1
|
Quignon C, Backer A, Kearney J, Bow H, Wray S. Mild Gestational Hypothyroidism in Mice Has Transient Developmental Effects and Long-Term Consequences on Neuroendocrine Systems. Thyroid 2025; 35:97-110. [PMID: 39728609 DOI: 10.1089/thy.2024.0512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Background: Thyroid hormones (TH) play a key role in fetal brain development. While severe thyroid dysfunction, has been shown to cause neurodevelopmental and reproductive disorders, the rising levels of TH-disruptors in the environment in the past few decades have increased the need to assess effects of subclinical (mild) TH insufficiency during gestation. Since embryos do not produce their own TH before mid-gestation, early development processes rely on maternal production. Notably, the reproductive network governed by gonadotropin-releasing hormone (GnRH) neurons develops during this critical period. Methods: The risk of mild maternal hypothyroidism on the development of GnRH neurons and long-term effect on neuroendocrine function in the offspring was investigated using a mouse model of gestational hypothyroidism induced by methimazole (MMI) treatment. Results: MMI treatment during gestation led to reduced litter size, consistent with increased miscarriages due to hypothyroidism. E12/13 embryos, collected from MMI-treated dams, had a decreased number of GnRH neurons, but the migration of the remaining GnRH neurons was normal. Cell proliferation was reduced in the vomeronasal organ (VNO), correlating with the reduced number of GnRH neurons detected in this region. Using a GnRH cell line confirmed attenuated proliferation in the absence of T3. Pups born from hypothyroid mothers had normal postweaning growth and estrus cycles, yet adult offspring had significantly more cells expressing estrogen receptor alpha in the arcuate nucleus. Notably, by adulthood, GnRH cell number and distribution was comparable with nontreated controls indicating that compensatory mechanisms occurred after E13. Conclusion: Overall, our work shows that mild TH disruption during gestation transiently affects proliferation of the pool of GnRH neurons within the VNO and has a long-term impact on neuroendocrine systems.
Collapse
Affiliation(s)
- Clarisse Quignon
- National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Annika Backer
- National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Jessica Kearney
- National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Hannah Bow
- National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Susan Wray
- National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
2
|
Sharova V, Ignatiuk V, Izvolskaia M, Zakharova L. Disruption of Intranasal GnRH Neuronal Migration Route into the Brain Induced by Proinflammatory Cytokine IL-6: Ex Vivo and In Vivo Rodent Models. Int J Mol Sci 2023; 24:15983. [PMID: 37958965 PMCID: PMC10648422 DOI: 10.3390/ijms242115983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Maternal immune activation results in altered levels of cytokines in the maternal-fetal system, which has a negative impact on fetal development, including the gonadotropin-releasing hormone (GnRH) system, which is crucial for the reproduction. Suppression of GnRH-neuron migration may be associated with cytokine imbalances, and primarily with proinflammatory cytokine interleukin (IL)-6. This study aimed to determine the effects of IL-6 and monoclonal antibody to IL-6 or IL-6R or polyclonal IgG on the formation of migration route of GnRH-neurons in ex vivo and in vivo rodent models on day 11.5 of embryonic development. The increased level of IL-6 in mouse nasal explants suppressed peripherin-positive fiber outgrowth, while this led to an increase in the number of GnRH-neurons in the nose and olfactory bulbs and a decrease in their number in the fetal brain. This effect is likely to be realized via IL-6 receptors along the olfactory nerves. The suppressive effect of IL-6 was diminished by monoclonal antibodies to IL-6 or its receptors and by IgG.
