple sclerosis.
Collapse
Affiliation(s)
- Kiel M Telesford
- Weill Cornell Medicine, Brain and Mind Research Institute, New York, NY 10065, USA
| | - Chad Smith
- University of Texas Southwestern Medical Center, O’Donnell Brain Institute, Dallas, TX 75390, USA
| | - Marcel Mettlen
- University of Texas Southwestern Medical Center, Department of Cell Biology, Dallas, TX 75390, USA
| | - Melissa B Davis
- Morehouse School of Medicine, Department of Community Health and Preventative Medicine, Atlanta, GA 30310, USA
| | - Lindsay Cowell
- University of Texas Southwestern Medical Center, Peter O-Donnell Jr. School of Public Health, Dallas, TX 75390, USA
| | - Rick Kittles
- Morehouse School of Medicine, Institute of Genomic Medicine, Atlanta, GA 30310, USA
| | - Timothy Vartanian
- Weill Cornell Medicine, Brain and Mind Research Institute, New York, NY 10065, USA
| | - Nancy Monson
- University of Texas Southwestern Medical Center, O’Donnell Brain Institute, Dallas, TX 75390, USA
| |
Collapse
|
8
|
Schäffner E, Bosch-Queralt M, Edgar JM, Lehning M, Strauß J, Fleischer N, Kungl T, Wieghofer P, Berghoff SA, Reinert T, Krueger M, Morawski M, Möbius W, Barrantes-Freer A, Stieler J, Sun T, Saher G, Schwab MH, Wrede C, Frosch M, Prinz M, Reich DS, Flügel A, Stadelmann C, Fledrich R, Nave KA, Stassart RM. Myelin insulation as a risk factor for axonal degeneration in autoimmune demyelinating disease. Nat Neurosci 2023; 26:1218-1228. [PMID: 37386131 PMCID: PMC10322724 DOI: 10.1038/s41593-023-01366-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/17/2023] [Indexed: 07/01/2023]
Abstract
Axonal degeneration determines the clinical outcome of multiple sclerosis and is thought to result from exposure of denuded axons to immune-mediated damage. Therefore, myelin is widely considered to be a protective structure for axons in multiple sclerosis. Myelinated axons also depend on oligodendrocytes, which provide metabolic and structural support to the axonal compartment. Given that axonal pathology in multiple sclerosis is already visible at early disease stages, before overt demyelination, we reasoned that autoimmune inflammation may disrupt oligodendroglial support mechanisms and hence primarily affect axons insulated by myelin. Here, we studied axonal pathology as a function of myelination in human multiple sclerosis and mouse models of autoimmune encephalomyelitis with genetically altered myelination. We demonstrate that myelin ensheathment itself becomes detrimental for axonal survival and increases the risk of axons degenerating in an autoimmune environment. This challenges the view of myelin as a solely protective structure and suggests that axonal dependence on oligodendroglial support can become fatal when myelin is under inflammatory attack.
Collapse
Affiliation(s)
- Erik Schäffner
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Paul Flechsig Institute of Neuropathology, University Clinic Leipzig, Leipzig, Germany
| | - Mar Bosch-Queralt
- Paul Flechsig Institute of Neuropathology, University Clinic Leipzig, Leipzig, Germany
| | - Julia M Edgar
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Maria Lehning
- Paul Flechsig Institute of Neuropathology, University Clinic Leipzig, Leipzig, Germany
| | - Judith Strauß
- Institute of Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen, Germany
| | - Niko Fleischer
- Paul Flechsig Institute of Neuropathology, University Clinic Leipzig, Leipzig, Germany
| | - Theresa Kungl
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Peter Wieghofer
- Institute of Anatomy, Leipzig University, Leipzig, Germany
- Cellular Neuroanatomy, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Stefan A Berghoff
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Tilo Reinert
- Paul Flechsig Institute of Neuropathology, University Clinic Leipzig, Leipzig, Germany
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Martin Krueger
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Markus Morawski
- Paul Flechsig Institute of Brain Research, Leipzig University, Leipzig, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | | | - Jens Stieler
- Paul Flechsig Institute of Brain Research, Leipzig University, Leipzig, Germany
| | - Ting Sun
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Gesine Saher
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Markus H Schwab
- Paul Flechsig Institute of Neuropathology, University Clinic Leipzig, Leipzig, Germany
| | - Christoph Wrede
- Institute of Functional and Applied Anatomy, Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany
| | - Maximilian Frosch
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
- Centre for NeuroModulation (NeuroModBasics), University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Alexander Flügel
- Institute of Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen, Germany
| | - Christine Stadelmann
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Robert Fledrich
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Institute of Anatomy, Leipzig University, Leipzig, Germany.
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - Ruth M Stassart
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Paul Flechsig Institute of Neuropathology, University Clinic Leipzig, Leipzig, Germany.
| |
Collapse
|
9
|
Telesford KM, Amezcua L, Tardo L, Horton L, Lund BT, Reder AT, Vartanian T, Monson NL. Understanding humoral immunity and multiple sclerosis severity in Black, and Latinx patients. Front Immunol 2023; 14:1172993. [PMID: 37215103 PMCID: PMC10196635 DOI: 10.3389/fimmu.2023.1172993] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
People identified with Black/African American or Hispanic/Latinx ethnicity are more likely to exhibit a more severe multiple sclerosis disease course relative to those who identify as White. While social determinants of health account for some of this discordant severity, investigation into contributing immunobiology remains sparse. The limited immunologic data stands in stark contrast to the volume of clinical studies describing ethnicity-associated discordant presentation, and to advancement made in our understanding of MS immunopathogenesis over the past several decades. In this perspective, we posit that humoral immune responses offer a promising avenue to better understand underpinnings of discordant MS severity among Black/African American, and Hispanic/Latinx-identifying patients.
Collapse
Affiliation(s)
- Kiel M. Telesford
- Department of Neurology, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | - Lilyana Amezcua
- Multiple Sclerosis Comprehensive Care Center, University of Southern California, Los Angeles, CA, United States
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Lauren Tardo
- Department of Neurology, University of Texas Southwestern Medical Center (UT), Dallas, TX, United States
| | - Lindsay Horton
- Department of Neurology, University of Texas Southwestern Medical Center (UT), Dallas, TX, United States
| | - Brett T. Lund
- Multiple Sclerosis Comprehensive Care Center, University of Southern California, Los Angeles, CA, United States
| | - Anthony T. Reder
- Department of Neurology, University of Chicago, Chicago, IL, United States
| | - Timothy Vartanian
- Department of Neurology, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | - Nancy L. Monson
- Department of Neurology, University of Texas Southwestern Medical Center (UT), Dallas, TX, United States
| |
Collapse
|
10
|
Barateiro A, Barros C, Pinto MV, Ribeiro AR, Alberro A, Fernandes A. Women in the field of multiple sclerosis: How they contributed to paradigm shifts. Front Mol Neurosci 2023; 16:1087745. [PMID: 36818652 PMCID: PMC9937661 DOI: 10.3389/fnmol.2023.1087745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/13/2023] [Indexed: 02/05/2023] Open
Abstract
History is full of women who made enormous contributions to science. While there is little to no imbalance at the early career stage, a decreasing proportion of women is found as seniority increases. In the multiple sclerosis (MS) field, 44% of first authors and only 35% of senior authors were female. So, in this review, we highlight ground-breaking research done by women in the field of MS, focusing mostly on their work as principal investigators. MS is an autoimmune disorder of the central nervous system (CNS), with evident paradigm shifts in the understating of its pathophysiology. It is known that the immune system becomes overactivated and attacks myelin sheath surrounding axons. The resulting demyelination disrupts the communication signals to and from the CNS, which causes unpredictable symptoms, depending on the neurons that are affected. Classically, MS was reported to cause mostly physical and motor disabilities. However, it is now recognized that cognitive impairment affects more than 50% of the MS patients. Another shifting paradigm was the involvement of gray matter in MS pathology, formerly considered to be a white matter disease. Additionally, the identification of different T cell immune subsets and the mechanisms underlying the involvement of B cells and peripheral macrophages provided a better understanding of the immunopathophysiological processes present in MS. Relevantly, the gut-brain axis, recognized as a bi-directional communication system between the CNS and the gut, was found to be crucial in MS. Indeed, gut microbiota influences not only different susceptibilities to MS pathology, but it can also be modulated in order to positively act in MS course. Also, after the identification of the first microRNA in 1993, the role of microRNAs has been investigated in MS, either as potential biomarkers or therapeutic agents. Finally, concerning MS therapeutical approaches, remyelination-based studies have arisen on the spotlight aiming to repair myelin loss/neuronal connectivity. Altogether, here we emphasize the new insights of remarkable women that have voiced the impact of cognitive impairment, white and gray matter pathology, immune response, and that of the CNS-peripheral interplay on MS diagnosis, progression, and/or therapy efficacy, leading to huge breakthroughs in the MS field.
Collapse
Affiliation(s)
- Andreia Barateiro
- Central Nervous System, Blood and Peripheral Inflammation Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal,Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal,Andreia Barateiro,
| | - Catarina Barros
- Central Nervous System, Blood and Peripheral Inflammation Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Maria V. Pinto
- Central Nervous System, Blood and Peripheral Inflammation Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Rita Ribeiro
- Central Nervous System, Blood and Peripheral Inflammation Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ainhoa Alberro
- Central Nervous System, Blood and Peripheral Inflammation Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal,Multiple Sclerosis Group, Biodonostia Health Research Institute, Donostia-San Sebastian, Spain
| | - Adelaide Fernandes
- Central Nervous System, Blood and Peripheral Inflammation Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal,Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal,*Correspondence: Adelaide Fernandes,
| |
Collapse
|
11
|
Chen BY, Salas JR, Trias AO, Rodriguez AP, Tsang JE, Guemes M, Le TM, Galic Z, Shepard HM, Steinman L, Nathanson DA, Czernin J, Witte ON, Radu CG, Schultz KA, Clark PM. Targeting deoxycytidine kinase improves symptoms in mouse models of multiple sclerosis. Immunology 2023; 168:152-169. [PMID: 35986643 PMCID: PMC9844239 DOI: 10.1111/imm.13569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/12/2022] [Indexed: 01/19/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease driven by lymphocyte activation against myelin autoantigens in the central nervous system leading to demyelination and neurodegeneration. The deoxyribonucleoside salvage pathway with the rate-limiting enzyme deoxycytidine kinase (dCK) captures extracellular deoxyribonucleosides for use in intracellular deoxyribonucleotide metabolism. Previous studies have shown that deoxyribonucleoside salvage activity is enriched in lymphocytes and required for early lymphocyte development. However, specific roles for the deoxyribonucleoside salvage pathway and dCK in autoimmune diseases such as MS are unknown. Here we demonstrate that dCK activity is necessary for the development of clinical symptoms in the MOG35-55 and MOG1-125 experimental autoimmune encephalomyelitis (EAE) mouse models of MS. During EAE disease, deoxyribonucleoside salvage activity is elevated in the spleen and lymph nodes. Targeting dCK with the small molecule dCK inhibitor TRE-515 limits disease severity when treatments are started at disease induction or when symptoms first appear. EAE mice treated with TRE-515 have significantly fewer infiltrating leukocytes in the spinal cord, and TRE-515 blocks activation-induced B and T cell proliferation and MOG35-55 -specific T cell expansion without affecting innate immune cells or naïve T and B cell populations. Our results demonstrate that targeting dCK limits symptoms in EAE mice and suggest that dCK activity is required for MOG35-55 -specific lymphocyte activation-induced proliferation.
