1
|
Soo PC, Lee CC, Shie MF, Patil AA, Descanzo MJN, Chin YC, Chen HA, Horng YT, Lin CB, Lee JJ, Chiang CK, Peng WP. Enhancing the sequence coverage of nanodiamond-extracted early secretory proteins from the Mycobacterium tuberculosis complex. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3464-3474. [PMID: 38804556 DOI: 10.1039/d4ay00314d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The unambiguous identification of protein species requires high sequence coverage. In this study, we successfully improved the sequence coverage of early secretory 10 kDa cell filtrate protein (CFP-10) and 6 kDa early secretory antigenic target (ESAT-6) proteins from the Mycobacterium tuberculosis complex (MTC) in broth culture media with the use of the 4-chloro-α-cyanocinnamic acid (Cl-CCA) matrix. Conventional matrices, α-cyano-hydroxy-cinnamic acid (CHCA) and 2,5-dihydroxybenzoic acid (DHB), were also used for comparison. After nanodiamond (ND) extraction, the sequence coverage of the CFP-10 protein was 87% when CHCA and DHB matrices were used, and the ESAT-6 protein was not detected. On the other hand, the sequence coverage for ND-extracted CFP-10 and ESAT-6 could reach 94% and 100%, respectively, when the Cl-CCA matrix was used and with the removal of interference from bovine serum albumin (BSA) protein and α-crystallin (ACR) protein. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) was also adopted to analyze the protein mass spectra. A total of 6 prominent ion signals were observed, including ESAT-6 protein peaks at mass-to-charge ratios (m/z) of ∼7931, ∼7974, ∼9768, and ∼9813 and CFP-10 protein peaks at m/z of ∼10 100 and ∼10 660. The ESAT-6 ion signals were always detected concurrently with CFP-10 ion signals, but CFP-10 ion signals could be detected alone without the ESAT-6 ion signals. Furthermore, the newly found ESAT-6 peaks were also confirmed using a Mag-Beads-Protein G kit with an ESAT-6 antibody to capture the ESAT-6 protein, which was also consistent with the sequence coverage analysis.
Collapse
Affiliation(s)
- Po-Chi Soo
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan
| | - Ching-Chieh Lee
- Department of Physics, National Dong Hwa University, Shoufeng, Hualien, Taiwan.
| | - Meng-Fu Shie
- Department of Physics, National Dong Hwa University, Shoufeng, Hualien, Taiwan.
| | - Avinash A Patil
- Department of Physics, National Dong Hwa University, Shoufeng, Hualien, Taiwan.
| | | | - Ya-Ching Chin
- Department of Physics, National Dong Hwa University, Shoufeng, Hualien, Taiwan.
| | - Hsi-An Chen
- Department of Physics, National Dong Hwa University, Shoufeng, Hualien, Taiwan.
| | - Yu-Tze Horng
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan
| | - Chih-Bin Lin
- Department of Internal Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, Hualien, Taiwan
| | - Jen-Jyh Lee
- Department of Internal Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, Hualien, Taiwan
| | - Cheng-Kang Chiang
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien, Taiwan
| | - Wen-Ping Peng
- Department of Physics, National Dong Hwa University, Shoufeng, Hualien, Taiwan.
| |
Collapse
|
2
|
Banerjee A, Chakraborty M, Sharma S, Chaturvedi R, Bose A, Biswas P, Singh A, Visweswariah SS. Cyclic AMP binding to a universal stress protein in Mycobacterium tuberculosis is essential for viability. J Biol Chem 2024; 300:107287. [PMID: 38636658 PMCID: PMC11107214 DOI: 10.1016/j.jbc.2024.107287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/20/2024] Open
Abstract
Mycobacterial genomes encode multiple adenylyl cyclases and cAMP effector proteins, underscoring the diverse ways these bacteria utilize cAMP. We identified universal stress proteins, Rv1636 and MSMEG_3811 in Mycobacterium tuberculosis and Mycobacterium smegmatis, respectively, as abundantly expressed, novel cAMP-binding proteins. Rv1636 is secreted via the SecA2 secretion system in M. tuberculosis but is not directly responsible for the efflux of cAMP from the cell. In slow-growing mycobacteria, intrabacterial concentrations of Rv1636 were equivalent to the concentrations of cAMP present in the cell. In contrast, levels of intrabacterial MSMEG_3811 in M. smegmatis were lower than that of cAMP and therefore, overexpression of Rv1636 increased levels of "bound" cAMP. While msmeg_3811 could be readily deleted from the genome of M. smegmatis, we found that the rv1636 gene is essential for the viability of M. tuberculosis and is dependent on the cAMP-binding ability of Rv1636. Therefore, Rv1636 may function to regulate cAMP signaling by direct sequestration of the second messenger. This is the first evidence of a "sponge" for any second messenger in bacterial signaling that would allow mycobacterial cells to regulate the available intrabacterial "free" pool of cAMP.
Collapse
Affiliation(s)
- Arka Banerjee
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India
| | - Moubani Chakraborty
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India
| | - Suruchi Sharma
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India
| | - Ruchi Chaturvedi
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
| | - Avipsa Bose
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India
| | - Priyanka Biswas
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India
| | - Amit Singh
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
| | - Sandhya S Visweswariah
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India.
| |
Collapse
|
3
|
M.tb-Rv2462c of Mycobacterium tuberculosis Shows Chaperone-like Activity and Plays a Role in Stress Adaptation and Immunomodulation. BIOLOGY 2022; 12:biology12010069. [PMID: 36671761 PMCID: PMC9855790 DOI: 10.3390/biology12010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023]
Abstract
Mycobacterium tuberculosis (M.tb)-encoded factors protect it against host-generated stresses and support its survival in the hostile host environment. M.tb possesses two peptidyl-prolyl cis-trans isomerases and a probable trigger factor encoded by Rv2462c which has an FKBP-like PPIase domain. PPIases are known to assist the folding of peptidyl-prolyl bonds and are involved in various cellular processes important for bacterial survival in host-generated stresses. In this study, we aim to functionally characterize Rv2462c of M.tb. Our data suggest that the trigger factor of M.tb exhibits chaperone activity both in vitro and in vivo. Heterologous expression of M.tb-Rv2462c locus into Mycobacterium smegmatis enhanced its survival within macrophages, adaptation to oxidative stress and biofilm formation. M.tb-trigger factor has strong immunomodulatory potential and modifies the cytokine profile of the host towards the proinflammatory axis.
Collapse
|
4
|
Influence of extracellular protein isolated from fish gut associated bacteria as an enhancer of growth and innate immune system in Mugil cephalus. Sci Rep 2022; 12:3217. [PMID: 35217708 PMCID: PMC8881613 DOI: 10.1038/s41598-022-05779-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 12/22/2021] [Indexed: 11/17/2022] Open
Abstract
The cultural microbiomes of 27 bacteria colonies were isolated from Mugil cephalus for analysis of the antibacterial and antagonistic activities. A potent probiotic bacterium was characterized using16S r RNA sequencing. The potent strain was added to fish diet to perform the challenge test and to study the growth and immunological parameter. The extracellular proteins from the probiotic were collected and characterized using MALDI TOF/TOF. Out of G27, G9 strain inhibited all the five pathogenic strains. An isolated bacterium was identified as Bacillus subtilis PRBD09 with accession number KF765648. After 35 days of feeding period B. subtilis PRBD09 enhance the both cellular and humoral immune responses, which responsible for survive of the Mugil cephalus against Aeromonas hydrophila infection. The MALDI TOF sample 08 and 09 were recognized as hypothetical proteins based on the MALDI TOF sample. A cytidinedeaminase was found in samples 10, 11, and 12. Extracellular proteins may be involved for the immunological increase in Mugil cephalus against Aeromonas hydrophila, according to the current research.
Collapse
|
5
|
Martin DR, Sibuyi NR, Dube P, Fadaka AO, Cloete R, Onani M, Madiehe AM, Meyer M. Aptamer-Based Diagnostic Systems for the Rapid Screening of TB at the Point-of-Care. Diagnostics (Basel) 2021; 11:1352. [PMID: 34441287 PMCID: PMC8391981 DOI: 10.3390/diagnostics11081352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 12/17/2022] Open
Abstract
The transmission of Tuberculosis (TB) is very rapid and the burden it places on health care systems is felt globally. The effective management and prevention of this disease requires that it is detected early. Current TB diagnostic approaches, such as the culture, sputum smear, skin tuberculin, and molecular tests are time-consuming, and some are unaffordable for low-income countries. Rapid tests for disease biomarker detection are mostly based on immunological assays that use antibodies which are costly to produce, have low sensitivity and stability. Aptamers can replace antibodies in these diagnostic tests for the development of new rapid tests that are more cost effective; more stable at high temperatures and therefore have a better shelf life; do not have batch-to-batch variations, and thus more consistently bind to a specific target with similar or higher specificity and selectivity and are therefore more reliable. Advancements in TB research, in particular the application of proteomics to identify TB specific biomarkers, led to the identification of a number of biomarker proteins, that can be used to develop aptamer-based diagnostic assays able to screen individuals at the point-of-care (POC) more efficiently in resource-limited settings.
Collapse
Affiliation(s)
- Darius Riziki Martin
- DSI/Mintek Nanotechnology Innovation Centre-Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa; (D.R.M.); (N.R.S.); (P.D.); (A.O.F.); (A.M.M.)