Collapse
Affiliation(s)
- Viktoria Sharova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilov Street, 26, 119334 Moscow, Russia
| | | | | | | |
Collapse
|
3
|
Dairaghi L, Constantin S, Oh A, Shostak D, Wray S. The Dopamine D4 Receptor Regulates Gonadotropin-Releasing Hormone Neuron Excitability in Male Mice. eNeuro 2022; 9:ENEURO.0461-21.2022. [PMID: 35165199 PMCID: PMC8896547 DOI: 10.1523/eneuro.0461-21.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/26/2022] [Accepted: 02/02/2022] [Indexed: 12/30/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH)-secreting neurons control fertility. The release of GnRH peptide regulates the synthesis and release of both luteinizing hormone (LH) and Follicle stimulation hormone (FSH) from the anterior pituitary. While it is known that dopamine regulates GnRH neurons, the specific dopamine receptor subtype(s) involved remain unclear. Previous studies in adult rodents have reported juxtaposition of fibers containing tyrosine hydroxylase (TH), a marker of catecholaminergic cells, onto GnRH neurons and that exogenous dopamine inhibits GnRH neurons postsynaptically through dopamine D1-like and/or D2-like receptors. Our microarray data from GnRH neurons revealed a high level of Drd4 transcripts [i.e., dopamine D4 receptor (D4R)]. Single-cell RT-PCR and immunocytochemistry confirmed GnRH cells express the Drd4 transcript and protein, respectively. Calcium imaging identified changes in GnRH neuronal activity during application of subtype-specific dopamine receptor agonists and antagonists when GABAergic and glutamatergic transmission was blocked. Dopamine, dopamine with D1/5R-specific or D2/3R-specific antagonists or D4R-specific agonists decreased the frequency of calcium oscillations. In contrast, D1/5R-specific agonists increased the frequency of calcium oscillations. The D4R-mediated inhibition was dependent on Gαi/o protein coupling, while the D1/5R-mediated excitation required Gαs protein coupling. Together, these results indicate that D4R plays an important role in the dopaminergic inhibition of GnRH neurons.
Collapse
Affiliation(s)
| | | | - Andrew Oh
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, MD 20892
| | - David Shostak
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, MD 20892
| | | |
Collapse
|
4
|
Saglam A, Calof AL, Wray S. Novel factor in olfactory ensheathing cell-astrocyte crosstalk: Anti-inflammatory protein α-crystallin B. Glia 2021; 69:1022-1036. [PMID: 33314354 PMCID: PMC9469687 DOI: 10.1002/glia.23946] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/18/2022]
Abstract
Astrocytes are key players in CNS neuroinflammation and neuroregeneration that may help or hinder recovery, depending on the context of the injury. Although pro-inflammatory factors that promote astrocyte-mediated neurotoxicity have been shown to be secreted by reactive microglia, anti-inflammatory factors that suppress astrocyte activation are not well-characterized. Olfactory ensheathing cells (OECs), glial cells that wrap axons of olfactory sensory neurons, have been shown to moderate astrocyte reactivity, creating an environment conducive to regeneration. Similarly, astrocytes cultured in medium conditioned by cultured OECs (OEC-CM) show reduced nuclear translocation of nuclear factor kappa-B (NFκB), a pro-inflammatory protein that induces neurotoxic reactivity in astrocytes. In this study, we screened primary and immortalized OEC lines to identify these factors and discovered that Alpha B-crystallin (CryAB), an anti-inflammatory protein, is secreted by OECs via exosomes, coordinating an intercellular immune response. Our results showed that: (a) OEC exosomes block nuclear NFκB translocation in astrocytes while exosomes from CryAB-null OECs could not; (b) OEC exosomes could be taken up by astrocytes, and (c) CryAB treatment suppressed neurotoxicity-associated astrocyte transcripts. Our results indicate CryAB, as well as other factors secreted by OECs, are potential agents that can ameliorate, or even reverse, the growth-inhibitory environment created by neurotoxic reactive astrocytes following CNS injuries.
