1
|
Dean WF, Nawara TJ, Albert RM, Mattheyses AL. OOPS: Object-Oriented Polarization Software for analysis of fluorescence polarization microscopy images. PLoS Comput Biol 2024; 20:e1011723. [PMID: 39133751 PMCID: PMC11341096 DOI: 10.1371/journal.pcbi.1011723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 08/22/2024] [Accepted: 08/02/2024] [Indexed: 08/24/2024] Open
Abstract
Most essential cellular functions are performed by proteins assembled into larger complexes. Fluorescence Polarization Microscopy (FPM) is a powerful technique that goes beyond traditional imaging methods by allowing researchers to measure not only the localization of proteins within cells, but also their orientation or alignment within complexes or cellular structures. FPM can be easily integrated into standard widefield microscopes with the addition of a polarization modulator. However, the extensive image processing and analysis required to interpret the data have limited its widespread adoption. To overcome these challenges and enhance accessibility, we introduce OOPS (Object-Oriented Polarization Software), a MATLAB package for object-based analysis of FPM data. By combining flexible image segmentation and novel object-based analyses with a high-throughput FPM processing pipeline, OOPS empowers researchers to simultaneously study molecular order and orientation in individual biological structures; conduct population assessments based on morphological features, intensity statistics, and FPM measurements; and create publication-quality visualizations, all within a user-friendly graphical interface. Here, we demonstrate the power and versatility of our approach by applying OOPS to punctate and filamentous structures.
Collapse
Affiliation(s)
- William F. Dean
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Tomasz J. Nawara
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Rose M. Albert
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Alexa L. Mattheyses
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
2
|
Li J, Wang W, Li S, Qiao Z, Jiang H, Chang X, Zhu Y, Tan H, Ma X, Dong Y, He Z, Wang Z, Liu Q, Yao S, Yang C, Yang M, Cao L, Zhang J, Li W, Wang W, Yang Z, Rong P. Smad2/3/4 complex could undergo liquid liquid phase separation and induce apoptosis through TAT in hepatocellular carcinoma. Cancer Cell Int 2024; 24:176. [PMID: 38769521 PMCID: PMC11106862 DOI: 10.1186/s12935-024-03353-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 05/02/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) represents one of the most significant causes of mortality due to cancer-related deaths. It has been previously reported that the TGF-β signaling pathway may be associated with tumor progression. However, the relationship between TGF-β signaling pathway and HCC remains to be further elucidated. The objective of our research was to investigate the impact of TGF-β signaling pathway on HCC progression as well as the potential regulatory mechanism involved. METHODS We conducted a series of bioinformatics analyses to screen and filter the most relevant hub genes associated with HCC. E. coli was utilized to express recombinant protein, and the Ni-NTA column was employed for purification of the target protein. Liquid liquid phase separation (LLPS) of protein in vitro, and fluorescent recovery after photobleaching (FRAP) were utilized to verify whether the target proteins had the ability to drive force LLPS. Western blot and quantitative real-time polymerase chain reaction (qPCR) were utilized to assess gene expression levels. Transcription factor binding sites of DNA were identified by chromatin immunoprecipitation (CHIP) qPCR. Flow cytometry was employed to examine cell apoptosis. Knockdown of target genes was achieved through shRNA. Cell Counting Kit-8 (CCK-8), colony formation assays, and nude mice tumor transplantation were utilized to test cell proliferation ability in vitro and in vivo. RESULTS We found that Smad2/3/4 complex could regulate tyrosine aminotransferase (TAT) expression, and this regulation could relate to LLPS. CHIP qPCR results showed that the key targeted DNA binding site of Smad2/3/4 complex in TAT promoter region is -1032 to -1182. In addition. CCK-8, colony formation, and nude mice tumor transplantation assays showed that Smad2/3/4 complex could repress cell proliferation through TAT. Flow cytometry assay results showed that Smad2/3/4 complex could increase the apoptosis of hepatoma cells. Western blot results showed that Smad2/3/4 complex would active caspase-9 through TAT, which uncovered the mechanism of Smad2/3/4 complex inducing hepatoma cell apoptosis. CONCLUSION This study proved that Smad2/3/4 complex could undergo LLPS to active TAT transcription, then active caspase-9 to induce hepatoma cell apoptosis in inhibiting HCC progress. The research further elucidate the relationship between TGF-β signaling pathway and HCC, which contributes to discover the mechanism of HCC development.
