1
|
Deshmukh PU, Lad SB, Sudarsan A, Sudhakar S, Aggarwal T, Mandal S, Bagale SS, Kondabagil K, Pradeepkumar PI. Human Translesion Synthesis Polymerases polκ and polη Perform Error-Free Replication across N2-dG Methyleugenol and Estragole DNA Adducts. Biochemistry 2023; 62:2391-2406. [PMID: 37486230 DOI: 10.1021/acs.biochem.2c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
The secondary metabolites of polypropanoids, methyleugenol (MEG), and estragole (EG), found in many herbs and spices, are commonly used as food flavoring agents and as ingredients in cosmetics. MEG and EG have been reported to cause hepatocarcinogenicity in rodents, human livers, and lung cells. The formation of N2-dG and N6-dA DNA adducts is primarily attributed to the carcinogenicity of these compounds. Therefore, these compounds have been classified as "possible human carcinogens" by the International Agency for Research on Cancer and "reasonably anticipated to be a human carcinogen" by the National Toxicology Program. Herein, we report the synthesis of the N2-MEG-dG and N2-EG-dG modified oligonucleotides to study the mutagenicity of these DNA adducts. Our studies show that N2-MEG-dG and N2-EG-dG could be bypassed by human translesion synthesis (TLS) polymerases hpolκ and hpolη in an error-free manner. The steady-state kinetics of dCTP incorporation by hpolκ across N2-MEG-dG and N2-EG-dG adducts show that the catalytic efficiencies (kcat/Km) were ∼2.5- and ∼4.4-fold higher, respectively, compared to the unmodified dG template. A full-length primer extension assay demonstrates that hpolκ exhibits better catalytic efficiency than hpolη. Molecular modeling and dynamics studies capturing pre-insertion, insertion, and post-insertion steps reveal the structural features associated with the efficient bypass of the N2-MEG-dG adduct by hpolκ and indicate the reorientation of the adduct in the active site allowing the successful insertion of the incoming nucleotide. Together, these results suggest that though hpolκ and hpolη perform error-free TLS across MEG and EG during DNA replication, the observed carcinogenicity of these adducts could be attributed to the involvement of other low fidelity polymerases.
Collapse
Affiliation(s)
- Priyanka U Deshmukh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Shailesh B Lad
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Akhil Sudarsan
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sruthi Sudhakar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Tanvi Aggarwal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Soumyadeep Mandal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | | | - Kiran Kondabagil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - P I Pradeepkumar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
2
|
Richie-Jannetta R, Pallan P, Kingsley PJ, Kamdar N, Egli M, Marnett LJ. The peroxidation-derived DNA adduct, 6-oxo-M 1dG, is a strong block to replication by human DNA polymerase η. J Biol Chem 2023; 299:105067. [PMID: 37468099 PMCID: PMC10450521 DOI: 10.1016/j.jbc.2023.105067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023] Open
Abstract
The DNA adduct 6-oxo-M1dG, (3-(2'-deoxy-β-D-erythro-pentofuranosyl)-6-oxo-pyrimido(1,2alpha)purin-10(3H)-one) is formed in the genome via oxidation of the peroxidation-derived adduct M1dG. However, the effect of 6-oxo-M1dG adducts on subsequent DNA replication is unclear. Here we investigated the ability of the human Y-family polymerase hPol η to bypass 6-oxo-M1dG. Using steady-state kinetics and analysis of DNA extension products by liquid chromatography-tandem mass spectrometry, we found hPol η preferentially inserts a dAMP or dGMP nucleotide into primer-templates across from the 6-oxo-M1dG adduct, with dGMP being slightly preferred. We also show primer-templates with a 3'-terminal dGMP or dAMP across from 6-oxo-M1dG were extended to a greater degree than primers with a dCMP or dTMP across from the adduct. In addition, we explored the structural basis for bypass of 6-oxo-M1dG by hPol η using X-ray crystallography of both an insertion-stage and an extension-stage complex. In the insertion-stage complex, we observed that the incoming dCTP opposite 6-oxo-M1dG, although present during crystallization, was not present in the active site. We found the adduct does not interact with residues in the hPol η active site but rather forms stacking interactions with the base pair immediately 3' to the adduct. In the extension-stage complex, we observed the 3' hydroxyl group of the primer strand dGMP across from 6-oxo-M1dG is not positioned correctly to form a phosphodiester bond with the incoming dCTP. Taken together, these results indicate 6-oxo-M1dG forms a strong block to DNA replication by hPol η and provide a structural basis for its blocking ability.
