1
|
Gosset-Erard C, Aubriet F, Leize-Wagner E, François YN, Chaimbault P. Hyphenation of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) with separation methods: The art of compromises and the possible - A review. Talanta 2023; 257:124324. [PMID: 36780779 DOI: 10.1016/j.talanta.2023.124324] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023]
Abstract
This review provides an overview of the online hyphenation of Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS) with separation methods to date. The online coupling between separation techniques (gas and liquid chromatography, capillary electrophoresis) and FT-ICR MS essentially raises questions of compromise and is not look as straightforward as hyphenation with other analyzers (QTOF-MS for instance). FT-ICR MS requires time to reach its highest resolving power and accuracy in mass measurement capabilities whereas chromatographic and electrophoretic peaks are transient. In many applications, the strengths and the weaknesses of each technique are balanced by their hyphenation. Untargeted "Omics" (e.g. proteomics, metabolomics, petroleomics, …) is one of the main areas of application for FT-ICR MS hyphenated to online separation techniques because of the complexity of the sample. FT-ICR MS achieves the required high mass measurement accuracy to determine accurate molecular formulae and resolution for isobar distinction. Meanwhile separation techniques highlight isomers and reduce the ion suppression effects extending the dynamic range. Even if the implementation of FT-ICR MS hyphenated with online separation methods is a little trickier (the art of compromise), this review shows that it provides unparalleled results to the scientific community (the art of the possible), along with raising the issue of its future in the field with the relentless technological progress.
Collapse
Affiliation(s)
- Clarisse Gosset-Erard
- Université de Lorraine, LCP-A2MC, F-57000, Metz, France; Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 (Unistra-CNRS), Université de, Strasbourg, France.
| | | | - Emmanuelle Leize-Wagner
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 (Unistra-CNRS), Université de, Strasbourg, France.
| | - Yannis-Nicolas François
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 (Unistra-CNRS), Université de, Strasbourg, France.
| | | |
Collapse
|
2
|
Abstract
In bottom-up proteomics, proteins are typically identified by enzymatic digestion into peptides, tandem mass spectrometry and comparison of the tandem mass spectra with those predicted from a sequence database for peptides within measurement uncertainty from the experimentally obtained mass. Although now decreasingly common, isolated proteins or simple protein mixtures can also be identified by measuring only the masses of the peptides resulting from the enzymatic digest, without any further fragmentation. Separation methods such as liquid chromatography and electrophoresis are often used to fractionate complex protein or peptide mixtures prior to analysis by mass spectrometry. Although the primary reason for this is to avoid ion suppression and improve data quality, these separations are based on physical and chemical properties of the peptides or proteins and therefore also provide information about them. Depending on the separation method, this could be protein molecular weight (SDS-PAGE), isoelectric point (IEF), charge at a known pH (ion exchange chromatography), or hydrophobicity (reversed phase chromatography). These separations produce approximate measurements on properties that to some extent can be predicted from amino acid sequences. In the case of molecular weight of proteins without posttranslational modifications this is straightforward: simply add the molecular weights of the amino acid residues in the protein. For IEF, charge and hydrophobicity, the order of the amino acids, and folding state of the peptide or protein also matter, but it is nevertheless possible to predict the behavior of peptides and proteins in these separation methods to a degree which renders such predictions useful. This chapter reviews the topic of using data from separation methods for identification and validation in proteomics, with special emphasis on predicting retention times of tryptic peptides in reversed-phase chromatography under acidic conditions, as this is one of the most commonly used separation methods in bottom-up proteomics.
Collapse
|
3
|
Latosinska A, Siwy J, Mischak H, Frantzi M. Peptidomics and proteomics based on CE‐MS as a robust tool in clinical application: The past, the present, and the future. Electrophoresis 2019; 40:2294-2308. [DOI: 10.1002/elps.201900091] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 12/23/2022]
|
4
|
Cortez-Díaz MD, d'Orlyé F, Varenne A. Characterization of New Cyclic D,L-α-Alternate Amino Acid Peptides by Capillary Electrophoresis Coupled to Electrospray Ionization Mass Spectrometry. Methods Mol Biol 2019; 1855:315-326. [PMID: 30426428 DOI: 10.1007/978-1-4939-8793-1_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The self-assembly of peptide nanotubes (PNTs) depends on the structure and chemistry of cyclic peptide (CP) monomers, impacting on their properties, which makes the choice of their monomers and their characterization a high challenge. For this purpose, we developed for the first time a capillary electrophoresis coupled to electrospray ionization mass spectrometry (CE-ESI-MS) methodology and characterized a set of eight original CP sequences of 8, 10, and 12 D,L-α-alternate amino acids with a controlled internal diameter (from 7 to 13 Å) and various properties (diameter, global surface charge, hydrophobicity). This new CE-ESI-MS methodology allows verifying the structure, the purity, as well as the stability (when stored during several months) of interesting potential precursors for PNTs that could be employed as nanoplatforms in diagnostics or pseudo sieving tools for separation purposes.
Collapse
Affiliation(s)
- María Dámaris Cortez-Díaz
- Chimie ParisTech PSL, Ecole Nationale Supérieure de Chimie, Unité de Technologies Chimiques et Biologiques pour la Santé, Paris, France
- CNRS, Unité de Technologies Chimiques et Biologiques pour la Santé UMR 8258, Paris, France
- Université Paris Descartes, Unité de Technologies Chimiques et Biologiques pour la Santé, Paris, France
- INSERM, Unité de Technologies Chimiques et Biologiques pour la Santé (N°1022), Paris, France
- Departamento de Quimica, Universidad de Guanajuato, Guanajuato, Mexico
| | - Fanny d'Orlyé
- Chimie ParisTech PSL, Ecole Nationale Supérieure de Chimie, Unité de Technologies Chimiques et Biologiques pour la Santé, Paris, France
- CNRS, Unité de Technologies Chimiques et Biologiques pour la Santé UMR 8258, Paris, France
- Université Paris Descartes, Unité de Technologies Chimiques et Biologiques pour la Santé, Paris, France
- INSERM, Unité de Technologies Chimiques et Biologiques pour la Santé (N°1022), Paris, France
| | - Anne Varenne
- Chimie ParisTech PSL, Ecole Nationale Supérieure de Chimie, Unité de Technologies Chimiques et Biologiques pour la Santé, Paris, France.
- CNRS, Unité de Technologies Chimiques et Biologiques pour la Santé UMR 8258, Paris, France.
- Université Paris Descartes, Unité de Technologies Chimiques et Biologiques pour la Santé, Paris, France.
- INSERM, Unité de Technologies Chimiques et Biologiques pour la Santé (N°1022), Paris, France.
| |
Collapse
|
5
|
Zhu G, Sun L, Dovichi NJ. Simplified capillary isoelectric focusing with chemical mobilization for intact protein analysis. J Sep Sci 2016; 40:948-953. [PMID: 27935257 DOI: 10.1002/jssc.201601051] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 11/27/2016] [Accepted: 11/28/2016] [Indexed: 11/05/2022]
Abstract
We report a capillary isoelectric focusing system based on a sequential injection method for simplified chemical mobilization. This system was coupled to an ion trap mass spectrometer with an electrokinetically pumped nanoelectrospray interface. The nanoelectrospray emitter employed an acidic sheath electrolyte. To simplify focusing and mobilization, a plug of ammonium hydroxide was first injected into the capillary, followed by a section of mixed sample and ampholyte. During focusing, the NH3 H2 O section worked as catholyte. As focusing progressed, the NH3 H2 O section was titrated to lower pH by the acidic sheath electrolyte. Chemical mobilization started automatically once the ammonium hydroxide was consumed by the acidic sheath flow electrolyte, which then acted as the mobilization solution. In this report, the lengths of the NH3 H2 O section and sample were optimized. With a 1 m long capillary, a relative short plug of the NH3 H2 O section (3 cm) produced both fast migration and reasonable separation resolution. The simplified capillary isoelectric focusing mass spectrometry system produced base peak intensity relative standard deviation of 8.5% and migration time relative standard deviation ≤0.6% for myoglobin and cytochrome C in triplicate runs.