Collapse
Affiliation(s)
- Bao Ying Chen
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
- Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jessica R. Salas
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
- Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alyssa O. Trias
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
- Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA
| | - Arely Perez Rodriguez
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
- Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jonathan E. Tsang
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Miriam Guemes
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Thuc M. Le
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
- Ahmanson Translational Imaging Division, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zoran Galic
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Lawrence Steinman
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - David A. Nathanson
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
- Ahmanson Translational Imaging Division, University of California, Los Angeles, Los Angeles, CA, USA
| | - Johannes Czernin
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
- Ahmanson Translational Imaging Division, University of California, Los Angeles, Los Angeles, CA, USA
| | - Owen N. Witte
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Caius G. Radu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
- Ahmanson Translational Imaging Division, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Peter M. Clark
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
- Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
12
|
Lu Y, Xu M, Dorrier CE, Zhang R, Mayer CT, Wagner D, McGavern DB, Hodes RJ. CD40 Drives Central Nervous System Autoimmune Disease by Inducing Complementary Effector Programs via B Cells and Dendritic Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:2083-2092. [PMID: 36426970 PMCID: PMC10065987 DOI: 10.4049/jimmunol.2200439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/19/2022] [Indexed: 01/04/2023]
Abstract
Costimulatory CD40 plays an essential role in autoimmune diseases, including experimental autoimmune encephalomyelitis (EAE), a murine model of human multiple sclerosis (MS). However, how CD40 drives autoimmune disease pathogenesis is not well defined. Here, we used a conditional knockout approach to determine how CD40 orchestrates a CNS autoimmune disease induced by recombinant human myelin oligodendrocyte glycoprotein (rhMOG). We found that deletion of CD40 in either dendritic cells (DCs) or B cells profoundly reduced EAE disease pathogenesis. Mechanistically, CD40 expression on DCs was required for priming pathogenic Th cells in peripheral draining lymph nodes and promoting their appearance in the CNS. By contrast, B cell CD40 was essential for class-switched MOG-specific Ab production, which played a crucial role in disease pathogenesis. In fact, passive transfer of MOG-immune serum or IgG into mice lacking CD40 on B cells but not DCs reconstituted autoimmune disease, which was associated with inundation of the spinal cord parenchyma by Ig and complement. These data demonstrate that CD40 supports distinct effector programs in B cells and DCs that converge to drive a CNS autoimmune disease and identify targets for intervention.
Collapse
Affiliation(s)
- Ying Lu
- Experimental Immunology Branch, National Cancer Institute, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Max Xu
- Experimental Immunology Branch, National Cancer Institute, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cayce E. Dorrier
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ray Zhang
- Experimental Immunology Branch, National Cancer Institute, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christian T. Mayer
- Experimental Immunology Branch, National Cancer Institute, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Wagner
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Dorian B. McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard J. Hodes
- Experimental Immunology Branch, National Cancer Institute, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
13
|
Parham KA, Tan XXS, Morelli DM, Chowdhury L, Craig HC, Kerfoot SM. Pre–Germinal Center Interactions with T Cells Are Natural Checkpoints to Limit Autoimmune B Cell Responses. THE JOURNAL OF IMMUNOLOGY 2022; 209:1703-1712. [DOI: 10.4049/jimmunol.2200534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/25/2022] [Indexed: 11/05/2022]
|
14
|
Raveney BJE, El‐Darawish Y, Sato W, Arinuma Y, Yamaoka K, Hori S, Yamamura T, Oki S. Neuropilin-1 (NRP1) expression distinguishes self-reactive helper T cells in systemic autoimmune disease. EMBO Mol Med 2022; 14:e15864. [PMID: 36069030 PMCID: PMC9549730 DOI: 10.15252/emmm.202215864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/08/2022] [Accepted: 08/15/2022] [Indexed: 02/05/2023] Open
Abstract
Pathogenic T helper cells (Th cells) that respond to self-antigen cannot be easily distinguished from beneficial Th cells. These cells can generate systemic autoimmune disease in response to widely expressed self-antigens. In this study, we have identified neuropilin-1 (NRP1) as a cell surface marker of self-reactive Th cells. NRP1+ Th cells, absent in non-regulatory T cell subsets in normal mice, appeared in models of systemic autoimmune disease and strongly correlated with disease symptoms. NRP1+ Th cells were greatly reduced in Nr4a2 cKO mice, which have reduced self-reactive responses but showed normal responses against exogenous antigens. Transfer of NRP1+ Th cells was sufficient to initiate or accelerate systemic autoimmune disease, and targeting NRP1-expressing Th cells therapeutically ameliorated SLE-like autoimmune symptoms in BXSB-Yaa mice. Peripheral NRP1+ Th cells were significantly increased in human SLE patients. Our data suggest that self-reactive Th cells can be phenotypically distinguished within the Th cell pool. These findings offer a novel approach to identify self-reactive Th cells and target them to treat systemic autoimmune disease.
Collapse
Affiliation(s)
- Ben JE Raveney
- Department of ImmunologyNational Institute of NeuroscienceTokyoJapan
| | - Yosif El‐Darawish
- Department of ImmunologyNational Institute of NeuroscienceTokyoJapan
| | - Wakiro Sato
- Department of ImmunologyNational Institute of NeuroscienceTokyoJapan
| | - Yoshiyuki Arinuma
- Department of Rheumatology and Infectious DiseasesKitasato University School of MedicineSagamiharaJapan
| | - Kunihiro Yamaoka
- Department of Rheumatology and Infectious DiseasesKitasato University School of MedicineSagamiharaJapan
| | - Shohei Hori
- Laboratory for Immunology and MicrobiologyGraduate School of Pharmaceutical Sciences, The University of TokyoTokyoJapan
| | - Takashi Yamamura
- Department of ImmunologyNational Institute of NeuroscienceTokyoJapan
| | - Shinji Oki
- Department of ImmunologyNational Institute of NeuroscienceTokyoJapan
| |
Collapse
|
15
|
Central role of B cells in interleukin-23 dependent neuroinflammation in the GF-IL23 model. Neuroreport 2022; 33:577-582. [DOI: 10.1097/wnr.0000000000001818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Shlesinger D, Hong KL, Shammas G, Page N, Sandu I, Agrafiotis A, Kreiner V, Fonta N, Vincenti I, Wagner I, Piccinno M, Mariotte A, Klimek B, Dizerens R, Manero-Carranza M, Kuhn R, Ehling R, Frei L, Khodaverdi K, Panetti C, Joller N, Oxenius A, Merkler D, Reddy ST, Yermanos A. Single-cell immune repertoire sequencing of B and T cells in murine models of infection and autoimmunity. Genes Immun 2022; 23:183-195. [PMID: 36028771 PMCID: PMC9519453 DOI: 10.1038/s41435-022-00180-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 11/09/2022]
Abstract
Adaptive immune repertoires are composed by the ensemble of B and T-cell receptors within an individual, reflecting both past and current immune responses. Recent advances in single-cell sequencing enable recovery of the complete adaptive immune receptor sequences in addition to transcriptional information. Here, we recovered transcriptome and immune repertoire information for polyclonal T follicular helper cells following lymphocytic choriomeningitis virus (LCMV) infection, CD8+ T cells with binding specificity restricted to two distinct LCMV peptides, and B and T cells isolated from the nervous system in the context of experimental autoimmune encephalomyelitis. We could relate clonal expansion, germline gene usage, and clonal convergence to cell phenotypes spanning activation, memory, naive, antibody secretion, T-cell inflation, and regulation. Together, this dataset provides a resource for immunologists that can be integrated with future single-cell immune repertoire and transcriptome sequencing datasets.
Collapse
Affiliation(s)
- Danielle Shlesinger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Kai-Lin Hong
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Ghazal Shammas
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Nicolas Page
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Ioana Sandu
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Andreas Agrafiotis
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Victor Kreiner
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Nicolas Fonta
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Ilena Vincenti
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Ingrid Wagner
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Margot Piccinno
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Alexandre Mariotte
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Bogna Klimek
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Raphael Dizerens
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Raphael Kuhn
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Roy Ehling
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Lester Frei
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Keywan Khodaverdi
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Camilla Panetti
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Nicole Joller
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | | | - Doron Merkler
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Division of Clinical Pathology, Geneva University Hospital, Geneva, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Alexander Yermanos
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
17
|
Harley ITW, Allison K, Scofield RH. Polygenic autoimmune disease risk alleles impacting B cell tolerance act in concert across shared molecular networks in mouse and in humans. Front Immunol 2022; 13:953439. [PMID: 36090990 PMCID: PMC9450536 DOI: 10.3389/fimmu.2022.953439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
Most B cells produced in the bone marrow have some level of autoreactivity. Despite efforts of central tolerance to eliminate these cells, many escape to periphery, where in healthy individuals, they are rendered functionally non-responsive to restimulation through their antigen receptor via a process termed anergy. Broad repertoire autoreactivity may reflect the chances of generating autoreactivity by stochastic use of germline immunoglobulin gene segments or active mechanisms may select autoreactive cells during egress to the naïve peripheral B cell pool. Likewise, it is unclear why in some individuals autoreactive B cell clones become activated and drive pathophysiologic changes in autoimmune diseases. Both of these remain central questions in the study of the immune system(s). In most individuals, autoimmune diseases arise from complex interplay of genetic risk factors and environmental influences. Advances in genome sequencing and increased statistical power from large autoimmune disease cohorts has led to identification of more than 200 autoimmune disease risk loci. It has been observed that autoantibodies are detectable in the serum years to decades prior to the diagnosis of autoimmune disease. Thus, current models hold that genetic defects in the pathways that control autoreactive B cell tolerance set genetic liability thresholds across multiple autoimmune diseases. Despite the fact these seminal concepts were developed in animal (especially murine) models of autoimmune disease, some perceive a disconnect between human risk alleles and those identified in murine models of autoimmune disease. Here, we synthesize the current state of the art in our understanding of human risk alleles in two prototypical autoimmune diseases - systemic lupus erythematosus (SLE) and type 1 diabetes (T1D) along with spontaneous murine disease models. We compare these risk networks to those reported in murine models of these diseases, focusing on pathways relevant to anergy and central tolerance. We highlight some differences between murine and human environmental and genetic factors that may impact autoimmune disease development and expression and may, in turn, explain some of this discrepancy. Finally, we show that there is substantial overlap between the molecular networks that define these disease states across species. Our synthesis and analysis of the current state of the field are consistent with the idea that the same molecular networks are perturbed in murine and human autoimmune disease. Based on these analyses, we anticipate that murine autoimmune disease models will continue to yield novel insights into how best to diagnose, prognose, prevent and treat human autoimmune diseases.
Collapse
Affiliation(s)
- Isaac T. W. Harley
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative (HI3), Department of Immunology, University of Colorado School of Medicine, Aurora, CO, United States
- Rheumatology Section, Medicine Service, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States
| | - Kristen Allison
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative (HI3), Department of Immunology, University of Colorado School of Medicine, Aurora, CO, United States
| | - R. Hal Scofield
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Medical/Research Service, US Department of Veterans Affairs Medical Center, Oklahoma City, OK, United States
| |
Collapse
|
18
|
Naismith RT, Cross AH. Further support for rituximab in relapsing multiple sclerosis. Lancet Neurol 2022; 21:672-673. [DOI: 10.1016/s1474-4422(21)00180-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 05/28/2021] [Indexed: 11/29/2022]
|
19
|
Nissen JC, Tsirka SE. Preclinical model of multiple sclerosis: Methods in autoimmune demyelination. Methods Cell Biol 2022; 168:67-86. [DOI: 10.1016/bs.mcb.2021.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Lee J, Cullum E, Stoltz K, Bachmann N, Strong Z, Millick DD, Denzin LK, Chang A, Tarakanova V, Chervonsky AV, Golovkina T. Mouse Homologue of Human HLA-DO Does Not Preempt Autoimmunity but Controls Murine Gammaherpesvirus MHV68. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:2944-2951. [PMID: 34810225 PMCID: PMC9124240 DOI: 10.4049/jimmunol.2100650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/14/2021] [Indexed: 11/19/2022]
Abstract
H2-O (human HLA-DO) is a relatively conserved nonclassical MHC class II (MHCII)-like molecule. H2-O interaction with human HLA-DM edits the repertoire of peptides presented to TCRs by MHCII. It was long hypothesized that human HLA-DM inhibition by H2-O provides protection from autoimmunity by preventing binding of the high-affinity self-peptides to MHCII. The available evidence supporting this hypothesis, however, was inconclusive. A possibility still remained that the effect of H2-O deficiency on autoimmunity could be better revealed by using H2-O-deficient mice that were already genetically predisposed to autoimmunity. In this study, we generated and used autoimmunity-prone mouse models for systemic lupus erythematosus and organ-specific autoimmunity (type 1 diabetes and multiple sclerosis) to definitively test whether H2-O prevents autoimmune pathology. Whereas our data failed to support any significance of H2-O in protection from autoimmunity, we found that it was critical for controlling a γ-herpesvirus, MHV68. Thus, we propose that H2-O editing of the MHCII peptide repertoire may have evolved as a safeguard against specific highly prevalent viral pathogens.