Collapse
Affiliation(s)
- Robyn Richie-Jannetta
- A. B. Hancock, Jr, Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry and Pharmacology, Vanderbilt-Ingram Cancer Center, Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Pradeep Pallan
- Department of Biochemistry, Center for Structural Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Philip J Kingsley
- A. B. Hancock, Jr, Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry and Pharmacology, Vanderbilt-Ingram Cancer Center, Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Nikhil Kamdar
- A. B. Hancock, Jr, Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry and Pharmacology, Vanderbilt-Ingram Cancer Center, Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Martin Egli
- Department of Biochemistry, Center for Structural Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Lawrence J Marnett
- A. B. Hancock, Jr, Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry and Pharmacology, Vanderbilt-Ingram Cancer Center, Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| |
Collapse
|
3
|
Abstract
B-family DNA polymerases (PolBs) of different groups are widespread in Archaea, and different PolBs often coexist in the same organism. Many of these PolB enzymes remain to be investigated. One of the main groups that is poorly characterized is PolB2, whose members occur in many archaea but are predicted to be inactivated forms of DNA polymerase. Here, Sulfolobus islandicus DNA polymerase 2 (Dpo2), a PolB2 enzyme, was expressed in its native host and purified. Characterization of the purified enzyme revealed that the polymerase possesses a robust nucleotide incorporation activity but is devoid of the 3'-5' exonuclease activity. Enzyme kinetics analyses showed that Dpo2 replicates undamaged DNA templates with high fidelity, which is consistent with its inefficient nucleotide insertion activity opposite different DNA lesions. Strikingly, the polymerase is highly efficient in extending mismatches and mispaired primer termini once a nucleotide is placed opposite a damaged site. This extender polymerase represents a novel type of prokaryotic PolB specialized for DNA damage repair in Archaea. IMPORTANCE In this work, we report that Sulfolobus islandicus Dpo2, a B-family DNA polymerase once predicted to be an inactive form, is a bona fide DNA polymerase functioning in translesion synthesis. S. islandicus Dpo2 is a member of a large group of B-family DNA polymerases (PolB2) that are present in many archaea and some bacteria, and they carry variations in well-conserved amino acids in the functional domains responsible for polymerization and proofreading. However, we found that this prokaryotic B-family DNA polymerase not only replicates undamaged DNA with high fidelity but also extends mismatch and DNA lesion-containing substrates with high efficiencies. With these data, we propose this enzyme functions as an extender polymerase, the first prokaryotic enzyme of this type. Our data also suggest this PolB2 enzyme represents a functional counterpart of the eukaryotic DNA polymerase Pol zeta, an enzyme that is devoted to DNA damage repair.
Collapse
|
4
|
Feng X, Zhang B, Xu R, Gao Z, Liu X, Yuan G, Ishino S, Feng M, Shen Y, Ishino Y, She Q. Enzymatic Switching Between Archaeal DNA Polymerases Facilitates Abasic Site Bypass. Front Microbiol 2021; 12:802670. [PMID: 34987494 PMCID: PMC8721586 DOI: 10.3389/fmicb.2021.802670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/30/2021] [Indexed: 12/21/2022] Open
Abstract
Abasic sites are among the most abundant DNA lesions encountered by cells. Their replication requires actions of specialized DNA polymerases. Herein, two archaeal specialized DNA polymerases were examined for their capability to perform translesion DNA synthesis (TLS) on the lesion, including Sulfolobuss islandicus Dpo2 of B-family, and Dpo4 of Y-family. We found neither Dpo2 nor Dpo4 is efficient to complete abasic sites bypass alone, but their sequential actions promote lesion bypass. Enzyme kinetics studies further revealed that the Dpo4's activity is significantly inhibited at +1 to +3 site past the lesion, at which Dpo2 efficiently extends the primer termini. Furthermore, their activities are inhibited upon synthesis of 5-6 nt TLS patches. Once handed over to Dpo1, these substrates basically inactivate its exonuclease, enabling the transition from proofreading to polymerization of the replicase. Collectively, by functioning as an "extender" to catalyze further DNA synthesis past the lesion, Dpo2 bridges the activity gap between Dpo4 and Dpo1 in the archaeal TLS process, thus achieving more efficient lesion bypass.
Collapse
Affiliation(s)
- Xu Feng
- CRISPR and Archaea Biology Research Center, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Baochang Zhang
- CRISPR and Archaea Biology Research Center, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Ruyi Xu
- CRISPR and Archaea Biology Research Center, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Zhe Gao
- CRISPR and Archaea Biology Research Center, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xiaotong Liu
- CRISPR and Archaea Biology Research Center, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Guanhua Yuan
- CRISPR and Archaea Biology Research Center, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Sonoko Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Mingxia Feng
- CRISPR and Archaea Biology Research Center, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yulong Shen
- CRISPR and Archaea Biology Research Center, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Qunxin She
- CRISPR and Archaea Biology Research Center, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
5
|
Christov PP, Richie-Jannetta R, Kingsley PJ, Vemulapalli A, Kim K, Sulikowski GA, Rizzo CJ, Ketkar A, Eoff RL, Rouzer CA, Marnett LJ. Site-Specific Synthesis of Oligonucleotides Containing 6-Oxo-M 1dG, the Genomic Metabolite of M 1dG, and Liquid Chromatography-Tandem Mass Spectrometry Analysis of Its In Vitro Bypass by Human Polymerase ι. Chem Res Toxicol 2021; 34:2567-2578. [PMID: 34860508 PMCID: PMC10518890 DOI: 10.1021/acs.chemrestox.1c00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The lipid peroxidation product malondialdehyde and the DNA peroxidation product base-propenal react with dG to generate the exocyclic adduct, M1dG. This mutagenic lesion has been found in human genomic and mitochondrial DNA. M1dG in genomic DNA is enzymatically oxidized to 6-oxo-M1dG, a lesion of currently unknown mutagenic potential. Here, we report the synthesis of an oligonucleotide containing 6-oxo-M1dG and the results of extension experiments aimed at determining the effect of the 6-oxo-M1dG lesion on the activity of human polymerase iota (hPol ι). For this purpose, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay was developed to obtain reliable quantitative data on the utilization of poorly incorporated nucleotides. Results demonstrate that hPol ι primarily incorporates deoxycytidine triphosphate (dCTP) and thymidine triphosphate (dTTP) across from 6-oxo-M1dG with approximately equal efficiency, whereas deoxyadenosine triphosphate (dATP) and deoxyguanosine triphosphate (dGTP) are poor substrates. Following the incorporation of a single nucleotide opposite the lesion, 6-oxo-M1dG blocks further replication by the enzyme.
