1
|
Kim S, Lee SK, Son A, Lee J, Kim HG. A Comparative Inflammation-on-a-Chip with a Complete 3D Interface: Pharmacological Applications in COPD-Induced Neutrophil Migration. Adv Healthc Mater 2023; 12:e2301673. [PMID: 37505448 PMCID: PMC11469264 DOI: 10.1002/adhm.202301673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/06/2023] [Indexed: 07/29/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a slow-progressing inflammatory lung disease that is associated with high mortality and disability. There is a lack of appropriate preclinical models of COPD, which hampers drug discovery efforts. Herein, a comparative inflammation-on-a-chip (IoC) is developed with a complete 3D interface without the formation of any micropillar and phaseguide structures that replicated chemoattractant-induced neutrophil transendothelial migration (NTEM), a key feature of COPD. The IoC model is used to evaluate the pharmacological effects of CXCR2 inhibitors (MK-7123, AZD5069, and SB225002) on the migration of neutrophil-like cells in the presence of plasma samples from patients with COPD. This is the first study to evaluate inhibitors of CXCR2-dependent NTEM in a comparative IoC model that mimics the physiological 3D microenvironment, consisting of an endothelial barrier, extracellular compartment, and inflammatory conditions. This IoC model will be useful to investigate COPD severity using patient samples, and will aid basic and translational research involving NTEM.
Collapse
Affiliation(s)
- Soohyun Kim
- Center for Infectious Disease Vaccine and Diagnosis InnovationKorea Research Institute of Chemical TechnologyDaejeon34114Republic of Korea
| | - Sung Kyun Lee
- Center for Infectious Disease Vaccine and Diagnosis InnovationKorea Research Institute of Chemical TechnologyDaejeon34114Republic of Korea
| | - Ahryeong Son
- Center for Infectious Disease Vaccine and Diagnosis InnovationKorea Research Institute of Chemical TechnologyDaejeon34114Republic of Korea
| | - Jong‐Hwan Lee
- Center for Infectious Disease Vaccine and Diagnosis InnovationKorea Research Institute of Chemical TechnologyDaejeon34114Republic of Korea
| | - Hong Gi Kim
- Center for Infectious Disease Vaccine and Diagnosis InnovationKorea Research Institute of Chemical TechnologyDaejeon34114Republic of Korea
| |
Collapse
|
2
|
Popielarczyk TL, Huckle WR, Barrett JG. Human Bone Marrow-Derived Mesenchymal Stem Cells Home via the PI3K-Akt, MAPK, and Jak/Stat Signaling Pathways in Response to Platelet-Derived Growth Factor. Stem Cells Dev 2019; 28:1191-1202. [PMID: 31190615 DOI: 10.1089/scd.2019.0003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have great potential to improve clinical outcomes for many inflammatory and degenerative diseases either through intravenously delivered MSCs or through mobilization and migration of endogenous MSCs to injury sites, termed "stem cell homing." Stem cell homing involves the processes of attachment to and transmigration through endothelial cells lining the vasculature and migration through the tissue stroma to a site of injury or inflammation. Although the process of leukocyte transendothelial migration (TEM) is well understood, far less is known about stem cell homing. In this study, a transwell-based model was developed to monitor adherence and TEM of human MSCs in response to chemokine exposure. Specifically, transwell membranes lined with human synovial microvascular endothelial cells were partitioned from the tissue injury-mimetic site containing chemokine stromal cell-derived factor-1 (SDF-1). Two population subsets of MSCs were studied: migratory cells that initiated transmigration on the endothelial lining and nonmigratory cells. We hypothesized that cells would adhere to and migrate through the endothelial lining in response to SDF-1 exposure and that gene and protein expression changes would be observed between migratory and nonmigratory cells. We validated a vasculature model for MSC transmigration that showed increased expression of several genes and activation of proteins of the PI3K-Akt, MAPK, and Jak/Stat signaling pathways. These findings showed that MSC homing may be driven by activation of PDGFRA/PI3K/Akt, PDGFRA/MAPK/Grb2, and PDGFRA/Jak2/Stat signaling, as a result of SDF-1-stimulated endothelial cell production of platelet-derived growth factor. This model can be used to further investigate these key regulatory molecules toward the development of targeted therapies.