Collapse
Affiliation(s)
- Jiong Li
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Postdoctoral Station of Medical Aspects of Specific Environments, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wendi Wang
- College of Life Science, Liaoning University, Shenyang, China
| | - Sang Li
- Engineering and Technology Research Center for Xenotransplantation of Human Province, Changsha, China
| | - Zhengkang Qiao
- College of Life Science, Liaoning University, Shenyang, China
| | - Haoyue Jiang
- College of Life Science, Liaoning University, Shenyang, China
| | - Xinyue Chang
- College of Life Science, Liaoning University, Shenyang, China
| | - Yaning Zhu
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongpei Tan
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoqian Ma
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuqian Dong
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenhu He
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhen Wang
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qin Liu
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shanhu Yao
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Cejun Yang
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Min Yang
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lu Cao
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juan Zhang
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Wang
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhe Yang
- College of Life Science, Liaoning University, Shenyang, China.
- Shenyang Key Laboratory of Chronic Disease Occurrence and Nutrition Intervention, College of Life Sciences, Liaoning University, Shenyang, 110036, China.
| | - Pengfei Rong
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
3
|
Bondar A, Rybakova O, Melcr J, Dohnálek J, Khoroshyy P, Ticháček O, Timr Š, Miclea P, Sakhi A, Marková V, Lazar J. Quantitative linear dichroism imaging of molecular processes in living cells made simple by open software tools. Commun Biol 2021; 4:189. [PMID: 33580182 PMCID: PMC7881160 DOI: 10.1038/s42003-021-01694-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 01/11/2021] [Indexed: 11/09/2022] Open
Abstract
Fluorescence-detected linear dichroism microscopy allows observing various molecular processes in living cells, as well as obtaining quantitative information on orientation of fluorescent molecules associated with cellular features. Such information can provide insights into protein structure, aid in development of genetically encoded probes, and allow determinations of lipid membrane properties. However, quantitating and interpreting linear dichroism in biological systems has been laborious and unreliable. Here we present a set of open source ImageJ-based software tools that allow fast and easy linear dichroism visualization and quantitation, as well as extraction of quantitative information on molecular orientations, even in living systems. The tools were tested on model synthetic lipid vesicles and applied to a variety of biological systems, including observations of conformational changes during G-protein signaling in living cells, using fluorescent proteins. Our results show that our tools and model systems are applicable to a wide range of molecules and polarization-resolved microscopy techniques, and represent a significant step towards making polarization microscopy a mainstream tool of biological imaging.
Collapse
Affiliation(s)
- Alexey Bondar
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Praha 6, Czech Republic
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Czech Academy of Science, Nove Hrady, Czech Republic
| | - Olga Rybakova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Praha 6, Czech Republic
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Czech Academy of Science, Nove Hrady, Czech Republic
| | - Josef Melcr
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Praha 6, Czech Republic
- Groningen Biomolecular Sciences and Biotechnology Institute and the Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
| | - Jan Dohnálek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Praha 6, Czech Republic
| | - Petro Khoroshyy
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Praha 6, Czech Republic
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Czech Academy of Science, Nove Hrady, Czech Republic
| | - Ondřej Ticháček
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Praha 6, Czech Republic
| | - Štěpán Timr
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Praha 6, Czech Republic
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, Paris, France
- Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Paul Miclea
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Praha 6, Czech Republic
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Czech Academy of Science, Nove Hrady, Czech Republic
| | - Alina Sakhi
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Praha 6, Czech Republic
| | - Vendula Marková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Praha 6, Czech Republic
- Faculty of Sciences, Charles University, Prague, Czech Republic
| | - Josef Lazar
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Praha 6, Czech Republic.