Collapse
Affiliation(s)
- Guijie Zhu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Liangliang Sun
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA.,Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Norman J Dovichi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
6
|
Hühner J, Jooß K, Neusüß C. Interference-free mass spectrometric detection of capillary isoelectric focused proteins, including charge variants of a model monoclonal antibody. Electrophoresis 2016; 38:914-921. [DOI: 10.1002/elps.201600457] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 11/21/2016] [Accepted: 11/21/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Jens Hühner
- Faculty of Chemistry; Aalen University; Aalen Germany
- Institute of Pharmaceutical Science; University of Tübingen; Tübingen Germany
| | - Kevin Jooß
- Faculty of Chemistry; Aalen University; Aalen Germany
| | | |
Collapse
|
7
|
Patrie SM. Top-Down Mass Spectrometry: Proteomics to Proteoforms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 919:171-200. [PMID: 27975217 DOI: 10.1007/978-3-319-41448-5_8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This chapter highlights many of the fundamental concepts and technologies in the field of top-down mass spectrometry (TDMS), and provides numerous examples of contributions that TD is making in biology, biophysics, and clinical investigations. TD workflows include variegated steps that may include non-specific or targeted preparative strategies, orthogonal liquid chromatography techniques, analyte ionization, mass analysis, tandem mass spectrometry (MS/MS) and informatics procedures. This diversity of experimental designs has evolved to manage the large dynamic range of protein expression and diverse physiochemical properties of proteins in proteome investigations, tackle proteoform microheterogeneity, as well as determine structure and composition of gas-phase proteins and protein assemblies.
Collapse
Affiliation(s)
- Steven M Patrie
- Computational and Systems Biology & Biomedical Engineering Graduate Programs, University of Texas Southwestern Medical Center, Dallas, TX, USA. .,Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA. .,Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA.
| |
Collapse
|
8
|
Mokaddem M, d'Orlyé F, Varenne A. Online Capillary IsoElectric Focusing-ElectroSpray Ionization Mass Spectrometry (CIEF-ESI MS) in Glycerol-Water Media for the Separation and Characterization of Hydrophilic and Hydrophobic Proteins. Methods Mol Biol 2016; 1466:57-66. [PMID: 27473481 DOI: 10.1007/978-1-4939-4014-1_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Capillary isoelectric focusing (CIEF) is a high-resolution technique for the separation of ampholytes, such as proteins, according to their isoelectric point. CIEF coupled online with MS is regarded as a promising alternative to 2-D PAGE for fast proteome analysis with high-resolving capabilities and enhanced structural information without the drawbacks of conventional slab-gel electrophoresis. However, online coupling has been rarely described, as it presents some difficulties. A new methodology for the online coupling of CIEF with electrospray ionization mass spectrometry (ESI-MS) has been developed in glycerol-water media. This new integrated methodology provides a mean for the characterization of a large number of hydrophilic and hydrophobic proteins.
Collapse
Affiliation(s)
- Meriem Mokaddem
- Chimie ParisTech, PSL Research University Unité de Technologies Chimiques et Biologiques pour la Santé, Paris, 75005, France
- INSERM, Unité de Technologies Chimiques et Biologiques pour la Santé (n° 1022), Paris, 75005, France
- CNRS, Unité de Technologies Chimiques et Biologiques pour la santé UMR 8258, Paris, 75005, France
- Université Paris Descartes, Sorbonne Paris Cité, Unité de Technologies Chimiques et Biologiques pour la Santé, Paris, 75005, France
| | - Fanny d'Orlyé
- Chimie ParisTech, PSL Research University Unité de Technologies Chimiques et Biologiques pour la Santé, Paris, 75005, France
- INSERM, Unité de Technologies Chimiques et Biologiques pour la Santé (n° 1022), Paris, 75005, France
- CNRS, Unité de Technologies Chimiques et Biologiques pour la santé UMR 8258, Paris, 75005, France
- Université Paris Descartes, Sorbonne Paris Cité, Unité de Technologies Chimiques et Biologiques pour la Santé, Paris, 75005, France
| | - Anne Varenne
- Chimie ParisTech, PSL Research University Unité de Technologies Chimiques et Biologiques pour la Santé, Paris, 75005, France.
- INSERM, Unité de Technologies Chimiques et Biologiques pour la Santé (n° 1022), Paris, 75005, France.
- CNRS, Unité de Technologies Chimiques et Biologiques pour la santé UMR 8258, Paris, 75005, France.
- Université Paris Descartes, Sorbonne Paris Cité, Unité de Technologies Chimiques et Biologiques pour la Santé, Paris, 75005, France.
| |
Collapse
|
9
|
Hühner J, Lämmerhofer M, Neusüß C. Capillary isoelectric focusing-mass spectrometry: Coupling strategies and applications. Electrophoresis 2015; 36:2670-2686. [DOI: 10.1002/elps.201500185] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 07/31/2015] [Accepted: 07/31/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Jens Hühner
- Faculty of Chemistry; Aalen University; Aalen Germany
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences; University of Tübingen; Tübingen Germany
| | | |
Collapse
|
10
|
Catherman AD, Skinner OS, Kelleher NL. Top Down proteomics: facts and perspectives. Biochem Biophys Res Commun 2014; 445:683-93. [PMID: 24556311 PMCID: PMC4103433 DOI: 10.1016/j.bbrc.2014.02.041] [Citation(s) in RCA: 319] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 02/10/2014] [Indexed: 12/29/2022]
Abstract
The rise of the "Top Down" method in the field of mass spectrometry-based proteomics has ushered in a new age of promise and challenge for the characterization and identification of proteins. Injecting intact proteins into the mass spectrometer allows for better characterization of post-translational modifications and avoids several of the serious "inference" problems associated with peptide-based proteomics. However, successful implementation of a Top Down approach to endogenous or other biologically relevant samples often requires the use of one or more forms of separation prior to mass spectrometric analysis, which have only begun to mature for whole protein MS. Recent advances in instrumentation have been used in conjunction with new ion fragmentation using photons and electrons that allow for better (and often complete) protein characterization on cases simply not tractable even just a few years ago. Finally, the use of native electrospray mass spectrometry has shown great promise for the identification and characterization of whole protein complexes in the 100 kDa to 1 MDa regime, with prospects for complete compositional analysis for endogenous protein assemblies a viable goal over the coming few years.
Collapse
Affiliation(s)
- Adam D Catherman
- Departments of Chemistry and Molecular Biosciences, The Chemistry of Life Processes Institute, The Proteomics Center of Excellence, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208, United States
| | - Owen S Skinner
- Departments of Chemistry and Molecular Biosciences, The Chemistry of Life Processes Institute, The Proteomics Center of Excellence, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208, United States
| | - Neil L Kelleher
- Departments of Chemistry and Molecular Biosciences, The Chemistry of Life Processes Institute, The Proteomics Center of Excellence, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208, United States.
| |
Collapse
|
11
|
Abstract
In bottom-up proteomics, proteins are typically identified by enzymatic digestion into peptides, tandem mass spectrometry and comparison of the tandem mass spectra with those predicted from a sequence database for peptides within measurement uncertainty from the experimentally obtained mass. Although now decreasingly common, isolated proteins or simple protein mixtures can also be identified by measuring only the masses of the peptides resulting from the enzymatic digest, without any further fragmentation. Separation methods such as liquid chromatography and electrophoresis are often used to fractionate complex protein or peptide mixtures prior to analysis by mass spectrometry. Although the primary reason for this is to avoid ion suppression and improve data quality, these separations are based on physical and chemical properties of the peptides or proteins and therefore also provide information about them. Depending on the separation method, this could be protein molecular weight (SDS-PAGE), isoelectric point (IEF), charge at a known pH (ion exchange chromatography), or hydrophobicity (reversed phase chromatography). These separations produce approximate measurements on properties that to some extent can be predicted from amino acid sequences. In the case of molecular weight of proteins without posttranslational modifications this is straightforward: simply add the molecular weights of the amino acid residues in the protein. For IEF, charge and hydrophobicity, the order of the amino acids, and folding state of the peptide or protein also matter, but it is nevertheless possible to predict the behavior of peptides and proteins in these separation methods to a degree which renders such predictions useful. This chapter reviews the topic of using data from separation methods for identification and validation in proteomics, with special emphasis on predicting retention times of tryptic peptides in reversed-phase chromatography under acidic conditions, as this is one of the most commonly used separation methods in proteomics.