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa;
| | - Nicole Remaliah Sibuyi
- DSI/Mintek Nanotechnology Innovation Centre-Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa; (D.R.M.); (N.R.S.); (P.D.); (A.O.F.); (A.M.M.)
| | - Phumuzile Dube
- DSI/Mintek Nanotechnology Innovation Centre-Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa; (D.R.M.); (N.R.S.); (P.D.); (A.O.F.); (A.M.M.)
| | - Adewale Oluwaseun Fadaka
- DSI/Mintek Nanotechnology Innovation Centre-Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa; (D.R.M.); (N.R.S.); (P.D.); (A.O.F.); (A.M.M.)
| | - Ruben Cloete
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa;
| | - Martin Onani
- Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa;
| | - Abram Madimabe Madiehe
- DSI/Mintek Nanotechnology Innovation Centre-Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa; (D.R.M.); (N.R.S.); (P.D.); (A.O.F.); (A.M.M.)
| | - Mervin Meyer
- DSI/Mintek Nanotechnology Innovation Centre-Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa; (D.R.M.); (N.R.S.); (P.D.); (A.O.F.); (A.M.M.)
| |
Collapse
|
6
|
Mirzaei R, Babakhani S, Ajorloo P, Ahmadi RH, Hosseini-Fard SR, Keyvani H, Ahmadyousefi Y, Teimoori A, Zamani F, Karampoor S, Yousefimashouf R. The emerging role of exosomal miRNAs as a diagnostic and therapeutic biomarker in Mycobacterium tuberculosis infection. Mol Med 2021; 27:34. [PMID: 33794771 PMCID: PMC8017856 DOI: 10.1186/s10020-021-00296-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), has been the world's driving fatal bacterial contagious disease globally. It continues a public health emergency, and around one-third of the global community has been affected by latent TB infection (LTBI). This is mostly due to the difficulty in diagnosing and treating patients with TB and LTBI. Exosomes are nanovesicles (40-100 nm) released from different cell types, containing proteins, lipids, mRNA, and miRNA, and they allow the transfer of one's cargo to other cells. The functional and diagnostic potential of exosomal miRNAs has been demonstrated in bacterial infections, including TB. Besides, it has been recognized that cells infected by intracellular pathogens such as Mtb can be secreting an exosome, which is implicated in the infection's fate. Exosomes, therefore, open a unique viewpoint on the investigative process of TB pathogenicity. This study explores the possible function of exosomal miRNAs as a diagnostic biomarker. Moreover, we include the latest data on the pathogenic and therapeutic role of exosomal miRNAs in TB.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran. .,Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Sajad Babakhani
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Parisa Ajorloo
- Department of Biology, Sciences and Research Branch, Islamic Azad University, Tehran, Iran
| | - Razieh Heidari Ahmadi
- Department of Genetics, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences Islamic Azad University, Tehran, Iran
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Keyvani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Yaghoub Ahmadyousefi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran.,Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Teimoori
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Farhad Zamani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran. .,Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasoul Yousefimashouf
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran. .,Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
7
|
Biadglegne F, König B, Rodloff AC, Dorhoi A, Sack U. Composition and Clinical Significance of Exosomes in Tuberculosis: A Systematic Literature Review. J Clin Med 2021; 10:E145. [PMID: 33406750 PMCID: PMC7795701 DOI: 10.3390/jcm10010145] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/21/2022] Open
Abstract
Tuberculosis (TB) remains a major health issue worldwide. In order to contain TB infections, improved vaccines as well as accurate and reliable diagnostic tools are desirable. Exosomes are employed for the diagnosis of various diseases. At present, research on exosomes in TB is still at the preliminary stage. Recent studies have described isolation and characterization of Mycobacterium tuberculosis (Mtb) derived exosomes in vivo and in vitro. Mtb-derived exosomes (Mtbexo) may be critical for TB pathogenesis by delivering mycobacterial-derived components to the recipient cells. Proteomic and transcriptomic analysis of Mtbexo have revealed a variety of proteins and miRNA, which are utilized by the TB bacteria for pathogenesis. Exosomes has been isolated in body fluids, are amenable for fast detection, and could contribute as diagnostic or prognostic biomarker to disease control. Extraction of exosomes from biological fluids is essential for the exosome research and requires careful standardization for TB. In this review, we summarized the different studies on Mtbexo molecules, including protein and miRNA and the method used to detect exosomes in biological fluids and cell culture supernatants. Thus, the detection of Mtbexo molecules in biological fluids may have a potential to expedite the diagnosis of TB infection. Moreover, the analysis of Mtbexo may generate new aspects in vaccine development.
Collapse
Affiliation(s)
- Fantahun Biadglegne
- College of Medicine and Health Sciences, Bahir Dar University, 79 Bahir Dar, Ethiopia
- Institute of Medical Microbiology and Epidemiology of Infectious Diseases, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany; (B.K.); (A.C.R.)
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany;
| | - Brigitte König
- Institute of Medical Microbiology and Epidemiology of Infectious Diseases, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany; (B.K.); (A.C.R.)
| | - Arne C. Rodloff
- Institute of Medical Microbiology and Epidemiology of Infectious Diseases, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany; (B.K.); (A.C.R.)
| | - Anca Dorhoi
- Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany;
| | - Ulrich Sack
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany;
| |
Collapse
|
8
|
Hermann C, Karamchand L, Blackburn JM, Soares NC. Cell Envelope Proteomics of Mycobacteria. J Proteome Res 2020; 20:94-109. [PMID: 33140963 DOI: 10.1021/acs.jproteome.0c00650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The World Health Organization (WHO) estimates that Mycobacterium tuberculosis, the most pathogenic mycobacterium species to humans, has infected up to a quarter of the world's population, with the occurrence of multidrug-resistant strains on the rise. Research into the detailed composition of the cell envelope proteome in mycobacteria over the last 20 years has formed a key part of the efforts to understand host-pathogen interactions and to control the current tuberculosis epidemic. This is due to the great importance of the cell envelope proteome during infection and during the development of antibiotic resistance as well as the search of surface-exposed proteins that could be targeted by therapeutics and vaccines. A variety of experimental approaches and mycobacterial species have been used in proteomic studies thus far. Here we provide for the first time an extensive summary of the different approaches to isolate the mycobacterial cell envelope, highlight some of the limitations of the studies performed thus far, and comment on how the recent advances in membrane proteomics in other fields might be translated into the field of mycobacteria to provide deeper coverage.
Collapse
Affiliation(s)
- Clemens Hermann
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Leshern Karamchand
- National Research Council Canada, Nanotechnology Research Centre, Biomedical Nanotechnologies, 11421 Saskatchewan Drive NW, Edmonton, Alberta T6G 2M9, Canada
| | - Jonathan M Blackburn
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Nelson C Soares
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates.,College of Pharmacy, Department of Medicinal Chemistry, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
9
|
Deng G, Ji N, Shi X, Zhang W, Qin Y, Sha S, Yang S, Ma Y. Effects of Mycobacterium tuberculosis Rv1096 on mycobacterial cell division and modulation on macrophages. Microb Pathog 2020; 141:103991. [DOI: 10.1016/j.micpath.2020.103991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 12/11/2022]
|
10
|
Stamm CE, Pasko BL, Chaisavaneeyakorn S, Franco LH, Nair VR, Weigele BA, Alto NM, Shiloh MU. Screening Mycobacterium tuberculosis Secreted Proteins Identifies Mpt64 as a Eukaryotic Membrane-Binding Bacterial Effector. mSphere 2019; 4:e00354-19. [PMID: 31167949 PMCID: PMC6553557 DOI: 10.1128/msphere.00354-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 05/19/2019] [Indexed: 02/07/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is one of the most successful human pathogens. One reason for its success is that Mtb can reside within host macrophages, a cell type that normally functions to phagocytose and destroy infectious bacteria. However, Mtb is able to evade macrophage defenses in order to survive for prolonged periods of time. Many intracellular pathogens secrete virulence factors targeting host membranes and organelles to remodel their intracellular environmental niche. We hypothesized that Mtb secreted proteins that target host membranes are vital for Mtb to adapt to and manipulate the host environment for survival. Thus, we characterized 200 secreted proteins from Mtb for their ability to associate with eukaryotic membranes using a unique temperature-sensitive yeast screen and to manipulate host trafficking pathways using a modified inducible secretion screen. We identified five Mtb secreted proteins that both associated with eukaryotic membranes and altered the host secretory pathway. One of these secreted proteins, Mpt64, localized to the endoplasmic reticulum during Mtb infection of murine and human macrophages and impaired the unfolded protein response in macrophages. These data highlight the importance of secreted proteins in Mtb pathogenesis and provide a basis for further investigation into their molecular mechanisms.IMPORTANCE Advances have been made to identify secreted proteins of Mycobacterium tuberculosis during animal infections. These data, combined with transposon screens identifying genes important for M. tuberculosis virulence, have generated a vast resource of potential M. tuberculosis virulence proteins. However, the function of many of these proteins in M. tuberculosis pathogenesis remains elusive. We have integrated three cell biological screens to characterize nearly 200 M. tuberculosis secreted proteins for eukaryotic membrane binding, host subcellular localization, and interactions with host vesicular trafficking. In addition, we observed the localization of one secreted protein, Mpt64, to the endoplasmic reticulum (ER) during M. tuberculosis infection of macrophages. Interestingly, although Mpt64 is exported by the Sec pathway, its delivery into host cells was dependent upon the action of the type VII secretion system. Finally, we observed that Mpt64 impairs the ER-mediated unfolded protein response in macrophages.
Collapse
Affiliation(s)
- Chelsea E Stamm
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Breanna L Pasko
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Sujittra Chaisavaneeyakorn
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Luis H Franco
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Vidhya R Nair
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Bethany A Weigele
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Neal M Alto
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Michael U Shiloh
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
11
|
Buchko GW, Echols N, Flynn EM, Ng HL, Stephenson S, Kim HB, Myler PJ, Terwilliger TC, Alber T, Kim CY. Structural and Biophysical Characterization of the Mycobacterium tuberculosis Protein Rv0577, a Protein Associated with Neutral Red Staining of Virulent Tuberculosis Strains and Homologue of the Streptomyces coelicolor Protein KbpA. Biochemistry 2017; 56:4015-4027. [PMID: 28692281 DOI: 10.1021/acs.biochem.7b00511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mycobacterium tuberculosis protein Rv0577 is a prominent antigen in tuberculosis patients, the component responsible for neutral red staining of virulent strains of M. tuberculosis, a putative component in a methylglyoxal detoxification pathway, and an agonist of toll-like receptor 2. It also has an amino acid sequence that is 36% identical to that of Streptomyces coelicolor AfsK-binding protein A (KbpA), a component in the complex secondary metabolite pathways in the Streptomyces genus. To gain insight into the biological function of Rv0577 and the family of KpbA kinase regulators, the crystal structure for Rv0577 was determined to a resolution of 1.75 Å, binding properties with neutral red and deoxyadenosine were surveyed, backbone dynamics were measured, and thermal stability was assayed by circular dichroism spectroscopy. The protein is composed of four approximate repeats with a βαβββ topology arranged radially in consecutive pairs to form two continuous eight-strand β-sheets capped on both ends with an α-helix. The two β-sheets intersect in the center at roughly a right angle and form two asymmetric deep "saddles" that may serve to bind ligands. Nuclear magnetic resonance chemical shift perturbation experiments show that neutral red and deoxyadenosine bind to Rv0577. Binding to deoxyadenosine is weaker with an estimated dissociation constants of 4.1 ± 0.3 mM for saddle 1. Heteronuclear steady-state {1H}-15N nuclear Overhauser effect, T1, and T2 values were generally uniform throughout the sequence with only a few modest pockets of differences. Circular dichroism spectroscopy characterization of the thermal stability of Rv0577 indicated irreversible unfolding upon heating with an estimated melting temperature of 56 °C.
