1
|
Li L, Mo Q, Wan Y, Zhou Y, Li W, Li W. Antimicrobial peptide AP2 ameliorates Salmonella Typhimurium infection by modulating gut microbiota. BMC Microbiol 2025; 25:64. [PMID: 39910418 PMCID: PMC11796240 DOI: 10.1186/s12866-025-03776-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 01/20/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Endogenous antimicrobial peptides and proteins are essential for shaping and maintaining a healthy gut microbiota, contributing to anti-inflammatory responses and resistance to pathogen colonization. Salmonella enterica subsp. enterica serovar Typhimurium (ST) infection is one of the most frequently reported bacterial diseases worldwide. Manipulation of the gut microbiota through exogenous antimicrobial peptides may protect against ST colonization and improve clinical outcomes. RESULTS This study demonstrated that oral administration of the antimicrobial peptide AP2 (2 µg /mouse), an optimized version of native apidaecin IB (AP IB), provided protective effects against ST infection in mice. These effects were evidenced by reduced ST-induced body weight loss and lower levels of serum inflammatory cytokines. A 16 S rRNA-based analysis of the cecal microbiota revealed that AP2 significantly modulated the gut microbiota, increasing the relative abundance of Bifidobacterium while decreasing that of Akkermansia at the genus level. Furthermore, the transplantation of fecal microbiota from AP2-treated donor mice, rather than from Control mice, significantly reduced cecal damage caused by ST and decreased the concentration of ST by one order of magnitude after infection. CONCLUSIONS These findings reveal a novel mechanism by which exogenous antimicrobial peptides mitigate Salmonella Typhimurium infection through the modulation of gut microbiota.
Collapse
Affiliation(s)
- Lianglan Li
- Department of Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qiufen Mo
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, College of Animal Sciences, Zhejiang University, Hangzhou, China
- College of Food and Health, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yi Wan
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yuanhao Zhou
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Weiqin Li
- Department of Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Weifen Li
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, College of Animal Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Ameer N, Hanif M, Abbas G, Azeem M, Mahmood K, Shahwar D, Khames A, Eissa EM, Daihom B. Treatment of Inflammatory Bowel Disease by Using Curcumin-Containing Self-Microemulsifying Delivery System: Macroscopic and Microscopic Analysis. Pharmaceutics 2024; 16:1406. [PMID: 39598530 PMCID: PMC11597465 DOI: 10.3390/pharmaceutics16111406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 11/29/2024] Open
Abstract
Background: The lack of local availability for drugs in the colon can be addressed by preparing a self-microemulsifying drug delivery system (SMEDDS) of curcumin (Cur) which is ultimately used for the treatment of inflammatory bowel disease (IBD). Methods: From preformulation studies, Lauroglycol FCC (oil), Tween 80 (surfactant), Transcutol HP (co-surfactant), and Avicel (solid carrier) were selected for the preparation of blank liquid and solid Cur-loaded SMEDDSs (S-Cur-SMEDDSs). Results: Z-average size (12.36 ± 0.04 nm), zeta potential (-14.7 ± 0.08 mV), and polydispersity index (PDI) (0.155 ± 0.036) showed a comparative droplet surface area and charge of both SMEDDSs. The physicochemical stability of Cur in S-Cur-SMEDDSs was confirmed via FTIR, DSC, TGA, and XRD analyses, while morphological analysis through SEM and atomic force microscopy (AFM) confirmed Cur loading into SMEDDSs with an increased surface roughness root mean square (RMS) of 11.433 ± 0.91 nm, greater than the blank SMEDDS. Acute toxicity studies with an organ weight ratio and % hemolysis of 15.65 ± 1.32% at a high concentration of 600 mM showed that S-Cur-SMEDDSs are safe at a medium dose (0.2-0.8 g/kg/day). The excellent in vitro antioxidant (68.54 ± 1.42%) and anti-inflammatory properties (56.47 ± 1.17%) of S-Cur-SMEDDS proved its therapeutic efficacy for IBD. Finally, S-Cur-SMEDDS significantly improved acetic acid-induced IBD in albino rats through a reduction in the disease activity index (DAI) and macroscopic ulcer score (MUS) from 4.15 ± 0.21 to 1.62 ± 0.12 at 15 mg/kg/day dose, as confirmed via histopathological assay. Conclusions: Based on the above findings, S-Cur-SMEDDS appears to be a stable, less toxic, and more efficacious alternative for Cur delivery with strong competence in treating IBD.
Collapse
Affiliation(s)
- Nabeela Ameer
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University Multan, Multan 60800, Pakistan; (N.A.); (M.A.); (D.S.)
- Department of Pharmacy, Multan University of Science and Technology, Multan 60800, Pakistan
| | - Muhammad Hanif
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University Multan, Multan 60800, Pakistan; (N.A.); (M.A.); (D.S.)
| | - Ghulam Abbas
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Muhammad Azeem
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University Multan, Multan 60800, Pakistan; (N.A.); (M.A.); (D.S.)
| | - Khalid Mahmood
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Dure Shahwar
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University Multan, Multan 60800, Pakistan; (N.A.); (M.A.); (D.S.)
| | - Ahmed Khames
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia;
| | - Essam Mohamed Eissa
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt;
| | - Baher Daihom
- Department of Pharmaceutics and Industrial Pharmacy, Cairo University, Cairo 11562, Egypt;
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, University of Texas at Austin, Austin, TX78712, USA
| |
Collapse
|
3
|
Lee JY, Kim JH, Choi JM, Noh BW, Kim HY, Cho EJ. Anti-Inflammatory Effects of Artemisia argyi H. Fermented by Lactobacillus plantarum in the LPS-Induced RAW 264.7 Cells and DSS-Induced Colitis Model. Foods 2024; 13:998. [PMID: 38611304 PMCID: PMC11011819 DOI: 10.3390/foods13070998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Ulcerative colitis is a chronic inflammatory disease caused by abnormal immune responses in the intestinal mucosa and gut microorganisms. Unlike other mugworts, Artemisia argyi H. (A. argyi H.) enhances antioxidant, anti-inflammatory, and anticancer effects, but the improvement effects against gut inflammation have not yet been reported. Therefore, this study aimed to confirm the alleviation of the inflammatory state in the gut by A. argyi H. fermented with Lactobacillus plantarum (FAA), using lipopolysaccharide (LPS)-induced RAW 264.7 cells and dextran sulfate sodium (DSS)-induced colitis models. In vitro, FAA (10, 50, 100, and 200 μg/mL) was pretreated into RAW 264.7 cells, followed with LPS (100 ng/mL), which induced the cell damage. Meanwhile, in vivo, FAA (100, 200 mg/kg/day) was orally administered into 6-week-old C57BL/6N mice for 3 weeks. During the last week of FAA administration, 2.5% DSS was used to induce colitis. The results showed that FAA reduced the production of nitric oxide (p < 0.0001), tumor necrosis factor (TNF)-α, interleukin (IL)-6 (p < 0.0001), and IL-1β (p < 0.0001) in the LPS-induced RAW 264.7 cells. Moreover, in the DSS-induced colitis model, FAA alleviated clinical symptoms (p < 0.001), inhibited the inflammatory state by reducing the production of TNF-α (p < 0.0001) and interferon-γ in intestinal immune cells (p < 0.0001), and strengthened the intestinal barrier by increasing the number of goblet cells (p < 0.0001). Furthermore, the anti-inflammatory effects were confirmed by the alleviation of histological damage (p < 0.001) and down-regulation of the expression of inflammatory proteins (TLR4, p < 0.0001; MyD88, p < 0.0001; Cox-2, p < 0.0001). These results suggest the potential of FAA as a dietary ingredient for preventing inflammation in the gut.
