1
|
A Capillary Electrophoresis UV Detection-Based Method for Global Genomic DNA Methylation Assessment in Human Whole Blood. Methods Mol Biol 2019. [PMID: 30847794 DOI: 10.1007/978-1-4939-9213-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Quantitative analysis of DNA methylation patterns is of special importance in several developmental and pathological situations. The development of simple and robust methods to assess DNA methylation is required to facilitate its measurement and interpretation in clinical practice. We describe a highly reproducible CE-UV method for the separation and detection of cytosine and methylcytosine, after formic acid hydrolysis of DNA extracted from human whole blood. Hydrolyzed samples were dried and successively dissolved with water and then injected into the capillary without sample derivatization procedures. The use of a run buffer containing 50 mmol/L BIS-TRIS propane (BTP) phosphate buffer at pH 3.25 and 60 mmol/L sodium acetate buffer at pH 3.60 (4:1, v/v) allowed a baseline analytes separation within 12 min. Precision tests indicated an elevated reproducibility with an inter-assay CV of 1.98%.
Collapse
|
2
|
Aydoğan C. Open-tubular CEC with a new triethanolamine bonded stationary phase for biomolecule separation. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 976-977:27-32. [DOI: 10.1016/j.jchromb.2014.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/12/2014] [Accepted: 11/16/2014] [Indexed: 12/16/2022]
|
3
|
Determination of urinary nucleosides via borate complexation capillary electrophoresis combined with dynamic pH junction-sweeping-large volume sample stacking as three sequential steps for their on-line enrichment. Anal Bioanal Chem 2014; 406:5877-95. [DOI: 10.1007/s00216-014-8022-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/20/2014] [Accepted: 07/07/2014] [Indexed: 01/14/2023]
|
4
|
Rageh AH, Pyell U. Imidazolium-based ionic liquid-type surfactant as pseudostationary phase in micellar electrokinetic chromatography of highly hydrophilic urinary nucleosides. J Chromatogr A 2013; 1316:135-46. [DOI: 10.1016/j.chroma.2013.09.079] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 09/23/2013] [Accepted: 09/25/2013] [Indexed: 11/30/2022]
|
5
|
Yang Y, Geng X. Mixed-mode chromatography and its applications to biopolymers. J Chromatogr A 2011; 1218:8813-25. [DOI: 10.1016/j.chroma.2011.10.009] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 10/06/2011] [Accepted: 10/06/2011] [Indexed: 10/16/2022]
|
6
|
Abstract
Although there are many publications related to technological or methodological developments of CEC, few focus on the analysis of natural products, especially phytochemical bioactive compounds. This review summarized the application of CEC in the analysis of phytochemical bioactive components, including flavonoids, nucleosides, steroids, lignans, quinones and coumarins, as well as fingerprint analysis of herbs. The strategies for optimization of CEC conditions and detection were also discussed.
Collapse
Affiliation(s)
- Feng-qing Yang
- Department of Pharmaceutics, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, P. R. China
| | | | | |
Collapse
|
7
|
Sotgia S, Zinellu A, Pisanu E, Murgia L, Pinna GA, Gaspa L, Deiana L, Carru C. A hydrophilic interaction ultraperformance liquid chromatography (HILIC–UPLC) method for genomic DNA methylation assessment by UV detection. Anal Bioanal Chem 2010; 396:2937-41. [DOI: 10.1007/s00216-010-3565-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 02/05/2010] [Accepted: 02/10/2010] [Indexed: 01/30/2023]
|
8
|
Li LS, Wang Y, James Young D, Ng SC, Tan TTY. Monodispersed submicron porous silica particles functionalized with CD derivatives for chiral CEC. Electrophoresis 2010; 31:378-87. [DOI: 10.1002/elps.200900318] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Hybrid organic–inorganic silica monolith with hydrophobic/strong cation-exchange functional groups as a sorbent for micro-solid phase extraction. J Chromatogr A 2009; 1216:7739-46. [DOI: 10.1016/j.chroma.2009.08.085] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 08/25/2009] [Accepted: 08/31/2009] [Indexed: 11/20/2022]
|
10
|
Wang X, Lin X, Xie Z. Preparation and evaluation of a sulfoalkylbetaine-based zwitterionic monolithic column for CEC of polar analytes. Electrophoresis 2009; 30:2702-10. [DOI: 10.1002/elps.200900006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Preparation and evaluation of a neutral methacrylate-based monolithic column for hydrophilic interaction stationary phase by pressurized capillary electrochromatography. J Chromatogr A 2009; 1216:4611-7. [DOI: 10.1016/j.chroma.2009.03.057] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2008] [Revised: 01/05/2009] [Accepted: 03/20/2009] [Indexed: 11/20/2022]
|
12
|
Lin J, Huang G, Lin X, Xie Z. Methacrylate-based monolithic column with mixed-mode hydrophilic interaction/strong cation-exchange stationary phase for capillary liquid chromatography and pressure-assisted CEC. Electrophoresis 2009; 29:4055-65. [PMID: 18958876 DOI: 10.1002/elps.200800084] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A novel porous polymethacrylate-based monolithic column by in situ copolymerization of 3-sulfopropyl methacrylate (SPMA) and pentaerythritol triacrylate in a binary porogenic solvent consisting of cyclohexanol/ethylene glycol was prepared. The monolith possessed in their structures bonded sulfonate groups and hydroxyl groups and was evaluated as a hydrophilic interaction and strong cation-exchange stationary phases in capillary liquid chromatography (cLC) and pressure-assisted CEC using small polar neutral and charged solutes. While the SPMA was introduced as multifunctional monomer, the pentaerythritol triacrylate was used to replace ethylene glycol dimethacrylate as cross-linker with much more hydrophilicity due to a hydroxyl sub-layer. The different characterization of monolithic stationary phases were specially designed and easily prepared by altering the amount of SPMA in the polymerization solution as well as the composition of the porogenic solvent for cLC and pressure-assisted CEC. The resulting monolith showed the different trends about the effect of the permeabilities on efficiency in the pressure-assisted CEC and cLC modes. A typical hydrophilic interaction chromatography mechanism was observed at higher organic solvent content (ACN%>70%) for polar neutral analytes. For polar charged analytes, both hydrophilic interaction and electrostatic interaction contributed to their retention. Therefore, for charged analytes, selectivity can be readily manipulated by changing the composition of the mobile phase (e.g., pH, ionic strength and organic modifier). With the optimized monolithic column, high plate counts reaching greater than 170 000 plates/m for pressure-assisted CEC and 105 000 plates/m for cLC were easily obtained, respectively.
