1
|
Becker D, Reydelet Y, Lopez JA, Jackson C, Colbourne JK, Hawat S, Hippler M, Zeis B, Paul RJ. The transcriptomic and proteomic responses of Daphnia pulex to changes in temperature and food supply comprise environment-specific and clone-specific elements. BMC Genomics 2018; 19:376. [PMID: 29783951 PMCID: PMC5963186 DOI: 10.1186/s12864-018-4742-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/30/2018] [Indexed: 02/07/2023] Open
Abstract
Background Regulatory adjustments to acute and chronic temperature changes are highly important for aquatic ectotherms because temperature affects their metabolic rate as well as the already low oxygen concentration in water, which can upset their energy balance. This also applies to severe changes in food supply. Thus, we studied on a molecular level (transcriptomics and/or proteomics) the immediate responses to heat stress and starvation and the acclimation to different temperatures in two clonal isolates of the model microcrustacean Daphnia pulex from more or less stressful environments, which showed a higher (clone M) or lower (clone G) tolerance to heat and starvation. Results The transcriptomic responses of clone G to acute heat stress (from 20 °C to 30 °C) and temperature acclimation (10 °C, 20 °C, and 24 °C) and the proteomic responses of both clones to acute heat, starvation, and heat-and-starvation stress comprised environment-specific and clone-specific elements. Acute stress (in particular heat stress) led to an early upregulation of stress genes and proteins (e.g., molecular chaperones) and a downregulation of metabolic genes and proteins (e.g., hydrolases). The transcriptomic responses to temperature acclimation differed clearly. They also varied depending on the temperature level. Acclimation to higher temperatures comprised an upregulation of metabolic genes and, in case of 24 °C acclimation, a downregulation of genes for translational processes and collagens. The proteomic responses of the clones M and G differed at any type of stress. Clone M showed markedly stronger and less stress-specific proteomic responses than clone G, which included the consistent expression of a specific heat shock protein (HSP60) and vitellogenin (VTG-SOD). Conclusions The expression changes under acute stress can be interpreted as a switch from standard products of gene expression to stress-specific products. The expression changes under temperature acclimation probably served for an increase in energy intake (via digestion) and, if necessary, a decrease in energy expenditures (e.g, for translational processes). The stronger and less stress-specific proteomic responses of clone M indicate a lower degree of cell damage and an active preservation of the energy balance, which allowed adequate proteomic responses under stress, including the initiation of resting egg production (VTG-SOD expression) as an emergency reaction. Electronic supplementary material The online version of this article (10.1186/s12864-018-4742-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dörthe Becker
- Institute of Zoophysiology, University of Münster, 48143, Münster, Germany.,Present address: Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Yann Reydelet
- Institute of Zoophysiology, University of Münster, 48143, Münster, Germany
| | - Jacqueline A Lopez
- Present address: Genomics Core Facility, Galvin Life Science Center, University of Notre Dame, Notre Dame, IN, USA
| | - Craig Jackson
- Present address: School of Public and Environmental Affairs, Indiana University, Bloomington, IN, USA
| | - John K Colbourne
- Present address: Environmental Genomics Group, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Susan Hawat
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Münster, Germany
| | - Michael Hippler
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Münster, Germany
| | - Bettina Zeis
- Institute of Zoophysiology, University of Münster, 48143, Münster, Germany
| | - Rüdiger J Paul
- Institute of Zoophysiology, University of Münster, 48143, Münster, Germany.
| |
Collapse
|
2
|
Subhasitanont P, Chokchaichamnankit D, Chiablaem K, Keeratichamroen S, Ngiwsara L, Paricharttanakul NM, Lirdprapamongkol K, Weeraphan C, Svasti J, Srisomsap C. Apigenin inhibits growth and induces apoptosis in human cholangiocarcinoma cells. Oncol Lett 2017; 14:4361-4371. [PMID: 28943950 DOI: 10.3892/ol.2017.6705] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 02/01/2017] [Indexed: 12/13/2022] Open
Abstract
A promising nutraceutical, apigenin, was recently revealed to exhibit biological activity in inhibiting several types of cancer. The effects of apigenin on the growth inhibition and apoptosis of the cholangiocarcinoma HuCCA-1 cell line were investigated. Protein alterations subsequent to apigenin treatment were studied using a proteomic approach. The values of 20, 50 and 90% inhibition of cell growth (IC20, IC50 and IC90) were determined by MTT cell viability assay. Apoptotic cell death was detected using two different methods, a flow cytometric analysis (Muse Cell Analyzer) and DNA fragmentation assay. A number of conditions including attached and detached cells were selected to perform two-dimensional gel electrophoresis (2-DE) to study the alterations in the expression levels of treated and untreated proteins and identified by liquid chromatography (LC)/tandem mass spectrometry (MS/MS). The IC20, IC50 and IC90 values of apigenin after 48 h treatment in HuCCA-1 cells were 25, 75 and 200 µM, respectively, indicating the cytotoxicity of this compound. Apigenin induced cell death in HuCCA-1 cells via apoptosis as detected by flow cytometric analysis and exhibited, as confirmed with DNA fragmentation, characteristics of apoptotic cells. A total of 67 proteins with altered expression were identified from the 2-DE analysis and LC/MS/MS. The cleavage of proteins involved in cytoskeletal, cytokeratin 8, 18 and 19, and high expression of S100-A6 and S100-A11 suggested that apoptosis was induced by apigenin via the caspase-dependent pathway. Notably, two proteins, heterogeneous nuclear ribonucleoprotein H and A2/B1, disappeared completely subsequent to treatment, suggesting the role of apigenin in inducing cell death. The present study indicated that apigenin demonstrates an induction of growth inhibition and apoptosis in cholangiocarcinoma cells and the apoptosis pathway was confirmed by proteomic analysis.