Collapse
Affiliation(s)
- Tracee L Popielarczyk
- Department of Large Animal Clinical Sciences, Marion duPont Scott Equine Medical Center, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Leesburg, Virginia
| | - William R Huckle
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia
| | - Jennifer G Barrett
- Department of Large Animal Clinical Sciences, Marion duPont Scott Equine Medical Center, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Leesburg, Virginia
| |
Collapse
|
3
|
Sato N, Haga J, Anazawa T, Kenjo A, Kimura T, Wada I, Mori T, Marubashi S, Gotoh M. Ex vivo Pretreatment of Islets with Mitomycin C: Reduction in Immunogenic Potential of Islets by Suppressing Secretion of Multiple Chemotactic Factors. Cell Transplant 2018; 26:1392-1404. [PMID: 28901184 PMCID: PMC5680981 DOI: 10.1177/0963689717721233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Strategies to reduce the immunogenicity of pancreatic islets and to prevent the activation of proinflammatory events are essential for successful islet engraftment. Pretransplant islet culture presents an opportunity for preconditioning to improve outcomes of islet transplantation. We previously demonstrated that ex vivo mitomycin C (MMC) pretreatment and subsequent culture significantly prolonged graft survival. Fully understanding the biological process of pretreatment could result in the development of a protocol to improve the survival of islet grafts. Microarrays were employed to conduct a comprehensive analysis of genes expressed in untreated or MMC-treated rat islets that were subsequently cultured for 3 d. A bioinformatics software was used to identify biological processes that were most affected by MMC pretreatment, and validation studies, including in vivo and in vitro assay, were performed. The gene expression analysis identified significant downregulation of annotated functions associated with cellular movement and revealed significant downregulation of multiple genes encoding proinflammatory mediators with chemotactic activity. Validation studies revealed significantly decreased levels of interleukin 6 (IL-6), monocyte chemoattractant protein 3 (MCP-3), and matrix metallopeptidase 2 (MMP2) in culture supernatants of MMC-treated islets compared with controls. Moreover, we showed the suppression of leukocyte chemotactic activity of MMC-treated islets in vitro. We also showed that MMC-treated islets secreted lower levels of chemoattractants that synergistically reduced the immunogenic potential of islets. Histological and immunohistochemical analyses of the implant site revealed that infiltration of monocytes, CD3-positive T cells, and B cells was decreased in MMC-treated islets. In conclusion, the ex vivo pretreatment of islets with MMC and subsequent culture can reduce the immunogenic potential and prolong the survival of islet grafts by inducing the suppression of multiple leukocyte chemotactic factors.
Collapse
Affiliation(s)
- Naoya Sato
- 1 Department of Hepato-Biliary-Pancreatic and Transplant Surgery, Fukushima Medical University, Hikarigaoka, Fukushima, Japan
| | - Junichiro Haga
- 1 Department of Hepato-Biliary-Pancreatic and Transplant Surgery, Fukushima Medical University, Hikarigaoka, Fukushima, Japan
| | - Takayuki Anazawa
- 2 Department of Surgery, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Akira Kenjo
- 1 Department of Hepato-Biliary-Pancreatic and Transplant Surgery, Fukushima Medical University, Hikarigaoka, Fukushima, Japan
| | - Takashi Kimura
- 1 Department of Hepato-Biliary-Pancreatic and Transplant Surgery, Fukushima Medical University, Hikarigaoka, Fukushima, Japan
| | - Ikuo Wada
- 3 Department of Cell Science, Institute of Biomedical Sciences, Fukushima Medical University, Hikarigaoka, Fukushima, Japan
| | - Tsutomu Mori