Collapse
Affiliation(s)
- Jian Lin
- Department of Chemistry, Fuzhou University, Fuzhou, PR China
| | | | | | | |
Collapse
|
13
|
Freitag R, Hilbrig F. Theory and practical understanding of the migration behavior of proteins and peptides in CE and related techniques. Electrophoresis 2007; 28:2125-44. [PMID: 17557365 DOI: 10.1002/elps.200600792] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
CEC is defined as an analytical method, where the analytes are separated on a chromatographic column in the presence of an applied voltage. The separation of charged analytes in CEC is complex, since chromatographic interaction, electroosmosis and electrophoresis contribute to the experimentally observed behavior. The putative contribution of effects such as surface electrodiffusion has been suggested. A sound theoretical treatment incorporating all effects is currently not available. The question of whether the different effects contribute in an independent or an interdependent manner is still under discussion. In this contribution, the state-of-the-art in the theoretical description of the individual contributions as well as models for the retention behavior and in particular possible dimensionless 'retention factors' is discussed, together with the experimental database for the separation of charged analytes, in particular proteins and peptides, by CEC and related techniques.
Collapse
Affiliation(s)
- Ruth Freitag
- Process Biotechnology, University of Bayreuth, Bayreuth, Germany.
| | | |
Collapse
|
14
|
Ohyama K, Kuroda N. Capillary Electrochromatography of Charged Biomolecules with Mixed‐Mode Stationary Phases. J LIQ CHROMATOGR R T 2007. [DOI: 10.1080/10826070701191128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Kaname Ohyama
- a Department of Hospital Pharmacy , Nagasaki University Hospital of Medicine and Dentistry , Nagasaki , Japan
| | - Naotaka Kuroda
- b Graduate School of Biomedical Sciences, Course of Pharmaceutical Sciences, Nagasaki University , Nagasaki , Japan
| |
Collapse
|
15
|
Silva GA, Ducheyne P, Reis RL. Materials in particulate form for tissue engineering. 1. Basic concepts. J Tissue Eng Regen Med 2007; 1:4-24. [DOI: 10.1002/term.2] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Ding G, Da Z, Yuan R, Bao JJ. Reversed-phase and weak anion-exchange mixed-mode silica-based monolithic column for capillary electrochromatography. Electrophoresis 2006; 27:3363-72. [PMID: 16944466 DOI: 10.1002/elps.200500931] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A silica-based CEC monolithic column with mixed modes of RP and weak anion-exchange (WAX) was successfully prepared by using the sol-gel technique at mild temperature. The synthesizing procedure was optimized by changing the ratios of tetraethoxysilane (TEOS), aminopropyltriethoxysilane (APTES), and octyltriethoxysilane (C(8)-TEOS) in the mixture. While serving as WAX group, the amino group dominated the charge on the surface of the capillary column and generated an EOF from cathode to anode at low pH. At pH above 7.5, a cathodic EOF was observed due to the full ionization of silanol group and the suppression in the ionization of amino group. The morphology of monolithic columns was examined by SEM, and the performance of column was evaluated in detail by separating different kinds of compounds. As expected, the monolithic column exhibited RP chromatographic behavior for neutral solutes. Fast and efficient separation of six aromatic acids was obtained using acidic mobile phase with column efficiency up to 160,000 plates/m. Symmetrical peaks can be obtained for aromatic amines because positively charged amino groups on the surface can effectively minimize the adsorption of positively charged analytes to the stationary phase.