Collapse
Affiliation(s)
- Plamen P. Christov
- Department of Chemistry, Vanderbilt University; Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Robyn Richie-Jannetta
- A. B. Hancock, Jr., Memorial Laboratory for Cancer Research, Departments of Biochemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Philip J. Kingsley
- A. B. Hancock, Jr., Memorial Laboratory for Cancer Research, Departments of Biochemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Anoop Vemulapalli
- A. B. Hancock, Jr., Memorial Laboratory for Cancer Research, Departments of Biochemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Kwangho Kim
- Department of Chemistry, Vanderbilt University; Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Gary A. Sulikowski
- Department of Chemistry, Vanderbilt University; Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Carmelo J. Rizzo
- Departments of Chemistry and Biochemistry, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235
| | - Amit Ketkar
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Robert L. Eoff
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Carol A. Rouzer
- A. B. Hancock, Jr., Memorial Laboratory for Cancer Research, Departments of Biochemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Lawrence J. Marnett
- Department of Chemistry, Vanderbilt University; Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- A. B. Hancock, Jr., Memorial Laboratory for Cancer Research, Departments of Biochemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
6
|
Gu W, Martinez S, Singh AK, Nguyen H, Rozenski J, Schols D, Herdewijn P, Das K, De Jonghe S. Exploring the dNTP -binding site of HIV-1 reverse transcriptase for inhibitor design. Eur J Med Chem 2021; 225:113785. [PMID: 34425311 DOI: 10.1016/j.ejmech.2021.113785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 11/17/2022]
Abstract
HIV-1 reverse transcriptase (RT) plays a central role in the viral life cycle, and roughly half of the FDA-approved anti-HIV drugs are targeting RT. Nucleoside analogs (NRTIs) require cellular phosphorylation for binding to RT, and to bypass this rate-limiting path, we designed a new series of acyclic nucleoside phosphonate analogs as nucleoside triphosphate mimics, aiming at the chelation of the catalytic Mg2+ ions via a phosphonate and/or a carboxylic acid group. Novel synthetic procedures were developed to access these nucleoside phosphonate analogs. X-ray structures in complex with HIV-1 RT/dsDNA demonstrated that their binding modes are distinct from that of our previously reported compound series. The impact of chain length, chirality and linker atom have been discussed. The detailed structural understanding of these new compounds provides opportunities for designing new class of HIV-1 RT inhibitors.
Collapse
Affiliation(s)
- Weijie Gu
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000, Leuven, Belgium; KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Laboratory of Medicinal Chemistry, Herestraat 49, 3000, Leuven, Belgium
| | - Sergio Martinez
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000, Leuven, Belgium
| | - Abhimanyu K Singh
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000, Leuven, Belgium
| | - Hoai Nguyen
- KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Laboratory of Medicinal Chemistry, Herestraat 49, 3000, Leuven, Belgium
| | - Jef Rozenski
- KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Laboratory of Medicinal Chemistry, Herestraat 49, 3000, Leuven, Belgium
| | - Dominique Schols
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000, Leuven, Belgium
| | - Piet Herdewijn
- KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Laboratory of Medicinal Chemistry, Herestraat 49, 3000, Leuven, Belgium
| | - Kalyan Das
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000, Leuven, Belgium.
| | - Steven De Jonghe
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
7
|
Pezo V, Jaziri F, Bourguignon PY, Louis D, Jacobs-Sera D, Rozenski J, Pochet S, Herdewijn P, Hatfull GF, Kaminski PA, Marliere P. Noncanonical DNA polymerization by aminoadenine-based siphoviruses. Science 2021; 372:520-524. [PMID: 33926956 DOI: 10.1126/science.abe6542] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/25/2021] [Indexed: 01/05/2023]
Abstract
Bacteriophage genomes harbor the broadest chemical diversity of nucleobases across all life forms. Certain DNA viruses that infect hosts as diverse as cyanobacteria, proteobacteria, and actinobacteria exhibit wholesale substitution of aminoadenine for adenine, thereby forming three hydrogen bonds with thymine and violating Watson-Crick pairing rules. Aminoadenine-encoded DNA polymerases, homologous to the Klenow fragment of bacterial DNA polymerase I that includes 3'-exonuclease but lacks 5'-exonuclease, were found to preferentially select for aminoadenine instead of adenine in deoxynucleoside triphosphate incorporation templated by thymine. Polymerase genes occur in synteny with genes for a biosynthesis enzyme that produces aminoadenine deoxynucleotides in a wide array of Siphoviridae bacteriophages. Congruent phylogenetic clustering of the polymerases and biosynthesis enzymes suggests that aminoadenine has propagated in DNA alongside adenine since archaic stages of evolution.