- 4 Department of Human Lifesciences, School of Nursing, Fukushima Medical University, Hikarigaoka, Fukushima, Japan
| | - Shigeru Marubashi
- 1 Department of Hepato-Biliary-Pancreatic and Transplant Surgery, Fukushima Medical University, Hikarigaoka, Fukushima, Japan
| | - Mitsukazu Gotoh
- 1 Department of Hepato-Biliary-Pancreatic and Transplant Surgery, Fukushima Medical University, Hikarigaoka, Fukushima, Japan
| |
Collapse
|
4
|
Kang MH, Jin YH, Kim BS. Effects of Keratinocyte-Derived Cytokine (CXCL-1) on the Development of Theiler's Virus-Induced Demyelinating Disease. Front Cell Infect Microbiol 2018; 8:9. [PMID: 29410948 PMCID: PMC5787060 DOI: 10.3389/fcimb.2018.00009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/09/2018] [Indexed: 12/31/2022] Open
Abstract
CXCL-1, also called keratinocyte-derived cytokine (KC), is a predominant chemokine produced in glial cells upon infection with Theiler's murine encephalomyelitis virus (TMEV). In this study, we assessed the role of KC in the development of TMEV-induced demyelinating disease by utilizing polyclonal anti-KC antibodies as well as KC-expressing recombinant TMEV. Our results indicate that the level of KC produced after infection with TMEV or stimulation with various TLRs is significantly higher in various cells from susceptible SJL mice compared to those in cells from resistant B6 mice. SJL mice treated with rabbit anti-KC antibodies displayed accelerated development of TMEV-induced demyelinating disease, elevated viral loads in the CNS and decreased antiviral T cell responses. In addition, infection of susceptible SJL mice with recombinant KC-TMEV produced biologically active KC, which resulted in the accelerated pathogenesis of demyelinating disease and elevated T cell responses to viral antigens compared to mice infected with control recombinant HEL-TMEV. These results strongly suggest that both the lack of KC during TMEV infection and the excessive presence of the chemokine promote the pathogenesis of demyelinating disease. Therefore, a balance in the level of KC during TMEV infection appears to be critically important in controlling the pathogenesis of demyelinating disease.
Collapse
Affiliation(s)
- Min H Kang
- Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, IL, United States
| | - Young H Jin
- Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, IL, United States
| | - Byung S Kim
- Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, IL, United States
| |
Collapse
|
5
|
Gao X, Su Y, Chen YL, Han MY, Yuan YY, Xu JC, Xin F, Zhang MG, Huang SS, Wang GJ, Kang DY, Guan LP, Zhang JG, Dai P. Identification of Two Novel Compound Heterozygous PTPRQ Mutations Associated with Autosomal Recessive Hearing Loss in a Chinese Family. PLoS One 2015; 10:e0124757. [PMID: 25919374 PMCID: PMC4412678 DOI: 10.1371/journal.pone.0124757] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 03/05/2015] [Indexed: 11/25/2022] Open
Abstract
Mutations in PTPRQ are associated with deafness in humans due to defects of stereocilia in hair cells. Using whole exome sequencing, we identified responsible gene of family 1572 with autosomal recessively non-syndromic hearing loss (ARNSHL). We also used DNA from 74 familial patients with ARNSHL and 656 ethnically matched control chromosomes to perform extended variant analysis. We identified two novel compound heterozygous missense mutations, c. 3125 A>G p.D1042G (maternal allele) and c.5981 A>G p.E1994G (paternal allele), in the PTPRQ gene, as the cause of recessively inherited sensorineural hearing loss in family 1572. Both variants co-segregated with hearing loss phenotype in family 1572, but were absent in 74 familial patients. Heterozygosity for c. 3125 A>G was identified in two samples from unaffected Chinese individuals (656 chromosomes). Therefore, the hearing loss in this family was caused by two novel compound heterozygous mutations in PTPRQ.