Collapse
Affiliation(s)
- Jean Lee
- Committee on Cancer Biology, the University of Chicago, Chicago, IL
| | - Emily Cullum
- Committee on Immunology, the University of Chicago, Chicago, IL
| | - Kyle Stoltz
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Niklas Bachmann
- Department of Microbiology, the University of Chicago, Chicago, IL
| | - Zoe Strong
- Department of Pathology, the University of Chicago, Chicago, IL
| | - Danielle D Millick
- Graduate School of Biomedical Sciences, Rutgers University, Piscataway, NJ
| | - Lisa K Denzin
- Graduate School of Biomedical Sciences, Rutgers University, Piscataway, NJ
- Child Health Institute of New Jersey, Department of Pediatrics and Pharmacology, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ; and
| | - Anthony Chang
- Department of Pathology, the University of Chicago, Chicago, IL
| | - Vera Tarakanova
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Alexander V Chervonsky
- Committee on Immunology, the University of Chicago, Chicago, IL;
- Department of Pathology, the University of Chicago, Chicago, IL
- Committee on Microbiology, the University of Chicago, Chicago, IL
| | - Tatyana Golovkina
- Committee on Immunology, the University of Chicago, Chicago, IL;
- Department of Microbiology, the University of Chicago, Chicago, IL
- Committee on Microbiology, the University of Chicago, Chicago, IL
| |
Collapse
|
21
|
Lee DSW, Yam JY, Grasmuck C, Dasoveanu D, Michel L, Ward LA, Rojas OL, Zandee S, Bourbonnière L, Ramaglia V, Bar-Or A, Prat A, Gommerman JL. CCR6 Expression on B Cells Is Not Required for Clinical or Pathological Presentation of MOG Protein-Induced Experimental Autoimmune Encephalomyelitis despite an Altered Germinal Center Response. THE JOURNAL OF IMMUNOLOGY 2021; 207:1513-1521. [PMID: 34400521 DOI: 10.4049/jimmunol.2001413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 07/17/2021] [Indexed: 11/19/2022]
Abstract
B cells have been implicated in the pathogenesis of multiple sclerosis, but the mechanisms that guide B cell activation in the periphery and subsequent migration to the CNS remain incompletely understood. We previously showed that systemic inflammation induces an accumulation of B cells in the spleen in a CCR6/CCL20-dependent manner. In this study, we evaluated the role of CCR6/CCL20 in the context of myelin oligodendrocyte glycoprotein (MOG) protein-induced (B cell-dependent) experimental autoimmune encephalomyelitis (EAE). We found that CCR6 is upregulated on murine B cells that migrate into the CNS during neuroinflammation. In addition, human B cells that migrate across CNS endothelium in vitro were found to be CCR6+, and we detected CCL20 production by activated CNS-derived human endothelial cells as well as a systemic increase in CCL20 protein during EAE. Although mice that lack CCR6 expression specifically on B cells exhibited an altered germinal center reaction in response to MOG protein immunization, CCR6-deficient B cells did not exhibit any competitive disadvantage in their migration to the CNS during EAE, and the clinical and pathological presentation of EAE induced by MOG protein was unaffected. These data, to our knowledge, provide new information on the role of B cell-intrinsic CCR6 expression in a B cell-dependent model of neuroinflammation.
Collapse
Affiliation(s)
- Dennis S W Lee
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Jennifer Y Yam
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Camille Grasmuck
- Département de Neurosciences, Centre de Recherche Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montreal, Canada
| | - Dragos Dasoveanu
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Laure Michel
- Département de Neurosciences, Centre de Recherche Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montreal, Canada
| | - Lesley A Ward
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Olga L Rojas
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Stephanie Zandee
- Département de Neurosciences, Centre de Recherche Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montreal, Canada
| | | | - Valeria Ramaglia
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Amit Bar-Or
- Center for Neuroinflammation and Experimental Therapeutics, University of Pennsylvania, Philadelphia, PA; and.,Department of Neurology, University of Pennsylvania, Philadelphia, PA
| | - Alexandre Prat
- Département de Neurosciences, Centre de Recherche Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montreal, Canada
| | | |
Collapse
|
22
|
Bae D, Lee JY, Ha N, Park J, Baek J, Suh D, Lim HS, Ko SM, Kim T, Som Jeong D, Son WC. CKD-506: A novel HDAC6-selective inhibitor that exerts therapeutic effects in a rodent model of multiple sclerosis. Sci Rep 2021; 11:14466. [PMID: 34262061 PMCID: PMC8280216 DOI: 10.1038/s41598-021-93232-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/14/2021] [Indexed: 11/27/2022] Open
Abstract
Despite advances in therapeutic strategies for multiple sclerosis (MS), the therapy options remain limited with various adverse effects. Here, the therapeutic potential of CKD-506, a novel HDAC6-selective inhibitor, against MS was evaluated in mice with myelin oligodendrocyte glycoprotein35-55 (MOG35-55)-induced experimental autoimmune encephalitis (EAE) under various treatment regimens. CKD-506 exerted prophylactic and therapeutic effects by regulating peripheral immune responses and maintaining blood-brain barrier (BBB) integrity. In MOG35-55-re-stimulated splenocytes, CKD-506 decreased proliferation and downregulated the expression of IFN-γ and IL-17A. CKD-506 downregulated the levels of pro-inflammatory cytokines in the blood of EAE mice. Additionally, CKD-506 decreased the leakage of intravenously administered Evans blue into the spinal cord; CD4+ T cells and CD4-CD11b+CD45+ macrophage/microglia in the spinal cord was also decreased. Moreover, CKD-506 exhibited therapeutic efficacy against MS, even when drug administration was discontinued from day 15 post-EAE induction. Disease exacerbation was not observed when fingolimod was changed to CKD-506 from day 15 post-EAE induction. CKD-506 alleviated depression-like behavior at the pre-symptomatic stage of EAE. In conclusion, CKD-506 exerts therapeutic effects by regulating T cell- and macrophage-mediated peripheral immune responses and strengthening BBB integrity. Our results suggest that CKD-506 is a potential therapeutic agent for MS.
Collapse
Affiliation(s)
- Daekwon Bae
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
- Department of Pharmacology, CKD Research Institute, CKD Pharmaceutical Co, Yongin, 16995, Republic of Korea.
| | - Ji-Young Lee
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Nina Ha
- Department of Pharmacology, CKD Research Institute, CKD Pharmaceutical Co, Yongin, 16995, Republic of Korea
| | - Jinsol Park
- Department of Pharmacology, CKD Research Institute, CKD Pharmaceutical Co, Yongin, 16995, Republic of Korea
| | - Jiyeon Baek
- Department of Pharmacology, CKD Research Institute, CKD Pharmaceutical Co, Yongin, 16995, Republic of Korea
| | - Donghyeon Suh
- Department of Pharmacology, CKD Research Institute, CKD Pharmaceutical Co, Yongin, 16995, Republic of Korea
| | - Hee Seon Lim
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Soo Min Ko
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Taehee Kim
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Da Som Jeong
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Woo-Chan Son
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| |
Collapse
|
23
|
Abstract
Animal models with high translational validity are essential tools in understanding disease pathogenesis and in the development of therapeutic strategies. Multiple sclerosis (MS) is an autoimmune demyelinating disease of the central nervous system characterized by progressive neurological deficits and socioeconomic burden. Experimental autoimmune encephalomyelitis (EAE) is the most extensively utilized animal model of MS, with well-characterized rodent and non-human primate variants. The EAE model is typically induced by either active immunization with myelin-derived proteins or peptides in adjuvant or by passive transfer of activated myelin-specific CD4+ T lymphocytes. To date, the EAE model has been an essential tool in the development of at least seven U.S. Food and Drug Administration (FDA)-approved immunomodulatory drugs for the treatment of MS, including glatiramer acetate, fingolimod, and natalizumab. However, the translational validity of the EAE model is frequently compromised due to poor study design, inconsistent clinical scoring endpoints, and inappropriate statistical calculations. No single animal model accurately reflects the complexity of human MS pathogenesis. Beyond EAE, multiple additional animal models are described, including Theiler's murine encephalomyelitis virus and cuprizone-induced demyelination, which facilitate the study of pathogen-induced CNS autoimmunity and remyelination, respectively. This overview summarizes several of the most frequently used animal models of MS and highlights key factors that significantly influence the experimental outcome and affect translational validity. © 2021 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Paul Smith
- Incyte Research Institute, Wilmington, Delaware
| |
Collapse
|
24
|
The survival and function of IL-10-producing regulatory B cells are negatively controlled by SLAMF5. Nat Commun 2021; 12:1893. [PMID: 33767202 PMCID: PMC7994628 DOI: 10.1038/s41467-021-22230-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 03/01/2021] [Indexed: 12/31/2022] Open
Abstract
B cells have essential functions in multiple sclerosis and in its mouse model, experimental autoimmune encephalomyelitis, both as drivers and suppressors of the disease. The suppressive effects are driven by a regulatory B cell (Breg) population that functions, primarily but not exclusively, via the production of IL-10. However, the mechanisms modulating IL-10-producing Breg abundance are poorly understood. Here we identify SLAMF5 for controlling IL-10+ Breg maintenance and function. In EAE, the deficiency of SLAMF5 in B cells causes accumulation of IL10+ Bregs in the central nervous system and periphery. Blocking SLAMF5 in vitro induces both human and mouse IL-10-producing Breg cells and increases their survival with a concomitant increase of a transcription factor, c-Maf. Finally, in vivo SLAMF5 blocking in EAE elevates IL-10+ Breg levels and ameliorates disease severity. Our results suggest that SLAMF5 is a negative moderator of IL-10+ Breg cells, and may serve as a therapeutic target in MS and other autoimmune diseases. Regulatory B (Breg) cells suppress excessive inflammation primary via the production of interleukin 10 (IL-10). Here the authors show that the function and homeostasis of mouse and human IL-10+ Breg cells are negatively regulated by the cell surface receptor, SLAMF5, to impact experimental autoimmunity, thereby hinting SLAMF5 as a potential target for immunotherapy.
Collapse
|
25
|
Abstract
After both sterile and infectious insults, damage is inflicted on tissues leading to accidental or programmed cell death. In addition, events of programmed cell death also take place under homeostatic conditions, such as in embryo development or in the turnover of hematopoietic cells. Mammalian tissues are seeded with myeloid immune cells, which harbor a plethora of receptors that allow the detection of cell death, modulating immune responses. The myeloid C-type lectin receptors (CLRs) are one of the most prominent families of receptors involved in tailoring immunity after sensing dead cells. In this chapter, we will cover a diversity of signals arising from different forms of cell death and how they are recognized by myeloid CLRs. We will also explore how myeloid cells develop their sentinel function, exploring how some of these CLRs identify cell death and the type of responses triggered thereof. In particular, we will focus on DNGR-1 (CLEC9A), Mincle (CLEC4E), CLL-1 (CLEC12A), LOX-1 (OLR1), CD301 (CLEC10A) and DEC-205 (LY75) as paradigmatic death-sensing CLRs expressed by myeloid cells. The molecular processes triggered after cell death recognition by myeloid CLRs contribute to the regulation of immune responses in pathologies associated with tissue damage, such as infection, autoimmunity and cancer. A better understanding of these processes may help to improve the current approaches for therapeutic intervention.