Collapse
Affiliation(s)
- Ji Yun Lee
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Republic of Korea; (J.Y.L.); (J.-H.K.); (B.W.N.)
| | - Ji-Hyun Kim
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Republic of Korea; (J.Y.L.); (J.-H.K.); (B.W.N.)
| | - Ji Myung Choi
- Department of Food and Nutrition, Kyungsung University, Busan 48434, Republic of Korea;
- Department of Food Science and Nutrition, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Byeong Wook Noh
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Republic of Korea; (J.Y.L.); (J.-H.K.); (B.W.N.)
| | - Hyun Young Kim
- Department of Food Science and Nutrition, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Eun Ju Cho
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Republic of Korea; (J.Y.L.); (J.-H.K.); (B.W.N.)
| |
Collapse
|
4
|
Silva I, Gomes M, Alípio C, Vitoriano J, Estarreja J, Mendes P, Pinto R, Mateus V. Effect of Carbamylated Erythropoietin in a Chronic Model of TNBS-Induced Colitis. Biomedicines 2023; 11:2497. [PMID: 37760938 PMCID: PMC10526162 DOI: 10.3390/biomedicines11092497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/31/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a public health issue with a growing prevalence, which can be divided into two phenotypes, namely Crohn's disease (CD) and ulcerative colitis (UC). Currently, used therapy is based only on symptomatic and/or palliative pharmacological approaches. These treatments seek to induce and maintain remission of the disease and ameliorate its secondary effects; however, they do not modify or reverse the underlying pathogenic mechanism. Therefore, it is essential to investigate new potential treatments. Carbamylated erythropoietin (cEPO) results from the modification of the Erythropoietin (EPO) molecule, reducing cardiovascular-related side effects from the natural erythropoiesis stimulation. cEPO has been studied throughout several animal models, which demonstrated an anti-inflammatory effect by decreasing the production of several pro-inflammatory cytokines. AIM This study aimed to evaluate the efficacy and safety of cEPO in a chronic TNBS-induced colitis model in rodents. METHODS Experimental colitis was induced by weekly intrarectal (IR) administrations of 1% TNBS for 5 weeks in female CD-1 mice. Then, the mice were treated with 500 IU/kg/day or 1000 IU/kg/day of cEPO through intraperitoneal injections for 14 days. RESULTS cEPO significantly reduced the concentration of alkaline phosphatase (ALP), fecal hemoglobin, tumor necrosis factor (TNF)-α, and interleukin (IL)-10. Also, it demonstrated a beneficial influence on the extra-intestinal manifestations, with the absence of significant side effects of its use. CONCLUSION Considering the positive results from cEPO in this experiment, it may arise as a new possible pharmacological approach for the future management of IBD.
Collapse
Affiliation(s)
- Inês Silva
- H&TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (I.S.); (M.G.); (C.A.); (J.E.); (P.M.)
- iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, 1349-017 Lisbon, Portugal;
| | - Mário Gomes
- H&TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (I.S.); (M.G.); (C.A.); (J.E.); (P.M.)
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1349-017 Lisbon, Portugal
| | - Carolina Alípio
- H&TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (I.S.); (M.G.); (C.A.); (J.E.); (P.M.)
| | - Jéssica Vitoriano
- H&TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (I.S.); (M.G.); (C.A.); (J.E.); (P.M.)
| | - João Estarreja
- H&TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (I.S.); (M.G.); (C.A.); (J.E.); (P.M.)
| | - Priscila Mendes
- H&TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (I.S.); (M.G.); (C.A.); (J.E.); (P.M.)
| | - Rui Pinto
- iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, 1349-017 Lisbon, Portugal;
- Joaquim Chaves Saúde, Laboratório de Análises Clínicas, Miraflores, 1495-069 Algés, Portugal
| | - Vanessa Mateus
- H&TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (I.S.); (M.G.); (C.A.); (J.E.); (P.M.)
- iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, 1349-017 Lisbon, Portugal;
| |
Collapse
|
5
|
Fan YM, Wei YY, Wang HR, Yu-Ga, Zhang YN, Hao Z. Inhibitory effect of Portulaca oleracea L. aqueous extract and juice on NLRP3 inflammasome activation in an ulcerative colitis mouse model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:86380-86394. [PMID: 37402916 DOI: 10.1007/s11356-023-28365-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 06/17/2023] [Indexed: 07/06/2023]
Abstract
Portulaca oleracea L. (PO) is an edible and medicinal plant used for treating gastrointestinal diseases. However, the effects of PO on ulcerative colitis (UC) and underlying mechanisms remain unclear. This study investigated the effects of PO aqueous extract (POE) and PO juice (PJ) on dextran sulfate sodium (DSS)-induced UC in a mouse model and attempted to unravel their underlying mechanisms. The results revealed that PJ contains more bioactive compounds and has more overlapping targets with UC than POE. Both POE and PJ effectively reduced Disease Activity Index scores and inflammatory cell infiltration in the UC mouse model, but PJ had a better effect than POE. Furthermore, PJ inhibited pyroptosis by decreasing the expression of the NLRP3 inflammasome, while also repairing the dysfunction of the intestinal barrier by upregulating the expression of tight junction proteins. Therefore, based on the study findings, we concluded that PJ can improve DSS-induced UC and may suppress pyroptosis by interfering with the activation of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Yi-Meng Fan
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultura University, Beijing, 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, People's Republic of China
- National Center of Technology Innovation for Medicinal function of Food, National Food and Strategic Reserves Administration, Beijing, 100193, China
| | - Yuan-Yuan Wei
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultura University, Beijing, 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, People's Republic of China
- National Center of Technology Innovation for Medicinal function of Food, National Food and Strategic Reserves Administration, Beijing, 100193, China
| | - Hui-Ru Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultura University, Beijing, 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, People's Republic of China
- National Center of Technology Innovation for Medicinal function of Food, National Food and Strategic Reserves Administration, Beijing, 100193, China
| | - Yu-Ga
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultura University, Beijing, 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, People's Republic of China
- National Center of Technology Innovation for Medicinal function of Food, National Food and Strategic Reserves Administration, Beijing, 100193, China
| | - Yan-Nan Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultura University, Beijing, 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, People's Republic of China
- National Center of Technology Innovation for Medicinal function of Food, National Food and Strategic Reserves Administration, Beijing, 100193, China
| | - Zhihui Hao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultura University, Beijing, 100193, China.
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, People's Republic of China.
- National Center of Technology Innovation for Medicinal function of Food, National Food and Strategic Reserves Administration, Beijing, 100193, China.
| |
Collapse
|
6
|
Zhang J, Cao L, Gao A, Ren R, Yu L, Li Q, Liu Y, Qi W, Hou Y, Sui W, Su G, Zhang Y, Zhang C, Zhang M. E3 ligase RNF99 negatively regulates TLR-mediated inflammatory immune response via K48-linked ubiquitination of TAB2. Cell Death Differ 2023; 30:966-978. [PMID: 36681779 PMCID: PMC10070438 DOI: 10.1038/s41418-023-01115-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/23/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023] Open
Abstract
Innate immunity is the first line to defend against pathogenic microorganisms, and Toll-like receptor (TLR)-mediated inflammatory responses are an essential component of innate immunity. However, the regulatory mechanisms of TLRs in innate immunity remain unperfected. We found that the expression of E3 ligase Ring finger protein 99 (RNF99) decreased significantly in peripheral blood monocytes from patients infected with Gram negative bacteria (G-) and macrophages stimulated by TLRs ligands, indicating the role of RNF99. We also demonstrated for the first time, the protective role of RNF99 against LPS-induced septic shock and dextran sodium sulfate (DSS)-induced colitis using RNF99 knockout mice (RNF99-/-) and bone marrow-transplanted mice. In vitro experiments revealed that RNF99 deficiency significantly promoted TLR-mediated inflammatory cytokine expression and activated the NF-κB and MAPK pathways in macrophages. Mechanistically, in both macrophages and HEK293 cell line with TLR4 stably transfection, RNF99 interacted with and degraded TAK1-binding protein (TAB) 2, a regulatory protein of the kinase TAK1, via the lysine (K)48-linked ubiquitin-proteasomal pathway on lysine 611 of TAB2, which further regulated the TLR-mediated inflammatory response. Overall, these findings indicated the physiological significance of RNF99 in macrophages in regulating TLR-mediated inflammatory reactions. It provided new insight into TLRs signal transduction, and offered a novel approach for preventing bacterial infections, endotoxin shock, and other inflammatory ills.