Collapse
Affiliation(s)
- Valerie Pezo
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, 91057 Evry, France
| | - Faten Jaziri
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, 91057 Evry, France
| | - Pierre-Yves Bourguignon
- Werkstatt fuer Potenzielle Genetik, Naunynstrasse 30, 10997 Berlin, Germany.,TESSSI, 81 Rue Réaumur, 75002 Paris, France
| | | | - Deborah Jacobs-Sera
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260 USA
| | - Jef Rozenski
- Laboratory of Medicinal Chemistry, Rega Institute for Biomedical Research, KU Leuven, Herestraat 49, Box 1041, 3000 Leuven, Belgium
| | - Sylvie Pochet
- Organic Chemistry, CNRS UMR3523, Department of Chemistry and Biocatalysis, Institut Pasteur, 25-28 Rue du Docteur Roux, 75015 Paris, France
| | - Piet Herdewijn
- Laboratory of Medicinal Chemistry, Rega Institute for Biomedical Research, KU Leuven, Herestraat 49, Box 1041, 3000 Leuven, Belgium
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260 USA
| | - Pierre-Alexandre Kaminski
- Biology of Gram-Positive Pathogens, CNRS URL3526, Department of Microbiology, Institut Pasteur, 25-28 Rue du Docteur Roux, 75015 Paris, France
| | - Philippe Marliere
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, 91057 Evry, France. .,TESSSI, 81 Rue Réaumur, 75002 Paris, France
| |
Collapse
|
8
|
Passow KT, Antczak NM, Sturla SJ, Harki DA. Synthesis of 4-Cyanoindole Nucleosides, 4-Cyanoindole-2'-Deoxyribonucleoside-5'-Triphosphate (4CIN-TP), and Enzymatic Incorporation of 4CIN-TP into DNA. ACTA ACUST UNITED AC 2021; 80:e101. [PMID: 31909864 DOI: 10.1002/cpnc.101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
4-Cyanoindole-2'-deoxyribonucleoside (4CIN) is a fluorescent isomorphic nucleoside analogue with superior spectroscopic properties in terms of Stokes shift and quantum yield in comparison to the widely utilized isomorphic nucleoside analogue, 2-aminopurine-2'-deoxyribonucleoside (2APN). Notably, when inserted into single- or double-stranded DNA, 4CIN experiences substantially less in-strand fluorescence quenching compared to 2APN. Given the utility of these properties for a spectrum of research applications involving oligonucleotides and oligonucleotide-protein interactions (e.g., enzymatic processes, DNA hybridization, DNA damage), we envision that additional reagents based on 4-cyanoindole nucleosides may be widely utilized. This protocol expands on the previously published synthesis of 4CIN to include synthetic routes to both 4-cyanoindole-ribonucleoside (4CINr) and 4-cyanoindole-2'-deoxyribonucleoside-5'-triphosphate (4CIN-TP), as well as a method for the enzymatic incorporation of 4CIN-TP into DNA by a polymerase. These methods are anticipated to further enable the utilization of 4CIN in diverse applications involving DNA and RNA oligonucleotides. © 2020 by John Wiley & Sons, Inc. Basic Protocol 1: Synthesis of 4-cyanoindole-2'-deoxyribonucleoside (4CIN) and 4CIN phosphoramidite 4 Basic Protocol 2: Synthesis of 4-cyanoindole-ribonucleoside (4CINr) Basic Protocol 3: Synthesis of 4-cyanoindole-2'-deoxyribonucleoside-5'-triphosphate (4CIN-TP) Basic Protocol 4: Steady state incorporation kinetics of 2AP-TP and 4CIN-TP by a DNA polymerase.
Collapse
Affiliation(s)
- Kellan T Passow
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota
| | - Nicole M Antczak
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Shana J Sturla
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Daniel A Harki
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
9
|
Plant organellar DNA polymerases bypass thymine glycol using two conserved lysine residues. Biochem J 2020; 477:1049-1059. [PMID: 32108856 DOI: 10.1042/bcj20200043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023]
Abstract
Plant organelles cope with endogenous DNA damaging agents, byproducts of respiration and photosynthesis, and exogenous agents like ultraviolet light. Plant organellar DNA polymerases (DNAPs) are not phylogenetically related to yeast and metazoan DNAPs and they harbor three insertions not present in any other DNAPs. Plant organellar DNAPs from Arabidopsis thaliana (AtPolIA and AtPolIB) are translesion synthesis (TLS) DNAPs able to bypass abasic sites, a lesion that poses a strong block to replicative polymerases. Besides abasic sites, reactive oxidative species and ionizing radiation react with thymine resulting in thymine glycol (Tg), a DNA adduct that is also a strong block to replication. Here, we report that AtPolIA and AtPolIB bypass Tg by inserting an adenine opposite the lesion and efficiently extend from a Tg-A base pair. The TLS ability of AtPolIB is mapped to two conserved lysine residues: K593 and K866. Residue K593 is situated in insertion 1 and K866 is in insertion 3. With basis on the location of both insertions on a structural model of AtPolIIB, we hypothesize that the two positively charged residues interact to form a clamp around the primer-template. In contrast with nuclear and bacterial replication, where lesion bypass involves an interplay between TLS and replicative DNA polymerases, we postulate that plant organellar DNAPs evolved to exert replicative and TLS activities.
Collapse
|
10
|
Coggins SA, Mahboubi B, Schinazi RF, Kim B. Mechanistic cross-talk between DNA/RNA polymerase enzyme kinetics and nucleotide substrate availability in cells: Implications for polymerase inhibitor discovery. J Biol Chem 2020; 295:13432-13443. [PMID: 32737197 PMCID: PMC7521635 DOI: 10.1074/jbc.rev120.013746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/31/2020] [Indexed: 01/01/2023] Open
Abstract
Enzyme kinetic analysis reveals a dynamic relationship between enzymes and their substrates. Overall enzyme activity can be controlled by both protein expression and various cellular regulatory systems. Interestingly, the availability and concentrations of intracellular substrates can constantly change, depending on conditions and cell types. Here, we review previously reported enzyme kinetic parameters of cellular and viral DNA and RNA polymerases with respect to cellular levels of their nucleotide substrates. This broad perspective exposes a remarkable co-evolution scenario of DNA polymerase enzyme kinetics with dNTP levels that can vastly change, depending on cell proliferation profiles. Similarly, RNA polymerases display much higher Km values than DNA polymerases, possibly due to millimolar range rNTP concentrations found in cells (compared with micromolar range dNTP levels). Polymerases are commonly targeted by nucleotide analog inhibitors for the treatments of various human diseases, such as cancers and viral pathogens. Because these inhibitors compete against natural cellular nucleotides, the efficacy of each inhibitor can be affected by varying cellular nucleotide levels in their target cells. Overall, both kinetic discrepancy between DNA and RNA polymerases and cellular concentration discrepancy between dNTPs and rNTPs present pharmacological and mechanistic considerations for therapeutic discovery.