Collapse
Affiliation(s)
- Aybike Saglam
- Cellular & Developmental Neurobiology Section, NINDS, NIH, Bethesda, Maryland
- Program in Neuroscience & Cognitive Science, University of Maryland, College Park, Maryland
| | - Anne L. Calof
- Department of Anatomy & Neurobiology and the Center for Complex Biological Systems, University of California, Irvine, California
| | - Susan Wray
- Cellular & Developmental Neurobiology Section, NINDS, NIH, Bethesda, Maryland
| |
Collapse
|
5
|
Cho HJ, Shan Y, Whittington NC, Wray S. Nasal Placode Development, GnRH Neuronal Migration and Kallmann Syndrome. Front Cell Dev Biol 2019; 7:121. [PMID: 31355196 PMCID: PMC6637222 DOI: 10.3389/fcell.2019.00121] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/14/2019] [Indexed: 12/22/2022] Open
Abstract
The development of Gonadotropin releasing hormone-1 (GnRH) neurons is important for a functional reproduction system in vertebrates. Disruption of GnRH results in hypogonadism and if accompanied by anosmia is termed Kallmann Syndrome (KS). From their origin in the nasal placode, GnRH neurons migrate along the olfactory-derived vomeronasal axons to the nasal forebrain junction and then turn caudally into the developing forebrain. Although research on the origin of GnRH neurons, their migration and genes associated with KS has identified multiple factors that influence development of this system, several aspects still remain unclear. This review discusses development of the olfactory system, factors that regulate GnRH neuron formation and development of the olfactory system, migration of the GnRH neurons from the nose into the brain, and mutations in humans with KS that result from disruption of normal GnRH/olfactory systems development.
Collapse
Affiliation(s)
- Hyun-Ju Cho
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Yufei Shan
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Niteace C Whittington
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Susan Wray
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
6
|
Saadi H, Shan Y, Marazziti D, Wray S. GPR37 Signaling Modulates Migration of Olfactory Ensheathing Cells and Gonadotropin Releasing Hormone Cells in Mice. Front Cell Neurosci 2019; 13:200. [PMID: 31143101 PMCID: PMC6521704 DOI: 10.3389/fncel.2019.00200] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/18/2019] [Indexed: 01/15/2023] Open
Abstract
Gonadotropin releasing hormone (GnRH) neurons, part of the hypothalamic-pituitary-gonadal axis, regulate reproduction. Prenatally, GnRH neurons migrate into the brain from the nasal placode along terminal nerve fibers, intermixed with olfactory sensory axons and olfactory ensheathing cells (OECs). An expression analysis from embryonic GnRH neurons identified the G protein-coupled receptor 37 (GPR37 or PAEL-r). GPR37 has been linked to (1) juvenile Parkinson's disease in humans, (2) oligodendrocyte differentiation, and (3) Wnt/β-catenin signaling during neurogenesis. In this study, the role of GPR37 was investigated in the developing GnRH/olfactory system. PCR and immunocytochemistry confirmed expression of GPR37 in migrating GnRH neurons as well as in OECs. Inhibition of GPR37 signaling in nasal explants attenuated GnRH neuronal migration and OEC movement. Examination of GPR37 deficient mice revealed a decrease in the olfactory bulb nerve layer and attenuated/delayed maturation and migration of GnRH neurons into the brain. These data demonstrate a developmental role for GPR37 signaling in neural migration. SIGNIFICANCE STATEMENT Reproduction is controlled by gonadotrophin releasing hormone (GnRH) neurons located in the central nervous system. Embryonically, GnRH neurons originate in the nasal/olfactory placode and migrate into the brain on axonal tracks from cells in the vomeronasal organ, intermixed with olfactory sensory axons and olfactory ensheathing cells (OECs). An expression analysis from embryonic GnRH neurons identified the G protein-coupled receptor 37. Here we show that inhibition of GPR37 signaling in nasal explants and mutant mice attenuated GnRH neuronal migration. Signaling via GPR37 also perturbed OEC movement, resulting in a decrease in the olfactory bulb nerve layer in vivo. Together, these results identify a new role for GPR37 signaling during development - modulating cell migration.