Collapse
Affiliation(s)
- Jie Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lei Cao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Amy Gao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ruiqing Ren
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Liwen Yu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qian Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yapeng Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wenqian Qi
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yonghao Hou
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wenhai Sui
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Guohai Su
- Cardiovascular Disease Research Center, Jinan Central Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Yun Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Cardiovascular Disease Research Center, Jinan Central Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Cheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
- Cardiovascular Disease Research Center, Jinan Central Hospital, Shandong First Medical University, Jinan, Shandong, China.
| | - Meng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
- Cardiovascular Disease Research Center, Jinan Central Hospital, Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
7
|
Kim HR, Noh EM, Kim SY. Anti-inflammatory effect and signaling mechanism of 8-shogaol and 10-shogaol in a dextran sodium sulfate-induced colitis mouse model. Heliyon 2023; 9:e12778. [PMID: 36647352 PMCID: PMC9840358 DOI: 10.1016/j.heliyon.2022.e12778] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Ethnopharmacological relevance Ginger (Zingiber officinale Roscoe) has been used for food and applied in Ayurvedic medicine in India for thousands of years. With a reputation for strong anti-inflammatory properties, it has been used for to treat colds, migraines, nausea, arthritis, and high blood pressure in China and Southeast Asia. The physiological activity of ginger is attributed to its functional components, including gingerol and shogaol, and their derivatives. Aim of the study We aimed to investigate the effects of 8- and 10-shogaol and their bioactive signaling mechanisms in a dextran sodium sulfate (DSS)-induced colitis mouse model. The anti-colitis efficacy of 6-, 8-, and 10-derivatives of gingerol and shogaol was comparatively analyzed. Materials and methods Colitis was induced by providing mice with drinking water containing 5% DSS (w/v) for 8 days. The 6-, 8-, and 10-derivatives of gingerol and shogaol were orally administered for two weeks at a dose of 30 mg/kg. Changes in body weight and disease activity index were measured. The levels of pro-inflammatory cytokines, iNOS and COX-2, as well as the phosphorylation of NF-κB were analyzed using ELISA, PCR, or western blotting. Mucin expression and mRNA levels were measured using alcian blue staining and PCR, respectively. The tight-junction-associated proteins occludin and ZO-1 were assessed using immunohistological staining. Results The 6-, 8-, and 10-derivatives of gingerol and shogaol exhibited anti-inflammatory effects by regulating NF-κB signaling. Among the compounds administered, 10-shogaol was the most effective against DSS-induced inflammation. Comparative analysis of the chemical structure showed that shogaol, a dehydrated analog of gingerol, was more effective. 6- and 10-shogaol showed similar effects on DSS-induced morphological changes in the colonic mucus layer, mucin expression, and tight junction proteins. Conclusions 6-, 8-, and 10-Gingerol and 6-, 8-, and 10-shogaol significantly improved the clinical symptoms and intestinal epithelial barrier damage in DSS-induced colitis in mice. The derivatives effectively inhibited DSS-induced inflammation through the regulation of NF-κB signaling. Moreover, 10-shogaol showed the most potent anti-inflammatory effect among the six compounds used in this study. The results indicate that 8- and 10-shogaol, both main ingredients in ginger, may serve as therapeutic candidates for the treatment of colitis.
Collapse
Affiliation(s)
| | - Eun-Mi Noh
- Corresponding author. Jeonju AgroBio-Materials Institute, 111-27 Wonjangdong-gil, Deokjin-gu, Jeonju, 54810, Republic of Korea.
| | | |
Collapse
|
8
|
Zhang L, Ye C, Li P, Li C, Shu W, Zhao Y, Wang X. ADSCs stimulated by VEGF-C alleviate intestinal inflammation via dual mechanisms of enhancing lymphatic drainage by a VEGF-C/VEGFR-3-dependent mechanism and inhibiting the NF-κB pathway by the secretome. Stem Cell Res Ther 2022; 13:448. [PMID: 36064450 PMCID: PMC9442958 DOI: 10.1186/s13287-022-03132-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 08/11/2022] [Indexed: 11/30/2022] Open
Abstract
Background Adipose-derived stem cells (ADSCs) have provided promising applications for Crohn’s disease (CD). However, the practical efficacy of ADSCs remains controversial, and their mechanism is still unclear. Based on the pathogenesis of dysregulated immune responses and abnormal lymphatic alterations in CD, vascular endothelial growth factor-C (VEGF-C) is thought to be a favourable growth factor to optimize ADSCs. We aimed to investigate the efficacy of VEGF-C-stimulated ADSCs and their dual mechanisms in both inhibiting inflammation “IN” and promoting inflammation “OUT” in the intestine. Methods Human stem cells isolated from adipose tissues were identified, pretreated with or without 100 ng/ml VEGF-C and analysed for the secretion of cell culture supernatants in vitro. Lymphatic endothelial cells (LECs) were treated with ADSCs-conditioned medium or co-cultured with ADSCs and VEGF-C stimulated ADSCs. Changes in LECs transmigration, and VEGF-C/VEGFR-3 mRNA levels were assessed by transwell chamber assay and qRT–PCR. ADSCs and VEGF-C-stimulated ADSCs were intraperitoneally injected into mice with TNBS-induced chronic colitis. ADSCs homing and lymphatic vessel density (LVD) were evaluated by immunofluorescence staining. Lymphatic drainage was assessed using Evans blue. Cytokines and growth factors expression was detected respectively by ELISA and qRT–PCR. The protein levels of VEGF-C/VEGFR-3-mediated downstream signals and the NF-κB pathway were assayed by western blot. Faecal microbiota was measured by 16S rRNA sequencing. Results ADSCs stimulated with VEGF-C released higher levels of growth factors (VEGF-C, TGF-β1, and FGF-2) and lower expression of cytokines (IFN-γ and IL-6) in cell supernatants than ADSCs in vitro (all P < 0.05). Secretome released by VEGF-C stimulated ADSCs exhibited a stronger LEC migratory capability and led to elevated VEGF-C/VEGFR-3 expression, but these effects were markedly attenuated by VEGFR-3 inhibitor. VEGF-C-stimulated ADSCs homing to the inflamed colon and mesenteric lymph nodes (MLNs) can exert stronger efficacy in improving colitis symptoms, reducing inflammatory cell infiltration, and significantly enhancing lymphatic drainage. The mRNA levels and protein concentrations of anti-inflammatory cytokines and growth factors were markedly increased with decreased proinflammatory cytokines in the mice treated with VEGF-C-stimulated ADSCs. Systemic administration of VEGF-C-stimulated ADSCs upregulated the colonic VEGF-C/VEGFR-3 pathway and activated downstream AKT and ERK phosphorylation signalling, accompanied by decreased NF-κB p65 expression. A higher abundance of faecal p-Bacteroidetes and lower p-Firmicutes were detected in mice treated with VEGF-C-stimulated ADSCs (all P < 0.05). Conclusion VEGF-C-stimulated ADSCs improve chronic intestinal inflammation by promoting lymphatic drainage and enhancing paracrine signalling via activation of VEGF-C/VEGFR-3-mediated signalling and inhibition of the NF-κB pathway. Our study may provide a new insight into optimizing ADSCs treatment and investigating potential mechanisms in CD. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03132-3.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Chen Ye
- Medical College of Soochow University, Suzhou, 215000, Jiangsu Province, China
| | - Peng Li
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Chuanding Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Weigang Shu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yujie Zhao
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Xiaolei Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
9
|
Zhou N, Wu N, Yao Y, Chen S, Xu M, Yin Z, Zhao Y, Tu Y. Anti-inflammatory effects of tripeptide WLS on TNF-α-induced HT-29 cells and DSS-induced colitis in mice. Food Funct 2022; 13:9496-9512. [PMID: 35993870 DOI: 10.1039/d2fo01235a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inflammatory bowel disease is a chronic disease of the intestinal tract, which is related to increased levels of various inflammatory mediators. This study aims to explore the anti-inflammatory mechanism of small molecular peptide WLS and its alleviating effect on inflammatory bowel disease (IBD). In TNF-α-induced HT-29 cells, WLS inhibited IL-8 secretion, decreased gene expression of pro-inflammatory cytokines IL-8, IL-6, IL-1β, and TNF-α, and inhibited the activation of MAPK/NF-κB signaling pathways. In the dextran sulfate sodium salt (DSS) induced colitis mouse model, WLS inhibited weight loss and disease activity index scores, increased colon length, improved colon histopathology, inhibited secretion of IL-6 and TNF-α in the colon, and down-regulated gene expression of pro-inflammatory cytokines (IL-6, TNF-α, IL-1β, IFN-γ, IL-17A). This study revealed that WLS was a novel small molecule peptide with anti-inflammatory activity and may be a potential candidate for the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Na Zhou
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China. tygzy1212@.jxau.edu.cn.,Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China.,Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Na Wu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China. tygzy1212@.jxau.edu.cn.,Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China.,Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yao Yao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China. tygzy1212@.jxau.edu.cn.,Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China.,Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shuping Chen
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China. tygzy1212@.jxau.edu.cn.,Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China.,Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Mingsheng Xu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China. tygzy1212@.jxau.edu.cn.,Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China.,Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhongping Yin
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China. tygzy1212@.jxau.edu.cn.,Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China.,Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yan Zhao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China. tygzy1212@.jxau.edu.cn.,Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China.,Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yonggang Tu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China. tygzy1212@.jxau.edu.cn.,Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China.,Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
10
|
Kautzman AM, Mobulakani JMF, Marrero Cofino G, Quenum AJI, Cayarga AA, Asselin C, Fortier LC, Ilangumaran S, Menendez A, Ramanathan S. Interleukin 15 in murine models of colitis. Anat Rec (Hoboken) 2022; 306:1111-1130. [PMID: 35899872 DOI: 10.1002/ar.25044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 11/09/2022]
Abstract
Inflammatory bowel diseases (IBDs) are characterized by abnormal, non-antigen specific chronic inflammation of unknown etiology. Genome-wide association studies show that many IBD genetic susceptibility loci map to immune function genes and compelling evidence indicate that environmental factors play a critical role in IBD pathogenesis. Clinical and experimental evidence implicate the pro-inflammatory cytokine IL-15 in the pathogenesis of IBD. IL-15 and IL-15α expression is increased in the inflamed mucosa of IBD patients. IL-15 contributes to the maintenance of different cell subsets in the intestinal mucosa. However, very few studies have addressed the role of IL-15 in pre-clinical models of colitis. In this study, we use three well-characterized models of experimental colitis to determine the contribution of IL-15 to pathological intestinal inflammation.