Collapse
Affiliation(s)
- Si'Ana A Coggins
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Bijan Mahboubi
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Raymond F Schinazi
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Baek Kim
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA; Center for Drug Discovery, Children's Healthcare of Atlanta, Atlanta, Georgia, USA.
| |
Collapse
|
11
|
Ghodke PP, Guengerich FP. Impact of 1, N 6-ethenoadenosine, a damaged ribonucleotide in DNA, on translesion synthesis and repair. J Biol Chem 2020; 295:6092-6107. [PMID: 32213600 DOI: 10.1074/jbc.ra120.012829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/23/2020] [Indexed: 01/02/2023] Open
Abstract
Incorporation of ribonucleotides into DNA can severely diminish genome integrity. However, how ribonucleotides instigate DNA damage is poorly understood. In DNA, they can promote replication stress and genomic instability and have been implicated in several diseases. We report here the impact of the ribonucleotide rATP and of its naturally occurring damaged analog 1,N 6-ethenoadenosine (1,N 6-ϵrA) on translesion synthesis (TLS), mediated by human DNA polymerase η (hpol η), and on RNase H2-mediated incision. Mass spectral analysis revealed that 1,N 6-ϵrA in DNA generates extensive frameshifts during TLS, which can lead to genomic instability. Moreover, steady-state kinetic analysis of the TLS process indicated that deoxypurines (i.e. dATP and dGTP) are inserted predominantly opposite 1,N 6-ϵrA. We also show that hpol η acts as a reverse transcriptase in the presence of damaged ribonucleotide 1,N 6-ϵrA but has poor RNA primer extension activities. Steady-state kinetic analysis of reverse transcription and RNA primer extension showed that hpol η favors the addition of dATP and dGTP opposite 1,N 6-ϵrA. We also found that RNase H2 recognizes 1,N 6-ϵrA but has limited incision activity across from this lesion, which can lead to the persistence of this detrimental DNA adduct. We conclude that the damaged and unrepaired ribonucleotide 1,N 6-ϵrA in DNA exhibits mutagenic potential and can also alter the reading frame in an mRNA transcript because 1,N 6-ϵrA is incompletely incised by RNase H2.
Collapse
Affiliation(s)
- Pratibha P Ghodke
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37323-0146
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37323-0146.
| |
Collapse
|
12
|
Sánchez-Salvador A, de Vega M. Structural Determinants Responsible for the Preferential Insertion of Ribonucleotides by Bacterial NHEJ PolDom. Biomolecules 2020; 10:biom10020203. [PMID: 32019147 PMCID: PMC7072297 DOI: 10.3390/biom10020203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 11/16/2022] Open
Abstract
The catalytic active site of the Polymerization Domain (PolDom) of bacterial Ligase D is designed to promote realignments of the primer and template strands and extend mispaired 3′ ends. These features, together with the preferred use of ribonucleotides (NTPs) over deoxynucleotides (dNTPs), allow PolDom to perform efficient double strand break repair by nonhomologous end joining when only a copy of the chromosome is present and the intracellular pool of dNTPs is depleted. Here, we evaluate (i) the role of conserved histidine and serine/threonine residues in NTP insertion, and (ii) the importance in the polymerization reaction of a conserved lysine residue that interacts with the templating nucleotide. To that extent, we have analyzed the biochemical properties of variants at the corresponding His651, Ser768, and Lys606 of Pseudomonas aeruginosa PolDom (Pa-PolDom). The results show that preferential insertion of NMPs is principally due to the histidine that also contributes to the plasticity of the active site to misinsert nucleotides. Additionally, Pa-PolDom Lys606 stabilizes primer dislocations. Finally, we show that the active site of PolDom allows the efficient use of 7,8-dihydro-8-oxo-riboguanosine triphosphate (8oxoGTP) as substrate, a major nucleotide lesion that results from oxidative stress, inserting with the same efficiency both the anti and syn conformations of 8oxoGMP.
Collapse
|
13
|
An array of basic residues is essential for the nucleolytic activity of the PHP domain of bacterial/archaeal PolX DNA polymerases. Sci Rep 2019; 9:9947. [PMID: 31289311 PMCID: PMC6616362 DOI: 10.1038/s41598-019-46349-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/26/2019] [Indexed: 12/15/2022] Open
Abstract
Bacterial/archaeal family X DNA polymerases (PolXs) have a C-terminal PHP domain with an active site formed by nine histidines and aspartates that catalyzes 3′-5′ exonuclease, AP-endonuclease, 3′-phosphodiesterase and 3′-phosphatase activities. Multiple sequence alignments have allowed us to identify additional highly conserved residues along the PHP domain of bacterial/archaeal PolXs that form an electropositive path to the catalytic site and whose potential role in the nucleolytic activities had not been established. Here, site directed mutagenesis at the corresponding Bacillus subtilis PolX (PolXBs) residues, Arg469, Arg474, Asn498, Arg503 and Lys545, as well as to the highly conserved residue Phe440 gave rise to enzymes severely affected in all the nucleolytic activities of the enzyme while conserving a wild-type gap-filling activity, indicating a function of those residues in DNA binding at the PHP domain. Altogether, the results obtained with the mutant proteins, the spatial arrangement of those DNA binding residues, the intermolecular transference of the 3′-terminus between the PHP and polymerization active sites, and the available 3D structures of bacterial PolXs led us to propose the requirement to a great degree of a functional/structural flexibility to coordinate the synthetic and degradative activities in these enzymes.