Collapse
Affiliation(s)
- Hassan Saadi
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Yufei Shan
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Daniela Marazziti
- Consiglio Nazionale delle Ricerche, Emma-Infrafrontier-Impc, Istituto di Biologia Cellulare e Neurobiologia, Monterotondo Scalo, Rome, Italy
| | - Susan Wray
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
7
|
Dairaghi L, Flannery E, Giacobini P, Saglam A, Saadi H, Constantin S, Casoni F, Howell BW, Wray S. Reelin Can Modulate Migration of Olfactory Ensheathing Cells and Gonadotropin Releasing Hormone Neurons via the Canonical Pathway. Front Cell Neurosci 2018; 12:228. [PMID: 30127721 PMCID: PMC6088185 DOI: 10.3389/fncel.2018.00228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/13/2018] [Indexed: 01/14/2023] Open
Abstract
One key signaling pathway known to influence neuronal migration involves the extracellular matrix protein Reelin. Typically, signaling of Reelin occurs via apolipoprotein E receptor 2 (ApoER2) and very low-density lipoprotein receptor (VLDLR), and the cytoplasmic adapter protein disabled 1 (Dab1). However, non-canonical Reelin signaling has been reported, though no receptors have yet been identified. Cariboni et al. (2005) indicated Dab1-independent Reelin signaling impacts gonadotropin releasing hormone-1 (GnRH) neuronal migration. GnRH cells are essential for reproduction. Prenatal migration of GnRH neurons from the nasal placode to the forebrain, juxtaposed to olfactory axons and olfactory ensheathing cells (OECs), has been well documented, and it is clear that alterations in migration of these cells can cause delayed or absent puberty. This study was initiated to delineate the non-canonical Reelin signaling pathways used by GnRH neurons. Chronic treatment of nasal explants with CR-50, an antibody known to interfere with Reelin homopolymerization and Dab1 phosphorylation, decreased the distance GnRH neurons and OECs migrated. Normal migration of these two cell types was observed when Reelin was co-applied with CR-50. Immunocytochemistry was performed to determine if OECs might transduce Reelin signals via the canonical pathway, and subsequently indirectly altering GnRH neuronal migration. We show that in mouse: (1) both OECs and GnRH cells express ApoER2, VLDLR and Dab1, and (2) GnRH neurons and OECs show a normal distribution in the brain of two mutant reeler lines. These results indicate that the canonical Reelin pathway is present in GnRH neurons and OECs, but that Reelin is not essential for development of these two systems in vivo.
Collapse
Affiliation(s)
- Leigh Dairaghi
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Ellen Flannery
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, United States
- Coriell Institute for Medical Research, Camden, NJ, United States
| | - Paolo Giacobini
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, United States
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean Pierre Aubert Research Centre, INSERM U1172, Lille, France
| | - Aybike Saglam
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Hassan Saadi
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Stephanie Constantin
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Filippo Casoni
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, United States
- Division of Neuroscience, San Raffaele Scientific Institute, Università Vita-Salute San Raffaele, Milan, Italy
| | - Brian W. Howell
- Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, United States
| | - Susan Wray
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
8
|
Constantin S, Wray S. Galanin Activates G Protein Gated Inwardly Rectifying Potassium Channels and Suppresses Kisspeptin-10 Activation of GnRH Neurons. Endocrinology 2016; 157:3197-212. [PMID: 27359210 PMCID: PMC4967115 DOI: 10.1210/en.2016-1064] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 06/21/2016] [Indexed: 12/21/2022]
Abstract
GnRH neurons are regulated by hypothalamic kisspeptin neurons. Recently, galanin was identified in a subpopulation of kisspeptin neurons. Although the literature thoroughly describes kisspeptin activation of GnRH neurons, little is known about the effects of galanin on GnRH neurons. This study investigated whether galanin could alter kisspeptin signaling to GnRH neurons. GnRH cells maintained in explants, known to display spontaneous calcium oscillations, and a long-lasting calcium response to kisspeptin-10 (kp-10), were used. First, transcripts for galanin receptors (GalRs) were examined. Only GalR1 was found in GnRH neurons. A series of experiments was then performed to determine the action of galanin on kp-10 activated GnRH neurons. Applied after kp-10 activation, galanin 1-16 (Gal1-16) rapidly suppressed kp-10 activation. Applied with kp-10, Gal1-16 prevented kp-10 activation until its removal. To determine the mechanism by which galanin inhibited kp-10 activation of GnRH neurons, Gal1-16 and galanin were applied to spontaneously active GnRH neurons. Both inhibited GnRH neuronal activity, independent of GnRH neuronal inputs. This inhibition was mimicked by a GalR1 agonist but not by GalR2 or GalR2/3 agonists. Although Gal1-16 inhibition relied on Gi/o signaling, it was independent of cAMP levels but sensitive to blockers of G protein-coupled inwardly rectifying potassium channels. A newly developed bioassay for GnRH detection showed Gal1-16 decreased the kp-10-evoked GnRH secretion below detection threshold. Together, this study shows that galanin is a potent regulator of GnRH neurons, possibly acting as a physiological break to kisspeptin excitation.