Collapse
Affiliation(s)
- Alicia Molina Kautzman
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | - Gisela Marrero Cofino
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | - Anny Armas Cayarga
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Claude Asselin
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada.,CRCHUS, Sherbrooke, Quebec, Canada
| | - Louis-Charles Fortier
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada.,CRCHUS, Sherbrooke, Quebec, Canada
| | - Subburaj Ilangumaran
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada.,CRCHUS, Sherbrooke, Quebec, Canada
| | - Alfredo Menendez
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada.,CRCHUS, Sherbrooke, Quebec, Canada
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada.,CRCHUS, Sherbrooke, Quebec, Canada
| |
Collapse
|
11
|
Chemically Induced Colitis-Associated Cancer Models in Rodents for Pharmacological Modulation: A Systematic Review. J Clin Med 2022; 11:jcm11102739. [PMID: 35628865 PMCID: PMC9146029 DOI: 10.3390/jcm11102739] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023] Open
Abstract
Animal models for colitis-associated colorectal cancer (CACC) represent an important tool to explore the mechanistic basis of cancer-related inflammation, providing important evidence that several inflammatory mediators play specific roles in the initiation and perpetuation of colitis and CACC. Although several original articles have been published describing the CACC model in rodents, there is no consensus about the induction method. This review aims to identify, summarize, compare, and discuss the chemical methods for the induction of CACC through the PRISMA methodology. METHODS We searched MEDLINE via the Pubmed platform for studies published through March 2021, using a highly sensitive search expression. The inclusion criteria were only original articles, articles where a chemically-induced animal model of CACC is described, preclinical studies in vivo with rodents, and articles published in English. RESULTS Chemically inducible models typically begin with the administration of a carcinogenic compound (as azoxymethane (AOM) or 1,2-dimethylhydrazine (DMH)), and inflammation is caused by repeated cycles of colitis-inducing agents (such as 2,4,6-trinitrobenzenesulfonic acid (TNBS) or dextran sulfate sodium (DSS)). The strains mostly used are C57BL/6 and Balb/c with 5-6 weeks. To characterize the preclinical model, the parameters more used include body weight, stool consistency and morbidity, inflammatory biomarkers such as tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β, angiogenesis markers such as proliferating cell nuclear antigen (PCNA), marker of proliferation Ki-67, and caspase 3, the presence of ulcers, thickness or hyperemia in the colon, and histological evaluation of inflammation. CONCLUSION The AOM administration seems to be important to the CACC induction method, since the carcinogenic effect is achieved with just one administration. DSS has been the more used inflammatory agent; however, the TNBS contribution should be more studied, since it allows a reliable, robust, and a highly reproducible animal model of intestinal inflammation.
Collapse
|
12
|
Chronic Experimental Model of TNBS-Induced Colitis to Study Inflammatory Bowel Disease. Int J Mol Sci 2022; 23:ijms23094739. [PMID: 35563130 PMCID: PMC9105049 DOI: 10.3390/ijms23094739] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 01/14/2023] Open
Abstract
Background: Inflammatory bowel disease (IBD) is a world healthcare problem. In order to evaluate the effect of new pharmacological approaches for IBD, we aim to develop and validate chronic trinitrobenzene sulfonic acid (TNBS)-induced colitis in mice. Methods: Experimental colitis was induced by the rectal administration of multiple doses of TNBS in female CD-1 mice. The protocol was performed with six experimental groups, depending on the TNBS administration frequency, and two control groups (sham and ethanol groups). Results: The survival rate was 73.3% in the first three weeks and, from week 4 until the end of the experimental protocol, the mice’s survival remained unaltered at 70.9%. Fecal hemoglobin presented a progressive increase until week 4 (5.8 ± 0.3 µmol Hg/g feces, p < 0.0001) compared with the ethanol group, with no statistical differences to week 6. The highest level of tumor necrosis factor-α was observed on week 3; however, after week 4, a slight decrease in tumor necrosis factor-α concentration was verified, and the level was maintained until week 6 (71.3 ± 3.3 pg/mL and 72.7 ± 3.6 pg/mL, respectively). Conclusions: These findings allowed the verification of a stable pattern of clinical and inflammation signs after week 4, suggesting that the chronic model of TNBS-induced colitis develops in 4 weeks.
Collapse
|
13
|
A Review on the Immunomodulatory Mechanism of Acupuncture in the Treatment of Inflammatory Bowel Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8528938. [PMID: 35075366 PMCID: PMC8783701 DOI: 10.1155/2022/8528938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/01/2021] [Accepted: 12/28/2021] [Indexed: 12/15/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease with a high prevalence and canceration rate. The immune disorder is one of the recognized mechanisms. Acupuncture is widely used to treat patients with IBD. In recent years, an increasing number of studies have proven the effectiveness of acupuncture in the treatment of IBD, and some progress has been made in the mechanism. In this paper, we reviewed the studies related to acupuncture for IBD and focused on the immunomodulatory mechanism. We found that acupuncture could regulate the innate and adaptive immunity of IBD patients in many ways. Acupuncture exerts innate immunomodulatory effects by regulating intestinal epithelial barrier, toll-like receptors, NLRP3 inflammasomes, oxidative stress, and endoplasmic reticulum stress and exerts adaptive immunomodulation by regulating the balance of Th17/Treg and Th1/Th2 cells. In addition, acupuncture can also regulate intestinal flora.
Collapse
|
14
|
Zhou Y, Chen S, Gu W, Sun X, Wang L, Tang L. Sinomenine hydrochloride ameliorates dextran sulfate sodium-induced colitis in mice by modulating the gut microbiota composition whilst suppressing the activation of the NLRP3 inflammasome. Exp Ther Med 2021; 22:1287. [PMID: 34630642 PMCID: PMC8461516 DOI: 10.3892/etm.2021.10722] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/02/2021] [Indexed: 12/13/2022] Open
Abstract
Sinomenine is a pure alkaloid that can be isolated from the root of Sinomenium acutum and has been found to exert anti-inflammatory and immunosuppressive effects. The present study investigated the effects of sinomenine hydrochloride (SIN) on inflammation and the gut microbiota composition in the colon of mouse models of dextran sulfate sodium (DSS)-induced colitis. DSS-induced mice colitis was established by treating the mice with drinking water containing 3% (w/v) DSS for 7 days. The disease activity index of each mouse was calculated on a daily basis. All mice were sacrificed on day 11, then the weight of their spleen and length of their colons were measured. The histological analysis was measured by hematoxylin-eosin staining. Oral administration of SIN (100 mg/kg/day) attenuated the DSS-induced increases in the disease activity indices and spleen indices, DSS-induced shortening of the colon length and histological damage. In addition, reverse transcription-quantitative PCR data showed that SIN treatment effectively regulated the expression of inflammatory mediators, specifically by suppressing the expression of proinflammatory gene (TNF-α, IL-6 and inducible nitric oxide synthase) whilst increasing those associated with inhibiting inflammation (IL-10 and arginine 1). Gut microbiota analysis was conducted using 16S ribosomal DNA sequencing. The results revealed that SIN improved bacterial community homeostasis and diversity, which were damaged by DSS. Furthermore, western blotting showed that the activation of the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome was markedly suppressed by SIN treatment. In conclusion, these results indicated that SIN may ameliorate experimental colitis by modulating the gut microbiota composition and suppressing the activation of the NLRP3 inflammasome in mice. Overall, these findings suggested a broad protective effect of SIN in treating inflammatory gut diseases, including ulcerative colitis.