Collapse
|
26
|
Montgomery TL, Künstner A, Kennedy JJ, Fang Q, Asarian L, Culp-Hill R, D'Alessandro A, Teuscher C, Busch H, Krementsov DN. Interactions between host genetics and gut microbiota determine susceptibility to CNS autoimmunity. Proc Natl Acad Sci U S A 2020; 117:27516-27527. [PMID: 33077601 PMCID: PMC7959502 DOI: 10.1073/pnas.2002817117] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system. The etiology of MS is multifactorial, with disease risk determined by genetics and environmental factors. An emerging risk factor for immune-mediated diseases is an imbalance in the gut microbiome. However, the identity of gut microbes associated with disease risk, their mechanisms of action, and the interactions with host genetics remain obscure. To address these questions, we utilized the principal autoimmune model of MS, experimental autoimmune encephalomyelitis (EAE), together with a genetically diverse mouse model representing 29 unique host genotypes, interrogated by microbiome sequencing and targeted microbiome manipulation. We identified specific gut bacteria and their metabolic functions associated with EAE susceptibility, implicating short-chain fatty acid metabolism as a key element conserved across multiple host genotypes. In parallel, we used a reductionist approach focused on two of the most disparate phenotypes identified in our screen. Manipulation of the gut microbiome by transplantation and cohousing demonstrated that transfer of these microbiomes into genetically identical hosts was sufficient to modulate EAE susceptibility and systemic metabolite profiles. Parallel bioinformatic approaches identified Lactobacillus reuteri as a commensal species unexpectedly associated with exacerbation of EAE in a genetically susceptible host, which was functionally confirmed by bacterial isolation and commensal colonization studies. These results reveal complex interactions between host genetics and gut microbiota modulating susceptibility to CNS autoimmunity, providing insights into microbiome-directed strategies aimed at lowering the risk for autoimmune disease and underscoring the need to consider host genetics and baseline gut microbiome composition.
Collapse
Affiliation(s)
- Theresa L Montgomery
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05401
| | - Axel Künstner
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, 23562 Lübeck, Germany
- Institute for Cardiogenetics, University of Lübeck, 23562 Lübeck, Germany
| | - Josephine J Kennedy
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05401
| | - Qian Fang
- Department of Medicine, Immunobiology Division, University of Vermont, Burlington, VT 05401
| | - Lori Asarian
- Department of Medicine, Immunobiology Division, University of Vermont, Burlington, VT 05401
| | - Rachel Culp-Hill
- Department of Biochemistry and Molecular Genetics, University of Colorado, Aurora, CO 80045
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado, Aurora, CO 80045
| | - Cory Teuscher
- Department of Medicine, Immunobiology Division, University of Vermont, Burlington, VT 05401
| | - Hauke Busch
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, 23562 Lübeck, Germany
- Institute for Cardiogenetics, University of Lübeck, 23562 Lübeck, Germany
| | - Dimitry N Krementsov
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05401;
| |
Collapse
|
27
|
Wang A, Rojas O, Lee D, Gommerman JL. Regulation of neuroinflammation by B cells and plasma cells. Immunol Rev 2020; 299:45-60. [PMID: 33107072 DOI: 10.1111/imr.12929] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023]
Abstract
The remarkable success of anti-CD20 B cell depletion therapies in reducing the burden of multiple sclerosis (MS) disease has prompted significant interest in how B cells contribute to neuroinflammation. Most focus has been on identifying pathogenic CD20+ B cells. However, an increasing number of studies have also identified regulatory functions of B lineage cells, particularly the production of IL-10, as being associated with disease remission in anti-CD20-treated MS patients. Moreover, IL-10-producing B cells have been linked to the attenuation of inflammation in experimental autoimmune encephalomyelitis (EAE), the animal model of MS. In addition to IL-10-producing B cells, antibody-producing plasma cells (PCs) have also been implicated in suppressing neuroinflammation. This review will examine regulatory roles for B cells and PCs in MS and EAE. In addition, we speculate on the involvement of regulatory PCs and the cytokine BAFF in the context of anti-CD20 treatment. Lastly, we explore how the microbiota could influence anti-inflammatory B cell behavior. A better understanding of the contributions of different B cell subsets to the regulation of neuroinflammation, and factors that impact the development, maintenance, and migration of such subsets, will be important for rationalizing next-generation B cell-directed therapies for the treatment of MS.
Collapse
Affiliation(s)
- Angela Wang
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Olga Rojas
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Dennis Lee
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
28
|
Pol S, Liang S, Schweser F, Dhanraj R, Schubart A, Preda M, Sveinsson M, Ramasamy DP, Dwyer MG, Weckbecker G, Zivadinov R. Subcutaneous anti-CD20 antibody treatment delays gray matter atrophy in human myelin oligodendrocyte glycoprotein-induced EAE mice. Exp Neurol 2020; 335:113488. [PMID: 32991933 DOI: 10.1016/j.expneurol.2020.113488] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/18/2020] [Accepted: 09/25/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND The human myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis (huMOG-EAE) model, generates B-cell driven demyelination in mice, making it a suitable multiple sclerosis model to study B cell depletion. OBJECTIVES We investigated the effect of subcutaneous anti-CD20 antibody treatment on huMOG-EAE gray matter (GM) pathology. METHODS C57Bl/6, 8-week old mice were immunized with 200 huMOG1-125 and treated with 50 μg/mouse of anti-CD20 antibody (n = 16) or isotype control (n = 16). Serial brain volumetric 9.4 T MRI scans was performed at baseline, 1 and 5 wkPI. Disease severity was measured by clinical disability score (CDS) and performance on rotarod test. RESULTS Anti-CD20 antibody significantly reduced brain volume loss compared with the isotype control across all timepoints longitudinally in the basal ganglia (p = 0.01), isocortex (p = 0.025) and thalamus (p = 0.023). The CDS was reduced significantly with anti-CD20 antibody vs. the isotype control at 3 (p = 0.003) and 4 (p = 0.03) wkPI, while a trend was observed at 5 (p = 0.057) and 6 (p = 0.086) wkPI. Performance on rotarod was also improved significantly at 3 (p = 0.007) and 5 (p = 0.01) wkPI compared with the isotype control. At cellular level, anti-CD20 therapy suppressed the percentage of proliferative nuclear antigen positive microglia in huMOG-EAE isocortex (p = 0.016). Flow cytometry confirmed that anti-CD20 antibody strongly depleted the CD19-expressing B cell fraction in peripheral blood mononuclear cells, reducing it from 39.7% measured in isotype control to 1.59% in anti-CD20 treated mice (p < 0.001). CONCLUSIONS Anti-CD20 antibody treatment delayed brain tissue neurodegeneration in GM, and showed clinical benefit on measures of disease severity in huMOG-EAE mice.
Collapse
Affiliation(s)
- Suyog Pol
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Serena Liang
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Ferdinand Schweser
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA; Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, NY, USA
| | - Ravendra Dhanraj
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Anna Schubart
- Novartis Institutes of BioMedical Research, Department of Transplantation and Immunology, Novartis, Basel, Switzerland
| | - Marilena Preda
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Michele Sveinsson
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Deepa P Ramasamy
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA; Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, NY, USA
| | - Gisbert Weckbecker
- Novartis Institutes of BioMedical Research, Department of Transplantation and Immunology, Novartis, Basel, Switzerland
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA; Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, NY, USA.
| |
Collapse
|
29
|
Wang AA, Gommerman JL, Rojas OL. Plasma Cells: From Cytokine Production to Regulation in Experimental Autoimmune Encephalomyelitis. J Mol Biol 2020; 433:166655. [PMID: 32976908 DOI: 10.1016/j.jmb.2020.09.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 01/01/2023]
Abstract
B cells are a critical arm of the adaptive immune system. After encounter with antigen, B cells are activated and differentiate into plasmablasts (PBs) and plasma cells (PCs). Although their frequency is low, PB/PCs can be found in all lymphoid organs including peripheral lymph nodes and spleen. Upon immunization, depending on the location of where B cells encounter their antigen, PB/PCs subsequently home to and accumuate in the bone marrow and the intestine where they can survive as long-lived plasma cells for years, continually producing antibody. Recent evidence has shown that, in addition to producing antibodies, PB/PCs can also produce cytokines such as IL-17, IL-10, and IL-35. In addition, PB/PCs that produce IL-10 have been shown to play a regulatory role during experimental autoimmune encephalomyelitis, an animal model of neuroinflammation. The purpose of this review is to describe the phenotype and function of regulatory PB/PCs in the context of experimental autoimmune encephalomyelitis and in patients with multiple sclerosis.
Collapse
Affiliation(s)
- Angela A Wang
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | | | - Olga L Rojas
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
30
|
Stevens MY, Cropper HC, Lucot KL, Chaney AM, Lechtenberg KJ, Jackson IM, Buckwalter MS, James ML. Development of a CD19 PET tracer for detecting B cells in a mouse model of multiple sclerosis. J Neuroinflammation 2020; 17:275. [PMID: 32948198 PMCID: PMC7501720 DOI: 10.1186/s12974-020-01880-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/23/2020] [Indexed: 01/11/2023] Open
Abstract
Background B cells play a central role in multiple sclerosis (MS) through production of injurious antibodies, secretion of pro-inflammatory cytokines, and antigen presentation. The therapeutic success of monoclonal antibodies (mAbs) targeting B cells in some but not all individuals suffering from MS highlights the need for a method to stratify patients and monitor response to treatments in real-time. Herein, we describe the development of the first CD19 positron emission tomography (PET) tracer, and its evaluation in a rodent model of MS, experimental autoimmune encephalomyelitis (EAE). Methods Female C57BL/6 J mice were induced with EAE through immunization with myelin oligodendrocyte glycoprotein (MOG1–125). PET imaging of naïve and EAE mice was performed 19 h after administration of [64Cu]CD19-mAb. Thereafter, radioactivity in organs of interest was determined by gamma counting, followed by ex vivo autoradiography of central nervous system (CNS) tissues. Anti-CD45R (B220) immunostaining of brain tissue from EAE and naïve mice was also conducted. Results Radiolabelling of DOTA-conjugated CD19-mAb with 64Cu was achieved with a radiochemical purity of 99% and molar activity of 2 GBq/μmol. Quantitation of CD19 PET images revealed significantly higher tracer binding in whole brain of EAE compared to naïve mice (2.02 ± 0.092 vs. 1.68 ± 0.06 percentage of injected dose per gram, % ID/g, p = 0.0173). PET findings were confirmed by ex vivo gamma counting of perfused brain tissue (0.22 ± 0.020 vs. 0.12 ± 0.003 % ID/g, p = 0.0010). Moreover, ex vivo autoradiography of brain sections corresponded with PET imaging results and the spatial distribution of B cells observed in B220 immunohistochemistry—providing further evidence that [64Cu]CD19-mAb enables visualization of B cell infiltration into the CNS of EAE mice. Conclusion CD19-PET imaging can be used to detect elevated levels of B cells in the CNS of EAE mice, and has the potential to impact the way we study, monitor, and treat clinical MS.