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Czech Academy of Science, Nove Hrady, Czech Republic.
| |
Collapse
|
4
|
Schroeder AB, Dobson ETA, Rueden CT, Tomancak P, Jug F, Eliceiri KW. The ImageJ ecosystem: Open-source software for image visualization, processing, and analysis. Protein Sci 2021; 30:234-249. [PMID: 33166005 PMCID: PMC7737784 DOI: 10.1002/pro.3993] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 12/31/2022]
Abstract
For decades, biologists have relied on software to visualize and interpret imaging data. As techniques for acquiring images increase in complexity, resulting in larger multidimensional datasets, imaging software must adapt. ImageJ is an open-source image analysis software platform that has aided researchers with a variety of image analysis applications, driven mainly by engaged and collaborative user and developer communities. The close collaboration between programmers and users has resulted in adaptations to accommodate new challenges in image analysis that address the needs of ImageJ's diverse user base. ImageJ consists of many components, some relevant primarily for developers and a vast collection of user-centric plugins. It is available in many forms, including the widely used Fiji distribution. We refer to this entire ImageJ codebase and community as the ImageJ ecosystem. Here we review the core features of this ecosystem and highlight how ImageJ has responded to imaging technology advancements with new plugins and tools in recent years. These plugins and tools have been developed to address user needs in several areas such as visualization, segmentation, and tracking of biological entities in large, complex datasets. Moreover, new capabilities for deep learning are being added to ImageJ, reflecting a shift in the bioimage analysis community towards exploiting artificial intelligence. These new tools have been facilitated by profound architectural changes to the ImageJ core brought about by the ImageJ2 project. Therefore, we also discuss the contributions of ImageJ2 to enhancing multidimensional image processing and interoperability in the ImageJ ecosystem.
Collapse
Affiliation(s)
- Alexandra B. Schroeder
- Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell ImagingUniversity of Wisconsin at MadisonMadisonWisconsinUSA
- Morgridge Institute for ResearchMadisonWisconsinUSA
- Department of Medical PhysicsUniversity of Wisconsin at MadisonMadisonWisconsinUSA
| | - Ellen T. A. Dobson
- Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell ImagingUniversity of Wisconsin at MadisonMadisonWisconsinUSA
| | - Curtis T. Rueden
- Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell ImagingUniversity of Wisconsin at MadisonMadisonWisconsinUSA
| | - Pavel Tomancak
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- IT4Innovations, VŠB – Technical University of OstravaOstravaCzech Republic
| | - Florian Jug
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
- Fondazione Human TechnopoleMilanItaly
| | - Kevin W. Eliceiri
- Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell ImagingUniversity of Wisconsin at MadisonMadisonWisconsinUSA
- Morgridge Institute for ResearchMadisonWisconsinUSA
- Department of Medical PhysicsUniversity of Wisconsin at MadisonMadisonWisconsinUSA
- Department of Biomedical EngineeringUniversity of Wisconsin at MadisonMadisonWisconsinUSA
| |
Collapse
|
5
|
Myšková J, Rybakova O, Brynda J, Khoroshyy P, Bondar A, Lazar J. Directionality of light absorption and emission in representative fluorescent proteins. Proc Natl Acad Sci U S A 2020; 117:32395-32401. [PMID: 33273123 PMCID: PMC7768707 DOI: 10.1073/pnas.2017379117] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/30/2020] [Indexed: 12/13/2022] Open
Abstract
Fluorescent molecules are like antennas: The rate at which they absorb light depends on their orientation with respect to the incoming light wave, and the apparent intensity of their emission depends on their orientation with respect to the observer. However, the directions along which the most important fluorescent molecules in biology, fluorescent proteins (FPs), absorb and emit light are generally not known. Our optical and X-ray investigations of FP crystals have now allowed us to determine the molecular orientations of the excitation and emission transition dipole moments in the FPs mTurquoise2, eGFP, and mCherry, and the photoconvertible FP mEos4b. Our results will allow using FP directionality in studies of molecular and biological processes, but also in development of novel bioengineering and bioelectronics applications.