Collapse
Affiliation(s)
- Guosheng Ding
- School of Pharmaceutical Sciences and Technologies, Tianjin University, Tianjin, China
| | | | | | | |
Collapse
|
17
|
Yang Y, Boysen RI, Hearn MTW. Use of mixed-mode sorbents for the electrochromatographic separation of thrombin receptor antagonistic peptides. J Chromatogr A 2005; 1079:328-34. [PMID: 16038319 DOI: 10.1016/j.chroma.2005.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In this study, the thrombin receptor antagonistic peptide TRAP-1 and its alanine-scan analogues, TRAP 2-6, have been employed as probes to characterise the performance of C18/SCX mixed-mode capillary electrochromatographic (CEC) columns. It was found that the resolution of this group of peptides could only be achieved in a narrow pH range with phosphate-based running electrolytes. The influence of the running electrolyte composition, e.g. the buffer choice, the ionic strength, the pH and the organic solvent content, on the electroosmotic flow (EOF) of these mixed-mode CEC columns was investigated. In addition, the retention mechanism for this group of peptide probes in the electrochromatographic process was studied by examining the effect of varying the running electrolyte composition. As a result, it can be concluded that the electrochromatographic separation of this set of peptides was mediated by a combination of electrophoretic migration and chromatographic retention involving both hydrophobic as well as ion exchange interactions. By modulating the running electrolyte composition, the hydrophobic or ion exchange components of the interaction process could be made to dominate the chromatographic retention of the peptides. Based on this strategy, a high-resolution separation of six closely related synthetic peptides was demonstrated with this mixed-mode CEC system.
Collapse
Affiliation(s)
- Yuanzhong Yang
- Australian Research Council Special Research Centre for Green Chemistry, Monash University, Clayton, Vic. 3800, Australia
| | | | | |
Collapse
|
18
|
Ohyama K, Fujimoto E, Wada M, Kishikawa N, Ohba Y, Akiyama S, Nakashima K, Kuroda N. Investigation of a novel mixed-mode stationary phase for capillary electrochromatography. Part III: Separation of nucleosides and nucleic acid bases on sulfonated naphthalimido-modified silyl silica gel. J Sep Sci 2005; 28:767-73. [PMID: 15938185 DOI: 10.1002/jssc.200500030] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Capillary electrochromatography (CEC) with a novel stationary phase, 3-(4-sulfo-1,8-naphthalimido)propyl-modified silyl silica gel (SNAIP), proved useful for the separation of nucleosides and nucleic acid bases. The application scope of SNAIP, which is a relatively polar reversed-phase (RP)-type stationary phase, was successfully expanded to include the CEC separation of polar compounds although the combination of non-polar RP phase with highly aqueous mobile phase is often inadequate. Due to the permanently charged sulfonic acid groups and the naphthalimidopropyl moiety, the retention of charged and relatively polar nucleosides as well as bases on the SNAIP stationary phase was effected by electrostatic and hydrophobic interactions. This yielded a unique selectivity on SNAIP toward nucleosides and bases. The characteristic EOF on SNAIP, which was stronger at higher aqueous content in the mobile phase, proved suitable for the separation of polar compounds in reversed-phase mode with highly aqueous mobile phase. In addition, when a double stepwise gradient was employed to accelerate the latest peak (adenine), the elution time was shortened to less than half its original duration.
Collapse
Affiliation(s)
- Kaname Ohyama
- Graduate School of Biomedical Sciences, Course of Pharmaceutical Sciences, Nagasaki University, Nagasaki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Ohyama K, Fujimoto E, Wada M, Kishikawa N, Ohba Y, Akiyama S, Nakashima K, Kuroda N. Investigation of a novel mixed-mode stationary phase for capillary electrochromatography. Part III1): Separation of nucleosides and nucleic acid bases on sulfonated naphthalimido-modified silyl silica gel. J Sep Sci 2005. [DOI: 10.1002/jssc.200400030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
20
|
Ping G, Zhang L, Zhang L, Zhang W, Schmitt-Kopplin P, Kettrup A, Zhang Y. Separation of acidic and basic compounds in capillary electrochromatography with polymethacrylate-based monolithic columns. J Chromatogr A 2004; 1035:265-70. [PMID: 15124820 DOI: 10.1016/j.chroma.2004.02.063] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Methacrylate-based monolithic columns with electroosmotic flow (EOF) or very weak EOF are prepared by in situ copolymerization in the presence of a porogen in fused-silica capillaries pretreated with a bifunctional reagent. Satisfactory separations of acidic and basic compounds on the column with EOF at either low or high pH are achieved, respectively. With sulfonic groups as dissociation functionalities, sufficient EOF mobility still remains as high as 1.74 x 10(-4) cm2 s(-1) V(-1) at low pH. Under this condition, seven acidic compounds are readily separated within 5.7 min. Moreover, at high pH, the peak shape of basic compounds is satisfactory without addition of any masking amines into running mobile phase since the secondary interaction between the basic compounds and the monolithic stationary phase are minimized at high pH. Reversed-phase mechanism for both acidic and basic compounds is observed under investigated separation conditions. In addition, possibilities of acidic and basic compound separations on a monolithic column with extremely low EOF are discussed.