Collapse
Affiliation(s)
- Marc Y Stevens
- Department of Radiology, Molecular Imaging Program at Stanford, 1201 Welch Rd, Stanford, CA, 94305, USA
| | - Haley C Cropper
- Department of Radiology, Molecular Imaging Program at Stanford, 1201 Welch Rd, Stanford, CA, 94305, USA
| | | | - Aisling M Chaney
- Department of Radiology, Molecular Imaging Program at Stanford, 1201 Welch Rd, Stanford, CA, 94305, USA
| | - Kendra J Lechtenberg
- Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Isaac M Jackson
- Department of Radiology, Molecular Imaging Program at Stanford, 1201 Welch Rd, Stanford, CA, 94305, USA
| | - Marion S Buckwalter
- Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Michelle L James
- Department of Radiology, Molecular Imaging Program at Stanford, 1201 Welch Rd, Stanford, CA, 94305, USA. .,Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA, USA.
| |
Collapse
|
31
|
Ciotti JR, Eby NS, Wu GF, Naismith RT, Chahin S, Cross AH. Clinical and laboratory features distinguishing MOG antibody disease from multiple sclerosis and AQP4 antibody-positive neuromyelitis optica. Mult Scler Relat Disord 2020; 45:102399. [PMID: 32702642 DOI: 10.1016/j.msard.2020.102399] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/03/2020] [Accepted: 07/13/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Antibodies to myelin oligodendrocyte glycoprotein (MOG) are associated with a CNS inflammatory disorder distinct from multiple sclerosis (MS) and aquaporin-4 antibody-positive neuromyelitis optica (NMO). Knowledge of the clinical spectrum of MOG antibody disease (MOGAD) remains incomplete, particularly in comparison to two related inflammatory demyelinating diseases, MS and NMO. OBJECTIVE Compare demographics, clinical characteristics, estimated disability, laboratory results, and treatment responses of a U.S. MOGAD cohort with age- and sex-matched MS and NMO patients. DESIGN, SETTING, AND PARTICIPANTS This observational, case-control, single-center study identified each group via ICD-10 diagnosis code searches through the electronic medical records of adult patients seen at the John L. Trotter MS Center between January 1, 2019 and January 1, 2020. MOGAD and NMO patients were confirmed to have at least one positive antibody test; those in the MS group had a confirmed diagnosis by a physician with MS subspecialty training. Data were collected after IRB approval. RESULTS Twenty-six patients were included in each group. MOGAD patients were predominantly Caucasian (88.5%) with mean onset age of 43.9 years. MOGAD patients had no comorbid other autoimmune diseases and comparatively lower rates of family members with autoimmune disease (20.0%) than either MS (40.0%) or NMO (34.6%) matched cohorts. 91% of MOGAD attacks were monofocal, and over 70% presented with optic neuritis. Severity of MOGAD attacks was similar to that of seropositive NMO, but the robust degree of recovery was more similar to MS. Four MOGAD patients converted to negative antibody status, with no attacks occurring after conversion. Serum ANA and ENA were less frequently elevated in MOGAD (21.7%, 5.0%) than in seropositive NMO patients (66.7%, 42.9%). Elevated IgG synthesis rate and positive CSF-restricted oligoclonal bands were not seen in our MOGAD cohort, and only one MOGAD patient had an elevated IgG index. Despite anti-CD20 therapy, 28.6% of MOGAD patients continued to suffer relapses. CONCLUSIONS MOGAD was characterized by a predominantly monofocal presentation (typically optic neuritis) and severe attacks with better recovery than seen with seropositive NMO attacks. Lack of CSF-restricted oligoclonal bands distinguished MOGAD from MS.
Collapse
Affiliation(s)
- John R Ciotti
- Washington University in St. Louis, Department of Neurology; St. Louis, MO, United States.
| | - Noah S Eby
- Washington University Medical School; St. Louis, MO, United States
| | - Gregory F Wu
- Washington University in St. Louis, Department of Neurology; St. Louis, MO, United States
| | - Robert T Naismith
- Washington University in St. Louis, Department of Neurology; St. Louis, MO, United States
| | - Salim Chahin
- Washington University in St. Louis, Department of Neurology; St. Louis, MO, United States
| | - Anne H Cross
- Washington University in St. Louis, Department of Neurology; St. Louis, MO, United States
| |
Collapse
|
32
|
Cavallo S. Immune-mediated genesis of multiple sclerosis. J Transl Autoimmun 2020; 3:100039. [PMID: 32743522 PMCID: PMC7388381 DOI: 10.1016/j.jtauto.2020.100039] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 01/03/2020] [Accepted: 01/05/2020] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) is widely acknowledged to be an autoimmune disease affecting the neuronal myelin structure of the CNS. Autoantigens recognized as the target of this autoimmune process are: myelin basal protein, anti-proteolipid protein, antimyelin-associated glycoprotein and antimyelin-based oligodendrocytic basic protein. Ample evidence supports the idea of a dysregulation of immunological tolerance towards self-antigens of neuronal myelin structure triggered by one or more viral or bacterial microbial agents in predisposed HLA gene subjects. Genetic predisposition to MS has been highlighted by numerous studies associating the disease to specific HLA haplotypes. Moreover, a wide range of evidence supports the fact that MS may be consequence of one or more viral or bacterial infections such as measles virus, EBV, HHV6, HZV, Chlamydia pneumoniae, Helicobacter Pylori, and other microbial agents. Microbiota elements also seems to have a role on the determinism of the disease as a pathogenic or protective factor. The autoimmune pathogenetic process could arise when a molecular mimicry between a foreign microbial antigen and an auto-antigen occurs in an HLA gene subject competent for that particular antigen. The antigen-presenting cells in this case would induce the activation of a specific Th clone causing a cross-reaction between a foreign antigen and an autoantigen resulting in an autoimmune response. A multifactorial ethiopathogenetic model based on immunomediation is a reliable hypothesis for multiple sclerosis. Evidence found in the scientific literature makes it possible to reconstruct this etiopathogenetic hypothesis for MS. HLA gene predisposition, correlation with infections, molecular mimicry and other immunological data are reported.
Collapse
Affiliation(s)
- Salvatore Cavallo
- Expert Doctor in Non-Conventional Medicine, Professor and Member of the Board of the MMS, MMS (Medicina di Modulazione Dei Sistemi) Roma, Salvatore Cavallo Via G.B. Pergolesi, 28, 75100, Matera, Italy
| |
Collapse
|
33
|
Jeffries MA, Obr AE, Urbanek K, Fyffe-Maricich SL, Wood TL. Cnp Promoter-Driven Sustained ERK1/2 Activation Increases B-Cell Activation and Suppresses Experimental Autoimmune Encephalomyelitis. ASN Neuro 2020; 12:1759091420971916. [PMID: 33228381 PMCID: PMC7691909 DOI: 10.1177/1759091420971916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/29/2020] [Accepted: 10/09/2020] [Indexed: 01/24/2023] Open
Abstract
The ERK1/2 signaling pathway promotes myelin wrapping during development and remyelination, and sustained ERK1/2 activation in the oligodendrocyte (OL) lineage results in hypermyelination of the CNS. We therefore hypothesized that increased ERK1/2 signaling in the OL lineage would 1) protect against immune-mediated demyelination due to increased baseline myelin thickness and/or 2) promote enhanced remyelination and thus functional recovery after experimental autoimmune encephalomyelitis (EAE) induction. Cnp-Cre;Mek1DD-eGFP/+ mice that express a constitutively active form of MEK1 (the upstream activator of ERK1/2) in the OL lineage, exhibited a significant decrease in EAE clinical severity compared to controls. However, experiments using tamoxifen-inducible Plp-CreERT;Mek1DD-eGFP/+ or Pdgfrα-CreERT;Mek1DD-eGFP mice revealed this was not solely due to a protective or reparative effect resulting from MEK1DD expression specifically in the OL lineage. Because EAE is an immune-mediated disease, we examined Cnp-Cre;Mek1DD-eGFP/+ splenic immune cells for recombination. Surprisingly, GFP+ recombined CD19+ B-cells, CD11b+ monocytes, and CD3+ T-cells were noted when Cre expression was driven by the Cnp promoter. While ERK1/2 signaling in monocytes and T-cells is associated with proinflammatory activation, fewer studies have examined ERK1/2 signaling in B-cell populations. After in vitro stimulation, MEK1DD-expressing B-cells exhibited a 3-fold increase in CD138+ plasmablasts and a 5-fold increase in CD5+CD1dhi B-cells compared to controls. Stimulated MEK1DD-expressing B-cells also exhibited an upregulation of IL-10, known to suppress the initiation of EAE when produced by CD5+CD1dhi regulatory B-cells. Taken together, our data support the conclusion that sustained ERK1/2 activation in B-cells suppresses immune-mediated demyelination via increasing activation of regulatory B10 cells.
Collapse
MESH Headings
- 2',3'-Cyclic Nucleotide 3'-Phosphodiesterase/biosynthesis
- 2',3'-Cyclic Nucleotide 3'-Phosphodiesterase/immunology
- Animals
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Female
- MAP Kinase Signaling System/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Promoter Regions, Genetic/physiology
Collapse
Affiliation(s)
- Marisa A. Jeffries
- Department of Pharmacology, Physiology, and
Neuroscience, Rutgers University New Jersey Medical School, Newark,
United States
- Center for Neuroscience, University of Pittsburgh,
Pittsburgh, Pennsylvania, United States
- Center for Cell Signaling, Rutgers University New
Jersey Medical School, Newark, United States
| | - Alison E. Obr
- Department of Pharmacology, Physiology, and
Neuroscience, Rutgers University New Jersey Medical School, Newark,
United States
- Center for Cell Signaling, Rutgers University New
Jersey Medical School, Newark, United States
| | - Kelly Urbanek
- Department of Pediatrics, Division of Neurology,
University of Pittsburgh, Pittsburgh, Pennsylvania, United
States
| | - Sharyl L. Fyffe-Maricich
- Center for Neuroscience, University of Pittsburgh,
Pittsburgh, Pennsylvania, United States
- Department of Pediatrics, Division of Neurology,
University of Pittsburgh, Pittsburgh, Pennsylvania, United
States
| | - Teresa L. Wood
- Department of Pharmacology, Physiology, and
Neuroscience, Rutgers University New Jersey Medical School, Newark,
United States
- Center for Cell Signaling, Rutgers University New
Jersey Medical School, Newark, United States
| |
Collapse
|
34
|
A GPR174–CCL21 module imparts sexual dimorphism to humoral immunity. Nature 2019; 577:416-420. [DOI: 10.1038/s41586-019-1873-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/31/2019] [Indexed: 11/08/2022]
|
35
|
Agasing AM, Gawde S, Kumar G, Turner E, Axtell RC. B cell function impacts the efficacy of IFN-β therapy in EAE. J Neuroimmunol 2019; 338:577106. [PMID: 31715458 DOI: 10.1016/j.jneuroim.2019.577106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/23/2019] [Accepted: 11/04/2019] [Indexed: 01/12/2023]
Abstract
Recent studies identified that interferon beta (IFN-β) treatment skews B-cells towards a regulatory phenotype in multiple sclerosis. To assess B cell involvement during IFN-β therapy, we compared IFN-β treatment in a B cell-independent model and a B cell-dependent model of experimental autoimmune encephalomyelitis (EAE). We show that in B cell-independent EAE, IFN-β ameliorates neuroinflammation. Conversely, in B cell-dependent EAE, IFN-β has no effect on disease. Effective IFN-β therapy in B cell-independent EAE was associated with reduced inflammatory T cells in the CNS and skewed splenic B cells towards an immature population and away from a germinal center population. These immune cell populations were unchanged in B cell-dependent EAE. Finally, we found that IFN-β increased marginal zone B cells in both EAE models. These findings indicate that B cell function impacts IFN-β efficacy during neuroinflammation.