Collapse
Affiliation(s)
- Xue Gao
- Department of Otorhinolaryngology, Head and Neck Surgery, PLA General Hospital, Beijing, P. R. China
- Department of Otolaryngology, Hainan Branch of PLA General Hospital, Sanya, P. R. China
- Department of Otorhinolaryngology, the Second Artillery General Hospital, Beijing, P. R. China
| | - Yu Su
- Department of Otorhinolaryngology, Head and Neck Surgery, PLA General Hospital, Beijing, P. R. China
- Department of Otolaryngology, Hainan Branch of PLA General Hospital, Sanya, P. R. China
| | | | - Ming-Yu Han
- Department of Otorhinolaryngology, Head and Neck Surgery, PLA General Hospital, Beijing, P. R. China
| | - Yong-Yi Yuan
- Department of Otorhinolaryngology, Head and Neck Surgery, PLA General Hospital, Beijing, P. R. China
- Department of Otolaryngology, Hainan Branch of PLA General Hospital, Sanya, P. R. China
| | - Jin-Cao Xu
- Department of Otorhinolaryngology, the Second Artillery General Hospital, Beijing, P. R. China
| | - Feng Xin
- Department of Otorhinolaryngology, Head and Neck Surgery, PLA General Hospital, Beijing, P. R. China
| | - Mei-Guang Zhang
- Department of Otorhinolaryngology, the Second Artillery General Hospital, Beijing, P. R. China
| | - Sha-Sha Huang
- Department of Otorhinolaryngology, Head and Neck Surgery, PLA General Hospital, Beijing, P. R. China
| | - Guo-Jian Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, PLA General Hospital, Beijing, P. R. China
| | - Dong-Yang Kang
- Department of Otorhinolaryngology, Head and Neck Surgery, PLA General Hospital, Beijing, P. R. China
| | | | | | - Pu Dai
- Department of Otorhinolaryngology, Head and Neck Surgery, PLA General Hospital, Beijing, P. R. China
- Department of Otolaryngology, Hainan Branch of PLA General Hospital, Sanya, P. R. China
- * E-mail:
| |
Collapse
|
6
|
Oliva-Martin MJ, Sánchez-Abarca LI, Carrillo-Jiménez A, Pérez-Simón JA, Venero JL. Evaluation of a method for murine monocyte isolation by bone marrow depletion. Anal Biochem 2015; 480:42-8. [PMID: 25892220 DOI: 10.1016/j.ab.2015.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/19/2015] [Accepted: 04/09/2015] [Indexed: 02/01/2023]
Abstract
The study of monocyte activation and differentiation has great applications in sepsis, chronic inflammatory diseases, and cancer studies. However, despite the existence of well-established protocols for monocyte purification from human blood, the isolation of murine monocytes that can be subsequently activated has not yet been fully optimized. Here we evaluate a recently developed commercial procedure for obtaining monocytes from the bone marrow based on immunomagnetic depletion of non-monocytic cells. Moreover, we compare the advantages and disadvantages of this approach relative to other existing procedures. We found that monocytes isolates generated using this technique had equal purity to those attained via depletion from peripheral blood; however, higher yields were achieved. Furthermore, isolates from this technique have lower levels of macrophage contamination than those reported in samples generated by culturing bone marrow extracts with macrophage colony-stimulating factor (M-CSF). In addition, we demonstrate that the purified monocytes are sensitive to lipopolysaccharide (LPS)-mediated activation and, therefore, are useful for studies aimed at elucidating the molecular mechanisms involved in monocyte activation and differentiation.
Collapse
Affiliation(s)
- María José Oliva-Martin
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBiS)/Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Sevilla, 41013 Sevilla, Spain; Department of Hematology, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBiS)/Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Sevilla, 41013 Sevilla, Spain.
| | - Luis Ignacio Sánchez-Abarca
- Department of Hematology, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBiS)/Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Alejandro Carrillo-Jiménez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBiS)/Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Sevilla, 41013 Sevilla, Spain
| | - José A Pérez-Simón
- Department of Hematology, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBiS)/Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Jose L Venero
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBiS)/Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Sevilla, 41013 Sevilla, Spain
| |
Collapse
|
7
|
Lamberti G, Prabhakarpandian B, Garson C, Smith A, Pant K, Wang B, Kiani MF. Bioinspired microfluidic assay for in vitro modeling of leukocyte-endothelium interactions. Anal Chem 2014; 86:8344-51. [PMID: 25135319 PMCID: PMC4139165 DOI: 10.1021/ac5018716] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 07/28/2014] [Indexed: 01/08/2023]
Abstract
Current in vitro models of the leukocyte adhesion cascade cannot be used for real-time studies of the entire leukocyte adhesion cascade, including rolling, adhesion, and migration in a single assay. In this study, we have developed and validated a novel bioinspired microfluidic assay (bMFA) and used it to test the hypothesis that blocking of specific steps in the adhesion/migration cascade significantly affects other steps of the cascade. The bMFA consists of an endothelialized microvascular network in communication with a tissue compartment via a 3 μm porous barrier. Human neutrophils in bMFA preferentially adhered to activated human endothelial cells near bifurcations with rolling and adhesion patterns in close agreement with in vivo observations. Treating endothelial cells with monoclonal antibodies to E-selectin or ICAM-1 or treating neutrophils with wortmannin reduced rolling, adhesion, and migration of neutrophils to 60%, 20%, and 18% of their respective control values. Antibody blocking of specific steps in the adhesion/migration cascade (e.g., mAb to E-selectin) significantly downregulated other steps of the cascade (e.g., migration). This novel in vitro assay provides a realistic human cell based model for basic science studies, identification of new treatment targets, selection of pathways to target validation, and rapid screening of candidate agents.