Collapse
Affiliation(s)
- Yan Zhou
- Central Laboratory, The Affiliated Hospital of Nanjing Medical University, Changzhou No. 2 People's Hospital, Changzhou, Jiangsu 213003, P.R. China.,Department of Gastrointestinal Surgery, The Affiliated Hospital of Nanjing Medical University, Changzhou No. 2 People's Hospital, Changzhou, Jiangsu 213003, P.R. China
| | - Shuai Chen
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Nanjing Medical University, Changzhou No. 2 People's Hospital, Changzhou, Jiangsu 213003, P.R. China
| | - Wenxian Gu
- Department of Pathology, The Affiliated Hospital of Nanjing Medical University, Changzhou No. 2 People's Hospital, Changzhou, Jiangsu 213003, P.R. China
| | - Xiao Sun
- Central Laboratory, The Affiliated Hospital of Nanjing Medical University, Changzhou No. 2 People's Hospital, Changzhou, Jiangsu 213003, P.R. China
| | - Linxiao Wang
- Central Laboratory, The Affiliated Hospital of Nanjing Medical University, Changzhou No. 2 People's Hospital, Changzhou, Jiangsu 213003, P.R. China
| | - Liming Tang
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Nanjing Medical University, Changzhou No. 2 People's Hospital, Changzhou, Jiangsu 213003, P.R. China
| |
Collapse
|
15
|
Wang B, Gong Z, Zhan J, Yang L, Zhou Q, Yuan X. Xianglian Pill Suppresses Inflammation and Protects Intestinal Epithelial Barrier by Promoting Autophagy in DSS Induced Ulcerative Colitis Mice. Front Pharmacol 2021; 11:594847. [PMID: 33584273 PMCID: PMC7872966 DOI: 10.3389/fphar.2020.594847] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/21/2020] [Indexed: 01/22/2023] Open
Abstract
Xianglian pill (XLP) is a typical traditional Chinese herbal medicine prescription composed of Coptidis Rhizoma and Aucklandiae Radix. It has been used to treat gastrointestinal disease for centuries. In the present study, the potential mechanisms of XLP in the treatment of ulcerative colitis (UC) were predicted by integrative pharmacology-based approach. Then, the main compounds of XLP were detected by liquid chromatography-mass spectrometry (LC-MS/MS). Finally, we verified the mechanism of XLP in the treatment of UC in a dextran sulfate sodium (DSS) model. C57BL/6 mice were randomly divided into the control group, DSS group, 5-aminosalicylic acid (5-ASA) group which was used as the positive drug control, XLP low, medium, and high dose group, with 10 mice per group. Except for the control group, acute colitis model was induced in the other mice by administering 3% DSS for consecutive 7 days. Mice in 5-ASA and XLP groups were administered with 5-ASA (50 mg/kg) or XLP (0.8, 1.6, 3.2 g/kg) via oral gavage once per day respectively. Body wight and disease activity index were assay during drug intervention. On day 8, all animals in this experiment were sacrificed and colon tissues were collected for analysis after measurement of the length. The results showed that XLP alleviate DSS -induced acute colitis in mice, including inhibition the secretion of pro-inflammatory cytokines, repairing the dysfunction of intestinal epithelial barrier, enhanced autophagy, and blocked the activation of PI3K/Akt/mTOR pathway. Furthermore, inhibiting autophagy by 3-methyladenine attenuated the protective effects of XLP on colitis. The underlying mechanism may be that Xianglian pill promote autophagy by blocking the activation of PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Bingyu Wang
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Zhiqiang Gong
- College of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, China
| | - Jingyu Zhan
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Lei Yang
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Quanyu Zhou
- Department of Emergency, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Xingxing Yuan
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| |
Collapse
|
16
|
Song X, Qiao L, Yan S, Chen Y, Dou X, Xu C. Preparation, characterization, and in vivo evaluation of anti-inflammatory activities of selenium nanoparticles synthesized by Kluyveromyces lactis GG799. Food Funct 2021; 12:6403-6415. [PMID: 34057171 DOI: 10.1039/d1fo01019k] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Selenium (Se) is an essential micronutrient that has implications in human diseases, including inflammatory bowel disease (IBD), especially with respect to Se deficiencies. Recently, selenium nanoparticles (SeNPs) have attracted significant attention due to their diversity of biological activities and unique advantages including low toxicity and high biological availability. In this study, an eco-friendly, efficient and low-cost method for synthesis of SeNPs by Kluyveromyces lactis GG799 (K. lactis GG799) was established, and the SeNPs were investigated for their physicochemical properties and anti-inflammatory activities in vivo. K. lactis GG799 was able to successfully transform sodium selenite into bright-red SeNPs with particle sizes of 80 and 150 nm and the nanoparticles accumulated intracellularly. Upon isolation, the SeNPs were found to be mainly capped by proteins and polysaccharides by components analysis. Dietary supplementation with 0.6 mg kg-1 Se (in the form of biogenic SeNPs) effectively attenuated dextran sulphate sodium (DSS)-induced ulcerative colitis (UC) in mice by alleviating oxidative stress and intestinal inflammation. These findings suggested that SeNPs synthesized by K. lactis GG799 may be a promising and safe Se supplement for the prevention and treatment of IBD.
Collapse
Affiliation(s)
- Xiaofan Song
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| | - Lei Qiao
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| | - Shuqi Yan
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| | - Yue Chen
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| | - Xina Dou
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| | - Chunlan Xu
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| |
Collapse
|
17
|
Zhao Z, Su Z, Liang P, Liu D, Yang S, Wu Y, Ma L, Feng J, Zhang X, Wu C, Huang J, Cui J. USP38 Couples Histone Ubiquitination and Methylation via KDM5B to Resolve Inflammation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002680. [PMID: 33240782 PMCID: PMC7675183 DOI: 10.1002/advs.202002680] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/24/2020] [Indexed: 05/15/2023]
Abstract
Chromatin modifications, such as histone acetylation, ubiquitination, and methylation, play fundamental roles in maintaining chromatin architecture and regulating gene transcription. Although their crosstalk in chromatin remodeling has been gradually uncovered, the functional relationship between histone ubiquitination and methylation in regulating immunity and inflammation remains unclear. Here, it is reported that USP38 is a novel histone deubiquitinase that works together with the histone H3K4 modifier KDM5B to orchestrate inflammatory responses. USP38 specifically removes the monoubiquitin on H2B at lysine 120, which functions as a prerequisite for the subsequent recruitment of demethylase KDM5B to the promoters of proinflammatory cytokines Il6 and Il23a during LPS stimulation. KDM5B in turn inhibits the binding of NF-κB transcription factors to the Il6 and Il23a promoters by reducing H3K4 trimethylation. Furthermore, USP38 can bind to KDM5B and prevent it from proteasomal degradation, which further enhances the function of KDM5B in the regulation of inflammation-related genes. Loss of Usp38 in mice markedly enhances susceptibility to endotoxin shock and acute colitis, and these mice display a more severe inflammatory phenotype compared to wild-type mice. The studies identify USP38-KDM5B as a distinct chromatin modification complex that restrains inflammatory responses through manipulating the crosstalk of histone ubiquitination and methylation.
