1
|
Bunch H, Jeong J, Kang K, Jo DS, Cong ATQ, Kim D, Kim D, Cho DH, Lee YM, Chen BPC, Schellenberg MJ, Calderwood SK. BRCA1-BARD1 regulates transcription through modulating topoisomerase IIβ. Open Biol 2021; 11:210221. [PMID: 34610268 PMCID: PMC8492178 DOI: 10.1098/rsob.210221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
RNA polymerase II (Pol II)-dependent transcription in stimulus-inducible genes requires topoisomerase IIβ (TOP2B)-mediated DNA strand break and the activation of DNA damage response signalling in humans. Here, we report a novel function of the breast cancer 1 (BRCA1)-BRCA1-associated ring domain 1 (BARD1) complex in this process. We found that BRCA1 is phosphorylated at S1524 by the kinases ataxia-telangiectasia mutated and ATR during gene activation, and that this event is important for productive transcription. Our biochemical and genomic analyses showed that the BRCA1-BARD1 complex interacts with TOP2B in the EGR1 transcription start site and in a large number of protein-coding genes. Intriguingly, the BRCA1-BARD1 complex ubiquitinates TOP2B, which stabilizes TOP2B binding to DNA while BRCA1 phosphorylation at S1524 controls the TOP2B ubiquitination by the complex. Together, these findings suggest the novel function of the BRCA1-BARD1 complex in the regulation of TOP2B and Pol II-mediated gene expression.
Collapse
Affiliation(s)
- Heeyoun Bunch
- Department of Applied Biosciences, College of Agriculture and Life Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea,School of Applied Biosciences, College of Agriculture and Life Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jaehyeon Jeong
- Department of Applied Biosciences, College of Agriculture and Life Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Keunsoo Kang
- Department of Microbiology, College of Natural Sciences, Dankook University, Cheonan 31116, Republic of Korea
| | - Doo Sin Jo
- School of Life Sciences, BK21 Four KNU Creative Bioresearch Group, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Anh T. Q. Cong
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Deukyeong Kim
- School of Applied Biosciences, College of Agriculture and Life Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Donguk Kim
- School of Applied Biosciences, College of Agriculture and Life Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dong-Hyung Cho
- School of Life Sciences, BK21 Four KNU Creative Bioresearch Group, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - You Mie Lee
- Vessel-Organ Interaction Research Center, VOICE (MRC), Department of Molecular Pathophysiology, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Benjamin P. C. Chen
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Stuart K. Calderwood
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
2
|
Sun F, Chronis C, Kronenberg M, Chen XF, Su T, Lay FD, Plath K, Kurdistani SK, Carey MF. Promoter-Enhancer Communication Occurs Primarily within Insulated Neighborhoods. Mol Cell 2019; 73:250-263.e5. [PMID: 30527662 PMCID: PMC6338517 DOI: 10.1016/j.molcel.2018.10.039] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/09/2018] [Accepted: 10/25/2018] [Indexed: 12/09/2022]
Abstract
Metazoan chromosomes are sequentially partitioned into topologically associating domains (TADs) and then into smaller sub-domains. One class of sub-domains, insulated neighborhoods, are proposed to spatially sequester and insulate the enclosed genes through self-association and chromatin looping. However, it has not been determined functionally whether promoter-enhancer interactions and gene regulation are broadly restricted to within these loops. Here, we employed published datasets from murine embryonic stem cells (mESCs) to identify insulated neighborhoods that confine promoter-enhancer interactions and demarcate gene regulatory regions. To directly address the functionality of these regions, we depleted estrogen-related receptor β (Esrrb), which binds the Mediator co-activator complex, to impair enhancers of genes within 222 insulated neighborhoods without causing mESC differentiation. Esrrb depletion reduces Mediator binding, promoter-enhancer looping, and expression of both nascent RNA and mRNA within the insulated neighborhoods without significantly affecting the flanking genes. Our data indicate that insulated neighborhoods represent functional regulons in mammalian genomes.
