1
|
Schey GL, Buttery PH, Hildebrandt ER, Novak SX, Schmidt WK, Hougland JL, Distefano MD. MALDI-MS Analysis of Peptide Libraries Expands the Scope of Substrates for Farnesyltransferase. Int J Mol Sci 2021; 22:ijms222112042. [PMID: 34769472 PMCID: PMC8584866 DOI: 10.3390/ijms222112042] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
Protein farnesylation is a post-translational modification where a 15-carbon farnesyl isoprenoid is appended to the C-terminal end of a protein by farnesyltransferase (FTase). This modification typically causes proteins to associate with the membrane and allows them to participate in signaling pathways. In the canonical understanding of FTase, the isoprenoids are attached to the cysteine residue of a four-amino-acid CaaX box sequence. However, recent work has shown that five-amino-acid sequences can be recognized, including the pentapeptide CMIIM. This paper describes a new systematic approach to discover novel peptide substrates for FTase by combining the combinatorial power of solid-phase peptide synthesis (SPPS) with the ease of matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS). The workflow consists of synthesizing focused libraries containing 10-20 sequences obtained by randomizing a synthetic peptide at a single position. Incubation of the library with FTase and farnesyl pyrophosphate (FPP) followed by mass spectrometric analysis allows the enzymatic products to be clearly resolved from starting peptides due to the increase in mass that occurs upon farnesylation. Using this method, 30 hits were obtained from a series of libraries containing a total of 80 members. Eight of the above peptides were selected for further evaluation, reflecting a mixture that represented a sampling of diverse substrate space. Six of these sequences were found to be bona fide substrates for FTase, with several meeting or surpassing the in vitro efficiency of the benchmark sequence CMIIM. Experiments in yeast demonstrated that proteins bearing these sequences can be efficiently farnesylated within live cells. Additionally, a bioinformatics search showed that a variety of pentapeptide CaaaX sequences can be found in the mammalian genome, and several of these sequences display excellent farnesylation in vitro and in yeast cells, suggesting that the number of farnesylated proteins within mammalian cells may be larger than previously thought.
Collapse
Affiliation(s)
- Garrett L. Schey
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Peter H. Buttery
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Emily R. Hildebrandt
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; (E.R.H.); (W.K.S.)
| | - Sadie X. Novak
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA; (S.X.N.); (J.L.H.)
| | - Walter K. Schmidt
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; (E.R.H.); (W.K.S.)
| | - James L. Hougland
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA; (S.X.N.); (J.L.H.)
- BioInspired Syracuse, Syracuse University, Syracuse, NY 13244, USA
| | - Mark D. Distefano
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA;
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA;
- Correspondence:
| |
Collapse
|
2
|
Willis RA, Ramachandiran V, Shires JC, Bai G, Jeter K, Bell DL, Han L, Kazarian T, Ugwu KC, Laur O, Contreras-Alcantara S, Long DL, Altman JD. Production of Class II MHC Proteins in Lentiviral Vector-Transduced HEK-293T Cells for Tetramer Staining Reagents. Curr Protoc 2021; 1:e36. [PMID: 33539685 PMCID: PMC7880703 DOI: 10.1002/cpz1.36] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Class II major histocompatibility complex peptide (MHC-IIp) multimers are precisely engineered reagents used to detect T cells specific for antigens from pathogens, tumors, and self-proteins. While the related Class I MHC/peptide (MHC-Ip) multimers are usually produced from subunits expressed in E. coli, most Class II MHC alleles cannot be produced in bacteria, and this has contributed to the perception that MHC-IIp reagents are harder to produce. Herein, we present a robust constitutive expression system for soluble biotinylated MHC-IIp proteins that uses stable lentiviral vector-transduced derivatives of HEK-293T cells. The expression design includes allele-specific peptide ligands tethered to the amino-terminus of the MHC-II β chain via a protease-cleavable linker. Following cleavage of the linker, HLA-DM is used to catalyze efficient peptide exchange, enabling high-throughput production of many distinct MHC-IIp complexes from a single production cell line. Peptide exchange is monitored using either of two label-free methods, native isoelectric focusing gel electrophoresis or matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry of eluted peptides. Together, these methods produce MHC-IIp complexes that are highly homogeneous and that form the basis for excellent MHC-IIp multimer reagents. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Lentivirus production and expression line creation Support Protocol 1: Six-well assay for estimation of production cell line yield Support Protocol 2: Universal ELISA for quantifying proteins with fused leucine zippers and His-tags Basic Protocol 2: Cultures for production of Class II MHC proteins Basic Protocol 3: Purification of Class II MHC proteins by anti-leucine zipper affinity chromatography Alternate Protocol 1: IMAC purification of His-tagged Class II MHC Support Protocol 3: Protein concentration measurements and adjustments Support Protocol 4: Polishing purification by anion-exchange chromatography Support Protocol 5: Estimating biotinylation percentage by streptavidin precipitation Basic Protocol 4: Peptide exchange Basic Protocol 5: Analysis of peptide exchange by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry Alternate Protocol 2: Native isoelectric focusing to validate MHC-II peptide loading Basic Protocol 6: Multimerization Basic Protocol 7: Staining cells with Class II MHC tetramers.