Collapse
Affiliation(s)
| | | | - Khajeelak Chiablaem
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | | | - Lukana Ngiwsara
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | | | | | - Churat Weeraphan
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Jisnuson Svasti
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand.,Applied Biological Sciences Program, Chulabhorn Graduate Institute, Bangkok 10210, Thailand
| | - Chantragan Srisomsap
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
| |
Collapse
|
3
|
Di Domenico F, De Marco F, Perluigi M. Proteomics strategies to analyze HPV-transformed cells: relevance to cervical cancer. Expert Rev Proteomics 2014; 10:461-72. [DOI: 10.1586/14789450.2013.842469] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
4
|
Wei YYC, Naderi S, Meshram M, Budman H, Scharer JM, Ingalls BP, McConkey BJ. Proteomics analysis of chinese hamster ovary cells undergoing apoptosis during prolonged cultivation. Cytotechnology 2011; 63:663-77. [PMID: 21853334 DOI: 10.1007/s10616-011-9385-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 07/20/2011] [Indexed: 12/19/2022] Open
Abstract
The degradation of environmental conditions, such as nutrient depletion and accumulation of toxic waste products over time, often lead to premature apoptotic cell death in mammalian cell cultures and suboptimal protein yield. Although apoptosis has been extensively researched, the changes in the whole cell proteome during prolonged cultivation, where apoptosis is a major mode of cell death, have not been examined. To our knowledge, the work presented here is the first whole cell proteome analysis of non-induced apoptosis in mammalian cells. Flow cytometry analyses of various activated caspases demonstrated the onset of apoptosis in Chinese hamster ovary cells during prolonged cultivation was primarily through the intrinsic pathway. Differential in gel electrophoresis proteomic study comparing protein samples collected during cultivation resulted in the identification of 40 differentially expressed proteins, including four cytoskeletal proteins, ten chaperone and folding proteins, seven metabolic enzymes and seven other proteins of varied functions. The induction of seven ER chaperones and foldases is a solid indication of the onset of the unfolded protein response, which is triggered by cellular and ER stresses, many of which occur during prolonged batch cultures. In addition, the upregulation of six glycolytic enzymes and another metabolic protein emphasizes that a change in the energy metabolism likely occurred as culture conditions degraded and apoptosis advanced. By identifying the intracellular changes during cultivation, this study provides a foundation for optimizing cell line-specific cultivation processes, prolonging longevity and maximizing protein production.