Collapse
Affiliation(s)
- Zhiyao Zhao
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
- Department of Internal MedicineGuangzhou Institute of PediatricsGuangzhou Women and Children's Medical CenterGuangzhouGuangdong510623China
| | - Zexiong Su
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Puping Liang
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Di Liu
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Shuai Yang
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Yaoxing Wu
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Ling Ma
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Junyan Feng
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Xiya Zhang
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Chenglei Wu
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Junjiu Huang
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Jun Cui
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| |
Collapse
|
18
|
Cao R, Ma Y, Li S, Shen D, Yang S, Wang X, Cao Y, Wang Z, Wei Y, Li S, Liu G, Zhang H, Wang Y, Ma Y. 1,25(OH) 2 D 3 alleviates DSS-induced ulcerative colitis via inhibiting NLRP3 inflammasome activation. J Leukoc Biol 2020; 108:283-295. [PMID: 32237257 DOI: 10.1002/jlb.3ma0320-406rr] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 12/27/2022] Open
Abstract
1,25-dihydroxyvitamin D3 (1,25(OH)2 D3, VitD3) is the major active ingredient of vitamin D and has anti-inflammatory activity; however, the mechanism for this remains poorly understood. In this study, we found that VitD3 was able to abolish NOD-like receptor protein 3 (NLRP3) inflammasome activation and subsequently inhibit caspase-1 activation and IL-1β secretion via the vitamin D receptor (VDR). Furthermore, VitD3 specifically prevented NLRP3-mediated apoptosis-associated speck-like protein with a caspase-recruitment domain (ASC) oligomerization. In additional to this, NLRP3 binding to NIMA-related kinase 7 (NEK7) was also inhibited. Notably, VitD3 inhibited autophagy, leading to the inhibition of the NLRP3 inflammasome. Uncoupling protein 2-reactive oxygen species signaling may be involved in inflammasome suppression by VitD3. Importantly, VitD3 had both preventive and therapeutic effects on mouse model of ulcerative colitis, via inhibition of NLRP3 inflammasome activation. Our results reveal a mechanism through which VitD3 represses inflammation and prevents the relevant diseases, and suggest a potential clinical use of VitD3 in autoimmune syndromes or other NLRP3 inflammasome-driven inflammatory diseases.
Collapse
Affiliation(s)
- Run Cao
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, School of Basic Medicine, Henan University, Kaifeng, China
| | - Yuting Ma
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, School of Basic Medicine, Henan University, Kaifeng, China
| | - Shaowei Li
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, School of Basic Medicine, Henan University, Kaifeng, China
| | - Donghai Shen
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, School of Basic Medicine, Henan University, Kaifeng, China
| | - Shuang Yang
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, School of Basic Medicine, Henan University, Kaifeng, China
| | - Xuance Wang
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, School of Basic Medicine, Henan University, Kaifeng, China
| | - Yue Cao
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, School of Basic Medicine, Henan University, Kaifeng, China
| | - Zhizeng Wang
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, School of Basic Medicine, Henan University, Kaifeng, China
| | - Yinxiang Wei
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, School of Basic Medicine, Henan University, Kaifeng, China
| | - Shulian Li
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, School of Basic Medicine, Henan University, Kaifeng, China
| | - Guangchao Liu
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, School of Basic Medicine, Henan University, Kaifeng, China
| | - Hailong Zhang
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, School of Basic Medicine, Henan University, Kaifeng, China
| | - Yaohui Wang
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, School of Basic Medicine, Henan University, Kaifeng, China
| | - Yuanfang Ma
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, School of Basic Medicine, Henan University, Kaifeng, China
| |
Collapse
|
19
|
Busbee PB, Menzel L, Alrafas HR, Dopkins N, Becker W, Miranda K, Tang C, Chatterjee S, Singh UP, Nagarkatti M, Nagarkatti PS. Indole-3-carbinol prevents colitis and associated microbial dysbiosis in an IL-22-dependent manner. JCI Insight 2020; 5:127551. [PMID: 31941837 PMCID: PMC7030851 DOI: 10.1172/jci.insight.127551] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022] Open
Abstract
Colitis, an inflammatory bowel disease, is caused by a variety of factors, but luminal microbiota are thought to play crucial roles in disease development and progression. Indole is produced by gut microbiota and is believed to protect the colon from inflammatory damage. In the current study, we investigated whether indole-3-carbinol (I3C), a naturally occurring plant product found in numerous cruciferous vegetables, can prevent colitis-associated microbial dysbiosis and attempted to identify the mechanisms. Treatment with I3C led to repressed colonic inflammation and prevention of microbial dysbiosis caused by colitis, increasing a subset of gram-positive bacteria known to produce butyrate. I3C was shown to increase production of butyrate, and when mice with colitis were treated with butyrate, there was reduced colonic inflammation accompanied by suppression of Th17 and induction of Tregs, protection of the mucus layer, and upregulation in Pparg expression. Additionally, IL-22 was increased only after I3C but not butyrate administration, and neutralization of IL-22 prevented the beneficial effects of I3C against colitis, as well as blocked I3C-mediated dysbiosis and butyrate induction. This study suggests that I3C attenuates colitis primarily through induction of IL-22, which leads to modulation of gut microbiota that promote antiinflammatory butyrate.
Collapse
Affiliation(s)
- Philip B. Busbee
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Lorenzo Menzel
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Haider Rasheed Alrafas
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Nicholas Dopkins
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - William Becker
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Kathryn Miranda
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Chaunbing Tang
- Department of Chemistry and Biochemistry, University of South Carolina College of Arts and Sciences, Columbia, South Carolina, USA
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina Columbia, South Carolina, USA
| | - Udai P. Singh
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Prakash S. Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| |
Collapse
|
20
|
Silva I, Pinto R, Mateus V. Preclinical Study in Vivo for New Pharmacological Approaches in Inflammatory Bowel Disease: A Systematic Review of Chronic Model of TNBS-Induced Colitis. J Clin Med 2019; 8:jcm8101574. [PMID: 31581545 PMCID: PMC6832474 DOI: 10.3390/jcm8101574] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/19/2019] [Accepted: 09/25/2019] [Indexed: 12/14/2022] Open
Abstract
The preclinical studies in vivo provide means of characterizing physiologic interactions when our understanding of such processes is insufficient to allow replacement with in vitro systems and play a pivotal role in the development of a novel therapeutic drug cure. Chemically induced colitis models are relatively easy and rapid to develop. The 2,4,6-trinitrobenzenesulfonic acid (TNBS) colitis model is one of the main models in the experimental studies of inflammatory bowel disease (IBD) since inflammation induced by TNBS mimics several features of Crohn’s disease. This review aims to summarize the existing literature and discuss different protocols for the induction of chronic model of TNBS-induced colitis. We searched MEDLINE via Pubmed platform for studies published through December 2018, using MeSH terms (Crohn Disease.kw) OR (Inflammatory Bowel Diseases.kw) OR (Colitis, Ulcerative.kw) AND (trinitrobenzenesulfonic acid.kw) AND (disease models, animal.kw) AND (mice.all). The inclusion criteria were original articles, preclinical studies in vivo using mice, chronic model of colitis, and TNBS as the inducer of colitis and articles published in English. Chronic TNBS-induced colitis is made with multiple TNBS intrarectal administrations in an average dose of 1.2 mg using a volume lower than 150 μL in 50% ethanol. The strains mostly used are Balb/c and C57BL/6 with 5–6 weeks. To characterize the preclinical model the parameters more used include body weight, stool consistency and morbidity, inflammatory biomarkers like interferon (IFN)-γ, myeloperoxidase (MPO), tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-10, presence of ulcers, thickness or hyperemia in the colon, and histological evaluation of the inflammation. Experimental chronic colitis is induced by multiple rectal instillations of TNBS increasing doses in ethanol using Balb/c and C57BL/6 mice.
