1
|
Vibert R, Mignot C, Keren B, Chantot-Bastaraud S, Portnoï MF, Nouguès MC, Moutard ML, Faudet A, Whalen S, Haye D, Garel C, Chatron N, Rossi M, Vincent-Delorme C, Boute O, Delobel B, Andrieux J, Devillard F, Coutton C, Puechberty J, Pebrel-Richard C, Colson C, Gerard M, Missirian C, Sigaudy S, Busa T, Doco-Fenzy M, Malan V, Rio M, Doray B, Sanlaville D, Siffroi JP, Héron D, Heide S. Neurodevelopmental phenotype in 36 new patients with 8p inverted duplication-deletion: Genotype-phenotype correlation for anomalies of the corpus callosum. Clin Genet 2021; 101:307-316. [PMID: 34866188 DOI: 10.1111/cge.14096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/26/2021] [Accepted: 12/02/2021] [Indexed: 11/26/2022]
Abstract
Inverted duplication deletion 8p [invdupdel(8p)] is a complex and rare chromosomal rearrangement that combines a distal deletion and an inverted interstitial duplication of the short arm of chromosome 8. Carrier patients usually have developmental delay and intellectual disability (ID), associated with various cerebral and extra-cerebral malformations. Invdupdel(8p) is the most common recurrent chromosomal rearrangement in ID patients with anomalies of the corpus callosum (AnCC). Only a minority of invdupdel(8p) cases reported in the literature to date had both brain cerebral imaging and chromosomal microarray (CMA) with precise breakpoints of the rearrangements, making genotype-phenotype correlation studies for AnCC difficult. In this study, we report the clinical, radiological, and molecular data from 36 new invdupdel(8p) cases including three fetuses and five individuals from the same family, with breakpoints characterized by CMA. Among those, 97% (n = 32/33) of patients presented with mild to severe developmental delay/ID and 34% had seizures with mean age of onset of 3.9 years (2 months-9 years). Moreover, out of the 24 patients with brain MRI and 3 fetuses with neuropathology analysis, 63% (n = 17/27) had AnCC. We review additional data from 99 previously published patients with invdupdel(8p) and compare data of 17 patients from the literature with both CMA analysis and brain imaging to refine genotype-phenotype correlations for AnCC. This led us to refine a region of 5.1 Mb common to duplications of patients with AnCC and discuss potential candidate genes within this region.
Collapse
Affiliation(s)
- Roseline Vibert
- Département de Génétique, Hôpital Armand-Trousseau and Groupe Hospitalier Pitié-Salpêtrière, Centre de Référence Déficiences Intellectuelles de Causes Rares, APHP-Sorbonne Université, Paris, France
| | - Cyril Mignot
- Département de Génétique, Hôpital Armand-Trousseau and Groupe Hospitalier Pitié-Salpêtrière, Centre de Référence Déficiences Intellectuelles de Causes Rares, APHP-Sorbonne Université, Paris, France
| | - Boris Keren
- UF de Génomique du Développement, Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière, APHP-Sorbonne Université, Paris, France
| | | | - Marie-France Portnoï
- Department of Cytogenetics, Armand Trousseau Hospital, APHP-Sorbonne Université, Paris, France
| | - Marie-Christine Nouguès
- Service of Pediatric Neurology, Armand Trousseau Hospital, APHP-Sorbonne Université, Paris, France
| | - Marie-Laure Moutard
- Service of Pediatric Neurology, Armand Trousseau Hospital, APHP-Sorbonne Université, Paris, France
| | - Anne Faudet
- Département de Génétique, Hôpital Armand-Trousseau and Groupe Hospitalier Pitié-Salpêtrière, Centre de Référence Déficiences Intellectuelles de Causes Rares, APHP-Sorbonne Université, Paris, France
| | - Sandra Whalen
- UF de Génétique Clinique et Centre de Référence Maladies Rares des Anomalies du Développement et Syndromes Malformatifs, Hôpital Armand Trousseau, ERN ITHACA, APHP-Sorbonne Université, Paris, France
| | - Damien Haye
- Département de Génétique, Hôpital Armand-Trousseau and Groupe Hospitalier Pitié-Salpêtrière, Centre de Référence Déficiences Intellectuelles de Causes Rares, APHP-Sorbonne Université, Paris, France
| | - Catherine Garel
- Department of Radiology, Armand Trousseau Hospital, APHP-Sorbonne Université, Paris, France
| | - Nicolas Chatron
- Departments of Genetics, Lyon University Hospitals, Lyon, France
| | - Massimiliano Rossi
- Genetics Department, Referral Centre for Developmental Abnormalities, Lyon University Hospital, and INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Centre, GENDEV Team, Claude Bernard Lyon 1 University, Bron, France
| | | | - Odile Boute
- Service of Clinical Genetic, Jeanne de Flandre Hospital, Lille, France
| | - Bruno Delobel
- Service of Cytogenetics, Institut Catholique de Lille, Lille, France
| | - Joris Andrieux
- Institute of Medical Genetics, Jeanne de Flandre Hospital, Lille, France