Collapse
Affiliation(s)
- Garry W Buchko
- Seattle Structural Genomics Center for Infectious Diseases.,Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Nathaniel Echols
- Physical Biosciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94158-2330, United States.,Department of Molecular and Cell Biology, University of California , Berkeley, California 94158-2330, United States
| | - E Megan Flynn
- Department of Molecular and Cell Biology, University of California , Berkeley, California 94158-2330, United States
| | - Ho-Leung Ng
- Department of Molecular and Cell Biology, University of California , Berkeley, California 94158-2330, United States
| | - Samuel Stephenson
- Department of Molecular and Cell Biology, University of California , Berkeley, California 94158-2330, United States
| | - Heung-Bok Kim
- Bioscience Division, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | - Peter J Myler
- Seattle Structural Genomics Center for Infectious Diseases.,Department of Medical Education and Biomedical Informatics and Department of Global Health, University of Washington , Seattle, Washington 98195, United States.,Center for Infectious Disease Research , Seattle, Washington 98109-5219, United States
| | - Thomas C Terwilliger
- Bioscience Division, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | - Tom Alber
- Physical Biosciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94158-2330, United States.,Department of Molecular and Cell Biology, University of California , Berkeley, California 94158-2330, United States
| | - Chang-Yub Kim
- Bioscience Division, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| |
Collapse
|
12
|
Song L, Wallstrom G, Yu X, Hopper M, Van Duine J, Steel J, Park J, Wiktor P, Kahn P, Brunner A, Wilson D, Jenny-Avital ER, Qiu J, Labaer J, Magee DM, Achkar JM. Identification of Antibody Targets for Tuberculosis Serology using High-Density Nucleic Acid Programmable Protein Arrays. Mol Cell Proteomics 2017; 16:S277-S289. [PMID: 28223349 DOI: 10.1074/mcp.m116.065953] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/17/2017] [Indexed: 12/11/2022] Open
Abstract
Better and more diverse biomarkers for the development of simple point-of-care tests for active tuberculosis (TB), a clinically heterogeneous disease, are urgently needed. We generated a proteomic Mycobacterium tuberculosis (Mtb) High-Density Nucleic Acid Programmable Protein Array (HD-NAPPA) that used a novel multiplexed strategy for expedited high-throughput screening for antibody responses to the Mtb proteome. We screened sera from HIV uninfected and coinfected TB patients and controls (n = 120) from the US and South Africa (SA) using the multiplex HD-NAPPA for discovery, followed by deconvolution and validation through single protein HD-NAPPA with biologically independent samples (n = 124). We verified the top proteins with enzyme-linked immunosorbent assays (ELISA) using the original screening and validation samples (n = 244) and heretofore untested samples (n = 41). We identified 8 proteins with TB biomarker value; four (Rv0054, Rv0831c, Rv2031c and Rv0222) of these were previously identified in serology studies, and four (Rv0948c, Rv2853, Rv3405c, Rv3544c) were not known to elicit antibody responses. Using ELISA data, we created classifiers that could discriminate patients' TB status according to geography (US or SA) and HIV (HIV- or HIV+) status. With ROC curve analysis under cross validation, the classifiers performed with an AUC for US/HIV- at 0.807; US/HIV+ at 0.782; SA/HIV- at 0.868; and SA/HIV+ at 0.723. With this study we demonstrate a new platform for biomarker/antibody screening and delineate its utility to identify previously unknown immunoreactive proteins.
Collapse
Affiliation(s)
- Lusheng Song
- From the ‡The Virginia G Piper Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, Arizona, 85287
| | - Garrick Wallstrom
- From the ‡The Virginia G Piper Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, Arizona, 85287
| | - Xiaobo Yu
- §State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Radiation Medicine, Beijing, 102206, China
| | - Marika Hopper
- From the ‡The Virginia G Piper Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, Arizona, 85287
| | - Jennifer Van Duine
- From the ‡The Virginia G Piper Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, Arizona, 85287
| | - Jason Steel
- From the ‡The Virginia G Piper Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, Arizona, 85287
| | - Jin Park
- From the ‡The Virginia G Piper Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, Arizona, 85287
| | - Peter Wiktor
- From the ‡The Virginia G Piper Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, Arizona, 85287.,¶Engineering Arts LLC, Tempe, Arizona 85287
| | - Peter Kahn
- ¶Engineering Arts LLC, Tempe, Arizona 85287
| | - Al Brunner
- ¶Engineering Arts LLC, Tempe, Arizona 85287
| | - Douglas Wilson
- ‖Department of Internal Medicine, Edendale Hospital, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | | | - Ji Qiu
- From the ‡The Virginia G Piper Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, Arizona, 85287
| | - Joshua Labaer
- From the ‡The Virginia G Piper Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, Arizona, 85287
| | - D Mitchell Magee
- From the ‡The Virginia G Piper Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, Arizona, 85287;
| | - Jacqueline M Achkar
- **Departments of Medicine and .,‡‡Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
13
|
Rabodoarivelo MS, Aerts M, Vandamme P, Palomino JC, Rasolofo V, Martin A. Optimizing of a protein extraction method for Mycobacterium tuberculosis proteome analysis using mass spectrometry. J Microbiol Methods 2016; 131:144-147. [DOI: 10.1016/j.mimet.2016.10.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 10/26/2016] [Accepted: 10/26/2016] [Indexed: 01/11/2023]
|
14
|
Abstract
The emerging field of proteomics has contributed greatly to improving our understanding of the human pathogen Mycobacterium tuberculosis over the last two decades. In this chapter we provide a comprehensive overview of mycobacterial proteome research and highlight key findings. First, studies employing a combination of two-dimensional gel electrophoresis and mass spectrometry (MS) provided insights into the proteomic composition, initially of the whole bacillus and subsequently of subfractions, such as the cell wall, cytosol, and secreted proteins. Comparison of results obtained under various culture conditions, i.e., acidic pH, nutrient starvation, and low oxygen tension, aiming to mimic facets of the intracellular lifestyle of M. tuberculosis, provided initial clues to proteins relevant for intracellular survival and manipulation of the host cell. Further attempts were aimed at identifying the biological functions of the hypothetical M. tuberculosis proteins, which still make up a quarter of the gene products of M. tuberculosis, and at characterizing posttranslational modifications. Recent technological advances in MS have given rise to new methods such as selected reaction monitoring (SRM) and data-independent acquisition (DIA). These targeted, cutting-edge techniques combined with a public database of specific MS assays covering the entire proteome of M. tuberculosis allow the simple and reliable detection of any mycobacterial protein. Most recent studies attempt not only to identify but also to quantify absolute amounts of single proteins in the complex background of host cells without prior sample fractionation or enrichment. Finally, we will discuss the potential of proteomics to advance vaccinology, drug discovery, and biomarker identification to improve intervention and prevention measures for tuberculosis.
Collapse
|
15
|
Wang G, Xia Y, Song X, Ai L. Common Non-classically Secreted Bacterial Proteins with Experimental Evidence. Curr Microbiol 2015; 72:102-11. [DOI: 10.1007/s00284-015-0915-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/15/2015] [Indexed: 12/13/2022]
|
16
|
Calder B, Soares NC, de Kock E, Blackburn JM. Mycobacterial proteomics: analysis of expressed proteomes and post-translational modifications to identify candidate virulence factors. Expert Rev Proteomics 2015; 12:21-35. [PMID: 25603863 DOI: 10.1586/14789450.2015.1007046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Mycobacterium tuberculosis bacillus has a number of unique features that make it a particularly effective human pathogen. Although genomic analysis has added to our current understanding of the molecular basis by which M. tuberculosis damages its host, proteomics may be better suited to describe the dynamic interactions between mycobacterial and host systems that underpin this disease. The M. tuberculosis proteome has been investigated using proteomics for over a decade, with increasingly sophisticated mass spectrometry technology and sensitive methods for comparative proteomic profiling. Deeper coverage of the M. tuberculosis proteome has led to the identification of hundreds of putative virulence determinants, as well as an unsurpassed coverage of post-translational modifications. Proteomics is therefore uniquely poised to contribute to our understanding of this pathogen, which may ultimately lead to better management of the disease.
Collapse
Affiliation(s)
- Bridget Calder
- Division of Medical Biochemistry, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Anzio Rd, Observatory, Cape Town 7925, South Africa
| | | | | | | |
Collapse
|
17
|
Gopinath V, Raghunandanan S, Gomez RL, Jose L, Surendran A, Ramachandran R, Pushparajan AR, Mundayoor S, Jaleel A, Kumar RA. Profiling the Proteome of Mycobacterium tuberculosis during Dormancy and Reactivation. Mol Cell Proteomics 2015; 14:2160-76. [PMID: 26025969 DOI: 10.1074/mcp.m115.051151] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Indexed: 11/06/2022] Open
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis, still remains a major global health problem. The main obstacle in eradicating this disease is the ability of this pathogen to remain dormant in macrophages, and then reactivate later under immuno-compromised conditions. The physiology of hypoxic nonreplicating M. tuberculosis is well-studied using many in vitro dormancy models. However, the physiological changes that take place during the shift from dormancy to aerobic growth (reactivation) have rarely been subjected to a detailed investigation. In this study, we developed an in vitro reactivation system by re-aerating the virulent laboratory strain of M. tuberculosis that was made dormant employing Wayne's dormancy model, and compared the proteome profiles of dormant and reactivated bacteria using label-free one-dimensional LC/MS/MS analysis. The proteome of dormant bacteria was analyzed at nonreplicating persistent stage 1 (NRP1) and stage 2 (NRP2), whereas that of reactivated bacteria was analyzed at 6 and 24 h post re-aeration. Proteome of normoxially grown bacteria served as the reference. In total, 1871 proteins comprising 47% of the M. tuberculosis proteome were identified, and many of them were observed to be expressed differentially or uniquely during dormancy and reactivation. The number of proteins detected at different stages of dormancy (764 at NRP1, 691 at NRP2) and reactivation (768 at R6 and 983 at R24) was very low compared with that of the control (1663). The number of unique proteins identified during normoxia, NRP1, NRP2, R6, and R24 were 597, 66, 56, 73, and 94, respectively. We analyzed various biological functions during these conditions. Fluctuation in the relative quantities of proteins involved in energy metabolism during dormancy and reactivation was the most significant observation we made in this study. Proteins that are up-regulated or uniquely expressed during reactivation from dormancy offer to be attractive targets for therapeutic intervention to prevent reactivation of latent tuberculosis.