Collapse
Affiliation(s)
- Agnieshka M Agasing
- Department of Arthritis and Clinical Immunology Research, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Microbiology and Immunology, Oklahoma University Health Science Center, Oklahoma City, OK, USA
| | - Saurabh Gawde
- Department of Arthritis and Clinical Immunology Research, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Microbiology and Immunology, Oklahoma University Health Science Center, Oklahoma City, OK, USA
| | - Gaurav Kumar
- Department of Microbiology and Immunology, Oklahoma University Health Science Center, Oklahoma City, OK, USA
| | - Emma Turner
- Department of Microbiology and Immunology, Oklahoma University Health Science Center, Oklahoma City, OK, USA
| | - Robert C Axtell
- Department of Microbiology and Immunology, Oklahoma University Health Science Center, Oklahoma City, OK, USA.
| |
Collapse
|
36
|
Seifert HA, Gerstner G, Kent G, Vandenbark AA, Offner H. Estrogen-induced compensatory mechanisms protect IL-10-deficient mice from developing EAE. J Neuroinflammation 2019; 16:195. [PMID: 31665042 PMCID: PMC6821034 DOI: 10.1186/s12974-019-1588-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/12/2019] [Indexed: 02/08/2023] Open
Abstract
Background IL-10 knockout (KO) mice are protected from experimental autoimmune encephalomyelitis (EAE) with low-dose estrogen (E2) treatment similar to wild-type (WT) mice. Previous studies have demonstrated a decrease in tumor necrosis factor in all E2-treated groups, which led to the protection of the mice. Methods This study used IL-10 KO mice and WT mice treated either with E2 or sham pellets 7 days prior to induction of EAE. Mice were observed for 21 days post-immunization. The spleen, inguinal lymph nodes, and brain were evaluated by flow cytometry. Spinal cords were evaluated using a cytokine/chemokine array, RT-PCR, and histology. Results This study demonstrates that E2 treatment induced three heightened regulatory mechanisms that potentially protect IL-10 KO mice from EAE: (1) an increase in programmed death-ligands 1 and 2 on monocytes and macrophages in the periphery and within the CNS; (2) an increase in CD73 in the inflamed CNS, which can increase the production of the anti-inflammatory molecule adenosine; and (3) a decrease in CD4+CD25+FoxP3+ regulatory T cells in the spleen. Together, these factors comprise an alternative compensatory mechanism that significantly downregulates key pro-inflammatory cytokine, chemokine, and chemokine receptor genes which are enhanced in the spinal cord of IL-10 KO mice. This group of E2-treated mice remained asymptomatic after EAE challenge similar to E2-treated WT mice, despite their having more T and B lymphocytes in the brain, and modestly increased demyelination in the spinal cord. Conclusion These results indicate that previously unrecognized compensatory mechanisms of EAE protection are stimulated by E2 in the absence of IL-10, which can provide disease protection comparable to the IL-10-dependent effects induced by E2 in WT mice.
Collapse
Affiliation(s)
- Hilary A Seifert
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA.,Neuroimmunology Research, VA Portland Health Care System, R&D-31, 3710 SW US Veterans Hospital Rd., Portland, OR, 97239, USA
| | - Grant Gerstner
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA.,Neuroimmunology Research, VA Portland Health Care System, R&D-31, 3710 SW US Veterans Hospital Rd., Portland, OR, 97239, USA
| | - Gail Kent
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA.,Neuroimmunology Research, VA Portland Health Care System, R&D-31, 3710 SW US Veterans Hospital Rd., Portland, OR, 97239, USA
| | - Arthur A Vandenbark
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA.,Neuroimmunology Research, VA Portland Health Care System, R&D-31, 3710 SW US Veterans Hospital Rd., Portland, OR, 97239, USA.,Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Halina Offner
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA. .,Neuroimmunology Research, VA Portland Health Care System, R&D-31, 3710 SW US Veterans Hospital Rd., Portland, OR, 97239, USA. .,Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
37
|
Hussain RZ, Cravens PD, Miller-Little WA, Doelger R, Granados V, Herndon E, Okuda DT, Eagar TN, Stüve O. α4-integrin deficiency in B cells does not affect disease in a T-cell-mediated EAE disease model. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2019; 6:e563. [PMID: 31086806 PMCID: PMC6481229 DOI: 10.1212/nxi.0000000000000563] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/01/2019] [Indexed: 11/16/2022]
Abstract
Objective The goal of this study was to investigate the role of CD 19+ B cells within the brain and spinal cord during CNS autoimmunity in a peptide-induced, primarily T-cell-mediated experimental autoimmune encephalomyelitis (EAE) model of MS. We hypothesized that CD19+ B cells outside the CNS drive inflammation in EAE. Methods We generated CD19.Cre+/- α4-integrinfl/fl mice. EAE was induced by active immunization with myelin oligodendrocyte glycoprotein peptide (MOGp35-55). Multiparameter flow cytometry was used to phenotype leukocyte subsets in primary and secondary lymphoid organs and the CNS. Serum cytokine levels and Ig levels were assessed by bead array. B-cell adoptive transfer was used to determine the compartment-specific pathogenic role of antigen-specific and non-antigen-specific B cells. Results A genetic ablation of α4-integrin in CD19+/- B cells significantly reduced the number of CD19+ B cells in the CNS but does not affect EAE disease activity in active MOGp35-55-induced disease. The composition of B-cell subsets in the brain, primary lymphoid organs, and secondary lymphoid organs of CD19.Cre+/- α4-integrinfl/fl mice was unchanged during MOGp35-55-induced EAE. Adoptive transfer of purified CD19+ B cells from CD19.Cre+/- α4-integrinfl/fl mice or C57BL/6 wild-type (WT) control mice immunized with recombinant rMOG1-125 or ovalbumin323-339 into MOGp35-55-immunized CD19.Cre+/- α4-integrinfl/fl mice caused worse clinical EAE than was observed in MOGp35-55-immunized C57BL/6 WT control mice that did not receive adoptively transferred CD19+ B cells. Conclusions Observations made in CD19.Cre+/- α4-integrinfl/fl mice in active MOGp35-55-induced EAE suggest a compartment-specific pathogenic role of CD19+ B cells mostly outside of the CNS that is not necessarily antigen specific.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Antigens, CD19/genetics
- Antigens, CD19/immunology
- B-Lymphocytes/immunology
- Bone Marrow/immunology
- Brain/immunology
- Central Nervous System/immunology
- Cytokines
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Integrin alpha4/deficiency
- Integrin alpha4/genetics
- Integrin alpha4/immunology
- Lymph Nodes/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Spinal Cord/immunology
- Spleen/immunology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Rehana Z Hussain
- Department of Neurology and Neurotherapeutics (R.Z.H., P.C.C., W.A.M.-L., R.D., V.G., D.T.O., O.S.) and Department of Pathology (E.H.), University of Texas Southwestern Medical Center, Dallas; Department of Pathology and Genomic Medicine (T.N.E.), Houston Methodist Hospital; Neurology Section (O.S.), VA North Texas Health Care System, Medical Service; and Department of Neurology (O.S.), Klinikum Rechts der Isar, Technische Universität München, Germany
| | - Petra D Cravens
- Department of Neurology and Neurotherapeutics (R.Z.H., P.C.C., W.A.M.-L., R.D., V.G., D.T.O., O.S.) and Department of Pathology (E.H.), University of Texas Southwestern Medical Center, Dallas; Department of Pathology and Genomic Medicine (T.N.E.), Houston Methodist Hospital; Neurology Section (O.S.), VA North Texas Health Care System, Medical Service; and Department of Neurology (O.S.), Klinikum Rechts der Isar, Technische Universität München, Germany
| | - William A Miller-Little
- Department of Neurology and Neurotherapeutics (R.Z.H., P.C.C., W.A.M.-L., R.D., V.G., D.T.O., O.S.) and Department of Pathology (E.H.), University of Texas Southwestern Medical Center, Dallas; Department of Pathology and Genomic Medicine (T.N.E.), Houston Methodist Hospital; Neurology Section (O.S.), VA North Texas Health Care System, Medical Service; and Department of Neurology (O.S.), Klinikum Rechts der Isar, Technische Universität München, Germany
| | - Richard Doelger
- Department of Neurology and Neurotherapeutics (R.Z.H., P.C.C., W.A.M.-L., R.D., V.G., D.T.O., O.S.) and Department of Pathology (E.H.), University of Texas Southwestern Medical Center, Dallas; Department of Pathology and Genomic Medicine (T.N.E.), Houston Methodist Hospital; Neurology Section (O.S.), VA North Texas Health Care System, Medical Service; and Department of Neurology (O.S.), Klinikum Rechts der Isar, Technische Universität München, Germany
| | - Valerie Granados
- Department of Neurology and Neurotherapeutics (R.Z.H., P.C.C., W.A.M.-L., R.D., V.G., D.T.O., O.S.) and Department of Pathology (E.H.), University of Texas Southwestern Medical Center, Dallas; Department of Pathology and Genomic Medicine (T.N.E.), Houston Methodist Hospital; Neurology Section (O.S.), VA North Texas Health Care System, Medical Service; and Department of Neurology (O.S.), Klinikum Rechts der Isar, Technische Universität München, Germany
| | - Emily Herndon
- Department of Neurology and Neurotherapeutics (R.Z.H., P.C.C., W.A.M.-L., R.D., V.G., D.T.O., O.S.) and Department of Pathology (E.H.), University of Texas Southwestern Medical Center, Dallas; Department of Pathology and Genomic Medicine (T.N.E.), Houston Methodist Hospital; Neurology Section (O.S.), VA North Texas Health Care System, Medical Service; and Department of Neurology (O.S.), Klinikum Rechts der Isar, Technische Universität München, Germany
| | - Darin T Okuda
- Department of Neurology and Neurotherapeutics (R.Z.H., P.C.C., W.A.M.-L., R.D., V.G., D.T.O., O.S.) and Department of Pathology (E.H.), University of Texas Southwestern Medical Center, Dallas; Department of Pathology and Genomic Medicine (T.N.E.), Houston Methodist Hospital; Neurology Section (O.S.), VA North Texas Health Care System, Medical Service; and Department of Neurology (O.S.), Klinikum Rechts der Isar, Technische Universität München, Germany
| | - Todd N Eagar
- Department of Neurology and Neurotherapeutics (R.Z.H., P.C.C., W.A.M.-L., R.D., V.G., D.T.O., O.S.) and Department of Pathology (E.H.), University of Texas Southwestern Medical Center, Dallas; Department of Pathology and Genomic Medicine (T.N.E.), Houston Methodist Hospital; Neurology Section (O.S.), VA North Texas Health Care System, Medical Service; and Department of Neurology (O.S.), Klinikum Rechts der Isar, Technische Universität München, Germany
| | - Olaf Stüve
- Department of Neurology and Neurotherapeutics (R.Z.H., P.C.C., W.A.M.-L., R.D., V.G., D.T.O., O.S.) and Department of Pathology (E.H.), University of Texas Southwestern Medical Center, Dallas; Department of Pathology and Genomic Medicine (T.N.E.), Houston Methodist Hospital; Neurology Section (O.S.), VA North Texas Health Care System, Medical Service; and Department of Neurology (O.S.), Klinikum Rechts der Isar, Technische Universität München, Germany
| |
Collapse
|
38
|
Platt JL, Cascalho M. Non-canonical B cell functions in transplantation. Hum Immunol 2019; 80:363-377. [PMID: 30980861 PMCID: PMC6544480 DOI: 10.1016/j.humimm.2019.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/04/2019] [Accepted: 04/09/2019] [Indexed: 12/18/2022]
Abstract
B cells are differentiated to recognize antigen and respond by producing antibodies. These activities, governed by recognition of ancillary signals, defend the individual against microorganisms and the products of microorganisms and constitute the canonical function of B cells. Despite the unique differentiation (e.g. recombination and mutation of immunoglobulin gene segments) toward this canonical function, B cells can provide other, "non-canonical" functions, such as facilitating of lymphoid organogenesis and remodeling and fashioning T cell repertoires and modifying T cell responses. Some non-canonical functions are exerted by antibodies, but most are mediated by other products and/or direct actions of B cells. The diverse set of non-canonical functions makes the B cell as much as any cell a central organizer of innate and adaptive immunity. However, the diverse products and actions also confound efforts to weigh the importance of individual non-canonical B cell functions. Here we shall describe the non-canonical functions of B cells and offer our perspective on how those functions converge in the development and governance of immunity, particularly immunity to transplants, and hurdles to advancing understanding of B cell functions in transplantation.