| | - Françoise Devillard
- Service de Génétique, Génomique, et Procréation, Centre Hospitalier Universitaire Grenoble Alpes, 38700 La Tronche, France; INSERM 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Université Grenoble Alpes, Grenoble, France
| | - Charles Coutton
- Service de Génétique, Génomique, et Procréation, Centre Hospitalier Universitaire Grenoble Alpes, 38700 La Tronche, France; INSERM 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Université Grenoble Alpes, Grenoble, France
| | - Jacques Puechberty
- Department of Medical Genetics, Arnaud de Villeneuve Hospital, Montpellier, France
| | - Céline Pebrel-Richard
- Service of Cytogenetic, Clermont-Ferrand's University Hospital, Clermont-Ferrand, France
| | - Cindy Colson
- Service of Clinical Genetic, Caen's University Hospital, Caen, France
| | - Marion Gerard
- Service of Clinical Genetic, Caen's University Hospital, Caen, France
| | - Chantal Missirian
- APHM, Laboratory of Genetic, Timone Enfants' Hospital, Marseille, France
| | - Sabine Sigaudy
- Department of Medical Genetics, Timone Enfants' Hospital, Marseille, France
| | - Tiffany Busa
- Department of Medical Genetics, Timone Enfants' Hospital, Marseille, France
| | | | - Valérie Malan
- APHP, Service de Médecine Génomique, Hôpital Necker-Enfants Malades, Paris, Université de Paris, Paris, France
| | - Marlène Rio
- Department of Genetics, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Bérénice Doray
- Service of Genetic, Felix Guyon Hospital, La Réunion, France
| | | | - Jean-Pierre Siffroi
- Department of Cytogenetics, Armand Trousseau Hospital, APHP-Sorbonne Université, Paris, France
| | - Delphine Héron
- Département de Génétique, Hôpital Armand-Trousseau and Groupe Hospitalier Pitié-Salpêtrière, Centre de Référence Déficiences Intellectuelles de Causes Rares, APHP-Sorbonne Université, Paris, France
| | - Solveig Heide
- Département de Génétique, Hôpital Armand-Trousseau and Groupe Hospitalier Pitié-Salpêtrière, Centre de Référence Déficiences Intellectuelles de Causes Rares, APHP-Sorbonne Université, Paris, France
| |
Collapse
|
4
|
Akkurt MO, Higgs A, Turan OT, Turan OM, Turan S. Prenatal diagnosis of inverted duplication deletion 8p syndrome mimicking trisomy 18. Am J Med Genet A 2017; 173:776-779. [PMID: 28211984 DOI: 10.1002/ajmg.a.38074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/14/2016] [Indexed: 11/06/2022]
Abstract
Inverted duplication deletion of 8p (invdupdel[8p]) is a well-described and uncommon chromosomal rearrangement. The majority of the reported cases have revealed no life-threatening malformations. Although the invdupdel[8p] syndrome in children with central nervous system abnormalities has been reported before, we present the first prenatal microarray diagnosis of invdupdel[8p] syndrome mimicking trisomy 18 due to similar sonographic features. Contrary to reported cases with invdupdel[8p] syndrome, the present case had severe polyvalvular dysplasia and the infant deceased at day 12 of life. In this case, we also emphasize the diagnostic power of microarray analysis in detecting the underlying genetic causes for fetuses with multiple congenital anomalies. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mehmet Ozgur Akkurt
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland, Baltimore, Maryland
| | - Amanda Higgs
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland, Baltimore, Maryland
| | - Ozerk T Turan
- College of Arts and Sciences, University of Miami, Coral Gables, Florida
| | - Ozhan M Turan
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland, Baltimore, Maryland
| | - Sifa Turan
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland, Baltimore, Maryland
| |
Collapse
|
5
|
Clark-Ganheart CA, Iqbal SN, Brown DL, Black S, Fries MH. Understanding the Limitations of Circulating Cell Free Fetal DNA: An Example of Two Unique Cases. ACTA ACUST UNITED AC 2014; 3:38-70. [PMID: 25298847 DOI: 10.14740/jcgo229w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Circulating cell free fetal DNA (cffDNA) is an effective screening modality for fetal aneuploidy. We report two cases of false positive results. The first case involves a female, with self-reported Down syndrome. CffDNA returned positive for trisomy 18 leading to a maternal diagnosis of mosaicism chromosome 18 with normal fetal karyotype. The second case involves a patient with an anomalous fetal ultrasound and cffDNA positive for trisomy 13. Amniocentesis demonstrated a chromosome 8p duplication/deletion. False positive cffDNA may arise in clinical scenarios where diagnostic testing is clearly indicated. Practitioners should recognize the limitations of cffDNA.