Collapse
|
14
|
Su Y, Ghodke PP, Egli M, Li L, Wang Y, Guengerich FP. Human DNA polymerase η has reverse transcriptase activity in cellular environments. J Biol Chem 2019; 294:6073-6081. [PMID: 30842261 DOI: 10.1074/jbc.ra119.007925] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/04/2019] [Indexed: 12/24/2022] Open
Abstract
Classical DNA and RNA polymerase (pol) enzymes have defined roles with their respective substrates, but several pols have been found to have multiple functions. We reported previously that purified human DNA pol η (hpol η) can incorporate both deoxyribonucleoside triphosphates (dNTPs) and ribonucleoside triphosphates (rNTPs) and can use both DNA and RNA as substrates. X-ray crystal structures revealed that two pol η residues, Phe-18 and Tyr-92, behave as steric gates to influence sugar selectivity. However, the physiological relevance of these phenomena has not been established. Here, we show that purified hpol η adds rNTPs to DNA primers at physiological rNTP concentrations and in the presence of competing dNTPs. When two rATPs were inserted opposite a cyclobutane pyrimidine dimer, the substrate was less efficiently cleaved by human RNase H2. Human XP-V fibroblast extracts, devoid of hpol η, could not add rNTPs to a DNA primer, but the expression of transfected hpol η in the cells restored this ability. XP-V cell extracts did not add dNTPs to DNA primers hybridized to RNA, but could when hpol η was expressed in the cells. HEK293T cell extracts could add dNTPs to DNA primers hybridized to RNA, but lost this ability if hpol η was deleted. Interestingly, a similar phenomenon was not observed when other translesion synthesis (TLS) DNA polymerases-hpol ι, κ, or ζ-were individually deleted. These results suggest that hpol η is one of the major reverse transcriptases involved in physiological processes in human cells.
Collapse
Affiliation(s)
- Yan Su
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Pratibha P Ghodke
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Martin Egli
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Lin Li
- Department of Chemistry, University of California, Riverside, Riverside, California 92521
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, Riverside, California 92521
| | - F Peter Guengerich
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146.
| |
Collapse
|
15
|
Stevens DR, Hammes-Schiffer S. Exploring the Role of the Third Active Site Metal Ion in DNA Polymerase η with QM/MM Free Energy Simulations. J Am Chem Soc 2018; 140:8965-8969. [PMID: 29932331 DOI: 10.1021/jacs.8b05177] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The enzyme human DNA polymerase η (Pol η) is critical for bypassing lesions during DNA replication. In addition to the two Mg2+ ions aligning the active site, experiments suggest that a third Mg2+ ion could play an essential catalytic role. Herein the role of this third metal ion is investigated with quantum mechanical/molecular mechanical (QM/MM) free energy simulations of the phosphoryl transfer reaction and a proposed self-activating proton transfer from the incoming nucleotide to the pyrophosphate leaving group. The simulations with only two metal ions in the active site support a sequential mechanism, with phosphoryl transfer followed by relatively fast proton transfer. The simulations with three metal ions in the active site suggest that the third metal ion may play a catalytic role through electrostatic interactions with the leaving group. These electrostatic interactions stabilize the product, making the phosphoryl transfer reaction more thermodynamically favorable with a lower free energy barrier relative to the activated state corresponding to the deprotonated 3'OH nucleophile, and also inhibit the subsequent proton transfer. The possibility that Mg2+-bound hydroxide acts as the base deprotonating the 3'OH nucleophile is also explored.
Collapse
Affiliation(s)
- David R Stevens
- Department of Chemistry , Yale University , 225 Prospect Street , New Haven , Connecticut 06520 , United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry , Yale University , 225 Prospect Street , New Haven , Connecticut 06520 , United States
| |
Collapse
|
16
|
Baruch-Torres N, Brieba LG. Plant organellar DNA polymerases are replicative and translesion DNA synthesis polymerases. Nucleic Acids Res 2017; 45:10751-10763. [PMID: 28977655 PMCID: PMC5737093 DOI: 10.1093/nar/gkx744] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/14/2017] [Indexed: 02/01/2023] Open
Abstract
Genomes acquire lesions that can block the replication fork and some lesions must be bypassed to allow survival. The nuclear genome of flowering plants encodes two family-A DNA polymerases (DNAPs), the result of a duplication event, that are the sole DNAPs in plant organelles. These DNAPs, dubbed Plant Organellar Polymerases (POPs), resemble the Klenow fragment of bacterial DNAP I and are not related to metazoan and fungal mitochondrial DNAPs. Herein we report that replicative POPs from the plant model Arabidopsis thaliana (AtPolI) efficiently bypass one the most insidious DNA lesions, an apurinic/apyrimidinic (AP) site. AtPolIs accomplish lesion bypass with high catalytic efficiency during nucleotide insertion and extension. Lesion bypass depends on two unique polymerization domain insertions evolutionarily unrelated to the insertions responsible for lesion bypass by DNAP θ, an analogous lesion bypass polymerase. AtPolIs exhibit an insertion fidelity that ranks between the fidelity of replicative and lesion bypass DNAPs, moderate 3′-5′ exonuclease activity and strong strand-displacement. AtPolIs are the first known example of a family-A DNAP evolved to function in both DNA replication and lesion bypass. The lesion bypass capabilities of POPs may be required to prevent replication fork collapse in plant organelles.