Collapse
Affiliation(s)
- Jeffrey L Platt
- Departments of Surgery and of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, United States.
| | - Marilia Cascalho
- Departments of Surgery and of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
39
|
DNA threads released by activated CD4 + T lymphocytes provide autocrine costimulation. Proc Natl Acad Sci U S A 2019; 116:8985-8994. [PMID: 30988194 DOI: 10.1073/pnas.1822013116] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The extrusion of DNA traps contributes to a key mechanism in which innate immune cells clear pathogens or induce sterile inflammation. Here we provide evidence that CD4+ T cells, a critical regulator of adaptive immunity, release extracellular threads of DNA on activation. These DNA extrusions convey autocrine costimulatory signals to T lymphocytes and can be detected in lymph nodes isolated during the priming phase of experimental autoimmune encephalomyelitis (EAE), a CD4+ T cell-driven mouse model of multiple sclerosis. Pharmacologic inhibition of mitochondrial reactive oxygen species (mtROS) abolishes the extrusion of DNA by CD4+ T cells, reducing cytokine production in vitro and T cell priming against myelin in vivo. Moreover, mtROS blockade during established EAE markedly ameliorates disease severity, dampening autoimmune inflammation of the central nervous system. Taken together, these experimental results elucidate a mechanism of intrinsic immune costimulation mediated by DNA threads released by activated T helper cells, and identify a potential therapeutic target for such disorders as multiple sclerosis, neuromyelitis optica, and CD4+ T cell-mediated disorders.
Collapse
|
40
|
Selek S, Esrefoglu M, Meral I, Bulut H, Caglar HG, Sonuc G, Yildiz C, Teloglu ES, Dogan N, Yuce B, Tiftik E, Bayindir N. Effects of Oenothera biennis L. and Hypericum perforatum L. extracts on some central nervous system myelin proteins, brain histopathology and oxidative stress in mice with experimental autoimmune encephalomyelitis. Biotech Histochem 2019; 94:75-83. [PMID: 30957550 DOI: 10.1080/10520295.2018.1482001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We investigated the effects of Oenothera biennis L. and Hypericum perforatum L. extracts on brain tissue histopathology, myelin oligodendrocyte glycoprotein (MOG), myelin basic protein (MBP), total antioxidant status (TAS), total oxidant status (TOS) and oxidative stress index (OSI) in mice with experimental autoimmune encephalomyelitis (EAE). Forty-seven C57BL/6J mice were divided into the following groups: multiple sclerosis (MS), control (healthy mice), MS + H. perforatum treated (MS + HP), MS + O. biennis treated (MS + OB). All groups except the control group were immunized by EAE methods. Two weeks after the immunization, the mice in the MS + HP group were fed normal food containing 18 - 21 g/kg H. perforatum extract, the mice in MS + OB group were fed normal food containing 18 - 21 g/kg O. biennis extract, and the mice in control and MS groups were fed normal food for six weeks. Brain tissue samples were collected from all mice for histopathological and biochemical analysis. Clinical signs of the disease were scored using functional systems scores (FSS) daily. The H. perforatum and O. biennis extracts ameliorated the increased brain tissue MOG and MBP values for animals with MS. H. perforatum and O. biennis extract decreased the TOS and OSI values for brain tissue and increased TAS levels in brain tissue of animals with MS. In addition, H. perforatum and O. biennis extracts decreased the clinical signs at the end of the experiment compared to the beginning of extract administration. We found that myelin was lost in MS group vs. control group. H. perforatum and O. biennis extract treatments decreased the amount of myelin loss in the MS + HP and MS + OB groups. We also observed amyloid deposition on vascular walls, in the cytoplasm of the neurons and in the intercellular space in the MS group. O. biennis and H. perforatum treated groups exhibited neither abnormal amyloid deposition nor obvious cell infiltration. The beneficial effects of O. biennis and H. perforatum for attenuating myelin loss and amyloid deposition suggest their therapeutic utility for treatment of MS.
Collapse
Affiliation(s)
- S Selek
- a Departments of Medical Biochemistry , Bezmialem Vakif University , Istanbul , Turkey
| | - M Esrefoglu
- b Histology and Embryology , Bezmialem Vakif University , Istanbul , Turkey
| | - I Meral
- c Physiology Faculty of Medicine , Bezmialem Vakif University , Istanbul , Turkey
| | - H Bulut
- a Departments of Medical Biochemistry , Bezmialem Vakif University , Istanbul , Turkey
| | - H G Caglar
- a Departments of Medical Biochemistry , Bezmialem Vakif University , Istanbul , Turkey
| | - G Sonuc
- d School of Medicine , Bezmialem Vakif University , Istanbul , Turkey
| | - C Yildiz
- d School of Medicine , Bezmialem Vakif University , Istanbul , Turkey
| | - E S Teloglu
- d School of Medicine , Bezmialem Vakif University , Istanbul , Turkey
| | - N Dogan
- d School of Medicine , Bezmialem Vakif University , Istanbul , Turkey
| | - B Yuce
- d School of Medicine , Bezmialem Vakif University , Istanbul , Turkey
| | - E Tiftik
- d School of Medicine , Bezmialem Vakif University , Istanbul , Turkey
| | - N Bayindir
- b Histology and Embryology , Bezmialem Vakif University , Istanbul , Turkey
| |
Collapse
|
41
|
Getahun A, Cambier JC. Non-Antibody-Secreting Functions of B Cells and Their Contribution to Autoimmune Disease. Annu Rev Cell Dev Biol 2019; 35:337-356. [PMID: 30883216 DOI: 10.1146/annurev-cellbio-100617-062518] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
B cells play multiple important roles in the pathophysiology of autoimmune disease. Beyond producing pathogenic autoantibodies, B cells can act as antigen-presenting cells and producers of cytokines, including both proinflammatory and anti-inflammatory cytokines. Here we review our current understanding of the non-antibody-secreting roles that B cells may play during development of autoimmunity, as learned primarily from reductionist preclinical models. Attention is also given to concepts emerging from clinical studies using B cell depletion therapy, which shed light on the roles of these mechanisms in human autoimmune disease.
Collapse
Affiliation(s)
- Andrew Getahun
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA; .,Department of Biomedical Research, National Jewish Health, Denver, Colorado 80206, USA
| | - John C Cambier
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA; .,Department of Biomedical Research, National Jewish Health, Denver, Colorado 80206, USA
| |
Collapse
|
42
|
Lees JR. Targeting antigen presentation in autoimmunity. Cell Immunol 2018; 339:4-9. [PMID: 30554782 DOI: 10.1016/j.cellimm.2018.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/06/2018] [Accepted: 12/10/2018] [Indexed: 02/06/2023]
Abstract
Autoimmune diseases are heterogeneous group of disorders that together represent an enormous societal and medical problem. CD4+ T cells have critical roles in the initiation and pathogenesis of autoimmune disease. As such, modulation of T cell activity has proven to have significant therapeutic effects in multiple autoimmune settings. T cell activation is a complex process with multiple potential therapeutic targets, many of which have been successfully utilized to treat human disease. Current pharmacological treatment largely targets T cell intrinsic activities as a means of treating various autoimmune disorders. Here I review extant and potential therapeutic approaches that instead specifically target antigen presentation to CD4+ T cells as a critical checkpoint in autoimmune responses. In addition, the contribution of antigen modulation components in current therapeutic approaches is considered along with the impact of new antigen targeted treatment modalities. Finally, potential challenges are considered in the context of the potential for antigen specific targeting of the antigen presentation process.
Collapse
Affiliation(s)
- Jason R Lees
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.
| |
Collapse
|
43
|
Glatigny S, Bettelli E. Experimental Autoimmune Encephalomyelitis (EAE) as Animal Models of Multiple Sclerosis (MS). Cold Spring Harb Perspect Med 2018; 8:cshperspect.a028977. [PMID: 29311122 DOI: 10.1101/cshperspect.a028977] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Multiple sclerosis (MS) is a multifocal demyelinating disease of the central nervous system (CNS) leading to the progressive destruction of the myelin sheath surrounding axons. It can present with variable clinical and pathological manifestations, which might reflect the involvement of distinct pathogenic processes. Although the mechanisms leading to the development of the disease are not fully understood, numerous evidences indicate that MS is an autoimmune disease, the initiation and progression of which are dependent on an autoimmune response against myelin antigens. In addition, genetic susceptibility and environmental triggers likely contribute to the initiation of the disease. At this time, there is no cure for MS, but several disease-modifying therapies (DMTs) are available to control and slow down disease progression. A good number of these DMTs were identified and tested using animal models of MS referred to as experimental autoimmune encephalomyelitis (EAE). In this review, we will recapitulate the characteristics of EAE models and discuss how they help shed light on MS pathogenesis and help test new treatments for MS patients.
Collapse
Affiliation(s)
- Simon Glatigny
- Immunology Program, Benaroya Research Institute, Seattle, Washington 98101.,Department of Immunology, University of Washington, Seattle, Washington 98109
| | - Estelle Bettelli
- Immunology Program, Benaroya Research Institute, Seattle, Washington 98101.,Department of Immunology, University of Washington, Seattle, Washington 98109
| |
Collapse
|
44
|
Negron A, Robinson RR, Stüve O, Forsthuber TG. The role of B cells in multiple sclerosis: Current and future therapies. Cell Immunol 2018; 339:10-23. [PMID: 31130183 DOI: 10.1016/j.cellimm.2018.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 02/07/2023]
Abstract
While it was long held that T cells were the primary mediators of multiple sclerosis (MS) pathogenesis, the beneficial effects observed in response to treatment with Rituximab (RTX), a monoclonal antibody (mAb) targeting CD20, shed light on a key contributor to MS that had been previously underappreciated: B cells. This has been reaffirmed by results from clinical trials testing the efficacy of subsequently developed B cell-depleting mAbs targeting CD20 as well as studies revisiting the effects of previous disease-modifying therapies (DMTs) on B cell subsets thought to modulate disease severity. In this review, we summarize current knowledge regarding the complex roles of B cells in MS pathogenesis and current and potential future B cell-directed therapies.
Collapse
Affiliation(s)
- Austin Negron
- Department of Biology, University of Texas at San Antonio, TX 78249, USA
| | - Rachel R Robinson
- Department of Biology, University of Texas at San Antonio, TX 78249, USA
| | - Olaf Stüve
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Neurology Section, VA North Texas Health Care System, Medical Service, Dallas, TX, USA
| | | |
Collapse
|
45
|
Quinn JL, Axtell RC. Emerging Role of Follicular T Helper Cells in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis. Int J Mol Sci 2018; 19:ijms19103233. [PMID: 30347676 PMCID: PMC6214126 DOI: 10.3390/ijms19103233] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/18/2018] [Accepted: 10/18/2018] [Indexed: 12/21/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disorder where both T cells and B cells are implicated in pathology. However, it remains unclear how these two distinct populations cooperate to drive disease. There is ample evidence from studies in both MS patients and mouse models that Th17, B cells, and follicular T helper (TFH) cells contribute to disease. This review article describes the literature that identifies mechanisms by which Th17, TFH, and B cells cooperatively drive disease activity in MS and experimental autoimmune encephalomyelitis (EAE). The curation of this literature has identified that central nervous system (CNS) infiltrating TFH cells act with TH17 cell to contribute to an inflammatory B cell response in neuroinflammation. This demonstrates that TFH cells and their products are promising targets for therapies in MS.