Collapse
Affiliation(s)
- Inês Silva
- H&TRC–Health and Technology Research Center, ESTeSL–Lisbon School of Health Technology, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal;
- iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, 1990-096 Lisboa, Portugal;
| | - Rui Pinto
- iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, 1990-096 Lisboa, Portugal;
- JCS, Dr. Joaquim Chaves, Laboratório de Análises Clínicas, Miraflores, 1495-069 Algés, Portugal
| | - Vanessa Mateus
- H&TRC–Health and Technology Research Center, ESTeSL–Lisbon School of Health Technology, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal;
- iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, 1990-096 Lisboa, Portugal;
- Correspondence: ; Tel.: +351-218-980-400; Fax: +351-218-980-460
| |
Collapse
|
21
|
Mei Y, Fang C, Ding S, Liu X, Hu J, Xu J, Mei Q. PAP-1 ameliorates DSS-induced colitis with involvement of NLRP3 inflammasome pathway. Int Immunopharmacol 2019; 75:105776. [DOI: 10.1016/j.intimp.2019.105776] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/11/2019] [Accepted: 07/19/2019] [Indexed: 02/07/2023]
|
22
|
Haange SB, Jehmlich N, Hoffmann M, Weber K, Lehmann J, von Bergen M, Slanina U. Disease Development Is Accompanied by Changes in Bacterial Protein Abundance and Functions in a Refined Model of Dextran Sulfate Sodium (DSS)-Induced Colitis. J Proteome Res 2019; 18:1774-1786. [PMID: 30767541 DOI: 10.1021/acs.jproteome.8b00974] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Using the acute dextran sulfate sodium (DSS)-induced colitis model, studies have demonstrated that intestinal inflammation is accompanied by major changes in the composition of the intestinal microbiota. Only little is known about the microbial changes and more importantly their functional impact in the chronic DSS colitis model. We used a refined model of chronic DSS-induced colitis that reflects typical symptoms of the human disease without detrimental weight loss usually observed in DSS models. We sampled cecum and colon content as well as colon mucus from healthy and diseased mouse cohorts ( n = 12) and applied 16S rRNA gene sequencing and metaproteomics. An increase of Prevotella sp. in both colon content and mucus was observed. Functional differences were observed between sample types demonstrating the importance of separately sampling lumen content and mucus. The abundance of Desulfovibrio, a sulfate-reducing bacterium, was positively associated with the carbon metabolism. Lachnoclostridium was positively correlated to both vitamin B6 and tryptophan metabolism. In summary, functional changes in the distal colon caused by DSS treatment were more pronounced in the mucus-associated microbiota than in the microbiota present in the distal colon content.
Collapse
Affiliation(s)
- Sven-Bastiaan Haange
- Department of Molecular Systems Biology , Helmholtz-Centre for Environmental Research - UFZ , Leipzig 04318 , Germany.,Faculty of Life Sciences, Institute of Biochemistry , University of Leipzig , Leipzig 04103 , Germany
| | - Nico Jehmlich
- Department of Molecular Systems Biology , Helmholtz-Centre for Environmental Research - UFZ , Leipzig 04318 , Germany
| | - Maximilian Hoffmann
- Department of Therapy Validation , Fraunhofer Institute for Cell Therapy and Immunology , Leipzig 04103 , Germany
| | | | - Jörg Lehmann
- Department of Therapy Validation , Fraunhofer Institute for Cell Therapy and Immunology , Leipzig 04103 , Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology , Helmholtz-Centre for Environmental Research - UFZ , Leipzig 04318 , Germany.,Faculty of Life Sciences, Institute of Biochemistry , University of Leipzig , Leipzig 04103 , Germany
| | - Ulla Slanina
- Department of Therapy Validation , Fraunhofer Institute for Cell Therapy and Immunology , Leipzig 04103 , Germany
| |
Collapse
|
23
|
Zhou Y, Liu H, Song J, Cao L, Tang L, Qi C. Sinomenine alleviates dextran sulfate sodium‑induced colitis via the Nrf2/NQO‑1 signaling pathway. Mol Med Rep 2018; 18:3691-3698. [PMID: 30106158 PMCID: PMC6131615 DOI: 10.3892/mmr.2018.9378] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/12/2018] [Indexed: 12/19/2022] Open
Abstract
Sinomenine (SIN), a pure alkaloid isolated from Sinomenium acutum, has been widely used in arthritis for its anti‑inflammatory effect, but little is known about the effect of SIN on human ulcerative colitis (UC). In the present study, the effect and mechanism of SIN was examined in a dextran sulfate sodium (DSS)‑induced murine colitis model, which mimics human UC. Oral administration of SIN significantly suppressed the elevated disease activity index and ameliorated colonic histological damage in a DSS‑induced colitis model. Tumor necrosis factor‑α, interleukin‑6 and inducible nitric oxide synthase levels were also reduced as detected by reverse transcription‑quantitative polymerase chain reaction. In addition, SIN reversed the decreased colon length and colonic superoxide dismutase activity. Furthermore, western blot analysis revealed that nuclear factor‑erythroid 2‑related factor 2 (Nrf2) and its downstream genes, heme oxygenase‑1 and NADP(H) quinone oxidoreductase 1 (NQO‑1), were markedly activated by SIN. The current results indicated that SIN alleviated DSS‑induced colitis in mice, which may be due to its antioxidant properties and was at least in part dependent on the Nrf2/NQO‑1 signaling pathway. Therefore, SIN may have potential applications as a protective drug for patients with UC.
Collapse
Affiliation(s)
- Yan Zhou
- Medical Research Center, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Hanyang Liu
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Jun Song
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Liang Cao
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Liming Tang
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Chunjian Qi
- Medical Research Center, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| |
Collapse
|
24
|
Liu G, Yu L, Fang J, Hu CAA, Yin J, Ni H, Ren W, Duraipandiyan V, Chen S, Al-Dhabi NA, Yin Y. Methionine restriction on oxidative stress and immune response in dss-induced colitis mice. Oncotarget 2018; 8:44511-44520. [PMID: 28562346 PMCID: PMC5546498 DOI: 10.18632/oncotarget.17812] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/14/2017] [Indexed: 01/20/2023] Open
Abstract
A strong correlation exists between inflammatory bowel disease (IBD) and oxidative stress involving alterations of several key signaling pathways. It is known that methionine promotes reactive oxygen species (ROS) production; we therefore hypothesize that a methionine restriction diet would reduce ROS production, inflammatory responses, and the course of IBD. We generated a murine colitis model by dextran sodium sulfate (DSS) treatment and tested the effects of the methionine restriction diet. Forty-eight mice were randomly divided into four groups of equal size, which included a control (CON) group, an MR (methionine restriction diet) group, a DSS treated group and an MR-DSS treated group. Mice in the first two groups had unrestricted access to water for one week. Mice in the two DSS-treated groups had unrestricted access to 5% DSS solution supplied in the drinking water for the same period. Mice in the CON and DSS groups were given a basal diet, whereas mice in the MR-DSS and MR groups were fed a 0.14% MR diet. We found that DSS reduced daily weight gain, suppressed antioxidant enzyme expression, increased histopathology scores and activated NF-κB and nuclear factor erythroid 2-related factor 2/Kelch-like ECH-associated protein 1 (Nrf2/Keap1) signaling. We also showed that the MR diet upregulated catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) activities, decreased myeloperoxidase (MPO), TNF-α and IL-1β, and reversed activation of the NF-κB signaling pathway in MR-DSS mice. Taken together, our results imply that the MR diet may be considered as an adjuvant in IBD therapeutics.
Collapse
Affiliation(s)
- Gang Liu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Lei Yu
- China Animal Disease Control Center, Beijing 102618, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Chien-An Andy Hu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.,Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131, USA
| | - Jie Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Hengjia Ni
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Wenkai Ren
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Veeramuthu Duraipandiyan
- Addiriyah Research Chair for Environmental Studies, Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shuai Chen
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Naif Abdullah Al-Dhabi
- Addiriyah Research Chair for Environmental Studies, Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yulong Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.,College of Animal Science, South China Agricultural University, Guangzhou 510642, China.,Laboratory of Animal Nutrition and Human Health, School of Life Sciences, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
25
|
Lavin R, DiBenedetto N, Yeliseyev V, Delaney M, Bry L. Gnotobiotic and Conventional Mouse Systems to Support Microbiota Based Studies. CURRENT PROTOCOLS IN IMMUNOLOGY 2018; 121:e48. [PMID: 30008984 PMCID: PMC6040836 DOI: 10.1002/cpim.48] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Animal models are essential to dissect host-microbiota interactions that impact health and the development of disease. In addition to providing pre-clinical models for the development of novel therapeutics and diagnostic biomarkers, mouse systems actively support microbiome studies by defining microbial contributions to normal development and homeostasis, and as well as their role in promoting diseases such as inflammatory auto-immune diseases, diabetes, metabolic syndromes, and susceptibilities to infectious agents. Mice provide a genetically tenable host that can be reared under gnotobiotic (germfree) conditions, allowing colonization studies with human or mouse-origin defined or complex microbial communities to define specific in vivo effects. The protocols and background information detail key aspects to consider in designing host-microbiome experiments with mouse models, and to develop robust systems that leverage gnotobiotic mice, microbial consortia, and specific environmental perturbations to identify causal effects in vivo.