Collapse
Affiliation(s)
- Alex A Henneman
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
12
|
Zhu G, Sun L, Yang P, Dovichi NJ. On-line amino acid-based capillary isoelectric focusing-ESI-MS/MS for protein digests analysis. Anal Chim Acta 2012; 750:207-11. [PMID: 23062442 PMCID: PMC3474973 DOI: 10.1016/j.aca.2012.04.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 04/20/2012] [Accepted: 04/21/2012] [Indexed: 11/25/2022]
Abstract
Six amino acids with pIs that ranged from 3.2 to 9.7 were used as ampholytes to establish a pH gradient in capillary isoelectric focusing. This amino acid-based capillary isoelectric focusing (cIEF) was coupled with ESI-MS/MS using an electrokinetically pumped sheath-flow interface for peptide analysis. Amino acid-based isoelectric focusing generates a two-order of magnitude lower background signal than commercial ampholytes in the important m/z range of 300-1800. Good focusing was achieved for insulin receptor, which produced ~10 s peak width. For 0.1 mg mL(-1) bovine serum albumin (BSA) digests, 24±1 peptides (sequence coverage 47±4%) were identified in triplicate analysis. As expected, the BSA peptides were separated according to their pI. The concentration detection limit for the BSA digests is 7 nM and the mass detection limit is 7 fmole. A solution of six bovine protein tryptic digests spanning 5 orders of magnitude in concentration was analyzed by amino acid based cIEF-ESI-MS/MS. Five proteins with a concentration range spanning 4 orders of magnitude were identified in triplicate runs. Using amino acid based cIEF-ESI-MS/MS, 112 protein groups and 303 unique peptides were identified in triplicate runs of a RAW 264.7 cell homogenate protein digest. In comparison with ampholyte based cIEF-ESI-MS/MS, amino acid based cIEF-ESI-MS/MS produces higher resolution of five acidic peptides, much cleaner mass spectra, and higher protein spectral counts.
Collapse
Affiliation(s)
- Guijie Zhu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | |
Collapse
|
13
|
Zhao SS, Zhong X, Tie C, Chen DD. Capillary electrophoresis-mass spectrometry for analysis of complex samples. Proteomics 2012; 12:2991-3012. [DOI: 10.1002/pmic.201200221] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/10/2012] [Accepted: 07/18/2012] [Indexed: 12/20/2022]
Affiliation(s)
- Shuai Sherry Zhao
- Department of Chemistry; University of British Columbia; Vancouver BC Canada
| | - Xuefei Zhong
- Department of Chemistry; University of British Columbia; Vancouver BC Canada
| | - Cai Tie
- Department of Chemistry; University of British Columbia; Vancouver BC Canada
| | - David D.Y. Chen
- Department of Chemistry; University of British Columbia; Vancouver BC Canada
| |
Collapse
|
14
|
Chingin K, Astorga-Wells J, Pirmoradian Najafabadi M, Lavold T, Zubarev RA. Separation of Polypeptides by Isoelectric Point Focusing in Electrospray-Friendly Solution Using a Multiple-Junction Capillary Fractionator. Anal Chem 2012; 84:6856-62. [DOI: 10.1021/ac3013016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Konstantin Chingin
- Department of Medical
Biochemistry
and Biophysics, Karolinska Institutet,
Scheeles väg 2, SE-17177 Stockholm, Sweden
| | - Juan Astorga-Wells
- Department of Medical
Biochemistry
and Biophysics, Karolinska Institutet,
Scheeles väg 2, SE-17177 Stockholm, Sweden
- Biomotif AB, Stockholm,
Sweden
| | - Mohammad Pirmoradian Najafabadi
- Department of Medical
Biochemistry
and Biophysics, Karolinska Institutet,
Scheeles väg 2, SE-17177 Stockholm, Sweden
- Biomotif AB, Stockholm,
Sweden
| | | | - Roman A. Zubarev
- Department of Medical
Biochemistry
and Biophysics, Karolinska Institutet,
Scheeles väg 2, SE-17177 Stockholm, Sweden
- Science for Life Laboratory, Stockholm, Sweden
| |
Collapse
|
15
|
Improving the precision of quantitative bottom-up proteomics based on stable isotope-labeled proteins. Anal Bioanal Chem 2012; 404:1079-87. [PMID: 22535440 DOI: 10.1007/s00216-012-6007-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 03/29/2012] [Accepted: 03/30/2012] [Indexed: 12/31/2022]
Abstract
Stable isotope dilution-based quantitative proteomics with intact labeled proteins as internal standards in combination with a bottom-up approach, i.e., with quantification on the peptide level, is an established method. To explore the technical precision of this approach, calmodulin-like protein 3 was prepared in non-labeled (light) and SILAC-type labeled (heavy) form by cell-free synthesis, mixed, digested with trypsin, and analyzed by UPLC-ESI-MS. In total, 16 light/heavy peptide pair ratios were determined. Pair-wise comparison of ratios of 12 peptides selected according to S/N ratios >50 revealed that the majority exhibited ratios, which were different at a high level of statistical significance (p < 0.001). HPLC-MALDI-MS ratio data confirmed this observation, thus excluding the ionization method as a source of the observed ratio differences. Variation of the digestion time from 0.25 to 4 h showed that the light/heavy ratios of most peptides decrease with time, indicating a kinetic isotope effect leading to preferred cleavage of light calmodulin-like protein 3. The subset of peptides with statistically identical ratios resulted in an average ratio with a RSD of 1.0 %. The light/heavy ratio calculated on the basis of these peptides probably provides the most accurate molar protein ratio.
Collapse
|
16
|
Doucette AA, Tran JC, Wall MJ, Fitzsimmons S. Intact proteome fractionation strategies compatible with mass spectrometry. Expert Rev Proteomics 2012; 8:787-800. [PMID: 22087661 DOI: 10.1586/epr.11.67] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Proteome fractionation refers to separation at the level of intact proteins. Proteome fractionation may precede sample digestion and subsequent peptide-level separation and detection (i.e., bottom-up mass spectrometry [MS]). For top-down MS, proteome fractionation acts as a stand-alone separation platform, since intact proteins are directly analyzed by the mass spectrometer. Regardless of the MS identification strategy, separation of intact proteins has clear benefits as a result of decreasing sample complexity. However, this stage of the workflow also creates considerable challenges, which are generally absent from the counterpart peptide separation experiment. For example, maintaining protein solubility is a key concern before, during and after separation. To this end, surfactants such as sodium dodecyl sulfate may be employed during fractionation, so long as they are eliminated prior to MS. In this article, current strategies for proteome fractionation in a MS-compatible format are reviewed, illustrating the challenges and outlooks on this important aspect of proteomics.