Collapse
Affiliation(s)
- Vipin Gopinath
- From the ‡Mycobacterium Research Group, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O., Thiruvananthapuram 695014, India
| | - Sajith Raghunandanan
- From the ‡Mycobacterium Research Group, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O., Thiruvananthapuram 695014, India
| | - Roshna Lawrence Gomez
- From the ‡Mycobacterium Research Group, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O., Thiruvananthapuram 695014, India
| | - Leny Jose
- From the ‡Mycobacterium Research Group, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O., Thiruvananthapuram 695014, India
| | - Arun Surendran
- §Mass Spectrometry and Proteomic Core Facility, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O., Thiruvananthapuram 695014, India
| | - Ranjit Ramachandran
- From the ‡Mycobacterium Research Group, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O., Thiruvananthapuram 695014, India
| | - Akhil Raj Pushparajan
- From the ‡Mycobacterium Research Group, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O., Thiruvananthapuram 695014, India
| | - Sathish Mundayoor
- From the ‡Mycobacterium Research Group, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O., Thiruvananthapuram 695014, India
| | - Abdul Jaleel
- §Mass Spectrometry and Proteomic Core Facility, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O., Thiruvananthapuram 695014, India
| | - Ramakrishnan Ajay Kumar
- From the ‡Mycobacterium Research Group, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O., Thiruvananthapuram 695014, India;
| |
Collapse
|
18
|
Specific Proteins in Nontuberculous Mycobacteria: New Potential Tools. BIOMED RESEARCH INTERNATIONAL 2015; 2015:964178. [PMID: 26106621 PMCID: PMC4463991 DOI: 10.1155/2015/964178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 12/20/2014] [Accepted: 12/21/2014] [Indexed: 12/19/2022]
Abstract
Nontuberculous mycobacteria (NTM) have been isolated from water, soil, air, food, protozoa, plants, animals, and humans. Although most NTM are saprophytes, approximately one-third of NTM have been associated with human diseases. In this study, we did a comparative proteomic analysis among five NTM strains isolated from several sources. There were different numbers of protein spots from M. gordonae (1,264), M. nonchromogenicum type I (894), M. nonchromogenicum type II (935), M. peregrinum (806), and M. scrofulaceum/Mycobacterium mantenii (1,486) strains, respectively. We identified 141 proteins common to all strains and specific proteins to each NTM strain. A total of 23 proteins were selected for its identification. Two of the common proteins identified (short-chain dehydrogenase/reductase SDR and diguanylate cyclase) did not align with M. tuberculosis complex protein sequences, which suggest that these proteins are found only in the NTM strains. Some of the proteins identified as common to all strains can be used as markers of NTM exposure and for the development of new diagnostic tools. Additionally, the specific proteins to NTM strains identified may represent potential candidates for the diagnosis of diseases caused by these mycobacteria.
Collapse
|
19
|
Banerjee A, Adolph RS, Gopalakrishnapai J, Kleinboelting S, Emmerich C, Steegborn C, Visweswariah SS. A universal stress protein (USP) in mycobacteria binds cAMP. J Biol Chem 2015; 290:12731-43. [PMID: 25802331 DOI: 10.1074/jbc.m115.644856] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Indexed: 11/06/2022] Open
Abstract
Mycobacteria are endowed with rich and diverse machinery for the synthesis, utilization, and degradation of cAMP. The actions of cyclic nucleotides are generally mediated by binding of cAMP to conserved and well characterized cyclic nucleotide binding domains or structurally distinct cGMP-specific and -regulated cyclic nucleotide phosphodiesterase, adenylyl cyclase, and E. coli transcription factor FhlA (GAF) domain-containing proteins. Proteins with cyclic nucleotide binding and GAF domains can be identified in the genome of mycobacterial species, and some of them have been characterized. Here, we show that a significant fraction of intracellular cAMP is bound to protein in mycobacterial species, and by using affinity chromatography techniques, we identify specific universal stress proteins (USP) as abundantly expressed cAMP-binding proteins in slow growing as well as fast growing mycobacteria. We have characterized the biochemical and thermodynamic parameters for binding of cAMP, and we show that these USPs bind cAMP with a higher affinity than ATP, an established ligand for other USPs. We determined the structure of the USP MSMEG_3811 bound to cAMP, and we confirmed through structure-guided mutagenesis, the residues important for cAMP binding. This family of USPs is conserved in all mycobacteria, and we suggest that they serve as "sinks" for cAMP, making this second messenger available for downstream effectors as and when ATP levels are altered in the cell.
Collapse
Affiliation(s)
- Arka Banerjee
- From the Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India and
| | - Ramona S Adolph
- the Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany
| | - Jayashree Gopalakrishnapai
- From the Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India and
| | - Silke Kleinboelting
- the Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany
| | - Christiane Emmerich
- the Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany
| | - Clemens Steegborn
- the Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany
| | - Sandhya S Visweswariah
- From the Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India and
| |
Collapse
|
20
|
Kruh-Garcia NA, Wolfe LM, Dobos KM. Deciphering the role of exosomes in tuberculosis. Tuberculosis (Edinb) 2014; 95:26-30. [PMID: 25496995 DOI: 10.1016/j.tube.2014.10.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/27/2014] [Indexed: 12/21/2022]
Abstract
Exosomes were originally described as small vesicles released from reticulocytes during the maturation process. These 40-200 nm microvesicles were hypothesized to be a mechanism for the removal of membrane proteins in lieu of intracellular degradation by Harding et al. (1984) and Johnstone et al. (1987) [1,2]. Exosomes can be distinguished from other extracellular vesicles (ectosomes, apoptotic blebs) based on their size and the protein indicators intercalated in their membrane (also, linking their derivation from the endocytic pathway) by Simpson (2012) [3]. The exact role which exosomes play in cell-to-cell communication and immune modulation is a topic of intense study. However, the focus of most reports has been directed towards discovering aberrations in exosomal protein and RNA content linked to disease onset and progression, and also primarily related to cancer. Nonetheless, exosomes are now documented to be released from a wide variety of cell types by Mathivanan et al. (2012), Simpson et al. (2012) and Kalra et al. (2012) [4-6] and have been isolated from all bodily fluids; thus, exosomes are an excellent source of biomarkers. Here we describe the discoveries related to the role exosomes play in tuberculosis disease, as well as translational work in vaccine development and how circulation of these dynamic vesicles can be harnessed for diagnostic purposes.
Collapse
Affiliation(s)
- Nicole A Kruh-Garcia
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Lisa M Wolfe
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO 80523, USA; Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, CO 80523, USA
| | - Karen M Dobos
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
21
|
Deng W, Xiang X, Xie J. Comparative genomic and proteomic anatomy of Mycobacterium ubiquitous Esx family proteins: implications in pathogenicity and virulence. Curr Microbiol 2013; 68:558-67. [PMID: 24362585 DOI: 10.1007/s00284-013-0507-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 10/29/2013] [Indexed: 12/18/2022]
Abstract
Secreted proteins are among the most important molecules involved in host-pathogen interaction of Mycobacterium tuberculosis, the etiological agent of human tuberculosis (TB). M. tuberculosis encodes five types of VII secretion systems (ESX-1 to ESX-5) responsible for the exportation of many proteins. This system mediated substrates including members of the Esx family implicated in tuberculosis pathogenesis and survival within host cells. However, the distribution and evolution of this family remain elusive. To explore the evolution and distribution of Esx family proteins, we analyzed all available Mycobacteria genomes. Interestingly, amino mutations among M. tuberculosis esx family proteins may relate to their functions. We further analyzed the differences between pathogenic Mycobacteria, the attenuated Mycobacteria and non-pathogenic Mycobacteria. The stability, the globular domains and the phosphorylation of serine/threonine residues of M. tuberculosis esx proteins with their homologies among other Mycoabcteria were analyzed. Our comparative genomic and proteomic analysis found that the change of stability, gain or loss of globular domains and phosphorylation of serine/threonine might be responsible for the difference between the pathogenesis and virulence of the esx proteins and its homolog widespread among Mycobacteria and related species, which may provide clues for novel anti-tuberculosis drug targets.
Collapse
Affiliation(s)
- Wanyan Deng
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Enviroment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Beibei, 400715, Chongqing, China,
| | | | | |
Collapse
|
22
|
van der Woude AD, Stoop EJM, Stiess M, Wang S, Ummels R, van Stempvoort G, Piersma SR, Cascioferro A, Jiménez CR, Houben ENG, Luirink J, Pieters J, van der Sar AM, Bitter W. Analysis of SecA2-dependent substrates in Mycobacterium marinum identifies protein kinase G (PknG) as a virulence effector. Cell Microbiol 2013; 16:280-95. [PMID: 24119166 DOI: 10.1111/cmi.12221] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 09/14/2013] [Accepted: 09/24/2013] [Indexed: 02/03/2023]
Abstract
The pathogenicity of mycobacteria is closely associated with their ability to export virulence factors. For this purpose, mycobacteria possess different protein secretion systems, including the accessory Sec translocation pathway, SecA2. Although this pathway is associated with intracellular survival and virulence, the SecA2-dependent effector proteins remain largely undefined. In this work, we studied a Mycobacterium marinum secA2 mutant with an impaired capacity to initiate granuloma formation in zebrafish embryos. By comparing the proteomic profile of cell envelope fractions from the secA2 mutant with wild type M. marinum, we identified putative SecA2-dependent substrates. Immunoblotting procedures confirmed SecA2-dependent membrane localization for several of these proteins, including the virulence factor protein kinase G (PknG). Interestingly, phenotypical defects of the secA2 mutant are similar to those described for ΔpknG, including phagosomal maturation. Overexpression of PknG in the secA2 mutant restored its localization to the cell envelope. Importantly, PknG-overexpression also partially restored the virulence of the secA2 mutant, as indicated by enhanced infectivity in zebrafish embryos and restored inhibition of phagosomal maturation. These results suggest that SecA2-dependent membrane localization of PknG is an important determinant for M. marinum virulence.
Collapse
Affiliation(s)
- Aniek D van der Woude
- Department of Medical Microbiology and Infection Control, VU University Medical Center, van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands; Department of Molecular Microbiology, Institute of Molecular Cell Biology, VU University, de Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wang G, Chen H, Xia Y, Cui J, Gu Z, Song Y, Chen YQ, Zhang H, Chen W. How are the Non-classically Secreted Bacterial Proteins Released into the Extracellular Milieu? Curr Microbiol 2013; 67:688-95. [DOI: 10.1007/s00284-013-0422-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 06/05/2013] [Indexed: 12/21/2022]
|
24
|
Roy A, Bhattacharya S, Bothra AK, Sen A. A database for Mycobacterium secretome analysis: 'MycoSec' to accelerate global health research. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2013; 17:502-9. [PMID: 23952586 DOI: 10.1089/omi.2013.0015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract Members of the genus Mycobacterium are notorious for their pathogenesis. Investigations from various perspectives have identified the pathogenic strategies employed by these lethal pathogens. Secretomes are believed to play crucial roles in host cell recognition and cross-talks, in cellular attachment, and in triggering other functions related to host pathogen interactions. However, a proper idea of the mycobacterial secretomes and their mechanism of functionality still remains elusive. In the present study, we have developed a comprehensive database of potential mycobacterial secretomes (MycoSec) using pre-existing algorithms for secretome prediction for researchers interested in this particular field. The database provides a platform for retrieval and analysis of identified secretomes in all finished genomes of the family Mycobacteriaceae. The database contains valuable information regarding secretory signal peptides (Sec type), lipoprotein signal peptides (Lipo type), and Twin arginine (RR/KR) signal peptides (TAT type), prevalent in mycobacteria. Information pertaining to COG analysis, codon usage, and gene expression of the predicted secretomes has also been incorporated in the database. MycoSec promises to be a useful repertoire providing a plethora of information regarding mycobacterial secretomes and may well be a platform to speed global health research. MycoSec is freely accessible at http://www.bicnbu.in/mycosec .