Collapse
|
5
|
Zhang W, Ambati S, Della-Fera MA, Choi YH, Baile CA, Andacht TM. Leptin modulated changes in adipose tissue protein expression in ob/ob mice. Obesity (Silver Spring) 2011; 19:255-61. [PMID: 20725060 DOI: 10.1038/oby.2010.166] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Comparative proteomic analyses were performed in adipose tissue of leptin-deficient ob/ob mice treated with leptin or control buffer in order to identify the protein expression changes as the potential targets of leptin. Mice were treated with either phosphate-buffered saline (control) or 10 µg/day leptin for 14 days via subcutaneous osmotic minipumps. Total protein from white adipose tissue was extracted and labeled with different fluorescent cyanine dyes for analysis by two-dimensional difference gel electrophoresis (DIGE). Spots that were differentially expressed and appeared to have sufficient material for mass spectrometry analysis were picked and digested with trypsin and subjected to MALDI-TOF MS for protein identification. Twelve functional protein groups were found differentially expressed in adipose tissue of leptin-treated vs. control ob/ob mice, including molecular chaperones and redox proteins such as calreticulin (CALR), protein disulfide isomerase-associated 3 (PDIA3), prohibitin (PHB), and peroxiredoxin-6 (PRDX6); cytoskeleton proteins such as β actin, desmin, and α-tubulin; and some other proteins. The mRNA levels of CALR, PDIA3, and PHB were measured by real-time reverse transcription-PCR and found to be upregulated (P < 0.05), consistent with the fold change in protein expression level. Our findings suggest that leptin's effects on lipid metabolism and apoptosis may be mediated in part by alterations in expression of molecular chaperones and redox proteins for regulating endoplasmic reticulum stress and cytoskeleton proteins for regulating mitochondrial morphology.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Animal and Dairy Science, Athens, Georgia, USA
| | | | | | | | | | | |
Collapse
|
6
|
Perluigi M, Giorgi A, Blarzino C, De Marco F, Foppoli C, Di Domenico F, Butterfield DA, Schininà ME, Cini C, Coccia R. Proteomics analysis of protein expression and specific protein oxidation in human papillomavirus transformed keratinocytes upon UVB irradiation. J Cell Mol Med 2010; 13:1809-1822. [PMID: 19267883 DOI: 10.1111/j.1582-4934.2008.00465.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Increasing evidence supports the role of oxidative stress in cancer development. Ultraviolet (UV) irradiation is one of the major sources of oxidative stress through the generation of reactive oxygen species (ROS). Besides the physiological function of ROS in cellular homeostasis, accumulating reports suggest that ROS are involved in all stages of multistep cancer development. In order to investigate the involvement of oxidative damage into the mechanisms of tumour progression, we used a parallel proteomic approach to analyse the protein expression profile and to identify oxidatively modified proteins in human papillomavirus (HPV)-transformed keratinocytes (HK-168 cells) upon ultraviolet B (UVB) exposure. The HK-168 cells were obtained from normal human epidermal keratinocytes transfected with the whole genome of the high-risk HPV type 16, unanimously recognized as an etiological agent of cervical carcinoma. Because of its year-long latency, this tumour offers a convenient model to study the role of environmental concurring agents in the multistep malignant progression. By the protein expression profile, we identified 21 proteins that showed different expression levels in HK-168 cells treated with UVB in comparison with untreated cells. Focusing on the oxidative modifications occurring at the protein level, we identified five proteins that showed elevated protein carbonyls levels: alpha-enolase, heat shock protein 75, annexin 2, elongation factor Tu and elongation factor gamma. Our results indicate that UVB-induced oxidative stress perturbs the normal redox balance and shifts HPV-transformed keratinocytes into a state in which the carbonylation of specific proteins is systematically induced. We suggest that UVB-induced modulation of protein expression combined with oxidative modification lead to protein dysfunction that might contribute to the malignant progression of transformed cells.
Collapse
Affiliation(s)
- Marzia Perluigi
- Department of Biochemical Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Alessandra Giorgi
- Department of Biochemical Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Carla Blarzino
- Department of Biochemical Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Federico De Marco
- Laboratory of Virology, "Regina Elena Institute for Cancer Research", Rome, Italy
| | - Cesira Foppoli
- CNR Institute of Molecular Biology and Pathology, Rome, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences, "Sapienza" University of Rome, Rome, Italy
| | - D Allan Butterfield
- Department of Chemistry, Center of Membrane Science, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - M Eugenia Schininà
- Department of Biochemical Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Chiara Cini
- Department of Biochemical Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Raffaella Coccia
- Department of Biochemical Sciences, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
7
|
Berglund SR, Santana AR, Li D, Rice RH, Rocke DM, Goldberg Z. Proteomic analysis of low dose arsenic and ionizing radiation exposure on keratinocytes. Proteomics 2009; 9:1925-38. [PMID: 19294697 DOI: 10.1002/pmic.200800118] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Human exposure to arsenic and ionizing radiation (IR) occur environmentally at low levels. While the human health effects of arsenic and IR have been examined separately, there is little information regarding their combined effects at doses approaching environmental levels. Arsenic toxicity may be affected by concurrent IR especially given their known individual carcinogenic actions at higher doses. We found that keratinocytes responded to either low dose arsenic and/or low dose IR exposure, resulting in differential proteomic expression based on 2-DE, immunoblotting and statistical analysis. Seven proteins were identified that passed a rigorous statistical screen for differential expression in 2-DE and also passed a strict statistical screen for follow-up immunoblotting. These included: alpha-enolase, epidermal-fatty acid binding protein, heat shock protein 27, histidine triad nucleotide-binding protein 1, lactate dehydrogenase A, protein disulfide isomerase precursor, and S100A9. Four proteins had combined effects that were different than would be expected based on the response to either individual toxicant. These data demonstrate a possible reaction to the combined insult that is substantially different from that of either separate treatment. Several proteins had different responses than what has been seen from high dose exposures, adding to the growing literature suggesting that the cellular responses to low dose exposures are distinct.