Collapse
Affiliation(s)
- Alan A Doucette
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, NS, B3H 4R2, Canada.
| | | | | | | |
Collapse
|
17
|
Zhong X, Maxwell EJ, Ratnayake C, Mack S, Chen DDY. Flow-Through Microvial Facilitating Interface of Capillary Isoelectric Focusing and Electrospray Ionization Mass Spectrometry. Anal Chem 2011; 83:8748-55. [DOI: 10.1021/ac202130f] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Xuefei Zhong
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, Canada V6T 1Z1
| | - E. Jane Maxwell
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, Canada V6T 1Z1
| | - Chitra Ratnayake
- Beckman Coulter, Inc., 250 S. Kraemer Blvd., Brea, California 92822-8000, United States
| | - Scott Mack
- Beckman Coulter, Inc., 250 S. Kraemer Blvd., Brea, California 92822-8000, United States
| | - David D. Y. Chen
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, Canada V6T 1Z1
| |
Collapse
|
18
|
Stefanopoulou M, Kokoschka M, Sheldrick WS, Wolters DA. Cell response of Escherichia coli
to cisplatin-induced stress. Proteomics 2011; 11:4174-88. [DOI: 10.1002/pmic.201100203] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 07/19/2011] [Accepted: 08/04/2011] [Indexed: 11/08/2022]
|
19
|
Capriotti AL, Cavaliere C, Foglia P, Samperi R, Laganà A. Intact protein separation by chromatographic and/or electrophoretic techniques for top-down proteomics. J Chromatogr A 2011; 1218:8760-76. [PMID: 21689823 DOI: 10.1016/j.chroma.2011.05.094] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 04/13/2011] [Accepted: 05/28/2011] [Indexed: 12/26/2022]
Abstract
Mass spectrometry used in combination with a wide variety of separation methods is the principal methodology for proteomics. In bottom-up approach, proteins are cleaved with a specific proteolytic enzyme, followed by peptide separation and MS identification. In top-down approach intact proteins are introduced into the mass spectrometer. The ions generated by electrospray ionization are then subjected to gas-phase separation, fragmentation, fragment separation, and automated interpretation of mass spectrometric and chromatographic data yielding both the molecular weight of the intact protein and the protein fragmentation pattern. This approach requires high accuracy mass measurement analysers capable of separating the multi-charged isotopic cluster of proteins, such as hybrid ion trap-Fourier transform instruments (LTQ-FTICR, LTQ-Orbitrap). Front-end separation technologies tailored for proteins are of primary importance to implement top-down proteomics. This review intends to provide the state of art of protein chromatographic and electrophoretic separation methods suitable for MS coupling, and to illustrate both monodimensional and multidimensional approaches used for LC-MS top-down proteomics. In addition, some recent progresses in protein chromatography that may provide an alternative to those currently employed are also discussed.
Collapse
Affiliation(s)
- Anna Laura Capriotti
- Department of Chemistry, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | | | | | | | | |
Collapse
|
20
|
Durbin KR, Tran JC, Zamdborg L, Sweet SMM, Catherman AD, Lee JE, Li M, Kellie JF, Kelleher NL. Intact mass detection, interpretation, and visualization to automate Top-Down proteomics on a large scale. Proteomics 2011; 10:3589-97. [PMID: 20848673 DOI: 10.1002/pmic.201000177] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Applying high-throughput Top-Down MS to an entire proteome requires a yet-to-be-established model for data processing. Since Top-Down is becoming possible on a large scale, we report our latest software pipeline dedicated to capturing the full value of intact protein data in automated fashion. For intact mass detection, we combine algorithms for processing MS1 data from both isotopically resolved (FT) and charge-state resolved (ion trap) LC-MS data, which are then linked to their fragment ions for database searching using ProSight. Automated determination of human keratin and tubulin isoforms is one result. Optimized for the intricacies of whole proteins, new software modules visualize proteome-scale data based on the LC retention time and intensity of intact masses and enable selective detection of PTMs to automatically screen for acetylation, phosphorylation, and methylation. Software functionality was demonstrated using comparative LC-MS data from yeast strains in addition to human cells undergoing chemical stress. We further these advances as a key aspect of realizing Top-Down MS on a proteomic scale.
Collapse
Affiliation(s)
- Kenneth R Durbin
- Department of Chemistry, The Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Cheng C, Lu JJ, Wang X, Roberts J, Liu S. Facilitating the hyphenation of CIEF and MALDI-MS for two-dimensional separation of proteins. Electrophoresis 2010; 31:2614-21. [PMID: 20603827 DOI: 10.1002/elps.201000085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Both CIEF and MALDI-MS are frequently used in protein analysis, but hyphenation of the two has not been investigated proportionally. One of the major reasons is that the additives (such as carrier ampholytes and detergent) in CIEF severely suppress the MALDI-MS signal, which hampers the hyphenation of the two. In this paper, we develop a simple means to alleviate the above signal-suppressing effect. We first deposit 1 microL of water onto a MALDI-MS target, deliver a fraction of CIEF-separated protein (approximately 0.1 microL) to the water droplet, evaporate the solvent, add 0.5 microL of MALDI matrix to the sample spot, dry the matrix and move the target plate to a MALDI-TOF-MS for mass spectrum measurement. We optimize the droplet volume and the laser-ablation region. Under the optimized conditions, we improve the S/N by two- to tenfold. We also apply this method for 2-D separations of standard proteins and apolipoprotein A-I, a membrane protein expressed in Escherichia coli cells.
Collapse
Affiliation(s)
- Chang Cheng
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| | | | | | | | | |
Collapse
|
22
|
Vellaichamy A, Tran JC, Catherman AD, Lee JE, Kellie JF, Sweet SMM, Zamdborg L, Thomas PM, Ahlf DR, Durbin KR, Valaskovic GA, Kelleher NL. Size-sorting combined with improved nanocapillary liquid chromatography-mass spectrometry for identification of intact proteins up to 80 kDa. Anal Chem 2010; 82:1234-44. [PMID: 20073486 DOI: 10.1021/ac9021083] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite the availability of ultra-high-resolution mass spectrometers, methods for separation and detection of intact proteins for proteome-scale analyses are still in a developmental phase. Here we report robust protocols for online LC-MS to drive high-throughput top-down proteomics in a fashion similar to that of bottom-up proteomics. Comparative work on protein standards showed that a polymeric stationary phase led to superior sensitivity over a silica-based medium in reversed-phase nanocapillary LC, with detection of proteins >50 kDa routinely accomplished in the linear ion trap of a hybrid Fourier transform mass spectrometer. Protein identification was enabled by nozzle-skimmer dissociation and detection of fragment ions with <10 ppm mass accuracy for highly specific database searching using tailored software. This overall approach led to identification of proteins up to 80 kDa, with 10-60 proteins identified in single LC-MS runs of samples from yeast and human cell lines prefractionated by their molecular mass using a gel-based sieving system.
Collapse
Affiliation(s)
- Adaikkalam Vellaichamy
- Department of Chemistry, 600 South Mathews Avenue, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Mokaddem M, Gareil P, Varenne A. Online CIEF-ESI-MS in glycerol-water media with a view to hydrophobic protein applications. Electrophoresis 2010; 30:4040-8. [PMID: 19960468 DOI: 10.1002/elps.200900091] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A new online coupling of CIEF with ESI-MS has been developed in glycerol-water media. This improved protocol provides: (i) the electric continuity during the whole analysis by a discontinuous filling of the capillary with 60:40 (cm/cm) catholyte/proteins-ampholyte mixture; (ii) the use of an anticonvective medium, i.e. 30:70 glycerol/water, v/v, compatible with MS detection and as an aid to hydrophobic protein solubilization and (iii) the use of unmodified bare fused-silica capillaries, as the glycerol/water medium strongly reduces EOF. Focusing was performed in positive polarity and cathodic mobilization was achieved by both voltage and pressure application. The setup was optimized with respect to analysis time, sensitivity and precision on pI determination. The optimized anolyte and catholyte were composed of 50 mM formic acid/1 mM glutamic acid (pH 2.35) and 100 mM NH(3)/1 mM lysine (pH 10.6), respectively. The effects of ampholyte concentration, focusing time and ESI parameters were presented for model proteins and discussed. This new integrated protocol should be an easy and effective additional tool in the field of proteome analysis, providing a means for the characterization of a large number of hydrophilic and hydrophobic proteins.