Collapse
Affiliation(s)
- Stephanie Constantin
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, Maryland 20892-3703
| | - Susan Wray
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, Maryland 20892-3703
| |
Collapse
|
9
|
Abstract
Peripheral feedback of gonadal estrogen to the hypothalamus is critical for reproduction. Bisphenol A (BPA), an environmental pollutant with estrogenic actions, can disrupt this feedback and lead to infertility in both humans and animals. GnRH neurons are essential for reproduction, serving as an important link between brain, pituitary, and gonads. Because GnRH neurons express several receptors that bind estrogen, they are potential targets for endocrine disruptors. However, to date, direct effects of BPA on GnRH neurons have not been shown. This study investigated the effects of BPA on GnRH neuronal activity using an explant model in which large numbers of primary GnRH neurons are maintained and express many of the receptors found in vivo. Because oscillations in intracellular calcium have been shown to correlate with electrical activity in GnRH neurons, calcium imaging was used to assay the effects of BPA. Exposure to 50μM BPA significantly decreased GnRH calcium activity. Blockage of γ-aminobutyric acid ergic and glutamatergic input did not abrogate the inhibitory BPA effect, suggesting direct regulation of GnRH neurons by BPA. In addition to estrogen receptor-β, single-cell RT-PCR analysis confirmed that GnRH neurons express G protein-coupled receptor 30 (G protein-coupled estrogen receptor 1) and estrogen-related receptor-γ, all potential targets for BPA. Perturbation studies of the signaling pathway revealed that the BPA-mediated inhibition of GnRH neuronal activity occurred independent of estrogen receptors, GPER, or estrogen-related receptor-γ, via a noncanonical pathway. These results provide the first evidence of a direct effect of BPA on GnRH neurons.
Collapse
Affiliation(s)
- Ulrike Klenke
- Cellular and Developmental Neurobiology Section (U.K., S.C., S.W.), National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, Maryland 20892-3703
| | - Stephanie Constantin
- Cellular and Developmental Neurobiology Section (U.K., S.C., S.W.), National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, Maryland 20892-3703
| | - Susan Wray
- Cellular and Developmental Neurobiology Section (U.K., S.C., S.W.), National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, Maryland 20892-3703
| |
Collapse
|
10
|
Chloride Accumulators NKCC1 and AE2 in Mouse GnRH Neurons: Implications for GABAA Mediated Excitation. PLoS One 2015; 10:e0131076. [PMID: 26110920 PMCID: PMC4482508 DOI: 10.1371/journal.pone.0131076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/28/2015] [Indexed: 11/30/2022] Open
Abstract
A developmental “switch” in chloride transporters occurs in most neurons resulting in GABAA mediated hyperpolarization in the adult. However, several neuronal cell subtypes maintain primarily depolarizing responses to GABAA receptor activation. Among this group are gonadotropin-releasing hormone-1 (GnRH) neurons, which control puberty and reproduction. NKCC1 is the primary chloride accumulator in neurons, expressed at high levels early in development and contributes to depolarization after GABAA receptor activation. In contrast, KCC2 is the primary chloride extruder in neurons, expressed at high levels in the adult and contributes to hyperpolarization after GABAA receptor activation. Anion exchangers (AEs) are also potential modulators of responses to GABAA activation since they accumulate chloride and extrude bicarbonate. To evaluate the mechanism(s) underlying GABAA mediated depolarization, GnRH neurons were analyzed for 1) expression of chloride transporters and AEs in embryonic, pre-pubertal, and adult mice 2) responses to GABAA receptor activation in NKCC1-/- mice and 3) function of AEs in these responses. At all ages, GnRH neurons were immunopositive for NKCC1 and AE2 but not KCC2 or AE3. Using explants, calcium imaging and gramicidin perforated patch clamp techniques we found that GnRH neurons from NKCC1-/- mice retained relatively normal responses to the GABAA agonist muscimol. However, acute pharmacological inhibition of NKCC1 with bumetanide eliminated the depolarization/calcium response to muscimol in 40% of GnRH neurons from WT mice. In the remaining GnRH neurons, HCO3- mediated mechanisms accounted for the remaining calcium responses to muscimol. Collectively these data reveal mechanisms responsible for maintaining depolarizing GABAA mediated transmission in GnRH neurons.