Collapse
|
8
|
Okunaga T, Urata Y, Goto S, Matsuo T, Mizota S, Tsutsumi K, Nagata I, Kondo T, Ihara Y. Calreticulin, a molecular chaperone in the endoplasmic reticulum, modulates radiosensitivity of human glioblastoma U251MG cells. Cancer Res 2007; 66:8662-71. [PMID: 16951181 DOI: 10.1158/0008-5472.can-05-4256] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Radiotherapy is the primary and most important adjuvant therapy for malignant gliomas. Although the mechanism of radiation resistance in gliomas has been studied for decades, it is still not clear how the resistance is related with functions of molecular chaperones in the endoplasmic reticulum. Calreticulin (CRT) is a Ca(2+)-binding molecular chaperone in the endoplasmic reticulum. Recently, it was reported that changes in intracellular Ca(2+) homeostasis play a role in the modulation of apoptosis. In the present study, we found that the level of CRT was higher in neuroglioma H4 cells than in glioblastoma cells (U251MG and T98G), and was well correlated with the sensitivity to gamma-irradiation. To examine the role of CRT in the radiosensitivity of malignant gliomas, the CRT gene was introduced into U251MG cells, which express low levels of CRT, and the effect of overexpression of CRT on the radiosensitivity was examined. The cells transfected with the CRT gene exhibited enhanced radiation-induced apoptosis compared with untransfected control cells. In CRT-overexpressing cells, cell survival signaling via Akt was markedly suppressed. Furthermore, the gene expression of protein phosphatase 2Ac alpha (PP2Ac alpha), which is responsible for the dephosphorylation and inactivation of Akt, was up-regulated in CRT-overexpressing cells, and the regulation was dependent on Ca(2+). Thus, overexpression of CRT modulates radiation-induced apoptosis by suppressing Akt signaling through the up-regulation of PP2Ac alpha expression via altered Ca(2+) homeostasis. These results show the novel mechanism by which CRT is involved in the regulation of radiosensitivity and radiation-induced apoptosis in malignant glioma cells.
Collapse
Affiliation(s)
- Tomohiro Okunaga
- Department of Biochemistry and Molecular Biology in Disease, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, 852-8523 Nagasaki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Grebeňová D, Halada P, Stulík J, Havlíček V, Hrkal Z. Protein Changes in HL60 Leukemia Cells Associated with 5-Aminolevulinic Acid-based Photodynamic Therapy. Early Effects on Endoplasmic Reticulum Chaperones ¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2000)0720016pcihlc2.0.co2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Goldberg Z, Rocke DM, Schwietert C, Berglund SR, Santana A, Jones A, Lehmann J, Stern R, Lu R, Hartmann Siantar C. Human in vivo dose-response to controlled, low-dose low linear energy transfer ionizing radiation exposure. Clin Cancer Res 2006; 12:3723-9. [PMID: 16778099 DOI: 10.1158/1078-0432.ccr-05-2625] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The effect of low doses of low-linear energy transfer (photon) ionizing radiation (LDIR, <10 cGy) on human tissue when exposure is under normal physiologic conditions is of significant interest to the medical and scientific community in therapeutic and other contexts. Although, to date, there has been no direct assessment of the response of human tissue to LDIR when exposure is under normal physiologic conditions of intact three-dimensional architecture, vasculature, and cell-cell contacts (between epithelial cells and between epithelial and stromal cells). EXPERIMENTAL DESIGN In this article, we present the first data on the response of human tissue exposed in vivo to LDIR with precisely controlled and calibrated doses. We evaluated transcriptomic responses to a single exposure of LDIR in the normal skin of men undergoing therapeutic radiation for prostate cancer (research protocol, Health Insurance Portability and Accountability Act-compliant, Institutional Review Board-approved). Using newly developed biostatistical tools that account for individual splice variants and the expected variability of temporal response between humans even when the outcome is measured at a single time, we show a dose-response pattern in gene expression in a number of pathways and gene groups that are biologically plausible responses to LDIR. RESULTS Examining genes and pathways identified as radiation-responsive in cell culture models, we found seven gene groups and five pathways that were altered in men in this experiment. These included the Akt/phosphoinositide-3-kinase pathway, the growth factor pathway, the stress/apoptosis pathway, and the pathway initiated by transforming growth factor-beta signaling, whereas gene groups with altered expression included the keratins, the zinc finger proteins and signaling molecules in the mitogen-activated protein kinase gene group. We show that there is considerable individual variability in radiation response that makes the detection of effects difficult, but still feasible when analyzed according to gene group and pathway. CONCLUSIONS These results show for the first time that low doses of radiation have an identifiable biosignature in human tissue, irradiated in vivo with normal intact three-dimensional architecture, vascular supply, and innervation. The genes and pathways show that the tissue (a) does detect the injury, (b) initiates a stress/inflammatory response, (c) undergoes DNA remodeling, as suggested by the significant increase in zinc finger protein gene expression, and (d) initiates a "pro-survival" response. The ability to detect a distinct radiation response pattern following LDIR exposure has important implications for risk assessment in both therapeutic and national defense contexts.