Collapse
MESH Headings
- Animals
- Binding Sites
- CCCTC-Binding Factor/genetics
- CCCTC-Binding Factor/metabolism
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Line
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Chromosomes, Mammalian
- Databases, Genetic
- Down-Regulation
- Enhancer Elements, Genetic
- Insulator Elements
- Mice
- Mouse Embryonic Stem Cells/physiology
- Promoter Regions, Genetic
- Protein Binding
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Transcription, Genetic
- Cohesins
Collapse
Affiliation(s)
- Fei Sun
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095-1737, USA
| | - Constantinos Chronis
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095-1737, USA
| | - Michael Kronenberg
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095-1737, USA
| | - Xiao-Fen Chen
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095-1737, USA
| | - Trent Su
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095-1737, USA
| | - Fides D Lay
- Department of Molecular, Cellular and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Kathrin Plath
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095-1737, USA
| | - Siavash K Kurdistani
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095-1737, USA
| | - Michael F Carey
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095-1737, USA.
| |
Collapse
|
3
|
Huang C, Su T, Xue Y, Cheng C, Lay FD, McKee RA, Li M, Vashisht A, Wohlschlegel J, Novitch BG, Plath K, Kurdistani SK, Carey M. Cbx3 maintains lineage specificity during neural differentiation. Genes Dev 2017; 31:241-246. [PMID: 28270516 PMCID: PMC5358721 DOI: 10.1101/gad.292169.116] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 01/27/2017] [Indexed: 02/05/2023]
Abstract
Chromobox homolog 3 (Cbx3/heterochromatin protein 1γ [HP1γ]) stimulates cell differentiation, but its mechanism is unknown. We found that Cbx3 binds to gene promoters upon differentiation of murine embryonic stem cells (ESCs) to neural progenitor cells (NPCs) and recruits the Mediator subunit Med26. RNAi knockdown of either Cbx3 or Med26 inhibits neural differentiation while up-regulating genes involved in mesodermal lineage decisions. Thus, Cbx3 and Med26 together ensure the fidelity of lineage specification by enhancing the expression of neural genes and down-regulating genes specific to alternative fates.
Collapse
Affiliation(s)
- Chengyang Huang
- Department of Biological Chemistry, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles California 90095, USA
- Department of Neurobiology, Shantou University Medical College, Shantou 515041, China
| | - Trent Su
- Department of Biological Chemistry, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles California 90095, USA
| | - Yong Xue
- Department of Biological Chemistry, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles California 90095, USA
| | - Chen Cheng
- Department of Biological Chemistry, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles California 90095, USA
| | - Fides D Lay
- Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Robin A McKee
- Department of Biological Chemistry, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles California 90095, USA
| | - Meiyang Li
- Department of Neurobiology, Shantou University Medical College, Shantou 515041, China
| | - Ajay Vashisht
- Department of Biological Chemistry, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles California 90095, USA
| | - James Wohlschlegel
- Department of Biological Chemistry, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles California 90095, USA
| | - Bennett G Novitch
- Department of Neurobiology, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles California 90095, USA
| | - Kathrin Plath
- Department of Biological Chemistry, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles California 90095, USA
| | - Siavash K Kurdistani
- Department of Biological Chemistry, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles California 90095, USA
| | - Michael Carey
- Department of Biological Chemistry, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles California 90095, USA
| |
Collapse
|
4
|
Chen XF, Lehmann L, Lin JJ, Vashisht A, Schmidt R, Ferrari R, Huang C, McKee R, Mosley A, Plath K, Kurdistani SK, Wohlschlegel J, Carey M. Mediator and SAGA have distinct roles in Pol II preinitiation complex assembly and function. Cell Rep 2012. [PMID: 23177621 DOI: 10.1016/j.celrep.2012.10.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A key feature of RNA polymerase II (Pol II) preinitiation complexes (PICs) is their ability to coordinate transcription initiation with chromatin modification and remodeling. To understand how this coordination is achieved, we employed extensive proteomic and mechanistic analyses to study the composition and assembly of PICs in HeLa cell and mouse embryonic stem cell (ESC) nuclear extracts. Strikingly, most of the machinery that is necessary for transcription initiation on chromatin is part of the PIC. The PIC is nearly identical between ESCs and HeLa cells and contains two major coactivator complexes: Mediator and SAGA. Genome-wide analysis of Mediator reveals that it has a close correlation with Pol II, TATA-binding protein, and messenger RNA levels and thus may play a major role in PIC assembly. Moreover, Mediator coordinates assembly of the Pol II initiation factors and chromatin machinery into a PIC in vitro, whereas SAGA acts after PIC assembly to allow transcription on chromatin.