Collapse
Affiliation(s)
- Meriem Mokaddem
- Laboratoire de Physicochimie des Electrolytes, Colloïdes et Sciences Analytiques, UMR CNRS-UPMC, Ecole Nationale Supérieure de Chimie de Paris, 75231 Paris, France
| | | | | |
Collapse
|
24
|
Lee JE, Kellie JF, Tran JC, Tipton JD, Catherman AD, Thomas HM, Ahlf DR, Durbin KR, Vellaichamy A, Ntai I, Marshall AG, Kelleher NL. A robust two-dimensional separation for top-down tandem mass spectrometry of the low-mass proteome. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2009; 20:2183-91. [PMID: 19747844 PMCID: PMC2830800 DOI: 10.1016/j.jasms.2009.08.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 08/01/2009] [Accepted: 08/03/2009] [Indexed: 05/13/2023]
Abstract
For fractionation of intact proteins by molecular weight (MW), a sharply improved two-dimensional (2D) separation is presented to drive reproducible and robust fractionation before top-down mass spectrometry of complex mixtures. The "GELFrEE" (i.e., gel-eluted liquid fraction entrapment electrophoresis) approach is implemented by use of Tris-glycine and Tris-tricine gel systems applied to human cytosolic and nuclear extracts from HeLa S3 cells, to achieve a MW-based fractionation of proteins from 5 to >100 kDa in 1 h. For top-down tandem mass spectroscopy (MS/MS) of the low-mass proteome (5-25 kDa), between 5 and 8 gel-elution (GE) fractions are sampled by nanocapillary-LC-MS/MS with 12 or 14.5 tesla Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometers. Single injections give about 40 detectable proteins, about half of which yield automated ProSight identifications. Reproducibility metrics of the system are presented, along with comparative analysis of protein targets in mitotic versus asynchronous cells. We forward this basic 2D approach to facilitate wider implementation of top-down mass spectrometry and a variety of other protein separation and/or characterization approaches.
Collapse
Affiliation(s)
- Ji Eun Lee
- University of Illinois Urbana–Champaign, Department of Chemistry and The Institute for Genomic Biology, Urbana, Illinois, USA
| | - John F. Kellie
- University of Illinois Urbana–Champaign, Department of Chemistry and The Institute for Genomic Biology, Urbana, Illinois, USA
| | - John C. Tran
- University of Illinois Urbana–Champaign, Department of Chemistry and The Institute for Genomic Biology, Urbana, Illinois, USA
| | - Jeremiah D. Tipton
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, USA
| | - Adam D. Catherman
- University of Illinois Urbana–Champaign, Department of Chemistry and The Institute for Genomic Biology, Urbana, Illinois, USA
| | - Haylee M. Thomas
- University of Illinois Urbana–Champaign, Department of Chemistry and The Institute for Genomic Biology, Urbana, Illinois, USA
| | - Dorothy R. Ahlf
- University of Illinois Urbana–Champaign, Department of Chemistry and The Institute for Genomic Biology, Urbana, Illinois, USA
| | - Kenneth R. Durbin
- University of Illinois Urbana–Champaign, Department of Chemistry and The Institute for Genomic Biology, Urbana, Illinois, USA
| | - Adaikkalam Vellaichamy
- University of Illinois Urbana–Champaign, Department of Chemistry and The Institute for Genomic Biology, Urbana, Illinois, USA
| | - Ioanna Ntai
- University of Illinois Urbana–Champaign, Department of Chemistry and The Institute for Genomic Biology, Urbana, Illinois, USA
| | - Alan G. Marshall
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, USA
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, USA
| | - Neil L. Kelleher
- University of Illinois Urbana–Champaign, Department of Chemistry and The Institute for Genomic Biology, Urbana, Illinois, USA
| |
Collapse
|
25
|
Hübner G, Lindner B. Separation of R-form lipopolysaccharide and lipid A by CE-Fourier-transform ion cyclotron resonance MS. Electrophoresis 2009; 30:1808-16. [DOI: 10.1002/elps.200800754] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Ramsay LM, Dickerson JA, Dovichi NJ. Attomole protein analysis by CIEF with LIF detection. Electrophoresis 2009; 30:297-302. [DOI: 10.1002/elps.200800498] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
27
|
Varenne A, Descroix S. Recent strategies to improve resolution in capillary electrophoresis—A review. Anal Chim Acta 2008. [DOI: 10.1016/j.aca.2008.08.039] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
28
|
Recent applications of capillary electrophoresis–mass spectrometry (CE–MS): CE performing functions beyond separation. Anal Chim Acta 2008; 627:3-24. [DOI: 10.1016/j.aca.2008.04.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 04/02/2008] [Accepted: 04/08/2008] [Indexed: 11/18/2022]
|
29
|
Shan L, Hribar JA, Zhou X, Anderson DJ. Gradient chromatofocusing-mass spectrometry: a new technique in protein analysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2008; 19:1132-1137. [PMID: 18539479 DOI: 10.1016/j.jasms.2008.04.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 04/02/2008] [Accepted: 04/23/2008] [Indexed: 05/26/2023]
Abstract
A new analytical technique, gradient chromatofocusing-mass spectrometry (gCF-MS), was developed employing ion-exchange high-performance liquid chromatography (HPLC) interfaced to an electrospray-quadrupole mass spectrometer in the determination of proteins. There have been few reports, if any, of a HPLC-MS technique for proteins in which the ion-exchange column is directly interfaced to the mass spectrometer. The employment of a linear pH gradient elution scheme directly interfaced to mass spectrometry is also unique in the present work. The technique was demonstrated by the separation of six proteins (carbonic anhydrase II, enolase, beta-lactoglobulin A, lactoglobulin B, soybean trypsin inhibitor, and amyloglucosidase) employing a descending linear pH gradient from pH 9 to 2.6 on a 50 mm x 2.1 mm DEAE HPLC column using volatile buffer components. A signal enhancement solution consisting of 8% formic acid in acetonitrile was pumped post-column and was mixed 1:1 with column effluent and then directed on-line into the mass spectrometer. Molecular masses of the proteins were determined within +/-0.010% to 0.033% (+/-100 to 330 ppm) with peak height total ion current detection limits of 4 to 78 pmol of injected amounts (S/N = 3). This technique is applicable to the analysis of proteins and other charged molecules.