Collapse
Affiliation(s)
- Zelanna Goldberg
- Department of Radiation Oncology, University of California Davis Cancer Center, Sacramento, 95817, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ruddat VC, Whitman S, Klein RD, Fischer SM, Holman TR. Evidence for downregulation of calcium signaling proteins in advanced mouse adenocarcinoma. Prostate 2005; 64:128-38. [PMID: 15666362 DOI: 10.1002/pros.20207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Prostate cancer (PCa) is the leading cancer related death in America. Gleason grading is currently the predominant method for prediction, with only few biomarkers available. More biomarkers, especially as they relate to cancer progression are desirable. METHODS The abundance of several important proteins in prostate tissue was compared between wild-type mouse dorsal prostate and well-differentiated transgenic adenocarcinoma mouse prostate (TRAMP) mouse dorsal prostates, and between wild-type mouse dorsal prostate and poorly-differentiated TRAMP mouse tumor tissue. 2DIGE method in conjunction with MALDI-ToF and Western blots was used to determine differential expression. RESULTS In TRAMP dorsal prostates with well-differentiated adenocarcinoma, there were few significant changes in the protein abundances compared to wild-type dorsal prostates, with the exception of increases in proliferating cell nuclear antigen (PCNA) and beta tubulin, two proteins implicated in cell proliferation, and a more than 2-fold increase in Hsp60, a protein involved in the suppression of apoptosis. In the poorly-differentiated tumors, the changes in protein abundance were substantial. While some of those changes could be related to the disappearance of stromal tissue or the appearance of epithelial tissue, other changes in protein abundance were more significant to the cancer development itself. Most notable was the overall decrease in calcium homeostasis proteins with a 10-fold decrease in calreticulin and Hsp70 and a 40-fold decrease in creatine kinase bb in the cancerous tissue. CONCLUSIONS Proteomics of TRAMP mice provide an excellent method to observe changes in protein abundance, revealing changes in pathways during cancer progression.
Collapse
Affiliation(s)
- Viola C Ruddat
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | | | | | | | | |
Collapse
|
12
|
Bo Z, Yongping S, Fengchao W, Guoping A, Yongjiang W. Identification of differentially expressed proteins of gamma-ray irradiated rat intestinal epithelial IEC-6 cells by two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionisation-time of flight mass spectrometry. Proteomics 2005; 5:426-32. [PMID: 15700242 DOI: 10.1002/pmic.200400932] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
To identify proteins involved in the processes of cellular and molecular response to radiation damage repair in intestinal epithelial IEC-6 cells, we comparatively analyzed the proteome of irradiated IEC-6 cells with that of normal cells. A series of methods were used, including two-dimensional gel electrophoresis (Z-DE), PDQuest software analysis of 2-DE gels, peptide mass fingerprinting based on matrix-assisted laser desorption/ionisation-time of flight-mass spectrometry (MALDI-TOF-MS), and Swiss-Prot database searching, to separate and identify differentially expressed proteins. Western blotting and reverse transcriptase polymerase chain reaction (RT-PCR) were used to validate the differentially expressed proteins. Image analysis revealed that averages of 608 +/- 39 and 595 +/- 31 protein spots were detected in normal and irradiated IEC-6 cells, respectively. Sixteen differential protein spots were isolated from gels, and measured with MALDI-TOF-MS. A total of 14 spots yielded good spectra, and 11 spots matched with known proteins after database searching. These proteins were mainly involved in anti-oxidation, metabolism, and protein post-translational processes. Western blotting confirmed that stress-70 protein was down-regulated by gamma-irradiation. Up-regulation of ERP29 was confirmed by RT-PCR, indicating that it is involved in ionizing radiation. The clues provided by the comparative proteome strategy utilized here will shed light on molecular mechanisms of radiation damage repair in intestinal epithelial cells.