Collapse
Affiliation(s)
- James L Quinn
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| | - Robert C Axtell
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| |
Collapse
|
46
|
Galicia G, Lee DSW, Ramaglia V, Ward LA, Yam JY, Leung LYT, Li R, Handy M, Zhang J, Drohomyrecky PC, Lancaster E, Bar-Or A, Martin A, Gommerman JL. Isotype-Switched Autoantibodies Are Necessary To Facilitate Central Nervous System Autoimmune Disease in Aicda−/− and Ung−/− Mice. THE JOURNAL OF IMMUNOLOGY 2018; 201:1119-1130. [DOI: 10.4049/jimmunol.1700729] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 06/02/2018] [Indexed: 12/30/2022]
|
47
|
Toader LE, Rosu GC, Catalin B, Tudorica V, Pirici I, Taisescu O, Muresanu DF. Clinical and Histopathological Assessment on an Animal Model with Experimental Autoimmune Encephalomyelitis. CURRENT HEALTH SCIENCES JOURNAL 2018; 44:280-287. [PMID: 30647949 PMCID: PMC6311223 DOI: 10.12865/chsj.44.03.12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 09/10/2018] [Indexed: 01/05/2023]
Abstract
Multiple sclerosis (MS) is a disease of the Central Nervous System (CNS) which alters over 2 million people, and involves an abnormal autoimmune response directed against the brain, nerves and spinal cord. The antigen or the autoimmune target still remains unknown, a fact for which MS is considered to be an immune mediated disease. The pathology involves mainly the white matter, but the gray matter demyelination plays an important role in its pathogenesis. In 80% of the cases with MS, the disease develops relapses. Experimental autoimmune encephalomyelitis (EAE) is the most used model to study MS and for assessing potential treatments. In the present study we report on the histopathological characterization of an EAE model in C57BL/6 mice immunized by injection with myelin oligodendrocyte glycoprotein, MOG35-55 in complete Freud's adjuvant supplemented with pertussis toxin. On a group of 10 immunized animals and on 5 control animals, we followed the development and grading signs of motor deficiency, and after a survival of 34 days, the study aimed to evaluate the histopathological changes in the telencephalon, brainstem, cervical spinal cord, the optic nerve and retina. We utilized histochemistry, immunohistochemistry, and densitometric image analysis methods to assess myelin loss [Luxol fast blue, immunohistochemistry for the presence of microglia (Iba1) and reactive astrocytes (GFAP)]. Moreover, the study includes a first analysis of the detailed histopathological changes of the optic nerve and retina on an EAE model, all of these as the background for testing drugs with potential therapeutic role in MS.
Collapse
Affiliation(s)
- L E Toader
- Department of Neurology, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - G C Rosu
- Department of Research Methodology, University of Medicine and Pharmacy of Craiova, Romania
| | - B Catalin
- Department of Physiology, University of Medicine and Pharmacy of Craiova, Romania
| | - V Tudorica
- Department of Neurology, University of Medicine and Pharmacy of Craiova, Romania
| | - I Pirici
- Department of Human Anatomy, University of Medicine and Pharmacy of Craiova, Romania
| | - O Taisescu
- Department of Human Anatomy, University of Medicine and Pharmacy of Craiova, Romania
| | - D F Muresanu
- Department of Clinical Neurosciences, University of Medicine and Pharmacy "Iuliu Hatieganu" and "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| |
Collapse
|
48
|
Parker Harp CR, Archambault AS, Sim J, Shlomchik MJ, Russell JH, Wu GF. B cells are capable of independently eliciting rapid reactivation of encephalitogenic CD4 T cells in a murine model of multiple sclerosis. PLoS One 2018; 13:e0199694. [PMID: 29944721 PMCID: PMC6019098 DOI: 10.1371/journal.pone.0199694] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 06/12/2018] [Indexed: 12/16/2022] Open
Abstract
Recent success with B cell depletion therapies has revitalized efforts to understand the pathogenic role of B cells in Multiple Sclerosis (MS). Using the adoptive transfer system of experimental autoimmune encephalomyelitis (EAE), a murine model of MS, we have previously shown that mice in which B cells are the only MHCII-expressing antigen presenting cell (APC) are susceptible to EAE. However, a reproducible delay in the day of onset of disease driven by exclusive B cell antigen presentation suggests that B cells require optimal conditions to function as APCs in EAE. In this study, we utilize an in vivo genetic system to conditionally and temporally regulate expression of MHCII to test the hypothesis that B cell APCs mediate attenuated and delayed neuroinflammatory T cell responses during EAE. Remarkably, induction of MHCII on B cells following the transfer of encephalitogenic CD4 T cells induced a rapid and robust form of EAE, while no change in the time to disease onset occurred for recipient mice in which MHCII is induced on a normal complement of APC subsets. Changes in CD4 T cell activation over time did not account for more rapid onset of EAE symptoms in this new B cell-mediated EAE model. Our system represents a novel model to study how the timing of pathogenic cognate interactions between lymphocytes facilitates the development of autoimmune attacks within the CNS.
Collapse
Affiliation(s)
- Chelsea R. Parker Harp
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Angela S. Archambault
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Julia Sim
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Mark J. Shlomchik
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - John H. Russell
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Gregory F. Wu
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States of America
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, United States of America
- * E-mail:
| |
Collapse
|
49
|
Elo P, Tadayon S, Liljenbäck H, Teuho J, Käkelä M, Koskensalo K, Saunavaara V, Virta J, Veres TZ, Kiviniemi A, Saraste A, Marjamäki P, Airas L, Jalkanen S, Roivainen A. Vascular adhesion protein-1 is actively involved in the development of inflammatory lesions in rat models of multiple sclerosis. J Neuroinflammation 2018; 15:128. [PMID: 29716612 PMCID: PMC5930736 DOI: 10.1186/s12974-018-1152-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 04/09/2018] [Indexed: 11/16/2022] Open
Abstract
Background Vascular adhesion protein-1 (VAP-1) is an inflammation-inducible endothelial cell molecule and primary amine oxidase that mediates leukocyte entry to sites of inflammation. However, there is limited knowledge of the inflammation-related expression of VAP-1 in the central nervous system (CNS). Therefore, we investigated the expression of VAP-1 within the CNS vasculature in two focal rat models of experimental autoimmune encephalomyelitis (EAE) mimicking multiple sclerosis (MS). Methods EAE was induced either with Bacillus Calmette-Guérin, resulting in a delayed-type hypersensitivity-like pathogenesis (fDTH-EAE), or with myelin oligodendrocyte glycoprotein (fMOG-EAE). A subgroup of fMOG-EAE rats were treated daily with a selective VAP-1 inhibitor (LJP1586; 5 mg/kg). On 3 and 14 days after lesion activation, rat brains were assessed using magnetic resonance imaging (MRI), and ex vivo autoradiography was conducted to evaluate the binding of Gallium-68-labelled VAP-1 ligand. Histology and immunohistochemistry (OX-42, VAP-1, intercellular adhesion protein-1 [ICAM-1], P-selectin) supported the ex vivo autoradiography. Results EAE lesions showed MRI-detectable signal changes and binding of the VAP-1-targeting radiotracer in both rat models. Some of the VAP-1 positive vessels showed morphological features typical for high endothelial-like venules at sites of inflammation. Inhibition of VAP-1 activity with small molecule inhibitor, LJP1586, decreased lymphocyte density in the acute inflammatory phase of fMOG-EAE lesions (day 3, P = 0.026 vs. untreated), but not in the remission phase (day 14, P = 0.70 vs. untreated), and had no effect on the amount of OX-42-positive cells in either phase. LJP1586 treatment reduced VAP-1 and ICAM-1 expression in the acute inflammatory phase, whereas P-selectin remained not detectable at all studied stages of the disease. Conclusions Our results revealed that VAP-1 is expressed and functionally active in vasculature within the induced focal EAE lesions during the acute phase of inflammation and remains expressed after the acute inflammation has subsided. The study indicates that VAP-1 is actively involved in the development of inflammatory CNS lesions. During this process, the endothelial cell lesion-related vasculature seem to undergo a structural transformation from regular flat-walled endothelium to HEV-like endothelium.
Collapse
Affiliation(s)
- Petri Elo
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, FI-20520, Turku, Finland
| | - Sina Tadayon
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, FI-20520, Turku, Finland.,Department of Radiology, Medical Imaging Centre of Southwest Finland, Turku University Hospital, Kiinamyllynkatu 4-8, FI-20520, Turku, Finland
| | - Heidi Liljenbäck
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, FI-20520, Turku, Finland.,Turku Center for Disease Modeling, University of Turku, Kiinamyllynkatu 10, FI-20520, Turku, Finland
| | - Jarmo Teuho
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, FI-20520, Turku, Finland.,Turku PET Centre, Turku University Hospital, Kiinamyllynkatu 4-8, FI-20520, Turku, Finland
| | - Meeri Käkelä
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, FI-20520, Turku, Finland
| | - Kalle Koskensalo
- Turku PET Centre, Turku University Hospital, Kiinamyllynkatu 4-8, FI-20520, Turku, Finland
| | - Virva Saunavaara
- Turku PET Centre, Turku University Hospital, Kiinamyllynkatu 4-8, FI-20520, Turku, Finland.,Department of Medical physics, Turku University Hospital, Kiinamyllynkatu 4-8, FI-20520, Turku, Finland
| | - Jenni Virta
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, FI-20520, Turku, Finland
| | - Tibor Z Veres
- MediCity Research Laboratory, University of Turku, Tykistökatu 6, FI-20520, Turku, Finland
| | - Aida Kiviniemi
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, FI-20520, Turku, Finland.,Turku PET Centre, Turku University Hospital, Kiinamyllynkatu 4-8, FI-20520, Turku, Finland.,Department of Radiology, Medical Imaging Centre of Southwest Finland, Turku University Hospital, Kiinamyllynkatu 4-8, FI-20520, Turku, Finland
| | - Antti Saraste
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, FI-20520, Turku, Finland
| | - Päivi Marjamäki
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, FI-20520, Turku, Finland
| | - Laura Airas
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, FI-20520, Turku, Finland.,Division of Clinical Neurosciences, Turku University Hospital, Kiinamyllynkatu 4-8, FI-20520, Turku, Finland
| | - Sirpa Jalkanen
- MediCity Research Laboratory, University of Turku, Tykistökatu 6, FI-20520, Turku, Finland
| | - Anne Roivainen
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, FI-20520, Turku, Finland. .,Turku Center for Disease Modeling, University of Turku, Kiinamyllynkatu 10, FI-20520, Turku, Finland. .,Turku PET Centre, Turku University Hospital, Kiinamyllynkatu 4-8, FI-20520, Turku, Finland.
| |
Collapse
|
50
|
Sage PT, Schildberg FA, Sobel RA, Kuchroo VK, Freeman GJ, Sharpe AH. Dendritic Cell PD-L1 Limits Autoimmunity and Follicular T Cell Differentiation and Function. THE JOURNAL OF IMMUNOLOGY 2018. [PMID: 29531164 DOI: 10.4049/jimmunol.1701231] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The programmed death (PD)-1 coinhibitory receptor regulates the balance between T cell activation and tolerance. Although the PD-1 ligands, PD-L1 and PD-L2, are expressed on a variety of cell types, the cell type-specific functions of PD-1 ligands in inducing signals through PD-1 are unknown. In this study, we use PD-L1 conditional knockout mice to investigate the cell type-specific functions of PD-L1. We demonstrate that PD-L1 expressed on dendritic cells (DCs), and to a lesser extent on B cells, attenuates the progression of experimental autoimmune encephalomyelitis and inhibits naive and effector T cells. PD-1 is highly expressed on effector populations, including T follicular helper (Tfh) cells and T follicular regulatory (Tfr) cells, which reside in germinal centers. We also show that DC PD-L1 is essential for limiting Tfh and Tfr cell differentiation. In addition, we find that PD-1 suppresses Tfh cell differentiation and help for Ig class switching, even in the presence of wild-type Tfr cells. Our work points to critical roles for PD-L1 expressed on DCs in mediating PD-1 functions.
Collapse
Affiliation(s)
- Peter T Sage
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| | - Frank A Schildberg
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| | - Raymond A Sobel
- Department of Pathology, Stanford University, Stanford, CA 94305
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115.,Broad Institute, Cambridge, MA 02142.,Ann Romney Center for Neurological Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215; and
| | - Arlene H Sharpe
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115; .,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115.,Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115
| |
Collapse
|