Collapse
Affiliation(s)
- Guichen Ping
- National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116011, China
| | | | | | | | | | | | | |
Collapse
|
21
|
Jiskra J, Claessens HA, Cramers CA. Stationary and mobile phases in capillary electrochromatography (CEC). J Sep Sci 2003. [DOI: 10.1002/jssc.200301305] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Rapid separation of nucleosides by capillary electrochromatography with a methacrylate-based monolithic stationary phase. Chromatographia 2003. [DOI: 10.1007/bf02491740] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Fu H, Huang X, Jin W, Zou H. The separation of biomolecules using capillary electrochromatography. Curr Opin Biotechnol 2003; 14:96-100. [PMID: 12566008 DOI: 10.1016/s0958-1669(02)00006-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The unique properties of capillary electrochromatography such as high performance, high selectivity, minimum consumption of both reagents and samples, and good compatibility with mass spectrometry make this technique an attractive one for the analysis of biomolecules including peptides, proteins, carbohydrates, nucleosides and nucleotides. Irreversible adsorption between the biomolecules and the charged packing surface leads to a lack of reproducibility and serious peak tailing, so various approaches have been taken to overcome this and to improve the technique for future challenges.
Collapse
Affiliation(s)
- Hongjing Fu
- National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116011, China
| | | | | | | |
Collapse
|
24
|
|
25
|
|
26
|
Svec F. Capillary electrochromatography: a rapidly emerging separation method. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2002; 76:1-47. [PMID: 12126266 DOI: 10.1007/3-540-45345-8_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
This overview concerns the new chromatographic method--capillary electrochromatography (CEC)--that is recently receiving remarkable attention. The principles of this method based on a combination of electroosmotic flow and analyte-stationary phase interactions, CEC instrumentation, capillary column technology, separation conditions, and examples of a variety of applications are discussed in detail.
Collapse
Affiliation(s)
- Frantisek Svec
- Department of Chemistry, University of California, Berkeley 94720-1460, USA.
| |
Collapse
|
27
|
An original way to use a β-cyclodextrin-bonded silica stationary phase in electrochromatography. Application to the achiral separation of nucleobases and nucleosides. Chromatographia 2002. [DOI: 10.1007/bf02490246] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
28
|
Tegeler T, El-Rassi Z. Surfactant-mediated capillary electrochromatography with octadecyl-silica- packed capillary columns for the separation of nonpolar compounds. Case of pyrethroid insecticides. Electrophoresis 2002; 23:1217-23. [PMID: 12007119 DOI: 10.1002/1522-2683(200205)23:9<1217::aid-elps1217>3.0.co;2-c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Capillary electrochromatography (CEC) with octadecyl-silica-packed capillary columns was evaluated in the separation of nonpolar compounds, e.g., pyrethroid insecticides, using surfactant-rich mobile phases. This novel concept is referred to as surfactant-mediated capillary electrochromatography (SM-CEC), and is based on including a charged surfactant, namely sodium di-2-ethylhexyl sulfosuccinate (DOSS), in the mobile phase. Under these conditions, DOSS plays the role of a slowly moving pseudostationary phase so that solutes are partitioned between a mobile phase, a fixed stationary phase and a slowly moving pseudostationary phase. The SM-CEC system was investigated with pyrethroid insecticides over a wide range of DOSS and acetonitrile concentrations in the mobile phase. Pyrethroid insecticides, which are very hydrophobic solutes consisting of geometric isomers and diastereomers, were better resolved in SM-CEC than in straight CEC.
Collapse
Affiliation(s)
- Tony Tegeler
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078-3071, USA
| | | |
Collapse
|
29
|
Chen TS, Liu CY. Histidine-functionalized silica and its copper complex as stationary phases for capillary electrochromatography. Electrophoresis 2001; 22:2606-15. [PMID: 11519966 DOI: 10.1002/1522-2683(200107)22:12<2606::aid-elps2606>3.0.co;2-i] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A histidine-functionalized silica was prepared by covalent bonding of the functional groups to silane-treated silica gel. Conversion of functional groups was confirmed by infrared (IR) spectra, elemental analysis, and potentiometry. The functionality of the silica gel is 0.293 mmol g(-1). The coordination behavior of the histidine-functionalized silica was investigated by metal capacity and electron paramagnetic resonance (EPR). EPR measurements at different copper loadings were made. The results showed that the copper histidine complex might be distorted tetragonal. Both histidine-functionalized silica and its copper complex were employed as stationary phases for packed capillary electrochromatography (CEC). Electrical current was found helpful for evaluating the properties of frit construction and the stationary phase packing. Test samples include neutral compounds, inorganic anions and organic anions. Factors influencing the separation behavior have been studied. With copper-histidine functionalized silica under the condition of citrate buffer (10 mM, pH 4.0) and applied voltage of -20 kV, the separation of benzoic acid, D- and L-mandelic acid, phthalic acid and salicylic acid could be achieved within 12 min. The column efficiency for these acids was more than 1.2 x 10(5) plates m(-1), except salicylic acid.