Collapse
|
11
|
Hutchins BI, Wray S. Capture of microtubule plus-ends at the actin cortex promotes axophilic neuronal migration by enhancing microtubule tension in the leading process. Front Cell Neurosci 2014; 8:400. [PMID: 25505874 PMCID: PMC4245908 DOI: 10.3389/fncel.2014.00400] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/06/2014] [Indexed: 12/19/2022] Open
Abstract
Microtubules are a critical part of neuronal polarity and leading process extension, thus microtubule movement plays an important role in neuronal migration. However, the dynamics of microtubules during the forward movement of the nucleus into the leading process (nucleokinesis) is unclear and may be dependent on the cell type and mode of migration used. In particular, little is known about cytoskeletal changes during axophilic migration, commonly used in anteroposterior neuronal migration. We recently showed that leading process actin flow in migrating GnRH neurons is controlled by a signaling cascade involving IP3 receptors, CaMKK, AMPK, and RhoA. In the present study, microtubule dynamics were examined in GnRH neurons. Failure of the migration of these cells leads to the neuroendocrine disorder Kallmann Syndrome. Microtubules translocated forward along the leading process shaft during migration, but reversed direction and moved toward the nucleus when migration stalled. Blocking calcium release through IP3 receptors halted migration and induced the same reversal of microtubule translocation, while blocking cortical actin flow prevented microtubules from translocating toward the distal leading process. Super-resolution imaging revealed that microtubule plus-end tips are captured at the actin cortex through calcium-dependent mechanisms. This work shows that cortical actin flow draws the microtubule network forward through calcium-dependent capture in order to promote nucleokinesis, revealing a novel mechanism engaged by migrating neurons to facilitate movement.
Collapse
Affiliation(s)
- B Ian Hutchins
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health Bethesda, MD, USA ; Postdoctoral Research Associate Program, National Institute of General Medical Sciences, National Institutes of Health Bethesda, MD, USA
| | - Susan Wray
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health Bethesda, MD, USA
| |
Collapse
|
12
|
Klenke U, Taylor-Burds C, Wray S. Metabolic influences on reproduction: adiponectin attenuates GnRH neuronal activity in female mice. Endocrinology 2014; 155:1851-63. [PMID: 24564393 PMCID: PMC3990841 DOI: 10.1210/en.2013-1677] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Metabolic dysfunctions are often linked to reproductive abnormalities. Adiponectin (ADP), a peripheral hormone secreted by white adipose tissue, is important in energy homeostasis and appetite regulation. GnRH neurons are integral components of the reproductive axis, controlling synthesis, and release of gonadotropins. This report examined whether ADP can directly act on GnRH neurons. Double-label immunofluorescence on brain sections from adult female revealed that a subpopulation of GnRH neurons express ADP receptor (AdipoR)2. GnRH/AdipoR2+ cells were distributed throughout the forebrain. To determine the influence of ADP on GnRH neuronal activity and the signal transduction pathway of AdipoR2, GnRH neurons maintained in explants were assayed using whole-cell patch clamping and calcium imaging. This mouse model system circumvents the dispersed distribution of GnRH neurons within the forebrain, making analysis of large numbers of GnRH cells possible. Single-cell PCR analysis and immunocytochemistry confirmed the presence of AdipoR2 in GnRH neurons in explants. Functional analysis revealed 20% of the total GnRH population responded to ADP, exhibiting hyperpolarization or decreased calcium oscillations. Perturbation studies revealed that ADP activates AMP kinase via the protein kinase Cζ/liver kinase B1 pathway. The modulation of GnRH neuronal activity by ADP demonstrated in this report directly links energy balance to neurons controlling reproduction.