Collapse
Affiliation(s)
- Richard Lavin
- Massachusetts Host-Microbiome Center, Dept. Pathology, Brigham & Women’s Hospital, Harvard Medical School. Boston, MA 02115
| | - Nicholas DiBenedetto
- Massachusetts Host-Microbiome Center, Dept. Pathology, Brigham & Women’s Hospital, Harvard Medical School. Boston, MA 02115
| | - Vladimir Yeliseyev
- Massachusetts Host-Microbiome Center, Dept. Pathology, Brigham & Women’s Hospital, Harvard Medical School. Boston, MA 02115
| | - Mary Delaney
- Massachusetts Host-Microbiome Center, Dept. Pathology, Brigham & Women’s Hospital, Harvard Medical School. Boston, MA 02115
- Clinical Microbiology Laboratory, Dept. Pathology, Brigham & Women’s Hospital, Harvard Medical School. Boston, MA 02115
| | - Lynn Bry
- Massachusetts Host-Microbiome Center, Dept. Pathology, Brigham & Women’s Hospital, Harvard Medical School. Boston, MA 02115
- Clinical Microbiology Laboratory, Dept. Pathology, Brigham & Women’s Hospital, Harvard Medical School. Boston, MA 02115
- Center for Advanced Molecular Diagnostics, Dept. Pathology, Brigham & Women’s Hospital, Harvard Medical School. Boston, MA 02115
| |
Collapse
|
26
|
Zhou F, Hamza T, Fleur AS, Zhang Y, Yu H, Chen K, Heath JE, Chen Y, Huang H, Feng H. Mice with Inflammatory Bowel Disease are Susceptible to Clostridium difficile Infection With Severe Disease Outcomes. Inflamm Bowel Dis 2018; 24:573-582. [PMID: 29462386 PMCID: PMC5936643 DOI: 10.1093/ibd/izx059] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Indexed: 01/05/2023]
Abstract
Background Over the past several decades, there has been a significant increase in the incidence of Clostridium difficile infection (CDI) in patients suffering from inflammatory bowel disease (IBD). However, a wild-type animal model is not available to study these comorbid diseases. Methods We evaluated the susceptibility to CDI of mice with dextran sulfate sodium salt (DSS)-induced colitis (IBD mice) with or without antibiotic exposure; we examined the histopathology and cytokine response in the concomitant diseases after the model was created. Results No CDI occurs in healthy control mice, wherease the incidence of CDI in IBD mice is 40%; however, in IBD mice that received antibiotics, the incidence of CDI is 100% and the disease is accompanied by high levels of toxins in the mouse feces and sera. Compared to IBD and CDI alone, those IBD mice infected with C. difficile have more severe symptoms, toxemia, histopathological damage, and higher mortality. Moreover, several proinflammatory cytokines and chemokines are significantly elevated in the colon tissues from IBD mice infected with C. difficile. Conclusions We, for the first time, demonstrate in an animal model that mice with dextran sulfate sodium induced-inflammatory bowel disease are significantly more susceptible to C. difficile infection, and that the bacterial infection led to more severe disease and death. These findings are consistent with clinical observations, thus, the animal model will permit us to study the pathogenesis of these concurrent diseases and to develop therapeutic strategies against the comorbidity of IBD and CDI.
Collapse
Affiliation(s)
- Fenfen Zhou
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Therwa Hamza
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Ashley S Fleur
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Yongrong Zhang
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Hua Yu
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Kevin Chen
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Jonathon E Heath
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ye Chen
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haihui Huang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Hanping Feng
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| |
Collapse
|
27
|
Wu D, Wu K, Zhu Q, Xiao W, Shan Q, Yan Z, Wu J, Deng B, Xue Y, Gong W, Lu G, Ding Y. Formononetin Administration Ameliorates Dextran Sulfate Sodium-Induced Acute Colitis by Inhibiting NLRP3 Inflammasome Signaling Pathway. Mediators Inflamm 2018; 2018:3048532. [PMID: 29507526 PMCID: PMC5817291 DOI: 10.1155/2018/3048532] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/29/2017] [Accepted: 10/22/2017] [Indexed: 02/05/2023] Open
Abstract
Formononetin is a kind of isoflavone compound and has been reported to possess anti-inflammatory properties. In this present study, we aimed to explore the protective effects of formononetin on dextran sulfate sodium- (DSS-) induced acute colitis. By intraperitoneal injection of formononetin in mice, the disease severity of colitis was attenuated in a dose-dependent manner, mainly manifesting as relieved clinical symptoms of colitis, mitigated colonic epithelial cell injury, and upregulations of colonic tight junction proteins levels (ZO-1, claudin-1, and occludin). Meanwhile, our study found that formononetin significantly prevented acute injury of colonic cells induced by TNF-α in vitro, specifically manifesting as the increased expressions of colonic tight junction proteins (ZO-1, claudin-1, and occludin). In addition, the result showed that formononetin could reduce the NLRP3 pathway protein levels (NLRP3, ASC, IL-1β) in vivo and vitro, and MCC950, the NLRP3 specific inhibitor, could alleviate the DSS-induced mice acute colitis. Furthermore, in the foundation of administrating MCC950 to inhibit activation of NLRP3 inflammasome, we failed to observe the protective effects of formononetin on acute colitis in mice. Collectively, our study for the first time confirmed the protective effects of formononetin on DSS-induced acute colitis via inhibiting the NLRP3 inflammasome pathway activation.
Collapse
Affiliation(s)
- Dacheng Wu
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Laboratory of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Keyan Wu
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Laboratory of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Qingtian Zhu
- Laboratory of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Weiming Xiao
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Laboratory of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Qing Shan
- Laboratory of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Zhigang Yan
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Laboratory of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Jian Wu
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Laboratory of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Bin Deng
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Laboratory of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yan Xue
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Laboratory of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Weijuan Gong
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Laboratory of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Guotao Lu
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Laboratory of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yanbing Ding
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Laboratory of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| |
Collapse
|
28
|
Zhu C, Zhang S, Song C, Zhang Y, Ling Q, Hoffmann PR, Li J, Chen T, Zheng W, Huang Z. Selenium nanoparticles decorated with Ulva lactuca polysaccharide potentially attenuate colitis by inhibiting NF-κB mediated hyper inflammation. J Nanobiotechnology 2017; 15:20. [PMID: 28270147 PMCID: PMC5341357 DOI: 10.1186/s12951-017-0252-y] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/22/2017] [Indexed: 12/20/2022] Open
Abstract
Background Selenium (Se) is an essential micronutrient trace element and an established nutritional antioxidant. Low Se status exacerbates inflammatory bowel diseases progression, which involves hyper inflammation in the digestive tract. Se nanoparticles (SeNPs) exhibit anti-inflammatory activity accompanied by low toxicity, especially when decorated with natural biological compounds. Herein, we explored the beneficial effects of SeNPs decorated with Ulva lactuca polysaccharide (ULP) in mice subjected to the acute colitis model. Results We constructed SeNPs coated with ULP (ULP-SeNPs) in average diameter ~130 nm and demonstrated their stability and homogeneity. Supplementation with ULP-SeNPs (0.8 ppm Se) resulted in a significant protective effect on DSS-induced acute colitis in mice including mitigation of body weight loss, and colonic inflammatory damage. ULP-SeNPs ameliorated macrophage infiltration as evidenced by decreased CD68 levels in colon tissue sections. The anti-inflammatory effects of ULP-SeNPs were found to involve modulation of cytokines including IL-6 and TNF-α. Mechanistically, ULP-SeNPs inhibited the activation of macrophages by suppressing the nuclear translocation of NF-κB, which drives the transcription of these pro-inflammatory cytokines. Conclusions ULP-SeNPs supplementation may offer therapeutic potential for reducing the symptoms of acute colitis through its anti-inflammatory actions. Electronic supplementary material The online version of this article (doi:10.1186/s12951-017-0252-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chenghui Zhu
- School of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong Province, China.,College of Pharmacy, Jinan University, Guangzhou, 510632, Guangdong Province, China
| | - Shuimei Zhang
- School of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong Province, China
| | - Chengwei Song
- School of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong Province, China
| | - Yibo Zhang
- School of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong Province, China
| | - Qinjie Ling
- School of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong Province, China
| | - Peter R Hoffmann
- School of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong Province, China.,Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Jun Li
- School of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong Province, China
| | - Tianfeng Chen
- School of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong Province, China.,College of Chemistry and Material Science, Jinan University, Guangzhou, 510632, Guangdong Province, China
| | - Wenjie Zheng
- School of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong Province, China. .,College of Chemistry and Material Science, Jinan University, Guangzhou, 510632, Guangdong Province, China.
| | - Zhi Huang
- School of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong Province, China.
| |
Collapse
|