Collapse
Affiliation(s)
- T S Chen
- Department of Chemistry, National Taiwan University, Taipei
| | | |
Collapse
|
30
|
Scherer B, Steiner F. Application of hydrophobic anion-exchange phases in capillary electrochromatography. J Chromatogr A 2001; 924:197-209. [PMID: 11521866 DOI: 10.1016/s0021-9673(01)01017-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Capillary electrochromatography (CEC) requires stationary phases that enable appropriate electroosmotic propel under various conditions. Analyte retention can be controlled through hydrophobic or electrostatic interaction with the packing material. The development and characterization of new strong anion-exchange materials with additional hydrophobic moieties (SAX/C18 mixed-mode phases) is described. The synthesis was based on polymer encapsulation of porous silica. The phases were systematically characterized by means of elemental analyses, HPLC frontal analyses and CEC experiments. The studies focused on the influence of various parameters (e.g., pH, kind of buffer, capillary wall) on the electroosmotic flow (EOF). Phases with high anion-exchange capacity generated a fast and constant EOF over a wide pH range. Long-time stability of EOF and hydrophobic retention under CEC conditions were demonstrated within the course of 100 consecutive injections. The applicability of the SAX/C18 phases in appropriate buffer systems is demonstrated for neutral, acidic and basic compounds.
Collapse
Affiliation(s)
- B Scherer
- University of the Saarland, Instrumental/Environmental Analysis, Saarbrücken, Germany
| | | |
Collapse
|
31
|
Abstract
An overview of the most recent developments in column technology employed in capillary electrophoresis (CE) and capillary electrochromatography (CEC), mainly for the separation of small molecules and ions, is presented. Particular emphasis is laid on permanent coating. The wall modification methods in CE include covalent modification, adsorbed coatings and polymeric coatings, while those in CEC include packed columns, open-tubular columns and fritless columns. A short discussion on the characterization and selectivity of the bonded phases is also given.
Collapse
Affiliation(s)
- C Y Liu
- Department of Chemistry, National Taiwan University, Taipei.
| |
Collapse
|
32
|
Hilder EF, Zemann AJ, Macka M, Haddad PR. Anion-exchange capillary electrochromatography with indirect UV and direct contactless conductivity detection. Electrophoresis 2001; 22:1273-81. [PMID: 11379948 DOI: 10.1002/1522-2683(200105)22:7<1273::aid-elps1273>3.0.co;2-u] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Conductivity detection is applied to ion-exchange capillary electrochromatography (IE-CEC) with a packed stationary phase, using a capacitively coupled contactless conductivity detector with detection occurring through the packed bed. Columns were packed with a polymeric latex-agglomerate anion-exchanger (Dionex AS9-SC). A systematic approach was used to determine suitable eluants for IE-CEC separations using simultaneous indirect UV and direct conductivity detection. Salicylate and p-toluenesulfonate were identified as potential eluant competing anions having sufficient eluotropic strength to induce changes in separation selectivity, but salicylate was found to be unsuitable with regard to baseline stability. It was also found for both indirect UV and direct conductivity detection that homogenous column packing was imperative, and monitoring of the baseline could be used to assess the homogeneity of the packed bed. Using a p-toluenesulfonate eluant, the separation of eight common anions was achieved in 2.5 min. Direct conductivity detection was found to be superior to indirect UV detection with regard to both baseline stability and detection sensitivity with detection limits of 4-25 microg/L being obtained. However, the calibration for each anion was not linear over more than one order of magnitude. When using conductivity detection, the concentration of the eluant could be varied over a wider range (2.5-50 mM p-toluenesulfonate) than was the case with indirect UV detection (2.5-10 mM), thereby allowing greater changes in separation selectivity to be achieved. By varying the concentration of p-toluenesulfonate in the eluant, the separation selectivity could be manipulated from being predominantly ion-exchange in nature (2.5 mM) to predominantly electrophoretic in nature (50 mM).
Collapse
Affiliation(s)
- E F Hilder
- Australian Centre for Research on Separation Science, University of Tasmania, Hobart
| | | | | | | |
Collapse
|
33
|
Liu Z, Zou H, Ye M. Separation of 4-dimethylamino-6-(4-methoxy-1-naphthyl)-1,3,5-triazine-2-hydrazine derivatives of carbonyl compounds by reversed-phase capillary electrochromatography. Electrophoresis 2001; 22:1298-304. [PMID: 11379951 DOI: 10.1002/1522-2683(200105)22:7<1298::aid-elps1298>3.0.co;2-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
4-Dimethylamino-6-(4-methoxy-1-naphthyl)-1,3,5-triazine-2-hydrazine (DMNTH) is a novel derivatizing reagent specially designed for the determination of carbonyl compounds. In this work, we describe the separation of DMNTH-derivatized carbonyl compounds by reversed-phase capillary electrochromatography (CEC). After systematic investigations of the effects of experimental conditions viz. pH and concentration of buffer, type of stationary phase, injection volume of sample, organic modifier, and temperature, optimal conditions were found. The sample compounds, which were separated with gradient high performance liquid chromatography (HPLC), were separated by CEC under isocratic elution due to the high efficiency. Comparisons of separations by CEC and micellar electrokinetic chromatography (MEKC) were made.