Collapse
Affiliation(s)
- Lian Shan
- Department of Chemistry, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | | | | | | |
Collapse
|
30
|
Baidoo EEK, Benke PI, Neusüss C, Pelzing M, Kruppa G, Leary JA, Keasling JD. Capillary Electrophoresis-Fourier Transform Ion Cyclotron Resonance Mass Spectrometry for the Identification of Cationic Metabolites via a pH-Mediated Stacking-Transient Isotachophoretic Method. Anal Chem 2008; 80:3112-22. [DOI: 10.1021/ac800007q] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Yu CJ, Chang HC, Tseng WL. On-line concentration of proteins by SDS-CGE with LIF detection. Electrophoresis 2008; 29:483-90. [DOI: 10.1002/elps.200700217] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Affiliation(s)
- Tao Liu
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354
| | - Mikhail E. Belov
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354
| | - Navdeep Jaitly
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354
| | - Wei-Jun Qian
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354
| | - Richard D. Smith
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354
| |
Collapse
|
33
|
Haselberg R, de Jong GJ, Somsen GW. Capillary electrophoresis–mass spectrometry for the analysis of intact proteins. J Chromatogr A 2007; 1159:81-109. [PMID: 17560583 DOI: 10.1016/j.chroma.2007.05.048] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 05/01/2007] [Accepted: 05/15/2007] [Indexed: 10/23/2022]
Abstract
Developments in the fields of protein chemistry, proteomics and biotechnology have increased the demand for suitable analytical techniques for the analysis of intact proteins. In 1989, capillary electrophoresis (CE) was combined with mass spectrometry (MS) for the first time and its potential usefulness for the analysis of intact (i.e. non-digested) proteins was shown. This article provides an overview of the applications of CE-MS within the field of intact protein analysis. The principles of the applied CE modes and ionization techniques used for CE-MS of intact proteins are shortly described. It is shown that separations are predominantly carried out by capillary zone electrophoresis and capillary isoelectric focusing, whereas electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI) are the most popular ionization techniques used for interfacing. The combination of CE with inductively coupled plasma (ICP) MS for the analysis of metalloproteins is also discussed. The various CE-MS combinations are systematically outlined and tables provide extensive overviews of the applications of each technique for intact protein analysis. Selected examples are given to illustrate the usefulness of the CE-MS techniques. Examples include protein isoform assignment, single cell analysis, metalloprotein characterization, proteomics and biomarker screening. Finally, chip-based electrophoresis combined with MS is shortly treated and some of its applications are described. It is concluded that CE-MS represents a powerful tool for the analysis of intact proteins yielding unique separations and information.
Collapse
Affiliation(s)
- Rob Haselberg
- Department of Biomedical Analysis, Utrecht University, 3508 TB Utrecht, The Netherlands.
| | | | | |
Collapse
|
34
|
Thongboonkerd V. Recent progress in urinary proteomics. Proteomics Clin Appl 2007; 1:780-91. [PMID: 21136734 DOI: 10.1002/prca.200700035] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2007] [Indexed: 11/08/2022]
Abstract
Urinary proteomics has become one of the most attractive subdisciplines in clinical proteomics as the urine is an ideal source for the discovery of noninvasive biomarkers for kidney and nonkidney diseases. This field has been growing rapidly as indicated by >80 original research articles on urinary proteome analyses appearing since 2001, of which 28 (approximately 1/3) had been published within the year 2006. The most common technologies used in recent urinary proteome studies remain gel-based methods (1-DE, 2-DE and 2-D DIGE), whereas LC-MS/MS, SELDI-TOF MS, and CE-MS are other commonly used techniques. In addition, mass spectrometric immunoassay (MSIA) and array technology have also been applied. This review provides an extensive but concise summary of recent applications of urinary proteomics. Proteomic analyses of dialysate and ultrafiltrate fluids derived from renal replacement therapy (or artificial kidney) are also discussed.
Collapse
Affiliation(s)
- Visith Thongboonkerd
- Medical Molecular Biology Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand. ,
| |
Collapse
|
35
|
Frommberger M, Zürbig P, Jantos J, Krahn T, Mischak H, Pich A, Just I, Schmitt-Kopplin P, Schiffer E. Peptidomic analysis of rat urine using capillary electrophoresis coupled to mass spectrometry. Proteomics Clin Appl 2007; 1:650-60. [PMID: 21136720 DOI: 10.1002/prca.200700195] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Indexed: 11/10/2022]
Abstract
We have established and validated a protocol for the peptidomic analysis of rat urine using CE coupled to MS (CE-MS). In the first experiments, the reproducibility of the CE-MS set-up and of the established preparation procedure were assessed. To establish a first rat urinary peptidome map, samples were also analyzed using CE-FT-ICR. The subsequent analysis of independent samples from two different strains (WISTAR and CD) indicated strain-specific differences, which were validated in a blinded assessment. MS/MS revealed the presence of specific fragments from well-known urinary rat peptides, such as collagens, alpha-1-antitrypsin, and serum albumin. The CE-MS-based peptidomics platform may provide novel insights into body fluids of animal models, such as rat or mice. Together with peptide identification, the technology appears to be an excellent, complimentary, and non-invasive tool to analyze toxicological or other (patho)physiological effects of pharmaceutical compounds in animal models.
Collapse
Affiliation(s)
- Moritz Frommberger
- Institute of Ecological Chemistry, GSF - National Research Center for Environment and Health, Neuherberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Sniehotta M, Schiffer E, Zürbig P, Novak J, Mischak H. CE – a multifunctional application for clinical diagnosis. Electrophoresis 2007; 28:1407-17. [PMID: 17427258 DOI: 10.1002/elps.200600581] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
CE has been used widely as an analytical tool with high separation power taking advantage of size, charge-to-size ratio, or isoelectric point of various analytes. In combination with detection methods, such as UV absorption, electrochemical detection, fluorescence, or mass spectrometry (MS), it allows the separation and detection of inorganic and organic ions, as well as complex compounds, such as polypeptides, nucleic acids, including PCR amplicons from viruses or bacteria. Recent interest in identification of biomarkers of diseases using body fluids leads to development of CE-MS techniques. These applications allowed identification of new potential biomarkers for clinical diagnosis and monitoring of therapeutic interventions. In this report, we present a technical overview of various CE techniques and discuss their applications in clinical medicine.
Collapse
Affiliation(s)
- Maike Sniehotta
- Mosaiques Diagnostics and Therapeutics AG, Hannover, Germany
| | | | | | | | | |
Collapse
|
37
|
Kustos I, Kocsis B, Kilár F. Bacterial outer membrane protein analysis by electrophoresis and microchip technology. Expert Rev Proteomics 2007; 4:91-106. [PMID: 17288518 DOI: 10.1586/14789450.4.1.91] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Outer membrane proteins are indispensable components of bacterial cells and participate in several relevant functions of the microorganisms. Changes in the outer membrane protein composition might alter antibiotic sensitivity and pathogenicity. Furthermore, the effects of various factors on outer membrane protein expression, such as antibiotic treatment, mutation, changes in the environment, lipopolysaccharide modification and biofilm formation, have been analyzed. Traditionally, the outer membrane protein profile determination was performed by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Converting this technique to capillary electrophoresis format resulted in faster separation, lower sample consumption and automation. Coupling capillary electrophoresis with mass spectrometry enabled the fast identification of bacterial proteins, while immediate quantitative analysis permitted the determination of up- and downregulation of certain outer membrane proteins. Adapting capillary electrophoresis to microchip format ensured a further ten- to 100-fold decrease in separation time. Application of different separation techniques combined with various sensitive detector systems has ensured further opportunities in the field of high-throughput bacterial protein analysis. This review provides an overview using selected examples of outer membrane proteins and the development and application of the electrophoretic and microchip technologies for the analysis of these proteins.
Collapse
Affiliation(s)
- Ildikó Kustos
- University of Pécs, Department of Medical Microbiology & Immunology, Faculty of Medicine, Pécs, Hungary.
| | | | | |
Collapse
|
38
|
Schiffer E, Mischak H, Novak J. High resolution proteome/peptidome analysis of body fluids by capillary electrophoresis coupled with MS. Proteomics 2006; 6:5615-27. [PMID: 16991199 DOI: 10.1002/pmic.200600230] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
All organisms contain thousands of proteins and peptides in their body fluids. A deeper insight into the functional relevance of these polypeptides under different physiological and pathophysiological conditions and the discovery of specific peptide biomarkers would greatly enhance both diagnosis and therapy of specific diseases. Proteomic methods can provide means to accomplish this grand medical vision. In this review, we will focus on the potential use of proteome analysis for clinical applications, such as disease diagnosis and assessment of response to therapy. We focus on CE coupled with MS (CE-MS) and review in detail different aspects of CE-MS coupling and the results obtained using CE-MS analysis of clinically relevant samples. We also discuss clinical applications of the technology for the diagnosis of renal diseases, urogenital cancer, and arteriosclerosis as well as monitoring the responses to therapeutic interventions.