Collapse
Affiliation(s)
- Ayan Roy
- 1 Bioinformatics Facility, Department of Botany, University of North Bengal , Siliguri, India
| | | | | | | |
Collapse
|
25
|
Zheng J, Ren X, Wei C, Yang J, Hu Y, Liu L, Xu X, Wang J, Jin Q. Analysis of the secretome and identification of novel constituents from culture filtrate of bacillus Calmette-Guerin using high-resolution mass spectrometry. Mol Cell Proteomics 2013; 12:2081-95. [PMID: 23616670 DOI: 10.1074/mcp.m113.027318] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Tuberculosis (TB) is an infectious bacterial disease that causes morbidity and mortality, especially in developing countries. Although its efficacy against TB has displayed a high degree of variability (0%-80%) in different trials, Mycobacterium bovis bacillus Calmette-Guérin (BCG) has been recognized as an important weapon for preventing TB worldwide for over 80 years. Because secreted proteins often play vital roles in the interaction between bacteria and host cells, the secretome of mycobacteria is considered to be an attractive reservoir of potential candidate antigens for the development of novel vaccines and diagnostic reagents. In this study, we performed a proteomic analysis of BCG culture filtrate proteins using SDS-PAGE and high-resolution Fourier transform mass spectrometry. In total, 239 proteins (1555 unique peptides) were identified, including 185 secreted proteins or lipoproteins. Furthermore, 17 novel protein products not annotated in the BCG database were detected and validated by means of RT-PCR at the transcriptional level. Additionally, the translational start sites of 52 proteins were confirmed, and 22 proteins were validated through extension of the translational start sites based on N-terminus-derived peptides. There are 103 secreted proteins that have not been reported in previous studies on BCG [corrected] secretome and are unique to our study. The physicochemical characteristics of the secreted proteins were determined. Major components from the culture supernatant, including low-molecular-weight antigens, lipoproteins, Pro-Glu and Pro-Pro-Glu family proteins, and Mce family proteins, are discussed; some components represent potential predominant antigens in the humoral and cellular immune responses.
Collapse
Affiliation(s)
- Jianhua Zheng
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100176, China
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Baumann R, Kaempfer S, Chegou NN, Nene NF, Veenstra H, Spallek R, Bolliger CT, Lukey PT, van Helden PD, Singh M, Walzl G. Serodiagnostic markers for the prediction of the outcome of intensive phase tuberculosis therapy. Tuberculosis (Edinb) 2013; 93:239-45. [DOI: 10.1016/j.tube.2012.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 09/13/2012] [Accepted: 09/20/2012] [Indexed: 01/15/2023]
|
27
|
Albrethsen J, Agner J, Piersma SR, Højrup P, Pham TV, Weldingh K, Jimenez CR, Andersen P, Rosenkrands I. Proteomic profiling of Mycobacterium tuberculosis identifies nutrient-starvation-responsive toxin-antitoxin systems. Mol Cell Proteomics 2013; 12:1180-91. [PMID: 23345537 PMCID: PMC3650330 DOI: 10.1074/mcp.m112.018846] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In order to successfully enter the latent stage, Mycobacterium tuberculosis must adapt to conditions such as nutrient limitation and hypoxia. In vitro models that mimic latent infection are valuable tools for describing the changes in metabolism that occur when the bacterium exists in a non-growing form. We used two complementary proteomic approaches, label-free LC-MS/MS analysis and two-dimensional difference gel electrophoresis, to determine the proteome profile of extracellular proteins from M. tuberculosis cultured under nutrient starvation. Through the label-free LC-MS/MS analysis of fractionated samples, 1176 proteins were identified from culture filtrates of log phase and nutrient-starved cultures, and the protein levels of 230 proteins were increased in nutrient-starved culture filtrates, whereas those of 208 proteins were decreased. By means of Gene Ontology clustering analysis, significant differences in the overall metabolism during nutrient starvation were detected. Notably, members of the toxin–antitoxin systems were present in larger quantities in nutrient-starved cultures, supporting a role for these global modules as M. tuberculosis switches its metabolism into dormancy. Decreased abundance of proteins involved in amino acid and protein synthesis was apparent, as well as changes in the lipid metabolism. Further analysis of the dataset identified increased abundance of lipoproteins and decreased abundance of ESAT-6 family proteins. Results from the two-dimensional difference gel electrophoresis proteomics demonstrated overall agreement with the LC-MS/MS data and added complementary insights about protein degradation and modification.
Collapse
Affiliation(s)
- Jakob Albrethsen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Steinhäuser C, Heigl U, Tchikov V, Schwarz J, Gutsmann T, Seeger K, Brandenburg J, Fritsch J, Schroeder J, Wiesmüller KH, Rosenkrands I, Walther P, Pott J, Krause E, Ehlers S, Schneider-Brachert W, Schütze S, Reiling N. Lipid-labeling facilitates a novel magnetic isolation procedure to characterize pathogen-containing phagosomes. Traffic 2012; 14:321-36. [PMID: 23231467 DOI: 10.1111/tra.12031] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 11/28/2012] [Accepted: 12/11/2012] [Indexed: 02/03/2023]
Abstract
Here we describe a novel approach for the isolation and biochemical characterization of pathogen-containing compartments from primary cells: We developed a lipid-based procedure to magnetically label the surface of bacteria and visualized the label by scanning and transmission electron microscopy (SEM, TEM). We performed infection experiments with magnetically labeled Mycobacterium avium, M. tuberculosis and Listeria monocytogenes and isolated magnetic bacteria-containing phagosomes using a strong magnetic field in a novel free-flow system. Magnetic labeling of M. tuberculosis did not affect the virulence characteristics of the bacteria during infection experiments addressing host cell activation, phagosome maturation delay and replication in macrophages in vitro. Biochemical analyses of the magnetic phagosome-containing fractions provided evidence of an enhanced presence of bacterial antigens and a differential distribution of proteins involved in the endocytic pathway over time as well as cytokine-dependent changes in the phagosomal protein composition. The newly developed method represents a useful approach to characterize and compare pathogen-containing compartments, in order to identify microbial and host cell targets for novel anti-infective strategies.
Collapse
Affiliation(s)
- Christine Steinhäuser
- Division of Microbial Interface Biology, Research Center Borstel, Leibniz Center for Medicine and Biosciences, Borstel, 23845, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Liu F, Lin Y, Li B, Wang M, Zhu J. The primary use in indirect ELISA of secreted proteins Mb1761c and Mb2277 of M. bovis. J Immunoassay Immunochem 2012; 33:269-74. [PMID: 22738650 DOI: 10.1080/15321819.2011.638408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Disease monitoring on bovine tuberculosis (BTB) has been proven to be a capable strategy to control this disease, which has significantly progressed in developed countries. However, such strategies require a prompt, accurate live animal test, which has thus far been lacking in developing countries, such as China. The two secreted proteins, Mb1761c and Mb2277, were selected from the complete genome of M. bovis by using a bioinformatics method. After having been proven by the reactogenicity by Western blot, the two expressed prokaryotic proteins served as coat antigens in ELISA plates to evaluate their ability to detect the antibodies against M. bovis. The results showed that the sensitivity of the indirect ELISA method coated with Mb2277 as antigen was as same as that coated with Mb1761c. To explore the possibility of increasing the sensitivity of the ELISA test, the two proteins were further mixed in a different ratio and coated as antigen in ELISA. The results showed that the sensitivity of the combination of the coated reconstructive proteins (1:1) was stronger than that of single coated protein.
Collapse
Affiliation(s)
- Fang Liu
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, China
| | | | | | | | | |
Collapse
|
30
|
Cho YS, Dobos KM, Prenni J, Yang H, Hess A, Rosenkrands I, Andersen P, Ryoo SW, Bai GH, Brennan MJ, Izzo A, Bielefeldt-Ohmann H, Belisle JT. Deciphering the proteome of the in vivo diagnostic reagent "purified protein derivative" from Mycobacterium tuberculosis. Proteomics 2012; 12:979-91. [PMID: 22522804 DOI: 10.1002/pmic.201100544] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Purified protein derivative (PPD) has served as a safe and effective diagnostic reagent for 60 years and is the only broadly available material to diagnose latent tuberculosis infections. This reagent is also used as a standard control for a number of in vitro immunological assays. Nevertheless, the molecular composition and specific products that contribute to the extraordinary immunological reactivity of PPD are poorly defined. Here, a proteomic approach was applied to elucidate the gene products in the U.S. Food and Drug Administration (FDA) standard PPD-S2. Many known Mycobacterium tuberculosis T-cell antigens were detected. Of significance, four heat shock proteins (HSPs) (GroES, GroEL2, HspX, and DnaK) dominated the composition of PPD. The chaperone activities and capacity of these proteins to influence immunological responses may explain the exquisite solubility and immunological potency of PPD. Spectral counting analysis of three separate PPD reagents revealed significant quantitative variances. Gross delayed-type hypersensitivity (DTH) responses in M. tuberculosis infected guinea pigs were comparable among these PPD preparations; however, detailed histopathology of the DTH lesions exposed unique differences, which may be explained by the variability observed in the presence and abundance of early secretory system (Esx) proteins. Variability in PPD reagents may explain differences in DTH responses reported among populations.
Collapse
Affiliation(s)
- Yun Sang Cho
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Zhang YJ, Ioerger TR, Huttenhower C, Long JE, Sassetti CM, Sacchettini JC, Rubin EJ. Global assessment of genomic regions required for growth in Mycobacterium tuberculosis. PLoS Pathog 2012; 8:e1002946. [PMID: 23028335 PMCID: PMC3460630 DOI: 10.1371/journal.ppat.1002946] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/21/2012] [Indexed: 11/28/2022] Open
Abstract
Identifying genomic elements required for viability is central to our understanding of the basic physiology of bacterial pathogens. Recently, the combination of high-density mutagenesis and deep sequencing has allowed for the identification of required and conditionally required genes in many bacteria. Genes, however, make up only a part of the complex genomes of important bacterial pathogens. Here, we use an unbiased analysis to comprehensively identify genomic regions, including genes, domains, and intergenic elements, required for the optimal growth of Mycobacterium tuberculosis, a major global health pathogen. We found that several proteins jointly contain both domains required for optimal growth and domains that are dispensable. In addition, many non-coding regions, including regulatory elements and non-coding RNAs, are critical for mycobacterial growth. Our analysis shows that the genetic requirements for growth are more complex than can be appreciated using gene-centric analysis. The significant rise in drug resistant strains of Mycobacterium tuberculosis has highlighted the need for new drug targets. Here, we present a novel method of defining genetic elements required for optimal growth, a key first step for identifying potential drug targets. Similar strategies in other bacterial pathogens have traditionally defined a set of essential protein-coding genes. Bacterial genomes, however, contain many other genetic elements, such as small RNAs and non-coding regulatory sequences. Protein-coding genes themselves also often encode more than one functional element, as in the case of multi-domain genes. Therefore, instead of assessing the quantitative requirement of whole genes, we parsed the genome into comprehensive sets of overlapping windows, unbiased by annotation, and scanned the entire genome for regions required for optimal growth. These required regions include whole genes, as expected; but we also discovered genes that contained both required and non-required domains, as well as non protein-coding RNAs required for optimal growth. By expanding our search for required genetic elements, we show that Mycobacterium tuberculosis has a complex genome and discover potential drug targets beyond the more limited set of essential genes.