Collapse
Affiliation(s)
- Z Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, PR China
| | | | | |
Collapse
|
34
|
Klampfl CW, Buchberger W, Haddad PR. Fast separation of pyrimidine derivatives by capillary electrochromatography on ion-exchange/reversed-phase mixed-mode stationary phases. J Chromatogr A 2001; 911:277-83. [PMID: 11293589 DOI: 10.1016/s0021-9673(01)00515-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This work describes the use of mixed-mode stationary phases which exhibit both strong ion-exchange (either cation-exchange, SCX, or anion-exchange, SAX) and reversed-phase chromatographic characteristics in capillary electrochromatographic separations of pyrimidine derivatives. Different packing materials, namely C6, SCX/C6 and SAX/C6, were compared and the influence of the composition of the carrier electrolyte (concentration of acetonitrile and pH) on the retention behavior of the selected solutes was investigated. A separation of all eight pyrimidine derivatives could be obtained on a 6.5 cm column packed with the SAX/C6 stationary phase in less than 3 min, with good peak shapes and efficiencies in the range 39,000 to 81,000 plates per meter.
Collapse
Affiliation(s)
- C W Klampfl
- Department of Analytical Chemistry, Johannes Kepler-University Linz, Austria.
| | | | | |
Collapse
|
35
|
|
36
|
Colón LA, Maloney TD, Fermier AM. Packed Bed Columns. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s0301-4770(01)80076-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
37
|
Modes of CEC Separation. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s0301-4770(01)80075-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
38
|
Abstract
Capillary electrochromatography (CEC) continues to captivate many separation scientists. A remarkable activity is apparent from the numerous publications in the literature using CEC. A review of the most recent progress in CEC is presented herein, covering an extensive fraction of the literature on CEC published from the year 1997 until the beginning of 2000. Most of the recent developments have concentrated on column technology.
Collapse
Affiliation(s)
- L A Colón
- Department of Chemistry, State University of New York at Buffalo, 14260-3000, USA.
| | | | | | | | | |
Collapse
|
39
|
Abstract
Adsorption is always considered a troublesome effect in capillary electrophoresis (CE) and capillary electrochromatography (CEC). However, the adsorption effect can also be exploited to prepare or optimize the stationary phase in CEC. Compared with the chemical synthesis of new stationary phase materials for CEC, this method is simpler and more convenient. This review is focused on CEC with physically and dynamically adsorbed stationary phases. Separation of some acidic, basic and neutral solutes as well as enantiomers in CEC with dynamically adsorbed stationary phases are presented. The theory for the migration of charged solutes and the stationary phases currently used in CEC are also briefly reviewed.
Collapse
Affiliation(s)
- H Zou
- National Chromatographic R & A Center, Dalian Institute of Chemical Physics, The Chinese Academy of Sciences.
| | | |
Collapse
|
40
|
Abstract
Capillary electrochromatography (CEC) is an emerging technique gaining increased interest. Improvement of instrumentation and column technology will be of prime importance for the further development of this technique and its use in validated methods. In this paper, developments in column technology and instrumentation for CEC are reviewed with emphasis on developments within the last 3 years. Attention is directed to the employment of stationary phases specifically designed for CEC, the use of soft and rigid gels in place of packings, fritless packed capillaries, column dimensions, the optimization of injection and detection parameters, and gradient elution CEC.
Collapse
Affiliation(s)
- U Pyell
- Philipps-Universität Marburg, Fachbereich Chemie, Germany.
| |
Collapse
|
41
|
Zhang M, El Rassi Z. Enantiomeric separation by capillary electrochromatography. II. Chiral separation of dansyl amino acids and phenoxy acid herbicides on sulfonated silica having surface-bound hydroxypropyl-beta-cyclodextrin. Electrophoresis 2000; 21:3135-40. [PMID: 11001210 DOI: 10.1002/1522-2683(20000901)21:15<3135::aid-elps3135>3.0.co;2-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A chiral silica-based stationary phase having surface-bound hydroxypropyl-beta-cyclodextrin (HP-beta-CD) with a relatively strong electroosmotic flow (EOF) was introduced for enantioseparation by capillary electrochromatography (CEC). The stationary phase contained a hydrophilic sulfonated sublayer to which a chiral top layer of HP-beta-CD was immobilized. While the sulfonated sublayer was to provide a relatively strong EOF, the top HP-beta-CD was to confer the desired chiral recognition towards enantiomeric solutes. This HP-beta-CD sulfonated silica (CDSS) stationary phase proved useful for the rapid separation of anionic enantiomers such as dansyl amino acids and phenoxy acid herbicides. The effects of the organic modifier content, pH, and ionic strength of the mobile phase on enantioseparation were investigated. Under the optimized separation conditions, ten dansyl amino acids and six phenoxy acid herbicides were enantioseparated with a resolution greater than unity.