Collapse
Affiliation(s)
- Noe Baruch-Torres
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, 36821 Irapuato Guanajuato, México
| | - Luis G Brieba
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, 36821 Irapuato Guanajuato, México
| |
Collapse
|
17
|
DNA binding strength increases the processivity and activity of a Y-Family DNA polymerase. Sci Rep 2017; 7:4756. [PMID: 28684739 PMCID: PMC5500549 DOI: 10.1038/s41598-017-02578-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 04/12/2017] [Indexed: 11/09/2022] Open
Abstract
DNA polymerase (pol) processivity, i.e., the bases a polymerase extends before falling off the DNA, and activity are important for copying difficult DNA sequences, including simple repeats. Y-family pols would be appealing for copying difficult DNA and incorporating non-natural dNTPs, due to their low fidelity and loose active site, but are limited by poor processivity and activity. In this study, the binding between Dbh and DNA was investigated to better understand how to rationally design enhanced processivity in a Y-family pol. Guided by structural simulation, a fused pol Sdbh with non-specific dsDNA binding protein Sso7d in the N-terminus was designed. This modification increased in vitro processivity 4-fold as compared to the wild-type Dbh. Additionally, bioinformatics was used to identify amino acid mutations that would increase stabilization of Dbh bound to DNA. The variant SdbhM76I further improved the processivity of Dbh by 10 fold. The variant SdbhKSKIP241–245RVRKS showed higher activity than Dbh on the incorporation of dCTP (correct) and dATP (incorrect) opposite the G (normal) or 8-oxoG(damaged) template base. These results demonstrate the capability to rationally design increases in pol processivity and catalytic efficiency through computational DNA binding predictions and the addition of non-specific DNA binding domains.
Collapse
|
18
|
The anti/syn conformation of 8-oxo-7,8-dihydro-2'-deoxyguanosine is modulated by Bacillus subtilis PolX active site residues His255 and Asn263. Efficient processing of damaged 3'-ends. DNA Repair (Amst) 2017; 52:59-69. [PMID: 28254425 DOI: 10.1016/j.dnarep.2017.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/10/2017] [Accepted: 02/10/2017] [Indexed: 11/20/2022]
Abstract
8-oxo-7,8-dihydro-2'-deoxyguanosine (8oxodG) is a major lesion resulting from oxidative stress and found in both DNA and dNTP pools. Such a lesion is usually removed from DNA by the Base Excision Repair (BER), a universally conserved DNA repair pathway. 8oxodG usually adopts the favored and promutagenic syn-conformation at the active site of DNA polymerases, allowing the base to hydrogen bonding with adenine during DNA synthesis. Here, we study the structural determinants that affect the glycosidic torsion-angle of 8oxodGTP at the catalytic active site of the family X DNA polymerase from Bacillus subtilis (PolXBs). We show that, unlike most DNA polymerases, PolXBs exhibits a similar efficiency to stabilize the anti and syn conformation of 8oxodGTP at the catalytic site. Kinetic analyses indicate that at least two conserved residues of the nucleotide binding pocket play opposite roles in the anti/syn conformation selectivity, Asn263 and His255 that favor incorporation of 8oxodGMP opposite dA and dC, respectively. In addition, the presence in PolXBs of Mn2+-dependent 3'-phosphatase and 3'-phosphodiesterase activities is also shown. Those activities rely on the catalytic center of the C-terminal Polymerase and Histidinol Phosphatase (PHP) domain of PolXBs and, together with its 3'-5' exonuclease activity allows the enzyme to resume gap-filling after processing of damaged 3' termini.
Collapse
|
19
|
Patra A, Zhang Q, Guengerich FP, Egli M. Mechanisms of Insertion of dCTP and dTTP Opposite the DNA Lesion O6-Methyl-2'-deoxyguanosine by Human DNA Polymerase η. J Biol Chem 2016; 291:24304-24313. [PMID: 27694439 DOI: 10.1074/jbc.m116.755462] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 09/26/2016] [Indexed: 01/15/2023] Open
Abstract
O6-Methyl-2'-deoxyguanosine (O6-MeG) is a ubiquitous DNA lesion, formed not only by xenobiotic carcinogens but also by the endogenous methylating agent S-adenosylmethionine. It can introduce mutations during DNA replication, with different DNA polymerases displaying different ratios of correct or incorrect incorporation opposite this nucleoside. Of the "translesion" Y-family human DNA polymerases (hpols), hpol η is most efficient in incorporating equal numbers of correct and incorrect C and T bases. However, the mechanistic basis for this specific yet indiscriminate activity is not known. To explore this question, we report biochemical and structural analysis of the catalytic core of hpol η. Activity assays showed the truncated form displayed similar misincorporation properties as the full-length enzyme, incorporating C and T equally and extending from both. X-ray crystal structures of both dC and dT paired with O6-MeG were solved in both insertion and extension modes. The structures revealed a Watson-Crick-like pairing between O6-MeG and 2"-deoxythymidine-5"-[(α, β)-imido]triphosphate (approximating dT) at both the insertion and extension stages with formation of two H-bonds. Conversely, both the structures with O6- MeG opposite dCTP and dC display sheared configuration of base pairs but to different degrees, with formation of two bifurcated H-bonds and two single H-bonds in the structures trapped in the insertion and extension states, respectively. The structural data are consistent with the observed tendency of hpol η to insert both dC and dT opposite the O6-MeG lesion with similar efficiencies. Comparison of the hpol η active site configurations with either O6-MeG:dC or O6-MeG:dT bound compared with the corresponding situations in structures of complexes of Sulfolobus solfataricus Dpo4, a bypass pol that favors C relative to T by a factor of ∼4, helps rationalize the more error-prone synthesis opposite the lesion by hpol η.