Collapse
Affiliation(s)
- Yanjia J. Zhang
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Thomas R. Ioerger
- Department of Computer Science, Texas A&M University, College Station, Texas, United States of America
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Jarukit E. Long
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Christopher M. Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - James C. Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Eric J. Rubin
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
32
|
Byun EH, Kim WS, Kim JS, Won CJ, Choi HG, Kim HJ, Cho SN, Lee K, Zhang T, Hur GM, Shin SJ. Mycobacterium paratuberculosis CobT activates dendritic cells via engagement of Toll-like receptor 4 resulting in Th1 cell expansion. J Biol Chem 2012; 287:38609-24. [PMID: 23019321 DOI: 10.1074/jbc.m112.391060] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of Johne disease in animals and MAP involvement in human Crohn disease has been recently emphasized. Evidence from M. tuberculosis studies suggests mycobacterial proteins activate dendritic cells (DCs) via Toll-like receptor (TLR) 4, eventually determining the fate of immune responses. Here, we investigated whether MAP CobT contributes to the development of T cell immunity through the activation of DCs. MAP CobT recognizes TLR4, and induces DC maturation and activation via the MyD88 and TRIF signaling cascades, which are followed by MAP kinases and NF-κB. We further found that MAP CobT-treated DCs activated naive T cells, effectively polarized CD4(+) and CD8(+) T cells to secrete IFN-γ and IL-2, but not IL-4 and IL-10, and induced T cell proliferation. These data indicate that MAP CobT contributes to T helper (Th) 1 polarization of the immune response. MAP CobT-treated DCs specifically induced the expansion of CD4(+)/CD8(+)CD44(high)CD62L(low) memory T cells in the mesenteric lymph node of MAP-infected mice in a TLR4-dependent manner. Our results indicate that MAP CobT is a novel DC maturation-inducing antigen that drives Th1 polarized-naive/memory T cell expansion in a TLR4-dependent cascade, suggesting that MAP CobT potentially links innate and adaptive immunity against MAP.
Collapse
Affiliation(s)
- Eui-Hong Byun
- Department of Microbiology and Institute of Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Soo PC, Kung CJ, Horng YT, Chang KC, Lee JJ, Peng WP. Detonation nanodiamonds for rapid detection of clinical isolates of Mycobacterium tuberculosis complex in broth culture media. Anal Chem 2012; 84:7972-8. [PMID: 22905748 DOI: 10.1021/ac301767z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Routinely used molecular diagnostic methods for mycobacterium identification are expensive and time-consuming. To tackle this problem, we develop a method to streamline identification of Mycobacterium tuberculosis complex (MTBC) in broth culture media by using detonation nanodiamonds (DNDs) as a platform to effectively capture the antigen secreted by MTBC which is cultured in BACTEC MGIT 960, followed by the analysis of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS). The 5 nm DNDs can capture the MTBC secretory antigen without albumin interference. With on diamond digestion, we confirm the DND captured antigen is cell filtrate protein 10 (CFP-10) because its Mascot analysis shows a score of 68. The dot blotting method further verifies a positive reaction with anti-CFP-10, indicating that CFP-10 is secreted in the medium of mycobacterium growth indicator tube (MGIT) and captured by DNDs. The minimal CFP-10 protein detection limit was 0.09 μg/mL. Furthermore, our approach can avoid the false-positive identification of MTBC by immunological methods due to cross-reactivity. Five hundred consecutive clinical specimens subjected to routine mycobacteria identification in hospital were used in this study, and the sensitivity of our method is 100% and the specificity is 98%. The analysis of each MTBC sample from culture solution can be finished within 1 h and thus shortens the turnaround time of MTBC identification of gold standard culture methods. In sum, DND MALDI-TOF MS for the detection of MTBC is rapid, specific, safe, reliable, and inexpensive.
Collapse
Affiliation(s)
- Po-Chi Soo
- Department of Physics, National Dong Hwa University, Shoufeng, Hualien, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
34
|
ald of Mycobacterium tuberculosis encodes both the alanine dehydrogenase and the putative glycine dehydrogenase. J Bacteriol 2011; 194:1045-54. [PMID: 22210765 DOI: 10.1128/jb.05914-11] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The putative glycine dehydrogenase of Mycobacterium tuberculosis catalyzes the reductive amination of glyoxylate to glycine but not the reverse reaction. The enzyme was purified and identified as the previously characterized alanine dehydrogenase. The Ald enzyme was expressed in Escherichia coli and had both pyruvate and glyoxylate aminating activities. The gene, ald, was inactivated in M. tuberculosis, which resulted in the loss of all activities. Both enzyme activities were found associated with the cell and were not detected in the extracellular filtrate. By using an anti-Ald antibody, the protein was localized to the cell membrane, with a smaller fraction in the cytosol. None was detected in the extracellular medium. The ald knockout strain grew without alanine or glycine and was able to utilize glycine but not alanine as a nitrogen source. Transcription of ald was induced when alanine was the sole nitrogen source, and higher levels of Ald enzyme were measured. Ald is proposed to have several functions, including ammonium incorporation and alanine breakdown.
Collapse
|
35
|
Mehaffy MC, Kruh-Garcia NA, Dobos KM. Prospective on Mycobacterium tuberculosis proteomics. J Proteome Res 2011; 11:17-25. [PMID: 21988637 DOI: 10.1021/pr2008658] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, remains one of the most prevalent human pathogens in the world. Knowledge regarding the bacilli's physiology as well as its mechanisms of virulence, immunogenicity, and pathogenesis has increased greatly in the last three decades. However, the function of about one-quarter of the Mtb coding genome and the precise activity and protein networks of most of the Mtb proteins are still unknown. Protein mass spectrometry and a new interest in research toward the field of functional proteomics have given a new light to the study of this bacillus and will be the focus of this review. We will also discuss new perspectives in the proteomics field, in particular targeted mass spectrometry methods and their potential applications in TB research and discovery.
Collapse
Affiliation(s)
- M Carolina Mehaffy
- Department of Microbiology, Immunology and Pathology, Colorado State University, 1619 Campus Delivery, Fort Collins, Colorado 80523, United States
| | | | | |
Collapse
|
36
|
de Souza GA, Wiker HG. A proteomic view of mycobacteria. Proteomics 2011; 11:3118-27. [PMID: 21726049 DOI: 10.1002/pmic.201100043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 03/25/2011] [Accepted: 04/19/2011] [Indexed: 01/23/2023]
Abstract
Tuberculosis, the disease caused by Mycobacterium tuberculosis, remains a relevant public health issue. This is due mostly to the coepidemiology with HIV/AIDS, the appearance of multidrug-resistant strains globally, and failure of BCG (bacillus Calmette-Guerin) vaccination to confer complete protection. This bacterium was one of the first to have its genome sequenced, yet over a decade after the release of the genomic information, the characterization of its phylogenetic tree and of different strain variants inside this species revealed that much is still needed to be done for a full understanding of the M. tuberculosis genome and proteome. Current methods using LC-MS/MS and hybrid high-resolution mass spectrometers can identify 2400-2800 proteins of the 4000 predicted genes in M. tuberculosis. In this article, we review relevant details of this bacterium's pathology and immunology, describing articles where proteomics helped the community to tackle some of the organism biology, from understanding strain diversity, cellular structure composition, immunogenicity, and host-pathogen interactions. Finally, we will discuss the challenges yet to be fulfilled in order to better characterize M. tuberculosis by proteomics.
Collapse
Affiliation(s)
- Gustavo A de Souza
- The Gade Institute, Section for Microbiology and Immunology, University of Bergen, Bergen, Norway
| | | |
Collapse
|
37
|
Berrêdo-Pinho M, Kalume DE, Correa PR, Gomes LHF, Pereira MP, da Silva RF, Castello-Branco LRR, Degrave WM, Mendonça-Lima L. Proteomic profile of culture filtrate from the Brazilian vaccine strain Mycobacterium bovis BCG Moreau compared to M. bovis BCG Pasteur. BMC Microbiol 2011; 11:80. [PMID: 21507239 PMCID: PMC3094199 DOI: 10.1186/1471-2180-11-80] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 04/20/2011] [Indexed: 01/07/2023] Open
Abstract
Background Bacille Calmette-Guerin (BCG) is currently the only available vaccine against tuberculosis (TB) and comprises a heterogeneous family of sub-strains with genotypic and phenotypic differences. The World Health Organization (WHO) affirms that the characterization of BCG sub-strains, both on genomic and proteomic levels, is crucial for a better comprehension of the vaccine. In addition, these studies can contribute in the development of a more efficient vaccine against TB. Here, we combine two-dimensional electrophoresis (2DE) and mass spectrometry to analyse the proteomic profile of culture filtrate proteins (CFPs) from M. bovis BCG Moreau, the Brazilian vaccine strain, comparing it to that of BCG Pasteur. CFPs are considered of great importance given their dominant immunogenicity and role in pathogenesis, being available for interaction with host cells since early infection. Results The 2DE proteomic map of M. bovis BCG Moreau CFPs in the pH range 3 - 8 allowed the identification of 158 spots corresponding to 101 different proteins, identified by MS/MS. Comparison to BCG Pasteur highlights the great similarity between these BCG strains. However, quantitative analysis shows a higher expression of immunogenic proteins such as Rv1860 (BCG1896, Apa), Rv1926c (BCG1965c, Mpb63) and Rv1886c (BCG1923c, Ag85B) in BCG Moreau when compared to BCG Pasteur, while some heat shock proteins, such as Rv0440 (BCG0479, GroEL2) and Rv0350 (BCG0389, DnaK), show the opposite pattern. Conclusions Here we report the detailed 2DE profile of CFPs from M. bovis BCG Moreau and its comparison to BCG Pasteur, identifying differences that may provide relevant information on vaccine efficacy. These findings contribute to the detailed characterization of the Brazilian vaccine strain against TB, revealing aspects that may lead to a better understanding of the factors leading to BCG's variable protective efficacy against TB.