Collapse
Affiliation(s)
- M Zhang
- Department of Chemistry, Oklahoma State University, Stillwater 74078-3071, USA
| | | |
Collapse
|
42
|
Sol-gel monolithic columns with reversed electroosmotic flow for capillary electrochromatography. Anal Chem 2000; 72:4090-9. [PMID: 10994969 DOI: 10.1021/ac000120p] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sol-gel chemistry was used to prepare porous monolithic columns for capillary electrochromatography. The developed sol-gel approach proved invaluable and generates monolithic columns in a simple and rapid manner. Practically any desired column length ranging from a few tens of centimeters to a few meters may be readily obtained. The incorporation of the sol-gel precursor, N-octadecyldimethyl[3-(trimethoxysilyl)propyl]ammonium chloride, into the sol solution proved to be critical as this reagent possesses an octadecyl moiety that allows for chromatographic interactions of analytes with the monolithic stationary phase. Additionally, this reagent served to yield a positively charged surface, thereby providing the relatively strong reversed electroosmotic flow (EOF) in capillary electrochromatography. The enhanced permeability of the monolithic capillaries allowed for the use of such columns without the need for modifications to the commercial CE instrument. There was no need to pressurize both capillary ends during operation or to use high pressures for column rinsing. With the developed procedure, no bubble formation was detected during analysis with the monolithic capillaries when using electric field strengths of up to 300 V cm(-1). The EOF in the monolith columns was found to be dependent on the percentage of organic modifier present in the mobile phase. Separation efficiencies of up to 1.75 x 10(5) plates/m (87,300 plates/column) were achieved on a 50 cm x 50 microm i.d. column using polycyclic aromatic hydrocarbons and aromatic aldehydes and ketones as test solutes.
Collapse
|
43
|
Zhang M, El Rassi Z. Enantiomeric separation by capillary electrochromatography. I. Chiral separation of dansyl amino acids and organochlorine pesticides on a diol-silica dynamically coated with hydroxypropyl-beta-cyclodextrin. Electrophoresis 2000; 21:3126-34. [PMID: 11001209 DOI: 10.1002/1522-2683(20000901)21:15<3126::aid-elps3126>3.0.co;2-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In this work, a commercially available diol-silica stationary phase was converted in situ to a chiral stationary phase by dynamically coating it with hydroxypropyl-beta-cyclodextrin (HP-beta-CD). This stationary phase was shown useful for the capillary electrochromatography (CEC) separation of neutral and anionic enantiomers such as some organochlorine pesticides and dansyl amino acids, respectively. The inclusion of HP-beta-CD in the mobile phase to produce the in situ chiral stationary phase allowed the rapid separation of the anionic dansyl amino acid enantiomers at relatively low electroosmotic flow (EOF). The formation of host-guest complexes between the dansyl amino acids and the neutral HP-beta-CD in the mobile phase lowered the actual charge-to-mass ratios of the anionic solutes, thus speeding up their transport by the EOF across the packed capillary column. Several parameters affecting enantioseparation were investigated, including the concentration of HP-beta-CD, ionic strength, pH, and organic modifier content of the mobile phase.
Collapse
Affiliation(s)
- M Zhang
- Department of Chemistry, Oklahoma State University, Stillwater 74078-3071, USA
| | | |
Collapse
|
44
|
Hilder EF, Klampfl CW, Haddad PR. Pressurized-flow anion-exchange capillary electrochromatography using a polymeric ion-exchange stationary phase. J Chromatogr A 2000; 890:337-45. [PMID: 11009037 DOI: 10.1016/s0021-9673(00)00612-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The feasibility of using capillary columns equipped with silica frits and packed with a polymer-based anion exchanger (Dionex AS9-HC) for CEC separations of inorganic anions has been investigated. Experiments using a conventional 25 cm packed bed, and mobile phase flow that is a combination of hydrodynamic and electroosmotic flow were used to demonstrate that by varying the applied voltage (electrophoresis component) or the concentration of the competing ion in the mobile phase (ion-exchange component), considerable changes in the separation selectivity could be obtained. Using an artificial neural network, this separation system was modelled and the results obtained used to determine the optimum conditions (9 mM perchlorate and--10 kV) for the separation of eight inorganic anions. When a short (8 cm) packed bed was used, with detection immediately following the packed section, the separation of eight test analytes in under 2.2 min was possible using pressure-driven flow and a simple step voltage gradient. A more rapid separation of these analytes was obtained by only applying high voltage (-30 kV), where many of the same analytes were separated in less than 20 s and with a different separation selectivity to that obtained in conventional ion-exchange or capillary electrophoresis separations.
Collapse
Affiliation(s)
- E F Hilder
- University of Tasmania, Separation Science Group, School of Chemistry, Australia
| | | | | |
Collapse
|
45
|
Klampfl CW, Hilder EF, Haddad PR. Investigations on the behaviour of acidic, basic and neutral compounds in capillary electrochromatography on a mixed-mode stationary phase. J Chromatogr A 2000; 888:267-74. [PMID: 10949492 DOI: 10.1016/s0021-9673(00)00613-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This work describes the separation of acidic, basic and neutral organic compounds as well as inorganic anions in a single run by capillary electrochromatography employing a stationary phase which exhibits both strong anion-exchange and reversed-phase chromatographic characteristics. The positive surface charge of this stationary phase provided a substantial anodic electroosmotic flow. The analytes were separated by a mixed-mode mechanism which comprised chromatographic interactions (hydrophobic interactions, ion-exchange) as well as electrophoretic migration. The influence of ion-exchange and hydrophobic interactions on the retention/migration of the analytes could be manipulated by varying the concentration of a competing ion and/or the amount of organic modifier present in the background electrolyte. Additionally the effects of pH changes on both the chromatographic interactions as well as the electrophoretic migration of the analytes were investigated.