Collapse
Affiliation(s)
- Giuseppina Lamberti
- Department
of Mechanical Engineering, Temple University, 1947 N. 12th street, Philadelphia, Pennsylvania 19122, United States
| | | | - Charles Garson
- Biomedical
Technology, CFD Research Corporation, 701 McMillian Way, Huntsville, Alabama 35806, United
States
| | - Ashley Smith
- Biomedical
Technology, CFD Research Corporation, 701 McMillian Way, Huntsville, Alabama 35806, United
States
| | - Kapil Pant
- Biomedical
Technology, CFD Research Corporation, 701 McMillian Way, Huntsville, Alabama 35806, United
States
| | - Bin Wang
- Department
of Mechanical Engineering, Temple University, 1947 N. 12th street, Philadelphia, Pennsylvania 19122, United States
- Department
of Biomedical Engineering, Widener University, One University Place, Chester, Pennsylvania 19013-5792, United States
| | - Mohammad F. Kiani
- Department
of Mechanical Engineering, Temple University, 1947 N. 12th street, Philadelphia, Pennsylvania 19122, United States
- Department
of Radiation Oncology, Temple University
School of Medicine, 3500
N. Broad Street, Philadelphia, Pennsylvania 19140, United States
| |
Collapse
|
8
|
Avraham-Davidi I, Yona S, Grunewald M, Landsman L, Cochain C, Silvestre JS, Mizrahi H, Faroja M, Strauss-Ayali D, Mack M, Jung S, Keshet E. On-site education of VEGF-recruited monocytes improves their performance as angiogenic and arteriogenic accessory cells. ACTA ACUST UNITED AC 2013; 210:2611-25. [PMID: 24166715 PMCID: PMC3832929 DOI: 10.1084/jem.20120690] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
VEGF-driven neovascularization transiently recruits Ly6Chigh monocytes, which subsequently alter their phenotype and exert angiogenic function to enlarge small vessels. Adult neovascularization relies on the recruitment of monocytes to the target organ or tumor and functioning therein as a paracrine accessory. The exact origins of the recruited monocytes and the mechanisms underlying their plasticity remain unclear. Using a VEGF-based transgenic system in which genetically tagged monocytes are conditionally summoned to the liver as part of a VEGF-initiated angiogenic program, we show that these recruited cells are derived from the abundant pool of circulating Ly6Chi monocytes. Remarkably, however, upon arrival at the VEGF-induced organ, but not the naive organ, monocytes undergo multiple phenotypic and functional changes, endowing them with enhanced proangiogenic capabilities and, importantly, with a markedly increased capacity to remodel existing small vessels into larger conduits. Notably, monocytes do not differentiate into long-lived macrophages, but rather appear as transient accessory cells. Results from transfers of presorted subpopulations and a novel tandem transfer strategy ruled out selective recruitment of a dedicated preexisting subpopulation or onsite selection, thereby reinforcing active reprogramming as the underlying mechanism for improved performance. Collectively, this study uncovered a novel function of VEGF, namely, on-site education of recruited “standard” monocytes to become angiogenic and arteriogenic professional cells, a finding that may also lend itself for a better design of angiogenic therapies.