Collapse
Affiliation(s)
- Marcia Berrêdo-Pinho
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, FIOCRUZ, Avenida Brasil, 4365, Manguinhos, CEP 21040 -900 Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Wang XM, Lu C, Soetaert K, S'Heeren C, Peirs P, Lanéelle MA, Lefèvre P, Bifani P, Content J, Daffé M, Huygen K, De Bruyn J, Wattiez R. Biochemical and immunological characterization of a cpn60.1 knockout mutant of Mycobacterium bovis BCG. MICROBIOLOGY-SGM 2010; 157:1205-1219. [PMID: 21127129 DOI: 10.1099/mic.0.045120-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pathogenic mycobacteria possess two homologous chaperones encoded by cpn60.1 and cpn60.2. Cpn60.2 is essential for survival, providing the basic chaperone function, while Cpn60.1 is not. In the present study, we show that inactivation of the Mycobacterium bovis BCG cpn60.1 (Mb3451c) gene does not significantly affect bacterial growth in 7H9 broth, but that this knockout mutant (Δcpn60.1) forms smaller colonies on solid 7H11 medium than the parental and complemented strains. When growing on Sauton medium, the Δcpn60.1 mutant exhibits a thinner surface pellicle and is associated with higher culture filtrate protein content and, coincidentally, with less protein in its outermost cell envelope in comparison with the parental and complemented strains. Interestingly, in this culture condition, the Δcpn60.1 mutant is devoid of phthiocerol dimycocerosates, and its mycolates are two carbon atoms longer than those of the wild-type, a phenotype that is fully reversed by complementation. In addition, Δcpn60.1 bacteria are more sensitive to stress induced by H(2)O(2) but not by SDS, high temperature or acidic pH. Taken together, these data indicate that the cell wall of the Δcpn60.1 mutant is impaired. Analysis by 2D gel electrophoresis and MS reveals the upregulation of a few proteins such as FadA2 and isocitrate lyase in the cell extract of the mutant, whereas more profound differences are found in the composition of the mycobacterial culture filtrate, e.g. the well-known Hsp65 chaperonin Cpn60.2 is particularly abundant and increases about 200-fold in the filtrate of the Δcpn60.1 mutant. In mice, the Δcpn60.1 mutant is less persistent in lungs and, to a lesser extent, in spleen, but it induces a comparable mycobacteria-specific gamma interferon production and protection against Mycobacterium tuberculosis H37Rv challenge as do the parental and complemented BCG strains. Thus, by inactivating the cpn60.1 gene in M. bovis BCG we show that Cpn60.1 is necessary for the integrity of the bacterial cell wall, is involved in resistance to H(2)O(2)-induced stress but is not essential for its vaccine potential.
Collapse
Affiliation(s)
- Xiao-Ming Wang
- Scientific Institute of Public Health, Operational Direction of Communicable and Infectious Diseases, Rue Engeland 642, B-1180 Brussels, Belgium
| | - Changlong Lu
- Scientific Institute of Public Health, Operational Direction of Communicable and Infectious Diseases, Rue Engeland 642, B-1180 Brussels, Belgium
| | - Karine Soetaert
- Scientific Institute of Public Health, Operational Direction of Communicable and Infectious Diseases, Rue Engeland 642, B-1180 Brussels, Belgium
| | - Catherine S'Heeren
- Department of Proteomics and Microbiology, University of Mons, 20, place du Parc, B-7000 Mons, Belgium
| | - Priska Peirs
- Scientific Institute of Public Health, Operational Direction of Communicable and Infectious Diseases, Rue Engeland 642, B-1180 Brussels, Belgium
| | - Marie-Antoinette Lanéelle
- Department of Molecular Mechanisms of the Mycobacterial Infections, Institute of Pharmacology and Structural Biology of CNRS and the University Paul Sabatier (UMR 5089), 205 route de Narbonne, Toulouse 31077 cedex 04, France
| | - Philippe Lefèvre
- Scientific Institute of Public Health, Operational Direction of Communicable and Infectious Diseases, Rue Engeland 642, B-1180 Brussels, Belgium
| | - Pablo Bifani
- Scientific Institute of Public Health, Operational Direction of Communicable and Infectious Diseases, Rue Engeland 642, B-1180 Brussels, Belgium
| | - Jean Content
- Scientific Institute of Public Health, Operational Direction of Communicable and Infectious Diseases, Rue Engeland 642, B-1180 Brussels, Belgium
| | - Mamadou Daffé
- Department of Molecular Mechanisms of the Mycobacterial Infections, Institute of Pharmacology and Structural Biology of CNRS and the University Paul Sabatier (UMR 5089), 205 route de Narbonne, Toulouse 31077 cedex 04, France
| | - Kris Huygen
- Scientific Institute of Public Health, Operational Direction of Communicable and Infectious Diseases, Rue Engeland 642, B-1180 Brussels, Belgium
| | - Jacqueline De Bruyn
- Scientific Institute of Public Health, Operational Direction of Communicable and Infectious Diseases, Rue Engeland 642, B-1180 Brussels, Belgium
| | - Ruddy Wattiez
- Department of Proteomics and Microbiology, University of Mons, 20, place du Parc, B-7000 Mons, Belgium
| |
Collapse
|
39
|
Wolfe LM, Mahaffey SB, Kruh NA, Dobos KM. Proteomic definition of the cell wall of Mycobacterium tuberculosis. J Proteome Res 2010; 9:5816-26. [PMID: 20825248 PMCID: PMC2995261 DOI: 10.1021/pr1005873] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
![]()
The cell envelope of Mycobacterium tuberculosis (Mtb) is complex and diverse; composed of proteins intermingled in a matrix of peptidoglycan, mycolic acids, lipids, and carbohydrates. Proteomic studies of the Mtb cell wall have been limited; nonetheless, the characterization of resident and secreted proteins associated with the cell wall are critical to understanding bacterial survival and immune modulation in the host. In this study, the cell wall proteome was defined in order to better understand its unique biosynthetic and secretion processes. Mtb cell wall was subjected to extraction with organic solvents to remove noncovalently bound lipids and lipoglycans and remaining proteins were solubilized with either SDS, Guanidine-HCl, or TX-114. These extracts were analyzed by two-dimensional gel electrophoresis and mass-spectrometry and resulted in the identification of 234 total proteins. The lipoproteome of Mtb, enriched in the TX-114 extract, was further resolved by multidimensional chromatography and mass spectrometry to identify an additional 294 proteins. A query of the 528 total protein identifications against Neural Network or Hidden Markov model algorithms predicted secretion signals in 87 proteins. Classification of these 528 proteins also demonstrated that 35% are involved in small molecule metabolism and 25% are involved in macromolecule synthesis and degradation building upon evidence that the Mtb cell wall is actively engaged in mycobacterial survival and remodeling. The cell envelope of Mycobacterium tuberculosis (Mtb) is a unique structure comprised of proteins within a matrix of carbohydrates, lipids, and mycolylarabinogalactan linked to peptidoglycan. In this study, the Mtb cell wall (CW) proteome was further defined, revealing 528 proteins, with 105 novel identifications. Classification of CW proteins by signal sequence and predicted function identified 87 secreted proteins, and demonstrated 60% of the proteome engaged in small- and macromolecule metabolism.
Collapse
Affiliation(s)
- Lisa M Wolfe
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | |
Collapse
|
40
|
Arbing MA, Kaufmann M, Phan T, Chan S, Cascio D, Eisenberg D. The crystal structure of the Mycobacterium tuberculosis Rv3019c-Rv3020c ESX complex reveals a domain-swapped heterotetramer. Protein Sci 2010; 19:1692-703. [PMID: 20629176 PMCID: PMC2975133 DOI: 10.1002/pro.451] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Mycobacterium tuberculosis encodes five gene clusters (ESX-1 to ESX-5) for Type VII protein secretion systems that are implicated in mycobacterial pathogenicity. Substrates for the secretion apparatus are encoded within the gene clusters and in additional loci that lack the components of the secretion apparatus. The best characterized substrates are the ESX complexes, 1:1 heterodimers of ESAT-6 and CFP-10, the prototypical member that has been shown to be essential for Mycobacterium tuberculosis pathogenesis. We have determined the structure of EsxRS, a homolog of EsxGH of the ESX-3 gene cluster, at 1.91 Å resolution. The EsxRS structure is composed of two four-helix bundles resulting from the 3D domain swapping of the C-terminal domain of EsxS, the CFP-10 homolog. The four-helix bundles at the extremities of the complex have a similar architecture to the structure of ESAT-6·CFP-10 (EsxAB) of ESX-1, but in EsxRS a hinge loop linking the α-helical domains of EsxS undergoes a loop-to-helix transition that creates the domain swapped EsxRS tetramer. Based on the atomic structure of EsxRS and existing biochemical data on ESX complexes, we propose that higher order ESX oligomers may increase avidity of ESX binding to host receptor molecules or, alternatively, the conformational change that creates the domain swapped structure may be the basis of ESX complex dissociation that would free ESAT-6 to exert a cytotoxic effect.
Collapse
Affiliation(s)
- Mark A Arbing
- UCLA-DOE Institute for Genomics and ProteomicsUCLA, Los Angeles, California 90095-1570
| | - Markus Kaufmann
- UCLA-DOE Institute for Genomics and ProteomicsUCLA, Los Angeles, California 90095-1570
| | - Tung Phan
- UCLA-DOE Institute for Genomics and ProteomicsUCLA, Los Angeles, California 90095-1570
| | - Sum Chan
- UCLA-DOE Institute for Genomics and ProteomicsUCLA, Los Angeles, California 90095-1570
| | - Duilio Cascio
- UCLA-DOE Institute for Genomics and ProteomicsUCLA, Los Angeles, California 90095-1570
| | - David Eisenberg
- UCLA-DOE Institute for Genomics and ProteomicsUCLA, Los Angeles, California 90095-1570
- Department of Biological Chemistry, David Geffen School of Medicine at UCLALos Angeles, California 90095-1737
- Department of Chemistry and Biochemistry, University of CaliforniaLos Angeles, Los Angeles, California 90095-1569
- *Correspondence to: David Eisenberg, Department of Chemistry and Biochemistry, UCLA, 611 Charles E. Young Dr. East, Los Angeles, California 90095-1569. E-mail:
| |
Collapse
|
41
|
Giri PK, Kruh NA, Dobos KM, Schorey JS. Proteomic analysis identifies highly antigenic proteins in exosomes from M. tuberculosis-infected and culture filtrate protein-treated macrophages. Proteomics 2010; 10:3190-202. [PMID: 20662102 PMCID: PMC3664454 DOI: 10.1002/pmic.200900840] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 05/04/2010] [Accepted: 06/15/2010] [Indexed: 12/17/2022]
Abstract
Exosomes are small 30-100 nm membrane vesicles released from hematopoietic and nonhematopoietic cells and function to promote intercellular communication. They are generated through fusion of multivesicular bodies with the plasma membrane and release of interluminal vesicles. Previous studies from our laboratory demonstrated that macrophages infected with Mycobacterium release exosomes that promote activation of both innate and acquired immune responses; however, the components present in exosomes inducing these host responses were not defined. This study used LC-MS/MS to identify 41 mycobacterial proteins present in exosomes released from M. tuberculosis-infected J774 cells. Many of these proteins have been characterized as highly immunogenic. Further, since most of the mycobacterial proteins identified are actively secreted, we hypothesized that macrophages treated with M. tuberculosis culture filtrate proteins (CFPs) would release exosomes containing mycobacterial proteins. We found 29 M. tuberculosis proteins in exosomes released from CFP-treated J774 cells, the majority of which were also present in exosomes isolated from M. tuberculosis-infected cells. The exosomes from CFP-treated J774 cells could promote macrophage and dendritic cell activation as well as activation of naïve T cells in vivo. These results suggest that exosomes containing M. tuberculosis antigens may be alternative approach to developing a tuberculosis vaccine.