Collapse
Affiliation(s)
- C W Klampfl
- Separation Science Group, School of Chemistry, University of Tasmania, Hobart, Australia
| | | | | |
Collapse
|
46
|
Affiliation(s)
- M Koketsu
- Department of Chemistry, Medicinal and Natural Products Chemistry, Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
47
|
Abstract
This review summarizes the variety of stationary phases that have been employed for capillary electrochromatography (CEC) separations. Currently, about 70% of reported CEC research utilizes C18 stationary phases designed for liquid chromatography, but an increasing number of new materials (e.g., ion-exchange phases, sol-gel approaches, organic polymer continuous beds) are under development for use in CEC. Novel aspects of these different materials are discussed including the ability to promote electroosmotic flow, phase selectivity and activity for basic solutes. In addition, new column designs (polymer continuous beds and silica-sol-gel monoliths) are described.
Collapse
Affiliation(s)
- M Pursch
- Analytical Chemistry Division, Chemical Science and Technology Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899-8392, USA.
| | | |
Collapse
|
48
|
Zhang M, Ostrander GK, El Rassi Z. Capillary electrochromatography with novel stationary phases. IV. Retention behavior of glycosphingolipids on porous and non-porous octadecyl sulfonated silica. J Chromatogr A 2000; 887:287-97. [PMID: 10961320 DOI: 10.1016/s0021-9673(99)01248-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this investigation, capillary electrochromatography (CEC) with a novel stationary phase proved useful for the separation of neutral and acidic glycosphingolipids (GSLs). Four different gangliosides, namely G(M1a), G(D1a), G(D1b) and G(T1b), served as the acidic GSLs model solutes. The following four GSLs: galactosylceramide (GalCer), lactosylceramide (LacCer), globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer) served as the typical neutral GSLs. The stationary phase, octadecyl sulfonated silica (ODSS), consisted of octadecyl functions bonded to a negatively charged layer containing sulfonic acid groups. Porous and non-porous ODSS stationary phases were examined. The retention behavior of the acidic and neutral GSLs was examined over a wide range of elution conditions, including the nature of the electrolyte and organic modifier and the pH of the mobile phase. The porous ODSS stationary phase yielded the separation of the four different gangliosides using a hydro-organic eluent of moderate eluent strength whereas the non-porous ODSS stationary phase permitted the separation of the four neutral GSLs with a mobile phase of relatively high eluent strength.
Collapse
Affiliation(s)
- M Zhang
- Department of Chemistry, Oklahoma State University, Stillwater 74078-3071, USA
| | | | | |
Collapse
|
49
|
Tang Q, Lee ML. Capillary electrochromatography using continuous-bed columns of sol-gel bonded silica particles with mixed-mode octadecyl and propylsulfonic acid functional groups. J Chromatogr A 2000; 887:265-75. [PMID: 10961318 DOI: 10.1016/s0021-9673(99)01196-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Continuous-bed columns containing sol-gel bonded 3 microm silica particles with mixed-mode octadecyl and propylsulfonic acid functional groups (ODS/SCX) were prepared by first packing the ODS/SCX particles into a fused-silica capillary, then filling the packed capillary with a siliceous sol-gel, curing the sol-gel, and finally drying the column with supercritical carbon dioxide. The performance of the sol-gel bonded ODS/SCX columns was evaluated for capillary electrochromatography using acetonitrile aqueous mobile phase containing phosphate buffer. The columns were mechanically strong and permeable. Both EOF velocity and current increased linearly with elevation of the applied electric field strength. The EOF velocity was high at low pH and nearly constant over a range of pH 2-9. Higher buffer concentration resulted in higher current and lower EOF velocity. The acetonitrile content had no significant effect on the EOF. Without thermosetting the column, no bubble formation was noticed with currents up to 2.5 microA. The minimum plate height of a 25/34 cm x 75 microm I.D. sol-gel bonded 3 microm ODS/SCX column was 5.7 microm (1.75 x 10(5) plates per meter) at an optimum EOF velocity of 0.92 mm s(-1). Mixtures of test aromatic compounds and aromatic hydrocarbon homologues gave symmetrical peaks when using a low pH mobile phase. The retention and elution order of aromatic compounds represented a typical reversed-phase separation mechanism similar to conventional ODS columns. The run-to-run and column-to-column retention factor reproducibility was better than 2.5% and 8.0% RSD, respectively.
Collapse
Affiliation(s)
- Q Tang
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602-5700, USA
| | | |
Collapse
|
50
|
Abstract
Since the introduction of the first commercial capillary electrophoresis (CE) instrument a decade ago, CE applications have become widespread. Today, CE is a versatile analytical technique which is successfully used for the separation of small ions, neutral molecules, and large biomolecules and for the study of physicochemical parameters. It is being utilized in widely different fields, such as analytical chemistry, forensic chemistry, clinical chemistry, organic chemistry, natural products, pharmaceutical industry, chiral separations, molecular biology, and others. It is not only used as a separation technique but to answer physicochemical questions. In this review, we will discuss different modes of CE such as capillary zone electrophoresis, micellar electrokinetic chromatography, capillary gel electrophoresis, capillary isoelectric focusing, and capillary electrochromatography, and will comment on the future direction of CE, including array capillary electrophoresis and array microchip separations.
Collapse
|