Collapse
Affiliation(s)
- Inbal Avraham-Davidi
- Department of Developmental Biology and Cancer Research, the Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Marchi LF, Sesti-Costa R, Chedraoui-Silva S, Mantovani B. Comparison of four methods for the isolation of murine blood neutrophils with respect to the release of reactive oxygen and nitrogen species and the expression of immunological receptors. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s00580-013-1808-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
10
|
Yona S, Kim KW, Wolf Y, Mildner A, Varol D, Breker M, Strauss-Ayali D, Viukov S, Guilliams M, Misharin A, Hume DA, Perlman H, Malissen B, Zelzer E, Jung S. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 2013; 38:79-91. [PMID: 23273845 PMCID: PMC3908543 DOI: 10.1016/j.immuni.2012.12.001] [Citation(s) in RCA: 2263] [Impact Index Per Article: 205.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 12/06/2012] [Indexed: 02/08/2023]
Abstract
Mononuclear phagocytes, including monocytes, macrophages, and dendritic cells, contribute to tissue integrity as well as to innate and adaptive immune defense. Emerging evidence for labor division indicates that manipulation of these cells could bear therapeutic potential. However, specific ontogenies of individual populations and the overall functional organization of this cellular network are not well defined. Here we report a fate-mapping study of the murine monocyte and macrophage compartment taking advantage of constitutive and conditional CX(3)CR1 promoter-driven Cre recombinase expression. We have demonstrated that major tissue-resident macrophage populations, including liver Kupffer cells and lung alveolar, splenic, and peritoneal macrophages, are established prior to birth and maintain themselves subsequently during adulthood independent of replenishment by blood monocytes. Furthermore, we have established that short-lived Ly6C(+) monocytes constitute obligatory steady-state precursors of blood-resident Ly6C(-) cells and that the abundance of Ly6C(+) blood monocytes dynamically controls the circulation lifespan of their progeny.
Collapse
Affiliation(s)
- Simon Yona
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Ki-Wook Kim
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Yochai Wolf
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Alexander Mildner
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Diana Varol
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Michal Breker
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Dalit Strauss-Ayali
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Sergey Viukov
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Martin Guilliams
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM U1104, CNRS UMR7280, Marseille, France
| | | | - David A. Hume
- The Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Harris Perlman
- Northwestern University, Department of Medicine, Chicago, USA
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM U1104, CNRS UMR7280, Marseille, France
| | - Elazar Zelzer
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Steffen Jung
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
11
|
Sayeed S, Nistico L, St Croix C, Di YP. Multifunctional role of human SPLUNC1 in Pseudomonas aeruginosa infection. Infect Immun 2013; 81:285-91. [PMID: 23132494 PMCID: PMC3536124 DOI: 10.1128/iai.00500-12] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 10/24/2012] [Indexed: 12/14/2022] Open
Abstract
The human short PLUNC1 (SPLUNC1) protein has been identified as a component of the pulmonary antimicrobial response based on its structural similarity to the bactericidal/permeability-increasing (BPI) protein. Using a genetically modified mouse model, we recently verified the antimicrobial activity of SPLUNC1 against Pseudomonas aeruginosa in vivo. To further define the mechanism of epithelial SPLUNC1-mediated antibacterial action, we carried out studies to determine how SPLUNC1 protects the host from acute respiratory infections. P. aeruginosa treated with recombinant human SPLUNC1 protein showed decreased growth in vitro. This antibacterial activity was due to growth inhibition, as a consequence of a SPLUNC1-induced increase in bacterial cell permeability. Removal of SPLUNC1 allowed the recovery of P. aeruginosa and suggested no permanent cell injury or direct killing of bacteria. Further investigation showed coating of bacterial cells by SPLUNC1. We suggest that this "bacterial cell coating" is necessary for the bacteriostatic function of SPLUNC1. Additionally, we demonstrated a novel role for SPLUNC1 as a chemoattractant that facilitated migration of macrophages and neutrophils. Taking the findings together, we propose synergistic roles for human SPLUNC1 as an antibacterial agent with bacteriostatic and chemotactic activities.