Collapse
Affiliation(s)
- Ulrike Klenke
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorder and Stroke, National Institutes of Health, Bethesda, Maryland 20892-3703
| | | | | |
Collapse
|
13
|
The indirect role of fibroblast growth factor-8 in defining neurogenic niches of the olfactory/GnRH systems. J Neurosci 2014; 33:19620-34. [PMID: 24336726 DOI: 10.1523/jneurosci.3238-13.2013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Bone morphogenic protein-4 (BMP4) and fibroblast growth factor-8 (FGF8) are thought to have opposite roles in defining epithelial versus neurogenic fate in the developing olfactory/vomeronasal system. In particular, FGF8 has been implicated in specification of olfactory and gonadotropin releasing hormone-1 (GnRH) neurons, as well as in controlling olfactory stem cell survival. Using different knock-in mouse lines and Cre-lox-mediated lineage tracing, Fgf8 expression and cell lineage was analyzed in the developing nose in relation to the expression of Bmp4 and its antagonist Noggin (Nog). FGF8 is expressed by cells that acquire an epidermal, respiratory cell fate and not by stem cells that acquire neuronal olfactory or vomeronasal cell fate. Ectodermal and mesenchymal sources of BMP4 control the expression of BMP/TGFβ antagonist Nog, whereas mesenchymal sources of Nog define the neurogenic borders of the olfactory pit. Fgf8 hypomorph mouse models, Fgf8(neo/neo) and Fgf8(neo/null), displayed severe craniofacial defects together with overlapping defects in the olfactory pit including (1) lack of neuronal formation ventrally, where GnRH neurons normally form, and (2) altered expression of Bmp4 and Nog, with Nog ectopically expressed in the nasal mesenchyme and no longer defining the GnRH and vomeronasal neurogenic border. Together our data show that (1) FGF8 is not sufficient to induce ectodermal progenitors of the olfactory pit to acquire neural fate and (2) altered neurogenesis and lack of GnRH neuron specification after chronically reduced Fgf8 expression reflected dysgenesis of the nasal region and loss of a specific neurogenic permissive milieu that was defined by mesenchymal signals.
Collapse
|
14
|
Hutchins BI, Klenke U, Wray S. Calcium release-dependent actin flow in the leading process mediates axophilic migration. J Neurosci 2013; 33:11361-71. [PMID: 23843509 PMCID: PMC3724331 DOI: 10.1523/jneurosci.3758-12.2013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 02/20/2013] [Accepted: 02/26/2013] [Indexed: 12/22/2022] Open
Abstract
Proper assembly of neural circuits requires newly born neurons to migrate from their place of origin to their final location. Little is known about the mechanisms of axophilic neuronal migration, whereby neurons travel along axon pathways to navigate to their destinations. Gonadotropin-releasing hormone (GnRH)-expressing neurons migrate along olfactory axons from the nose into the forebrain during development, and were used as a model of axophilic migration. After migrating, GnRH neurons are located in the hypothalamus and are essential for puberty and maintenance of reproductive function. To gain a better understanding of the mechanisms underlying axophilic migration, we investigated in mice the regulation of movement from calcium signals to cytoskeletal dynamics. Live imaging revealed robust calcium activity during axophilic migration, and calcium release through IP3 receptors was found to stimulate migration. This occurred through a signaling pathway involving the calcium sensor calcium/calmodulin protein kinase kinase, AMP-activated kinase, and RhoA/ROCK. By imaging GnRH neurons expressing actin-GFP or Lifeact-RFP, calcium release was found to stimulate leading process actin flow away from the cell body. In contrast, actin contractions at the cell rear were unaffected by this calcium signaling pathway. These findings are the first to test the regulation of cytoskeletal dynamics in axophilic migration, and reveal mechanisms of movement that have broad implications for the migration of other CNS populations.