Collapse
Affiliation(s)
- Zhang Bo
- Combined Injury Institute of PLA, Third Military Medical University, Chongqing, China
| | | | | | | | | |
Collapse
|
13
|
Shan SW, Tang MK, Cai DQ, Chui YL, Chow PH, Grotewold L, Lee KKH. Comparative proteomic analysis identifies protein disulfide isomerase and peroxiredoxin 1 as new players involved in embryonic interdigital cell death. Dev Dyn 2005; 233:266-81. [PMID: 15858817 DOI: 10.1002/dvdy.20404] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, we used comparative proteomics to identify proteins that were involved in the regulation of interdigital cell death. The protein profiles of embryonic day (E) 12.5 and 13.5 mouse hindlimb interdigital tissues were compared to identify proteins that were differentially expressed. The interdigital cells are irreversibly committed to programmed cell death (PCD) at E13.5, whereas they are developmentally plastic at E12.5. We established that protein disulfide isomerase (PDI) expression was up-regulated at E13.5, while peroxiredoxin 1 (Prdx1) expression was down-regulated at this time point. Semiquantitative reverse transcriptase-polymerase chain reaction and Western blot analyses confirmed the data obtained from the two-dimensional electrophoresis gels. Furthermore, we were able to up-regulate PDI expression by manipulating the E12.5 interdigital tissues to die during culture, although this up-regulation was not possible when cell survival was promoted. In addition, we could inhibit interdigital cell death and expression of proapoptotic genes (Bmp-4 and Bambi) by treating interdigital tissues with PDI antibodies and bacitracin (a PDI enzyme inhibitor). These findings suggested that PDI was involved in the activation and maintenance of interdigital cell death. Conversely, we determined that Prdx1 expression was maintained when interdigital cultures were manipulated to survive but down-regulated when the cultures were permitted to die. The result suggested that Prdx1 was involved in maintaining interdigital cell survival. However, we were unable to induce interdigital cell death by means of RNA interference-mediated silencing of Prdx1 expression, indicating that Prdx1 down-regulation is not sufficient for PCD to occur. Proteomic analysis of the Prdx1 knock-down cells revealed that the level of NF-kappaB inhibitor epsilon (IkappaBepsilon) was dramatically reduced. Furthermore, we found an increase in NFkappaB activation and reactive oxygen species (ROS) levels in the cytoplasm as a result of Prdx1 knockdown. We also found that silencing Prdx1 made the interdigital cells more susceptible to ROS-induced cell death. Taken together, our study identifies two new players in interdigital cell death and highlights that PCD is regulated by a delicate balance of proapoptotic and survival-promoting activities.
Collapse
Affiliation(s)
- S W Shan
- Department of Anatomy, Basic Medical Science Building, Chinese University of Hong Kong, Shatin, Hong Kong
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Apoptosis, a genetically determined form of cell death, is a central and complex process involved in the development of multicellular organisms in the maintenance of cell homeostasis. During apoptosis, a large number of proteins involved in transducing signals are posttranslationally modified. Classical proteomics, the combination of protein separation by two-dimensional gel electrophoresis (2DGE) and protein identification by mass spectrometry (MS), enabled the discovery of more than 100 proteins altered during apoptosis. Functional data about protein degradation, modification, translocation, and synthesis were obtained. In addition to classical proteomics, some specifically designed proteome studies were carried out to analyze specific apoptotic components such as the mitochondrial releasing factors, death-inducing signaling complex (DISC), inhibitor of apoptosis (IAP) interacting proteins, and caspases. The identification of main regulators significantly influenced the elucidation of the concept underlying apoptosis signaling. Thus, the application of detailed protein analytical methods in the young field of apoptosis research was particularly fruitful.
Collapse
Affiliation(s)
- Bernd Thiede
- Max-Planck-Institute for Infection Biology, Department of Molecular Biology, Schumannstr. 21/22, D-10117 Berlin, Germany
| | | |
Collapse
|
15
|
Verrills NM, Walsh BJ, Cobon GS, Hains PG, Kavallaris M. Proteome analysis of vinca alkaloid response and resistance in acute lymphoblastic leukemia reveals novel cytoskeletal alterations. J Biol Chem 2003; 278:45082-93. [PMID: 12949081 DOI: 10.1074/jbc.m303378200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Vinca alkaloids are used widely in the treatment of both childhood and adult cancers. Their cellular target is the beta-tubulin subunit of alpha/beta-tubulin heterodimers, and they act to inhibit cell division by disrupting microtubule dynamics. Despite the effectiveness of these agents, drug resistance is a major clinical problem. To identify the underlying mechanisms behind vinca alkaloid resistance, we have performed high resolution differential proteome analysis. Treatment of drug-sensitive human leukemia cells (CCRF-CEM) with vincristine identified numerous proteins involved in the cellular response to vincristine. In addition, differential protein expression was analyzed in leukemia cell lines selected for resistance to vincristine (CEM/VCR R) and vinblastine (CEM/VLB100). This combined proteomic approach identified 10 proteins altered in both vinca alkaloid response and resistance: beta-tubulin, alpha-tubulin, actin, heat shock protein 90beta, 14-3-3tau, 14-3-3epsilon, L-plastin, lamin B1, heterogeneous nuclear ribonuclear protein-F, and heterogeneous nuclear ribonuclear protein-K. Several of these proteins have not previously been associated with drug resistance and are thus novel targets for elucidation of resistance mechanisms. In addition, seven of these proteins are associated with the tubulin and/or actin cytoskeletons. This study provides novel insights into the interrelationship between the microtubule and microfilament systems in vinca alkaloid resistance.