Collapse
Affiliation(s)
- Jitka Myšková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610 Prague 6, Czech Republic
| | - Olga Rybakova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610 Prague 6, Czech Republic
- Institute of Microbiology, Czech Academy of Sciences, 37333 Nové Hrady, Czech Republic
| | - Jiří Brynda
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610 Prague 6, Czech Republic
- Institute of Molecular Genetics, Czech Academy of Sciences, 14220 Prague 4, Czech Republic
| | - Petro Khoroshyy
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610 Prague 6, Czech Republic
- Institute of Microbiology, Czech Academy of Sciences, 37333 Nové Hrady, Czech Republic
| | - Alexey Bondar
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610 Prague 6, Czech Republic
- Institute of Microbiology, Czech Academy of Sciences, 37333 Nové Hrady, Czech Republic
| | - Josef Lazar
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610 Prague 6, Czech Republic;
- Institute of Microbiology, Czech Academy of Sciences, 37333 Nové Hrady, Czech Republic
| |
Collapse
|
6
|
Alberti S, Gladfelter A, Mittag T. Considerations and Challenges in Studying Liquid-Liquid Phase Separation and Biomolecular Condensates. Cell 2019; 176:419-434. [PMID: 30682370 DOI: 10.1016/j.cell.2018.12.035] [Citation(s) in RCA: 1513] [Impact Index Per Article: 302.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/05/2018] [Accepted: 12/19/2018] [Indexed: 12/20/2022]
Abstract
Evidence is now mounting that liquid-liquid phase separation (LLPS) underlies the formation of membraneless compartments in cells. This realization has motivated major efforts to delineate the function of such biomolecular condensates in normal cells and their roles in contexts ranging from development to age-related disease. There is great interest in understanding the underlying biophysical principles and the specific properties of biological condensates with the goal of bringing insights into a wide range of biological processes and systems. The explosion of physiological and pathological contexts involving LLPS requires clear standards for their study. Here, we propose guidelines for rigorous experimental characterization of LLPS processes in vitro and in cells, discuss the caveats of common experimental approaches, and point out experimental and theoretical gaps in the field.
Collapse
Affiliation(s)
- Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany; Technische Universität Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Biotechnology Center, 01307 Dresden, Germany.
| | - Amy Gladfelter
- University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| | - Tanja Mittag
- Department for Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
7
|
Bartle EI, Urner TM, Raju SS, Mattheyses AL. Desmoglein 3 Order and Dynamics in Desmosomes Determined by Fluorescence Polarization Microscopy. Biophys J 2018; 113:2519-2529. [PMID: 29212005 DOI: 10.1016/j.bpj.2017.09.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/18/2017] [Accepted: 09/21/2017] [Indexed: 11/24/2022] Open
Abstract
Desmosomes are macromolecular cell-cell junctions that provide adhesive strength in epithelial tissue. Desmosome function is inseparably linked to structure, and it is hypothesized that the arrangement, or order, of desmosomal cadherins in the intercellular space is critical for adhesive strength. However, due to desmosome size, molecular complexity, and dynamics, the role that order plays in adhesion is challenging to study. Herein, we present an excitation resolved fluorescence polarization microscopy approach to measure the spatiotemporal dynamics of order and disorder of the desmosomal cadherin desmoglein 3 (Dsg3) in living cells. Simulations were used to establish order factor as a robust metric for quantifying the spatiotemporal dynamics of order and disorder. Order factor measurements in keratinocytes showed the Dsg3 extracellular domain is ordered at the individual desmosome, single cell, and cell population levels compared to a series of disordered controls. Desmosomal adhesion is Ca2+ dependent, and reduction of extracellular Ca2+ leads to a loss of adhesion measured by dispase fragmentation assay (λ = 15.1 min). Live cell imaging revealed Dsg3 order decreased more rapidly (λ = 5.5 min), indicating that cadherin order is not required for adhesion. Our results suggest that rapid disordering of cadherins can communicate a change in extracellular Ca2+ concentration to the cell, leading to a downstream loss of adhesion. Fluorescence polarization is an effective bridge between protein structure and complex dynamics and the approach presented here is broadly applicable to studying order in macromolecular structures.