Collapse
Affiliation(s)
- B. Ian Hutchins
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-9525, and
- Postdoctoral Research Associate Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, Maryland 20892-6200
| | - Ulrike Klenke
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-9525, and
| | - Susan Wray
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-9525, and
| |
Collapse
|
15
|
Abstract
A new technology has emerged that will facilitate the presentation of dynamic or otherwise inaccessible data on posters at scientific meetings. Video, audio, or other digital files hosted on mobile-friendly sites can be linked to through a quick response (QR) code, a two-dimensional barcode that can be scanned by smartphones, which then display the content. This approach is more affordable than acquiring tablet computers for playing dynamic content and can reach many users at large conferences. This resource details how to host videos, generate QR codes, and view the associated files on mobile devices.
Collapse
Affiliation(s)
- B Ian Hutchins
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
16
|
Casoni F, Ian Hutchins B, Donohue D, Fornaro M, Condie BG, Wray S. SDF and GABA interact to regulate axophilic migration of GnRH neurons. J Cell Sci 2012; 125:5015-25. [PMID: 22976302 PMCID: PMC3533389 DOI: 10.1242/jcs.101675] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2012] [Indexed: 12/13/2022] Open
Abstract
Stromal derived growth factor (SDF-1) and gamma-aminobutyric acid (GABA) are two extracellular cues that regulate the rate of neuronal migration during development and may act synergistically. The molecular mechanisms of this interaction are still unclear. Gonadotropin releasing hormone-1 (GnRH) neurons are essential for vertebrate reproduction. During development, these neurons emerge from the nasal placode and migrate through the cribriform plate into the brain. Both SDF-1 and GABA have been shown to regulate the rate of GnRH neuronal migration by accelerating and slowing migration, respectively. As such, this system was used to explore the mechanism by which these molecules act to produce coordinated cell movement during development. In the present study, GABA and SDF-1 are shown to exert opposite effects on the speed of cell movement by activating depolarizing or hyperpolarizing signaling pathways, GABA via changes in chloride and SDF-1 via changes in potassium. GABA and SDF-1 were also found to act synergistically to promote linear rather than random movement. The simultaneous activation of these signaling pathways, therefore, results in tight control of cellular speed and improved directionality along the migratory pathway of GnRH neurons.
Collapse
Affiliation(s)
- Filippo Casoni
- Cellular and Developmental Neurobiology Section, NINDS/NIH, Bethesda, MD 20892, USA
| | - B. Ian Hutchins
- Cellular and Developmental Neurobiology Section, NINDS/NIH, Bethesda, MD 20892, USA
| | - Duncan Donohue
- Cellular and Developmental Neurobiology Section, NINDS/NIH, Bethesda, MD 20892, USA
| | - Michele Fornaro
- Cellular and Developmental Neurobiology Section, NINDS/NIH, Bethesda, MD 20892, USA
- Department of Anatomy, Midwestern University, Downers Grove, Illinois, USA
| | - Brian G. Condie
- Department of Genetics, University of Georgia, Athens, Georgia, USA
| | - Susan Wray
- Cellular and Developmental Neurobiology Section, NINDS/NIH, Bethesda, MD 20892, USA
| |
Collapse
|