Collapse
MESH Headings
- Actins/metabolism
- Amino Acid Sequence
- Cell Line, Tumor
- Cytoskeleton/metabolism
- Drug Resistance, Neoplasm
- Electrophoresis, Gel, Two-Dimensional
- Electrophoresis, Polyacrylamide Gel
- Gene Expression Regulation, Neoplastic
- Humans
- Immunoblotting
- Molecular Sequence Data
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy
- Protein Structure, Tertiary
- Proteome
- Sequence Homology, Amino Acid
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Time Factors
- Tubulin/metabolism
- Vinblastine/pharmacology
- Vinca Alkaloids/pharmacology
- Vincristine/pharmacology
Collapse
Affiliation(s)
- Nicole M Verrills
- Children's Cancer Institute Australia for Medical Research, High St. (P. O. Box 81), Randwick, New South Wales 2031, Australia
| | | | | | | | | |
Collapse
|
16
|
Qi W, Martinez JD. Reduction of 14-3-3 proteins correlates with increased sensitivity to killing of human lung cancer cells by ionizing radiation. Radiat Res 2003; 160:217-23. [PMID: 12859233 DOI: 10.1667/rr3038] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The 14-3-3 proteins have a wide range of ligands and are involved in a variety of biological pathways. Importantly, 14-3-3 proteins are known to be overexpressed in some human lung cancers, suggesting that they may play a role in tumorigenesis. Here we examined 14-3-3 expression in several lung cancer-derived cell lines and found that four of the seven 14-3-3 isoforms, beta, epsilon, theta and zeta, were highly expressed in both lung cancer cell lines and normal lung fibroblasts. Two isoforms, sigma and gamma, were present only at very low levels. Immunoprecipitation data showed 14-3-3zeta could bind to CDC25C in irradiated A549 cells, and suppression of 14-3-3zeta in A549 cells with antisense resulted in a decrease in CDC25C localization in cytoplasm and CDC2 phosphorylation on Tyr15. As a consequence, CDC2 activity remained elevated which resulted in release from radiation-induced G(2)/M-phase arrest. Moreover, 16% 14-3-3zeta antisense-transfected cells underwent apoptosis when exposed to 10 Gy ionizing radiation. These data indicate that 14-3-3zeta is involved in G(2) checkpoint activation and that inhibition of 14-3-3 may be a useful approach to sensitize human lung cancers to ionizing radiation.
Collapse
Affiliation(s)
- Wenqing Qi
- Department of Radiation Oncology, The University of Arizona, and Arizona Cancer Center, Tucson, Arizona 85724, USA
| | | |
Collapse
|
17
|
Leerkes MR, Caballero OL, Mackay A, Torloni H, O'Hare MJ, Simpson AJG, de Souza SJ. In silico comparison of the transcriptome derived from purified normal breast cells and breast tumor cell lines reveals candidate upregulated genes in breast tumor cells. Genomics 2002; 79:257-65. [PMID: 11829496 DOI: 10.1006/geno.2002.6691] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Genes that are differentially expressed in tumor tissues are potential diagnostic markers and drug targets. The DNA sequence information available in the public databases can be used to identify transcripts differentially expressed in cancer. We report here the combined use of the ORESTES sequences generated in the FAPESP/LICR Human Cancer Genome Project and information available in the UniGene and SAGE databases to characterize the transcriptome of normal and breast tumor cells. We have identified 154 genes as candidates for overexpression in breast tumor cells. Among these, 28 genes have been shown by others to be overexpressed in breast or other tumors. Using RT-PCR, we tested 11 candidate genes and found that 9 were indeed overexpressed in breast tumor cells.
Collapse
Affiliation(s)
- Maarten R Leerkes
- Ludwig Institute for Cancer Research, Rua Prof. Antonio Prudente, 109, 4 andar, São Paulo, SP, 01509-010, Brazil
| | | | | | | | | | | | | |
Collapse
|
18
|
Zhang H, Yu CY, Singer B, Xiong M. Recursive partitioning for tumor classification with gene expression microarray data. Proc Natl Acad Sci U S A 2001; 98:6730-5. [PMID: 11381113 PMCID: PMC34421 DOI: 10.1073/pnas.111153698] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2001] [Indexed: 11/18/2022] Open
Abstract
Precise classification of tumors is critically important for cancer diagnosis and treatment. It is also a scientifically challenging task. Recently, efforts have been made to use gene expression profiles to improve the precision of classification, with limited success. Using a published data set for purposes of comparison, we introduce a methodology based on classification trees and demonstrate that it is significantly more accurate for discriminating among distinct colon cancer tissues than other statistical approaches used heretofore. In addition, competing classification trees are displayed, which suggest that different genes may coregulate colon cancers.