Collapse
Affiliation(s)
- Emily I Bartle
- Department of Cell Biology, Emory University, Atlanta, Georgia
| | - Tara M Urner
- Department of Cell Biology, Emory University, Atlanta, Georgia
| | | | | |
Collapse
|
8
|
Spira F, Cuylen-Haering S, Mehta S, Samwer M, Reversat A, Verma A, Oldenbourg R, Sixt M, Gerlich DW. Cytokinesis in vertebrate cells initiates by contraction of an equatorial actomyosin network composed of randomly oriented filaments. eLife 2017; 6. [PMID: 29106370 PMCID: PMC5673306 DOI: 10.7554/elife.30867] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 10/28/2017] [Indexed: 12/21/2022] Open
Abstract
The actomyosin ring generates force to ingress the cytokinetic cleavage furrow in animal cells, yet its filament organization and the mechanism of contractility is not well understood. We quantified actin filament order in human cells using fluorescence polarization microscopy and found that cleavage furrow ingression initiates by contraction of an equatorial actin network with randomly oriented filaments. The network subsequently gradually reoriented actin filaments along the cell equator. This strictly depended on myosin II activity, suggesting local network reorganization by mechanical forces. Cortical laser microsurgery revealed that during cytokinesis progression, mechanical tension increased substantially along the direction of the cell equator, while the network contracted laterally along the pole-to-pole axis without a detectable increase in tension. Our data suggest that an asymmetric increase in cortical tension promotes filament reorientation along the cytokinetic cleavage furrow, which might have implications for diverse other biological processes involving actomyosin rings.
Collapse
Affiliation(s)
- Felix Spira
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Sara Cuylen-Haering
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Shalin Mehta
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, United States
| | - Matthias Samwer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Anne Reversat
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Amitabh Verma
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, United States
| | - Rudolf Oldenbourg
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, United States
| | - Michael Sixt
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Daniel W Gerlich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| |
Collapse
|
9
|
McQuilken M, Jentzsch MS, Verma A, Mehta SB, Oldenbourg R, Gladfelter AS. Analysis of Septin Reorganization at Cytokinesis Using Polarized Fluorescence Microscopy. Front Cell Dev Biol 2017; 5:42. [PMID: 28516085 PMCID: PMC5413497 DOI: 10.3389/fcell.2017.00042] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/05/2017] [Indexed: 11/16/2022] Open
Abstract
Septins are conserved filament-forming proteins that act in diverse cellular processes. They closely associate with membranes and, in some systems, components of the cytoskeleton. It is not well understood how filaments assemble into higher-order structures in vivo or how they are remodeled throughout the cell cycle. In the budding yeast S. cerevisiae, septins are found through most of the cell cycle in an hourglass organization at the mother-bud neck until cytokinesis when the collar splits into two rings that disassemble prior to the next cell cycle. Experiments using polarized fluorescence microscopy have suggested that septins are arranged in ordered, paired filaments in the hourglass and undergo a coordinated 90° reorientation during splitting at cytokinesis. This apparent reorganization could be due to two orthogonal populations of filaments disassembling and reassembling or being preferentially retained at cytokinesis. In support of this idea, we report a decrease in septin concentration at the mother-bud neck during cytokinesis consistent with other reports and the timing of the decrease depends on known septin regulators including the Gin4 kinase. We took a candidate-based approach to examine what factors control reorientation during splitting and used polarized fluorescence microscopy to screen mutant yeast strains deficient in septin interacting proteins. Using this method, we have linked known septin regulators to different aspects of the assembly, stability, and reorganization of septin assemblies. The data support that ring splitting requires Gin4 activity and an anillin-like protein Bud4, and normal accumulation of septins at the ring requires phosphorylation of Shs1. We found distinct regulatory requirements for septin organization in the hourglass compared to split rings. We propose that septin subpopulations can vary in their localization and assembly/disassembly behavior in a cell-cycle dependent manner at cytokinesis.