Collapse
Affiliation(s)
- Eric Schiffer
- Mosaiques Diagnostics & Therapeutics AG, Hanover, Germany
| | | | | |
Collapse
|
39
|
Simpson DC, Ahn S, Pasa-Tolic L, Bogdanov B, Mottaz HM, Vilkov AN, Anderson GA, Lipton MS, Smith RD. Using size exclusion chromatography-RPLC and RPLC-CIEF as two-dimensional separation strategies for protein profiling. Electrophoresis 2006; 27:2722-33. [PMID: 16732621 PMCID: PMC1769308 DOI: 10.1002/elps.200600037] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Bottom-up proteomics (analyzing peptides that result from protein digestion) has demonstrated capability for broad proteome coverage and good throughput. However, due to incomplete sequence coverage, this approach is not ideally suited to the study of modified proteins. The modification complement of a protein can best be elucidated by analyzing the intact protein. 2-DE, typically coupled with the analysis of peptides that result from in-gel digestion, is the most frequently applied protein separation technique in MS-based proteomics. As an alternative, numerous column-based liquid phase techniques, which are generally more amenable to automation, are being investigated. In this work, the combination of size-exclusion chromatography (SEC) fractionation with RPLC-Fourier-transform ion cyclotron resonance (FTICR)-MS is compared with the combination of RPLC fractionation with CIEF-FTICR-MS for the analysis of the Shewanella oneidensis proteome. SEC-RPLC-FTICR-MS allowed the detection of 297 proteins, as opposed to 166 using RPLC-CIEF-FTICR-MS, indicating that approaches based on LC-MS provide better coverage. However, there were significant differences in the sets of proteins detected and both approaches provide a basis for accurately quantifying changes in protein and modified protein abundances.
Collapse
Affiliation(s)
| | | | - Ljiljana Pasa-Tolic
- Corresponding Author: Ljiljana Pasa-Tolic, Telephone:
+1 509 376 8859, Facsimile: +1 509 376
2303, Electronic Mail:
| | | | | | | | | | | | | |
Collapse
|
40
|
Yu W, Li Y, Deng C, Zhang X. Comprehensive two-dimensional separation in coupling of reversed-phase chromatography with capillary isoelectric focusing followed by MALDI-MS identification using on-target digestion for intact protein analysis. Electrophoresis 2006; 27:2100-10. [PMID: 16736452 DOI: 10.1002/elps.200500820] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A coupling of capillary RP LC as the first dimension with CIEF as the second dimension followed by MALDI-MS identification was demonstrated. Based on 2-D separation system developed by our group (Electrophoresis 2003, 24, 3289-3295), this paper focused on incorporating tryptic digestion into the top-down proteomics methodology, retaining the benefits of the top-down method. Hydrophobic layer of packing-material C18 coated with SE-30 on the MALDI-target surface was used to permit the CIEF fractions to be easily concentrated and free of ampholytes using on-target washing. Following the removal of ampholytes, on-target tryptic digestion was performed to generate PMF for protein identification. Using the proteome analytical strategy, we could obtain not only intact protein pI value but also PMF for accurate protein identification. The feasibility of the strategy was first tested with a mixture of model proteins with different pIs and molecular masses. Proteome of rat liver tissue extracts was further analyzed using the system for verification. The results have shown that the system is effective for complex proteomic analysis.
Collapse
Affiliation(s)
- Wenjia Yu
- Department of Chemistry & Research Center of Proteome, Fudan University, Shanghai, PR China
| | | | | | | |
Collapse
|
41
|
Monton MRN, Terabe S. Sample enrichment techniques in capillary electrophoresis: Focus on peptides and proteins. J Chromatogr B Analyt Technol Biomed Life Sci 2006; 841:88-95. [PMID: 16716769 DOI: 10.1016/j.jchromb.2006.04.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Revised: 04/17/2006] [Accepted: 04/20/2006] [Indexed: 01/03/2023]
Abstract
Compared to chromatography-based techniques, the concentration limits of detection (CLOD) associated with capillary electrophoresis are worse, and these have largely precluded their use in many practical applications. To overcome this limitation, researchers from various disciplines have exerted tremendous efforts toward developing strategies for increasing the concentration sensitivities of capillary electrophoresis (CE) systems, via the so-called sample enrichment techniques. This review highlights selected developments and advances in this area as applied to the analyses of proteins and peptides in the last 5 years.
Collapse
Affiliation(s)
- Maria Rowena N Monton
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
| | | |
Collapse
|
42
|
Abstract
Diabetes is a common disease worldwide and can cause several complications, leading to systemic derangements and end-organ damage. Despite blood sugar control and adequate therapy with currently available drugs, diabetic complications remain a serious issue in clinical practice, indicating that our knowledge of diabetes and its complications is only at the tip of the iceberg. Better understanding of its pathogenesis and pathophysiology is crucial to achieve better therapeutic outcomes and to prevent its complications. This review provides an overview of proteomics and introduces proteomic technologies commonly used for diabetes research. Recent proteomic studies for the investigation of diabetes and its complications are summarized. Finally, the future perspectives for the field of proteomics in diabetes research are discussed.
Collapse
Affiliation(s)
- Visith Thongboonkerd
- a Medical Molecular Biology Unit, Office for Research and Development, Faculty of Medicine at Siriraj Hospital, Mahidol University, 12th Floor, Adulyadej Vikrom Building, Siriraj Hospital, 2 Prannok Road, Bangkoknoi, Bangkok, 10700, Thailand.
| |
Collapse
|
43
|
Han MJ, Lee SY. The Escherichia coli proteome: past, present, and future prospects. Microbiol Mol Biol Rev 2006; 70:362-439. [PMID: 16760308 PMCID: PMC1489533 DOI: 10.1128/mmbr.00036-05] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteomics has emerged as an indispensable methodology for large-scale protein analysis in functional genomics. The Escherichia coli proteome has been extensively studied and is well defined in terms of biochemical, biological, and biotechnological data. Even before the entire E. coli proteome was fully elucidated, the largest available data set had been integrated to decipher regulatory circuits and metabolic pathways, providing valuable insights into global cellular physiology and the development of metabolic and cellular engineering strategies. With the recent advent of advanced proteomic technologies, the E. coli proteome has been used for the validation of new technologies and methodologies such as sample prefractionation, protein enrichment, two-dimensional gel electrophoresis, protein detection, mass spectrometry (MS), combinatorial assays with n-dimensional chromatographies and MS, and image analysis software. These important technologies will not only provide a great amount of additional information on the E. coli proteome but also synergistically contribute to other proteomic studies. Here, we review the past development and current status of E. coli proteome research in terms of its biological, biotechnological, and methodological significance and suggest future prospects.
Collapse
Affiliation(s)
- Mee-Jung Han
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | | |
Collapse
|
44
|
Kolch W, Neusüss C, Pelzing M, Mischak H. Capillary electrophoresis-mass spectrometry as a powerful tool in clinical diagnosis and biomarker discovery. MASS SPECTROMETRY REVIEWS 2005; 24:959-977. [PMID: 15747373 DOI: 10.1002/mas.20051] [Citation(s) in RCA: 219] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Proteome analysis is now emerging as key technology for deciphering biological processes and the discovery of biomarkers for diseases from tissues and body fluids. The complexity and wide dynamic range of protein expression poses a formidable challenge to both peptide separation technologies and mass spectrometry (MS). Here we review the efforts that have been undertaken to date, focussing on capillary electrophoresis coupled to mass spectrometry (CE-MS). We discuss CE-MS from an application point of view evaluating its merits and vices in regard to biomarker discovery and clinical applications. As examples, we present the use of CE-MS for the determination of protein patterns in urine, serum, and other body fluids. Finally, the benefits and limitations of CE-MS for the analysis of proteins in clinical samples are discussed against the background of alternative technologies.