Collapse
Affiliation(s)
- Richard A Willis
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia
- Yerkes National Primate Research Center, Atlanta, Georgia
| | - Vasanthi Ramachandiran
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia
- Yerkes National Primate Research Center, Atlanta, Georgia
| | - John C Shires
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia
- Yerkes National Primate Research Center, Atlanta, Georgia
| | - Ge Bai
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia
- Yerkes National Primate Research Center, Atlanta, Georgia
| | - Kelly Jeter
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia
- Yerkes National Primate Research Center, Atlanta, Georgia
| | - Donielle L Bell
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia
- Yerkes National Primate Research Center, Atlanta, Georgia
| | - Lixia Han
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia
- Yerkes National Primate Research Center, Atlanta, Georgia
| | - Tamara Kazarian
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia
- Yerkes National Primate Research Center, Atlanta, Georgia
| | - Kyla C Ugwu
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia
- Yerkes National Primate Research Center, Atlanta, Georgia
| | - Oskar Laur
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
- Emory Custom Cloning Core Facility, Emory University School of Medicine, Atlanta, Georgia
| | - Susana Contreras-Alcantara
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia
- Yerkes National Primate Research Center, Atlanta, Georgia
| | - Dale L Long
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia
- Yerkes National Primate Research Center, Atlanta, Georgia
| | - John D Altman
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia
- Yerkes National Primate Research Center, Atlanta, Georgia
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
- Center for AIDS Research, Emory University, Atlanta, Georgia
| |
Collapse
|
3
|
Tang HY, Speicher DW. Experimental Assignment of Disulfide-Bonds in Purified Proteins. ACTA ACUST UNITED AC 2019; 96:e86. [PMID: 30747488 DOI: 10.1002/cpps.86] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The formation of disulfide bonds in proteins is an important post-translational modification that is critical for stabilizing the native structures of proteins, particularly proteins exposed to oxidizing environments. For this reason, most cysteines in secreted proteins or protein domains on the surface of the cell are in disulfides, whereas most cysteines in the cytoplasm are in the unmodified -SH form. Disulfide linkages must be experimentally determined, as they cannot be predicted from amino acid sequence. These assignments provide insights into three-dimensional structure and contribute to the understanding of structural-functional relationships. This unit details a series of protocols that have been applied successfully to map disulfide bonds in proteins. The general strategy involves chemical or proteolytic cleavage of the protein followed by chromatographic separation of the resultant peptides. Mass spectrometry is used to identify disulfide-containing peptides and determine sites of disulfide linkage. A partial reduction and alkylation strategy for mapping disulfide linkages in peptides with multiple disulfide bonds is also presented. © 2019 by John Wiley & Sons, Inc.
Collapse
|
4
|
Tarhonskaya H, Tumber A, Kawamura A, Schofield CJ. In Vitro Enzyme Assays for JmjC-Domain-Containing Lysine Histone Demethylases (JmjC-KDMs). CURRENT PROTOCOLS IN PHARMACOLOGY 2018; 80:3.15.1-3.15.12. [PMID: 30040204 DOI: 10.1002/cpph.34] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2024]
Abstract
Histone modifications, including lysine methylation marks on histone tails, modulate the accessibility of genes for transcription. Changes in histone tail methylation patterns can cause transcriptional activation or repression. The dynamic regulation of lysine methylation patterns is enabled by two distinct groups of enzymes: histone methyltransferases (KMTs) and demethylases (KDMs). The Jumonji C (JmjC) domain-containing lysine histone demethylases (JmjC-KDMs) alter the methylation levels of histone tails by removing tri-, di-, or mono-methylation marks. Because JmjC-KDMs activities are dysfunctional in cancer and other clinical conditions, they are targets for drug discovery. Efforts are underway to develop high-throughput assays capable of identifying selective, small-molecule inhibitors of KDMs. Detailed in this unit are protocols for mass spectrometry-based and formaldehyde dehydrogenase-coupled enzyme-based assays that can be used to identify inhibitors of JmjC-KDMs. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Hanna Tarhonskaya
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Anthony Tumber
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Akane Kawamura
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Hedrick VE, LaLand MN, Nakayasu ES, Paul LN. Digestion, Purification, and Enrichment of Protein Samples for Mass Spectrometry. ACTA ACUST UNITED AC 2015; 7:201-222. [PMID: 26331527 DOI: 10.1002/9780470559277.ch140272] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Victoria E. Hedrick
- Bindley Bioscience Center, Purdue Proteomics Facility, Purdue University; West Lafayette Indiana
| | - Mercedes N. LaLand
- Bindley Bioscience Center, Purdue Proteomics Facility, Purdue University; West Lafayette Indiana
| | - Ernesto S. Nakayasu
- Bindley Bioscience Center, Purdue Proteomics Facility, Purdue University; West Lafayette Indiana
| | - Lake N. Paul
- Bindley Bioscience Center, Purdue Proteomics Facility, Purdue University; West Lafayette Indiana
| |
Collapse
|
6
|
Mahmoodi MM, Rashidian M, Zhang Y, Distefano MD. Application of meta- and para-Phenylenediamine as Enhanced Oxime Ligation Catalysts for Protein Labeling, PEGylation, Immobilization, and Release. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2015; 79:15.4.1-15.4.28. [PMID: 25640893 PMCID: PMC4357315 DOI: 10.1002/0471140864.ps1504s79] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Meta- and para-phenylenediamines have recently been shown to catalyze oxime and hydrazone ligation reactions at rates much faster than aniline, a commonly used catalyst. Here, we demonstrate how these new catalysts can be used in a generally applicable procedure for fluorescent labeling, PEGylation, immobilization, and release of aldehyde- and ketone- functionalized proteins. The chemical orthogonality of phenylenediamine-catalyzed oxime ligation versus copper-catalyzed click reaction has also been harnessed for simultaneous dual labeling of bifunctional proteins containing both aldehyde and alkyne groups in high yield.
Collapse
Affiliation(s)
| | - Mohammad Rashidian
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota
| | - Yi Zhang
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota
| | - Mark D Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|