Collapse
Affiliation(s)
- Xiao-Fen Chen
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, BSRB 351A, 615 Charles E. Young Drive, Los Angeles, CA 90095-1737, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Kitada T, Kuryan BG, Tran NNH, Song C, Xue Y, Carey M, Grunstein M. Mechanism for epigenetic variegation of gene expression at yeast telomeric heterochromatin. Genes Dev 2012; 26:2443-55. [PMID: 23124068 PMCID: PMC3490002 DOI: 10.1101/gad.201095.112] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 09/07/2012] [Indexed: 11/24/2022]
Abstract
Yeast contains heterochromatin at telomeres and the silent mating-type loci (HML/HMR). Genes positioned within the telomeric heterochromatin of Saccharomyces cerevisiae switch stochastically between epigenetically bistable ON and OFF expression states. Important aspects of the mechanism of variegated gene expression, including the chromatin structure of the natural ON state and the mechanism by which it is maintained, are unknown. To address this issue, we developed approaches to select cells in the ON and OFF states. We found by chromatin immunoprecipitation (ChIP) that natural ON telomeres are associated with Rap1 binding and, surprisingly, also contain known characteristics of OFF telomeres, including significant amounts of Sir3 and H4K16 deacetylated nucleosomes. Moreover, we found that H3K79 methylation (H3K79me), H3K4me, and H3K36me, which are depleted from OFF telomeres, are enriched at ON telomeres. We demonstrate in vitro that H3K79me, but not H3K4me or H3K36me, disrupts transcriptional silencing. Importantly, H3K79me does not significantly reduce Sir complex binding in vivo or in vitro. Finally, we show that maintenance of H3K79me at ON telomeres is dependent on transcription. Therefore, although Sir proteins are required for silencing, we propose that epigenetic variegation of telomeric gene expression is due to the bistable enrichment/depletion of H3K79me and not the fluctuation in the amount of Sir protein binding to nucleosomes.
Collapse
Affiliation(s)
- Tasuku Kitada
- Department of Biological Chemistry, David Geffen School of Medicine
- the Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Benjamin G. Kuryan
- Department of Biological Chemistry, David Geffen School of Medicine
- the Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Nancy Nga Huynh Tran
- Department of Biological Chemistry, David Geffen School of Medicine
- the Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Chunying Song
- Department of Biological Chemistry, David Geffen School of Medicine
- the Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Yong Xue
- Department of Biological Chemistry, David Geffen School of Medicine
- the Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Michael Carey
- Department of Biological Chemistry, David Geffen School of Medicine
- the Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Michael Grunstein
- Department of Biological Chemistry, David Geffen School of Medicine
- the Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
6
|
Lehmann L, Ferrari R, Vashisht AA, Wohlschlegel JA, Kurdistani SK, Carey M. Polycomb repressive complex 1 (PRC1) disassembles RNA polymerase II preinitiation complexes. J Biol Chem 2012; 287:35784-94. [PMID: 22910904 DOI: 10.1074/jbc.m112.397430] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Despite the important role of Polycomb in genome-wide silencing, little is known of the specific biochemical mechanism by which it inactivates transcription. Here we address how recombinant Polycomb repressive complex 1 (PRC1) inhibits activated RNA polymerase II preinitiation complex (PIC) assembly using immobilized H3K27-methylated chromatin templates in vitro. Recombinant PRC1 inhibited transcription, but had little effect on binding of the activator as reported previously. In contrast, Mediator and the general transcription factors were blocked during assembly or dissociated from preassembled PICs. Importantly, among the PIC components, Tata Binding Protein (TBP) was the most resistant to eviction by PRC1. Immobilized template experiments using purified PRC1, transcription factor II D (TFIID), and Mediator indicate that PRC1 blocks the recruitment of Mediator, but not TFIID. We conclude that PRC1 functions to block or dissociate PICs by interfering with Mediator, but leaves TBP and perhaps TFIID intact, highlighting a specific mechanism for PRC1 transcriptional silencing. Analysis of published genome-wide datasets from mouse embryonic stem cells revealed that the Ring1b subunit of PRC1 and TBP co-enrich at developmental genes. Further, genes enriched for Ring1b and TBP are expressed at significantly lower levels than those enriched for Mediator, TBP, and Ring1b. Collectively, the data are consistent with a model in which PRC1 and TFIID could co-occupy genes poised for activation during development.
Collapse
Affiliation(s)
- Lynn Lehmann
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095-1737, USA
| | | | | | | | | | | |
Collapse
|