Collapse
Affiliation(s)
- Walter Kolch
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, United Kingdom
| | | | | | | |
Collapse
|
45
|
Astorga-Wells J, Vollmer S, Bergman T, Jörnvall H. Microfluidic systems and proteomics: Applications of the electrocapture technology to protein and peptide analysis. Anal Biochem 2005; 345:10-7. [PMID: 15993835 DOI: 10.1016/j.ab.2005.04.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Revised: 04/20/2005] [Accepted: 04/23/2005] [Indexed: 11/17/2022]
Affiliation(s)
- Juan Astorga-Wells
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden.
| | | | | | | |
Collapse
|
46
|
Stutz H. Advances in the analysis of proteins and peptides by capillary electrophoresis with matrix-assisted laser desorption/ionization and electrospray-mass spectrometry detection. Electrophoresis 2005; 26:1254-90. [PMID: 15776483 DOI: 10.1002/elps.200410130] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
High throughput, outstanding certainty in peptide/protein identification, exceptional resolution, and quantitative information are essential pillars in proteome research. Capillary electrophoresis (CE) coupled to mass spectrometry (MS) has proven to meet these requirements. Soft ionization techniques, such as matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI), have paved the way for the story of success of CE-MS in the analysis of biomolecules and both approaches are subject of discussion in this article. Meanwhile, CE-MS is far away from representing a homogeneous field. Therefore the review will cover a vast area including the coupling of different modes of CE (capillary zone electrophoresis, capillary isoelectric foscusing, capillary electrochromatography, micellar electrokinetic chromatography, nonaqueous capillary electrophoresis) to MS as well as on-line preconcentration techniques (transient capillary isotachophoresis, solid-phase extraction, membrane preconcentration) applied to compensate for restricted detection sensitivity. Special attention is given to improvements in interfacing, namely addressing nanospray and coaxial sheath liquid design. Peptide mapping, collision-induced dissociation with subsequent tandem MS, and amendments in mass accuracy of instruments improve information validity gained from MS data. With 2-D on-line coupling of liquid chromatography (LC) and CE a further topic will be discussed. A special section is dedicated to recent attempts in establishing CE-ESI-MS in proteomics, in the clinical and diagnostic field, and in the food sector.
Collapse
Affiliation(s)
- Hanno Stutz
- University of Salzburg, Department of Molecular Biology, Division of Chemistry, Salzburg, Austria.
| |
Collapse
|
47
|
Abstract
The present review encompasses ca. 65 years of history of developments in electrokinetic separations, taking as a starting point the year 1937, i.e. the official launching of Tiselius' moving boundary electrophoresis (MBE). The 1950s have been particularly rich in introducing novel methodologies in zone electrophoresis (ZE), thus bringing about the decline of MBE. Among them of extraordinary importance was the development of electrophoresis on agar gels coupled to immuno-diffusion at right angles, which brought a big revolution not only in biochemistry but also in clinical chemistry. Also the by now forgotten paper electrophoresis was a landmark in separation science, in that it implemented, in its "fingerprinting" version, the first genuine two-dimensional (2D) map, coupling orthogonally a charge to a hydrophobic scale separation, while permitting for the first time the detection of spot mutations, i.e. single amino acid replacements in a polypeptide chain, that paved the way to modern genetic analysis. Equally important was the introduction of starch-block electrophoresis, that brought about the notion of sieving and the first discontinuous buffers, refined, in the 1960s, by Ornstein and Davies with their classical papers combining multiphasic buffer systems to polyacrylamide gels, that went down to history as disc-electrophoresis. The 1960s also contributed with two fundamental techniques, isoelectric focusing (IEF) and sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) that permitted to discriminate proteins solely on the basis of surface charge and molecular mass, respectively. The 1970s gave other fundamental contributions, such as isotachophoresis, the first example of a fully instrumental approach to electrophoresis, both in its analytical and preparative version (Tachophor and Tachofrac), 2D maps combining IEF to SDS-PAGE at right angles and silver staining techniques, that incremented sensitivity by 3 orders of magnitude. The 1980s generated immobilized pH gradients and capillary zone electrophoresis (CZE), two big players that dominated the electrokinetic horizon for all the 1990s and still in vigorous use in present days. The review terminates with a glimpse, in the third millennium, onto microchip technology and hyphenated techniques, notably direct interfacing of various electrophoretic separation methods with mass spectrometry (MS).
Collapse
MESH Headings
- Electrophoresis/economics
- Electrophoresis/methods
- Electrophoresis, Capillary/economics
- Electrophoresis, Capillary/methods
- Electrophoresis, Disc/economics
- Electrophoresis, Disc/methods
- Electrophoresis, Gel, Two-Dimensional/economics
- Electrophoresis, Gel, Two-Dimensional/methods
- Electrophoresis, Polyacrylamide Gel/economics
- Electrophoresis, Polyacrylamide Gel/methods
- Isoelectric Focusing/economics
- Isoelectric Focusing/methods
- Silver Staining
Collapse
Affiliation(s)
- Pier Giorgio Righetti
- University of Verona, Department of Agricultural and Industrial Biotechnology, Strada Le Grazie 15, Verona 37134, Italy.
| |
Collapse
|
48
|
Fliser D, Wittke S, Mischak H. Capillary electrophoresis coupled to mass spectrometry for clinical diagnostic purposes. Electrophoresis 2005; 26:2708-16. [PMID: 15966014 DOI: 10.1002/elps.200500187] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The introduction of fast, sensitive, and robust techniques for proteomic analysis into clinical practice represents a major step toward a new diagnostic approach of body fluids. In addition, proteomics emerges as a key technology for the discovery of disease biomarkers in various body fluids. However, even in relatively protein-deprived body fluids such as urine, the complexity and wide dynamic range of protein expression pose a considerable challenge to both separation and identification technologies. In the present review we discuss from a clinical point-of-view recent advances of the use of proteomics in clinical diagnosis as well as therapy evaluation. We focus on capillary electrophoresis coupled to mass spectrometry (CE-MS) and discuss CE-MS from an application point of view evaluating its merits and vices with regard to biomarker discovery. This review further presents examples of clinical applications of CE-MS for detection and identification of biomarkers in urine.
Collapse
|
49
|
Millea KM, Kass IJ, Cohen SA, Krull IS, Gebler JC, Berger SJ. Evaluation of multidimensional (ion-exchange/reversed-phase) protein separations using linear and step gradients in the first dimension. J Chromatogr A 2005; 1079:287-98. [PMID: 16038315 DOI: 10.1016/j.chroma.2005.04.048] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The performance characteristics of multidimensional liquid chromatographic protein separations were evaluated using on-line electrospray mass detection, and a novel workflow for automated LC/MS data processing. Two-dimensional ion exchange/reversed-phase LC separations of Escherichia coli cytosol were conducted using either a continuous linear or discontinuous step gradient in the first dimension. Chromatographic profiles of the top 100 most abundant components were characterized to assess overall separation reproducibility within each mode, and to characterize differences in component distribution between the two modes of operation. Analysis of the resulting data indicates that multidimensional separations of complex protein mixtures can be done reproducibly. Furthermore, under the conditions employed within this study, a linear first dimension gradient was more effective at fractionating the protein mixture, distributing fewer major components to multiple second dimension cycles than an equivalent step gradient. The application of on line mass spectrometry, and automated processing of the resulting data, proved valuable for producing component level analysis of multidimensional protein separations.
Collapse
Affiliation(s)
- Kevin M Millea
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
50
|
Liu HX, Yao ZJ. Synthesis of a tetra-deuterium-labeled derivative of potent and selective anticancer agent AA005. Tetrahedron Lett 2005. [DOI: 10.1016/j.tetlet.2005.03.123] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|