Collapse
Affiliation(s)
- Amitraj Patra
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Qianqian Zhang
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - F Peter Guengerich
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Martin Egli
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| |
Collapse
|
20
|
Su Y, Peter Guengerich F. Pre-Steady-State Kinetic Analysis of Single-Nucleotide Incorporation by DNA Polymerases. ACTA ACUST UNITED AC 2016; 65:7.23.1-7.23.10. [PMID: 27248785 DOI: 10.1002/cpnc.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pre-steady-state kinetic analysis is a powerful and widely used method to obtain multiple kinetic parameters. This protocol provides a step-by-step procedure for pre-steady-state kinetic analysis of single-nucleotide incorporation by a DNA polymerase. It describes the experimental details of DNA substrate annealing, reaction mixture preparation, handling of the RQF-3 rapid quench-flow instrument, denaturing polyacrylamide DNA gel preparation, electrophoresis, quantitation, and data analysis. The core and unique part of this protocol is the rationale for preparation of the reaction mixture (the ratio of the polymerase to the DNA substrate) and methods for conducting pre-steady-state assays on an RQF-3 rapid quench-flow instrument, as well as data interpretation after analysis. In addition, the methods for the DNA substrate annealing and DNA polyacrylamide gel preparation, electrophoresis, quantitation and analysis are suitable for use in other studies. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Yan Su
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
21
|
O'Flaherty DK, Guengerich FP, Egli M, Wilds CJ. Backbone Flexibility Influences Nucleotide Incorporation by Human Translesion DNA Polymerase η opposite Intrastrand Cross-Linked DNA. Biochemistry 2015; 54:7449-56. [PMID: 26624500 DOI: 10.1021/acs.biochem.5b01078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Intrastrand cross-links (IaCL) connecting two purine nucleobases in DNA pose a challenge to high-fidelity replication in the cell. Various repair pathways or polymerase bypass can cope with these lesions. The influence of the phosphodiester linkage between two neighboring 2'-deoxyguanosine (dG) residues attached through the O(6) atoms by an alkylene linker on bypass with human DNA polymerase η (hPol η) was explored in vitro. Steady-state kinetics and mass spectrometric analysis of products from nucleotide incorporation revealed that although hPol η is capable of bypassing the 3'-dG in a mostly error-free fashion, significant misinsertion was observed for the 5'-dG of the IaCL containing a butylene or heptylene linker. The lack of the phosphodiester linkage triggered an important increase in frameshift adduct formation across the 5'-dG by hPol η, in comparison to the 5'-dG of IaCL DNA containing the phosphodiester group.
Collapse
Affiliation(s)
- Derek K O'Flaherty
- Department of Chemistry and Biochemistry, Concordia University , 7141 Sherbrooke Street West, Montréal, Québec, Canada H4B 1R6
| | - F Peter Guengerich
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine , Nashville, Tennessee 37232-0146, United States
| | - Martin Egli
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine , Nashville, Tennessee 37232-0146, United States
| | - Christopher J Wilds
- Department of Chemistry and Biochemistry, Concordia University , 7141 Sherbrooke Street West, Montréal, Québec, Canada H4B 1R6
| |
Collapse
|
22
|
Patra A, Zhang Q, Lei L, Su Y, Egli M, Guengerich FP. Structural and kinetic analysis of nucleoside triphosphate incorporation opposite an abasic site by human translesion DNA polymerase η. J Biol Chem 2015; 290:8028-38. [PMID: 25666608 DOI: 10.1074/jbc.m115.637561] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The most common lesion in DNA is an abasic site resulting from glycolytic cleavage of a base. In a number of cellular studies, abasic sites preferentially code for dATP insertion (the "A rule"). In some cases frameshifts are also common. X-ray structures with abasic sites in oligonucleotides have been reported for several microbial and human DNA polymerases (pols), e.g. Dpo4, RB69, KlenTaq, yeast pol ι, human (h) pol ι, and human pol β. We reported previously that hpol η is a major pol involved in abasic site bypass (Choi, J.-Y., Lim, S., Kim, E. J., Jo, A., and Guengerich, F. P. (2010 J. Mol. Biol. 404, 34-44). hpol η inserted all four dNTPs in steady-state and pre-steady-state assays, preferentially inserting A and G. In LC-MS analysis of primer-template pairs, A and G were inserted but little C or T was inserted. Frameshifts were observed when an appropriate pyrimidine was positioned 5' to the abasic site in the template. In x-ray structures of hpol η with a non-hydrolyzable analog of dATP or dGTP opposite an abasic site, H-bonding was observed between the phosphate 5' to the abasic site and water H-bonded to N1 and N6 of A and N1 and O6 of G nucleoside triphosphate analogs, offering an explanation for what appears to be a "purine rule." A structure was also obtained for an A inserted and bonded in the primer opposite the abasic site, but it did not pair with a 5' T in the template. We conclude that hpol η, a major copying enzyme with abasic sites, follows a purine rule, which can also lead to frameshifts. The phenomenon can be explained with H-bonds.
Collapse
Affiliation(s)
- Amritaj Patra
- From the Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Qianqian Zhang
- From the Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Li Lei
- From the Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Yan Su
- From the Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Martin Egli
- From the Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - F Peter Guengerich
- From the Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| |
Collapse
|