Collapse
Affiliation(s)
- Molly McQuilken
- Department of Biology, University of North Carolina at Chapel HillChapel Hill, NC, USA
- Department of Biological Sciences, Dartmouth CollegeHanover, NH, USA
| | | | - Amitabh Verma
- Marine Biological Laboratory, Bell Center for Regenerative MedicineWoods Hole, MA, USA
| | - Shalin B. Mehta
- Marine Biological Laboratory, Bell Center for Regenerative MedicineWoods Hole, MA, USA
| | - Rudolf Oldenbourg
- Marine Biological Laboratory, Bell Center for Regenerative MedicineWoods Hole, MA, USA
- Department of Physics, Brown UniversityProvidence, RI, USA
| | - Amy S. Gladfelter
- Department of Biology, University of North Carolina at Chapel HillChapel Hill, NC, USA
- Marine Biological Laboratory, Bell Center for Regenerative MedicineWoods Hole, MA, USA
| |
Collapse
|
10
|
Dissection of molecular assembly dynamics by tracking orientation and position of single molecules in live cells. Proc Natl Acad Sci U S A 2016; 113:E6352-E6361. [PMID: 27679846 DOI: 10.1073/pnas.1607674113] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regulation of order, such as orientation and conformation, drives the function of most molecular assemblies in living cells but remains difficult to measure accurately through space and time. We built an instantaneous fluorescence polarization microscope, which simultaneously images position and orientation of fluorophores in living cells with single-molecule sensitivity and a time resolution of 100 ms. We developed image acquisition and analysis methods to track single particles that interact with higher-order assemblies of molecules. We tracked the fluctuations in position and orientation of molecules from the level of an ensemble of fluorophores down to single fluorophores. We tested our system in vitro using fluorescently labeled DNA and F-actin, in which the ensemble orientation of polarized fluorescence is known. We then tracked the orientation of sparsely labeled F-actin network at the leading edge of migrating human keratinocytes, revealing the anisotropic distribution of actin filaments relative to the local retrograde flow of the F-actin network. Additionally, we analyzed the position and orientation of septin-GFP molecules incorporated in septin bundles in growing hyphae of a filamentous fungus. Our data indicate that septin-GFP molecules undergo positional fluctuations within ∼350 nm of the binding site and angular fluctuations within ∼30° of the central orientation of the bundle. By reporting position and orientation of molecules while they form dynamic higher-order structures, our approach can provide insights into how micrometer-scale ordered assemblies emerge from nanoscale molecules in living cells.
Collapse
|
11
|
Tani T, Shribak M, Oldenbourg R. Living Cells and Dynamic Molecules Observed with the Polarized Light Microscope: the Legacy of Shinya Inoué. THE BIOLOGICAL BULLETIN 2016; 231:85-95. [PMID: 27638697 PMCID: PMC5319827 DOI: 10.1086/689593] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In 1948, Shinya Inoué arrived in the United States for graduate studies at Princeton. A year later he came to Woods Hole, starting a long tradition of summer research at the Marine Biological Laboratory (MBL), which quickly became Inoué's scientific home. Primed by his Japanese mentor, Katsuma Dan, Inoué followed Dan's mantra to work with healthy, living cells, on a fundamental problem (mitosis), with a unique tool set that he refined for precise and quantitative observations (polarized light microscopy), and a fresh and brilliant mind that was unafraid of challenging current dogma. Building on this potent combination, Inoué contributed landmark observations and concepts in cell biology, including the notion that there are dynamic, fine structures inside living cells, in which molecular assemblies such as mitotic spindle fibers exist in delicate equilibrium with their molecular building blocks suspended in the cytoplasm. In the late 1970s and 1980s, Inoué and others at the MBL were instrumental in conceiving video microscopy, a groundbreaking technique which married light microscopy and electronic imaging, ushering in a revolution in how we know and what we know about living cells and the molecular mechanisms of life. Here, we recount some of Inoué's accomplishments and describe how his legacy has shaped current activities in polarized light imaging at the MBL.
Collapse
Affiliation(s)
- Tomomi Tani
- Marine Biological Laboratory, Woods Hole, Massachusetts 02543
| | - Michael Shribak
- Marine Biological Laboratory, Woods Hole, Massachusetts 02543
| | | |
Collapse
|