Collapse
Affiliation(s)
- Pramod K. Giri
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
- Present address:
Department of Microbiology & Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 USA
| | - Nicole A. Kruh
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Karen M. Dobos
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Jeff S. Schorey
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
42
|
Mehaffy C, Hess A, Prenni JE, Mathema B, Kreiswirth B, Dobos KM. Descriptive proteomic analysis shows protein variability between closely related clinical isolates of Mycobacterium tuberculosis. Proteomics 2010; 10:1966-84. [PMID: 20217870 DOI: 10.1002/pmic.200900836] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The use of isobaric tags such as iTRAQ allows the relative and absolute quantification of hundreds of proteins in a single experiment for up to eight different samples. More classical techniques such as 2-DE can offer a complimentary approach for the analysis of complex protein samples. In this study, the proteomes of secreted and cytosolic proteins of genetically closely related strains of Mycobacterium tuberculosis were analyzed. Analysis of 2-D gels afforded 28 spots with variations in protein abundance between strains. These were identified by MS/MS. Meanwhile, a rigorous statistical analysis of iTRAQ data allowed the identification and quantification of 101 and 137 proteins in the secreted and cytosolic fractions, respectively. Interestingly, several differences in protein levels were observed between the closely related strains BE, C28 and H6. Seven proteins related to cell wall and cell processes were more abundant in BE, while enzymes related to metabolic pathways (GltA2, SucC, Gnd1, Eno) presented lower levels in the BE strain. Proteins involved in iron and sulfur acquisition (BfrB, ViuB, TB15.3 and SseC2) were more abundant in C28 and H6. In general, iTRAQ afforded rapid identification of fine differences between protein levels such as those presented between closely related strains. This provides a platform from which the relevance of these differences can be assessed further using complimentary proteomic and biological modeling methods.
Collapse
Affiliation(s)
- Carolina Mehaffy
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA
| | | | | | | | | | | |
Collapse
|
43
|
Characterization and identification of distinct Mycobacterium massiliense extracellular proteins from those of Mycobacterium abscessus. J Microbiol 2010; 48:502-11. [PMID: 20799093 DOI: 10.1007/s12275-010-0038-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 03/31/2010] [Indexed: 10/19/2022]
Abstract
Mycobacterium massiliense is an emerging pathogen and very similar to Mycobacterium abscessus of rapidly growing mycobacteria in the phenotype and genotype. Pathogenic bacteria secrete a diversity of factors into extracellular medium which contribute to the bacterial pathogenicity. In the present study, we performed the comparative proteome analysis of culture filtrate proteins from a clinical isolate of M. massiliense and M. abscessus strains using two-dimensional gel electrophoresis and liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS). Interestingly, 9 proteins of M. massiliense were distinctly expressed from those of M. abscessus. Bioinformatic analysis of the identified proteins revealed that 3 unique proteins corresponded to serine/arginine rich protein, membrane protein from Streptomyces coelicolor, and one hypothetical protein from Corynebacterium efficiens YS-314, respectively. Culture filtrate proteins from M. massiliense induced the release of pro-inflammatory cytokines from macrophages in a dose-dependent manner but not that from M. abscessus. Taken together, the functional study on the identified proteins uniquely produced from M. massiliense may provide not only the clues for the different pathogensis, but also help develop the diagnostic tools for the differentiation between two mycobacterial species.
Collapse
|
44
|
Sinha S, Arora S, Kosalai K, Namane A, Pym AS, Cole ST. Proteome analysis of the plasma membrane of Mycobacterium tuberculosis. Comp Funct Genomics 2010; 3:470-83. [PMID: 18629250 PMCID: PMC2448412 DOI: 10.1002/cfg.211] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2002] [Accepted: 09/11/2002] [Indexed: 11/19/2022] Open
Abstract
The plasma membrane of Mycobacterium tuberculosis is likely to contain proteins that could serve as novel drug targets, diagnostic probes or even components of a vaccine
against tuberculosis. With this in mind, we have undertaken proteome analysis of the
membrane of M. tuberculosis H37Rv. Isolated membrane vesicles were extracted with
either a detergent (Triton X114) or an alkaline buffer (carbonate) following two of the
protocols recommended for membrane protein enrichment. Proteins were resolved
by 2D-GE using immobilized pH gradient (IPG) strips, and identified by peptide
mass mapping utilizing the M. tuberculosis genome database. The two extraction
procedures yielded patterns with minimal overlap. Only two proteins, both HSPs,
showed a common presence. MALDI–MS analysis of 61 spots led to the identification
of 32 proteins, 17 of which were new to the M. tuberculosis proteome database.
We classified 19 of the identified proteins as ‘membrane-associated’; 14 of these
were further classified as ‘membrane-bound’, three of which were lipoproteins. The
remaining proteins included four heat-shock proteins and several enzymes involved
in energy or lipid metabolism. Extraction with Triton X114 was found to be more
effective than carbonate for detecting ‘putative’ M. tuberculosis membrane proteins.
The protocol was also found to be suitable for comparing BCG and M. tuberculosis
membranes, identifying ESAT-6 as being expressed selectively in M. tuberculosis.
While this study demonstrates for the first time some of the membrane proteins of
M. tuberculosis, it also underscores the problems associated with proteomic analysis
of a complex membrane such as that of a mycobacterium.
Collapse
Affiliation(s)
- Sudhir Sinha
- Division of Biochemistry, Central Drug Research Institute, Chattar Manzil, Lucknow 226001, India.
| | | | | | | | | | | |
Collapse
|
45
|
Cho JH, Cho MH, Hwang H, Bhoo SH, Hahn TR. Improvement of plant protein solubilization and 2-DE gel resolution through optimization of the concentration of Tris in the solubilization buffer. Mol Cells 2010; 29:611-6. [PMID: 20496115 DOI: 10.1007/s10059-010-0076-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 03/02/2010] [Accepted: 03/03/2010] [Indexed: 10/19/2022] Open
Abstract
It is important to solubilize acetone-precipitated proteins before isoelectric focusing (IEF) to achieve high resolution 2-DE gels. To resolve the maximum possible number of plant protein spots, we developed an improved solubilization buffer for plant proteins. We demonstrated that the resolution of 2-DE gels increased dramatically as the concentration of Tris-base increased, with maximum solubilization obtained at 200 mM Tris-base (Ly200T). The Ly200T buffer was more effective than the commonly used solubilization buffer containing 40 mM Tris at solubilizing acetone-precipitated plant proteins. Use of the Ly200T buffer to solubilize proteins resulted in an increase in intensity of approximately 30% of plant protein spots in the larger-than-40 kDa region of the gel. The Ly200T buffer also improved the resolution of abundant and basic proteins. Thus, the Ly200T buffer can be used to achieve greater resolution of protein spots in plant proteomics research.
Collapse
Affiliation(s)
- Jin-Hwan Cho
- Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung Hee University, Suwon, 446-701, Korea
| | | | | | | | | |
Collapse
|
46
|
Rodríguez-Alvarez M, Palomec-Nava ID, Mendoza-Hernández G, López-Vidal Y. The secretome of a recombinant BCG substrain reveals differences in hypothetical proteins. Vaccine 2010; 28:3997-4001. [PMID: 20153797 DOI: 10.1016/j.vaccine.2010.01.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 01/21/2010] [Accepted: 01/28/2010] [Indexed: 10/19/2022]
Abstract
Tuberculosis remains a major human health problem worldwide, and strategies for its prevention include the generation and characterization of new recombinant vaccines containing immunodominant antigens from Mycobacterium tuberculosis. By comparing the secretomes of wild-type Mycobacterium bovis and a PstS1-recombinant M. bovis BCG vaccine substrain (rBCG38), we identified six conserved hypothetical proteins (BCG2696, BCG1674, BCG0372, BCG0427, BCG2436c, and BCG3053) that are differentially expressed. Our findings will aid in the identification of highly immunogenic proteins present in rBCG.
Collapse
Affiliation(s)
- Mauricio Rodríguez-Alvarez
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Edificio de Investigación, 4 degrees piso, Av. Universidad #3000, Coyoacán, 04510 México, D.F., Mexico
| | | | | | | |
Collapse
|
47
|
Development and optimization of two-dimensional-electrophoresis protocol ofLeptospirillum ferriphilum. ANN MICROBIOL 2009. [DOI: 10.1007/bf03179231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
48
|
Comparative analysis of immune responses to Mycobacterium abscessus infection and its antigens in two murine models. J Microbiol 2009; 47:633-40. [DOI: 10.1007/s12275-009-0139-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Accepted: 06/01/2009] [Indexed: 10/20/2022]
|
49
|
Singh KK, Sharma N, Vargas D, Liu Z, Belisle JT, Potharaju V, Wanchu A, Behera D, Laal S. Peptides of a novel Mycobacterium tuberculosis-specific cell wall protein for immunodiagnosis of tuberculosis. J Infect Dis 2009; 200:571-81. [PMID: 19604115 DOI: 10.1086/603539] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The sequencing of the Mycobacterium tuberculosis genome revealed the existence of several genes encoding novel proteins with unknown functions, one of which is the proline-threonine repetitive protein (PTRP; Rv0538). Genomic studies of various mycobacterial species and M. tuberculosis clinical isolates demonstrate that ptrp is specific to the M. tuberculosis complex and ubiquitous in clinical isolates. Enzyme-linked immunosorbent assay, Western blot analysis, and electron microscopic evaluation of M. tuberculosis subcellular fractions and intact bacteria confirm that PTRP is a cell wall protein. Antibodies to PTRP are present in serum specimens from human immunodeficiency virus (HIV)-negative, tuberculosis (TB)-positive and HIV-positive, TB-positive patients but not purified protein derivative (PPD)-negative or PPD-positive healthy control subjects, demonstrating its diagnostic potential. Epitope mapping of PTRP delineated 4 peptides that can identify >80% of sputum smear-positive and >50% of smear-negative, HIV-negative, TB-positive patients and >80% of HIV-positive, TB-positive patients. These results demonstrate that immunodominant epitopes of carefully selected M. tuberculosis-specific proteins can be used to devise a simple peptide-based serodiagnostic test for TB.
Collapse
Affiliation(s)
- Krishna K Singh
- Department of Pathology, New York University School of Medicine, New York, NY 10010, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abdallah AM, Verboom T, Weerdenburg EM, Gey van Pittius NC, Mahasha PW, Jiménez C, Parra M, Cadieux N, Brennan MJ, Appelmelk BJ, Bitter W. PPE and PE_PGRS proteins ofMycobacterium marinumare transported via the type VII secretion system ESX-5. Mol Microbiol 2009; 73:329-40. [DOI: 10.1111/j.1365-2958.2009.06783.x] [Citation(s) in RCA: 216] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|