Collapse
Affiliation(s)
| | - Sara N Iqbal
- Obstetrics and Gynecology, MedStar Washington Hospital Center, Washington, DC, USA
| | - Donna L Brown
- Obstetrics and Gynecology, MedStar Washington Hospital Center, Washington, DC, USA
| | - Susan Black
- Obstetrics and Gynecology, MedStar Washington Hospital Center, Washington, DC, USA
| | - Melissa H Fries
- Obstetrics and Gynecology, MedStar Washington Hospital Center, Washington, DC, USA
| |
Collapse
|
8
|
Wat MJ, Shchelochkov OA, Holder AM, Breman AM, Dagli A, Bacino C, Scaglia F, Zori RT, Cheung SW, Scott DA, Kang SHL. Chromosome 8p23.1 deletions as a cause of complex congenital heart defects and diaphragmatic hernia. Am J Med Genet A 2009; 149A:1661-77. [PMID: 19606479 DOI: 10.1002/ajmg.a.32896] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Recurrent interstitial deletion of a region of 8p23.1 flanked by the low copy repeats 8p-OR-REPD and 8p-OR-REPP is associated with a spectrum of anomalies that can include congenital heart malformations and congenital diaphragmatic hernia (CDH). Haploinsufficiency of GATA4 is thought to play a critical role in the development of these birth defects. We describe two individuals and a monozygotic twin pair discordant for anterior CDH all of whom have complex congenital heart defects caused by this recurrent interstitial deletion as demonstrated by array comparative genomic hybridization. To better define the genotype/phenotype relationships associated with alterations of genes on 8p23.1, we review the spectrum of congenital heart and diaphragmatic defects that have been reported in individuals with isolated GATA4 mutations and interstitial, terminal, and complex chromosomal rearrangements involving the 8p23.1 region. Our findings allow us to clearly define the CDH minimal deleted region on chromosome 8p23.1 and suggest that haploinsufficiency of other genes, in addition to GATA4, may play a role in the severe cardiac and diaphragmatic defects associated with 8p23.1 deletions. These findings also underscore the importance of conducting a careful cytogenetic/molecular analysis of the 8p23.1 region in all prenatal and postnatal cases involving congenital defects of the heart and/or diaphragm.
Collapse
Affiliation(s)
- Margaret J Wat
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Soler A, Sánchez A, Carrió A, Badenas C, Milà M, Borrell A. Fetoplacental discrepancy involving structural abnormalities of chromosome 8 detected by prenatal diagnosis. Prenat Diagn 2003; 23:319-22. [PMID: 12673638 DOI: 10.1002/pd.590] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We describe the finding of three cell lines involving different structural abnormalities of chromosome 8 detected in a prenatal diagnosis. Chorionic villi sampling (CVS) was performed on a pregnant woman because of advanced maternal age. Semidirect cytogenetic analysis showed a mos46,XX,i(8q)/46,XX,del(8)(p11.2) karyotype, confirmed by fluorescence in situ hybridization (FISH). Amniocentesis was subsequently performed, and the karyotype obtained was 46,XX,dup(8)(p23p11.2). The pregnancy was terminated; pathologic findings included clubfeet, clenched left hand, subcutaneous edema and bilateral hydrocephalus. Molecular studies using chromosome 8 microsatellites performed on parents' blood and fetal tissues revealed a maternal meiotic origin of the inv dup(8p) with deletion of the distal p23 region and duplication of the remaining 8p. We propose a model to explain the cytogenetic findings, which includes a first maternal meiotic error giving rise to a large dicentric isochromosome 8 present in the ovum, a second error in one of the first zygote divisions with misdivision of the dicentric 8 giving rise to a cell line with del(8p) confined to the trophoblast and another cell line with inv dup(8p) confined to the fetal tissue and a third error in the trophoblast giving rise to a further cell line with isochromosome 8q.
Collapse
Affiliation(s)
- Anna Soler
- Servei de Genètica, CDB, Hospital Clínic, Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|