Collapse
Affiliation(s)
- Sameera Sayeed
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Laura Nistico
- Allegheny Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania, USA
| | - Claudette St Croix
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Y. Peter Di
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
12
|
Amos PJ, Cagavi Bozkulak E, Qyang Y. Methods of cell purification: a critical juncture for laboratory research and translational science. Cells Tissues Organs 2011; 195:26-40. [PMID: 21996576 PMCID: PMC3257814 DOI: 10.1159/000331390] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Research in cell biology and the development of translational technologies are driven by competition, public expectations, and regulatory oversight, putting these fields at a critical juncture. Success in these fields is quickly becoming dependent on the ability of researchers to identify and isolate specific cell populations from heterogeneous mixtures accurately and efficiently. Many methods for cell purification have been developed, and each has advantages and disadvantages that must be considered in light of the intended application. Current cell separation strategies make use of surface proteins, genetic expression, and physics to isolate specific cells by phenotypic traits. Cell purification is also dependent on the cellular reagents available for use and the intended application, as these factors may preclude certain mechanisms used in the processes of labeling and sorting cells.
Collapse
Affiliation(s)
| | | | - Yibing Qyang
- Section of Cardiology, Department of Internal Medicine, Yale Stem Cell Center, Yale School of Medicine, Yale University, New Haven, Conn., USA
| |
Collapse
|
13
|
Choi KD, Vodyanik M, Slukvin II. Hematopoietic differentiation and production of mature myeloid cells from human pluripotent stem cells. Nat Protoc 2011; 6:296-313. [PMID: 21372811 PMCID: PMC3066067 DOI: 10.1038/nprot.2010.184] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this paper, we describe a protocol for hematopoietic differentiation of human pluripotent stem cells (hPSCs) and generation of mature myeloid cells from hPSCs through expansion and differentiation of hPSC-derived lin(-)CD34(+)CD43(+)CD45(+) multipotent progenitors. The protocol comprises three major steps: (i) induction of hematopoietic differentiation by coculture of hPSCs with OP9 bone marrow stromal cells; (ii) short-term expansion of multipotent myeloid progenitors with a high dose of granulocyte-macrophage colony-stimulating factor; and (iii) directed differentiation of myeloid progenitors into neutrophils, eosinophils, dendritic cells, Langerhans cells, macrophages and osteoclasts. The generation of multipotent hematopoietic progenitors from hPSCs requires 9 d of culture and an additional 2 d to expand myeloid progenitors. Differentiation of myeloid progenitors into mature myeloid cells requires an additional 5-19 d of culture with cytokines, depending on the cell type.
Collapse
Affiliation(s)
- Kyung-Dal Choi
- National Primate Research Center, University of Wisconsin Graduate School, 1220 Capitol Court, Madison, WI 53715
| | - Maxim Vodyanik
- National Primate Research Center, University of Wisconsin Graduate School, 1220 Capitol Court, Madison, WI 53715
| | - Igor I. Slukvin
- National Primate Research Center, University of Wisconsin Graduate School, 1220 Capitol Court, Madison, WI 53715
- Department of Pathology and Laboratory Medicine, University of Wisconsin, 600 Highland Ave., Madison, WI 53792
| |
Collapse
|
14
|
Monocytic cells derived from human embryonic stem cells and fetal liver share common differentiation pathways and homeostatic functions. Blood 2010; 117:3065-75. [PMID: 21149635 DOI: 10.1182/blood-2010-07-295246] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The early emergence of macrophages and their large pattern of tissue distribution during development suggest that they may play a critical role in the initial steps of embryogenesis. In the present study, we show that monocytic cells derived from human embryonic stem cells (hESCs) and from fetal liver follow a differentiation pathway different to that of adult cells, leading to specific functions. Embryonic and fetal monocytic cells differentiated from a CD14(low)CD16(-) precursor to form CD14(high)CD16(+) cells without producing the CD14(high)CD16(-) cell population that predominates in adult peripheral blood. Both demonstrated an enhanced expression of genes encoding tissue-degrading enzymes, chemokines, and scavenger receptors, as was previously reported for M2 macrophages. Compared with adult blood monocytes, embryonic and fetal monocytic cells secreted high amounts of proteins acting on tissue remodeling and angiogenesis, and most of them expressed the Tie2 receptor. Furthermore, they promoted vascular remodeling in xenotransplanted human tumors. These findings suggest that the regulation of human fetal and embryonic monocytic cell differentiation leads to the generation of cells endowed mainly with anti-inflammatory and remodeling functions. Trophic and immunosuppressive functions of M2-polarized macrophages link fetus and tumor development, and hESCs offer a valuable experimental model for in vitro studies of mechanisms sustaining these processes.
Collapse
|