Collapse
Affiliation(s)
- H Zhang
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, CT 06520-8034, USA.
| | | | | | | |
Collapse
|
19
|
Moler EJ, Chow ML, Mian IS. Analysis of molecular profile data using generative and discriminative methods. Physiol Genomics 2000; 4:109-126. [PMID: 11120872 DOI: 10.1152/physiolgenomics.2000.4.2.109] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A modular framework is proposed for modeling and understanding the relationships between molecular profile data and other domain knowledge using a combination of generative (here, graphical models) and discriminative [Support Vector Machines (SVMs)] methods. As illustration, naive Bayes models, simple graphical models, and SVMs were applied to published transcription profile data for 1,988 genes in 62 colon adenocarcinoma tissue specimens labeled as tumor or nontumor. These unsupervised and supervised learning methods identified three classes or subtypes of specimens, assigned tumor or nontumor labels to new specimens and detected six potentially mislabeled specimens. The probability parameters of the three classes were utilized to develop a novel gene relevance, ranking, and selection method. SVMs trained to discriminate nontumor from tumor specimens using only the 50-200 top-ranked genes had the same or better generalization performance than the full repertoire of 1,988 genes. Approximately 90 marker genes were pinpointed for use in understanding the basic biology of colon adenocarcinoma, defining targets for therapeutic intervention and developing diagnostic tools. These potential markers highlight the importance of tissue biology in the etiology of cancer. Comparative analysis of molecular profile data is proposed as a mechanism for predicting the physiological function of genes in instances when comparative sequence analysis proves uninformative, such as with human and yeast translationally controlled tumour protein. Graphical models and SVMs hold promise as the foundations for developing decision support systems for diagnosis, prognosis, and monitoring as well as inferring biological networks.
Collapse
Affiliation(s)
- E J Moler
- Department of Cell and Molecular Biology, Radiation Biology and Environmental Toxicology Group, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | | | | |
Collapse
|
20
|
Gerner C, Frohwein U, Gotzmann J, Bayer E, Gelbmann D, Bursch W, Schulte-Hermann R. The Fas-induced apoptosis analyzed by high throughput proteome analysis. J Biol Chem 2000; 275:39018-26. [PMID: 10978337 DOI: 10.1074/jbc.m006495200] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The fate of cytosolic proteins was studied during Fas-induced cell death of Jurkat T-lymphocytes by proteome analysis. Among 1000 spots resolved in two-dimensional gels, comparison of control versus apoptotic cells revealed that the signal intensity of 19 spots decreased or even disappeared, whereas 38 novel spots emerged. These proteins were further analyzed with respect to de novo protein synthesis, phosphorylation status, and intracellular localization by metabolic labeling and analysis of subcellular protein fractions in combination with two-dimensional Western blots and mass spectrometry analysis of tryptic digests. We found that e.g. hsp27, hsp70B, calmodulin, and H-ras synthesis was induced upon Fas signaling. 34 proteins were affected by dephosphorylation (e.g. endoplasmin) and phosphorylation (e.g. hsc70, hsp57, and hsp90). Nuclear annexin IV translocated to the cytosol, whereas decreasing cytosolic TCP-1alpha became detectable in the nucleus. In addition, degradation of 12 proteins was observed; among them myosin heavy chain was identified as a novel caspase target. Fas-induced proteome alterations were compared with those of other cell death inducers, indicating specific physiological characteristics of different cell death mechanisms, consequent to as well as independent of caspase activation. Characteristic proteome alterations of apoptotic cells at early time points were found reminiscent of those of malignant cells in vivo.
Collapse
Affiliation(s)
- C Gerner
- Institute of Cancer Research, University of Vienna, A-1090 Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
21
|
Grebenová D, Halada P, Stulík J, Havlícek V, Hrkal Z. Protein changes in HL60 leukemia cells associated with 5-aminolevulinic acid-based photodynamic therapy. Early effects on endoplasmic reticulum chaperones. Photochem Photobiol 2000; 72:16-22. [PMID: 10911724 DOI: 10.1562/0031-8655(2000)072<0016:pcihlc>2.0.co;2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Using two-dimensional electrophoresis we investigated the effect of 5-aminolevulinic acid (ALA)-based photodynamic therapy (PDT; induction with 1 mM ALA for 4 h followed by blue light dose of 18 J/cm2) on the protein expression in HL60 leukemia cells. ALA-PDT resulted in extensive qualitative and quantitative changes in the protein pattern of HL60 cell lysates. Of more than 1350 protein spots recognized on the protein maps of ALA-induced cells, seven proteins were enhanced and 17 suppressed following irradiation. Three of these, calreticulin precursor, p58 microsomal protein (ERp57) and protein disulfide isomerase (p55) have been identified by matrix-assisted laser desorption and ionization-mass spectrometry and the pI/molecular weight parameters of the affected proteins were estimated by computer analysis. The findings suggest participation of endoplasmic reticulum Ca(2+)-binding chaperones and/or Ca2+ signaling in ALA-PDT mediated cytotoxicity.
Collapse
Affiliation(s)
- D Grebenová
- Department of Cellular Biochemistry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | | | | | | | | |
Collapse
|