1
|
Balogh SL, Björklund N, Huber DPW, Lindgren BS. Random and Directed Movement by Warren Root Collar Weevils (Coleoptera: Curculionidae), Relative to Size and Distance of Host Lodgepole Pine Trees. JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:5875974. [PMID: 32706872 PMCID: PMC7380461 DOI: 10.1093/jisesa/ieaa063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Indexed: 06/11/2023]
Abstract
Hylobius warreni Wood (Coleoptera: Curculionidae) is a pest of conifers, especially lodgepole pine (Pinus contorta var. latifolia Douglas ex Loudon) (Pinales: Pinaceae) in the Interior of British Columbia. The larvae feed on the roots and root collars and cause girdling damage, resulting in mortality or growth reductions. Previous research has suggested the adult weevils locate potential host trees by using random movements and vision, but likely not chemosensory cues. The purpose of this study is to determine if adult H. warreni respond to particular tree characteristics versus encounter potential hosts at random. Study A was a capture-mark-recapture experiment where weevils were captured on mature pine trees, while Study B was a tracking experiment within a young pine plantation. Weevils showed a preference for larger trees, and for trees that were closer to the weevil's last known location. In Study A, weevils also avoided climbing trees in poor health, while in Study B, the weevils' preference for taller trees increased as their distance from the weevil increased, as well as when taller trees were closer to other trees. Movement rates were similar to those observed in previous studies, were positively correlated with the average spacing of trees, and declined with time after release. This confirms previous findings that H. warreni may locate host trees by both vision and random movements, and that their movements are determined primarily by the size and distribution of potential host trees within their habitat.
Collapse
Affiliation(s)
- Sharleen L Balogh
- Natural Resources and Environmental Studies Institute, University of Northern British Columbia, Prince George, BC, Canada
| | - Niklas Björklund
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Dezene P W Huber
- Natural Resources and Environmental Studies Institute, University of Northern British Columbia, Prince George, BC, Canada
| | - B Staffan Lindgren
- Natural Resources and Environmental Studies Institute, University of Northern British Columbia, Prince George, BC, Canada
| |
Collapse
|
2
|
Habenstein J, Amini E, Grübel K, el Jundi B, Rössler W. The brain of
Cataglyphis
ants: Neuronal organization and visual projections. J Comp Neurol 2020; 528:3479-3506. [DOI: 10.1002/cne.24934] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Jens Habenstein
- Biocenter, Behavioral Physiology and Sociobiology (Zoology II) University of Würzburg Würzburg Germany
| | - Emad Amini
- Biocenter, Neurobiology and Genetics University of Würzburg Würzburg Germany
| | - Kornelia Grübel
- Biocenter, Behavioral Physiology and Sociobiology (Zoology II) University of Würzburg Würzburg Germany
| | - Basil el Jundi
- Biocenter, Behavioral Physiology and Sociobiology (Zoology II) University of Würzburg Würzburg Germany
| | - Wolfgang Rössler
- Biocenter, Behavioral Physiology and Sociobiology (Zoology II) University of Würzburg Würzburg Germany
| |
Collapse
|
3
|
Stöckl AL, Kelber A. Fuelling on the wing: sensory ecology of hawkmoth foraging. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:399-413. [PMID: 30880349 PMCID: PMC6579779 DOI: 10.1007/s00359-019-01328-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 02/25/2019] [Accepted: 03/05/2019] [Indexed: 11/28/2022]
Abstract
Hawkmoths (Lepidoptera, Sphingidae) comprise around 1500 species, most of which forage on nectar from flowers in their adult stage, usually while hovering in front of the flower. The majority of species have a nocturnal lifestyle and are important nocturnal pollinators, but some species have turned to a diurnal lifestyle. Hawkmoths use visual and olfactory cues including CO2 and humidity to detect and recognise rewarding flowers; they find the nectary in the flowers by means of mechanoreceptors on the proboscis and vision, evaluate it with gustatory receptors on the proboscis, and control their hovering flight position using antennal mechanoreception and vision. Here, we review what is presently known about the sensory organs and sensory-guided behaviour that control feeding behaviour of this fascinating pollinator taxon. We also suggest that more experiments on hawkmoth behaviour in natural settings are needed to fully appreciate their sensory capabilities.
Collapse
Affiliation(s)
- Anna Lisa Stöckl
- Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Almut Kelber
- Department of Biology, Lund University, Sölvegatan 35, 22362, Lund, Sweden.
| |
Collapse
|
4
|
Wang H, Dewell RB, Zhu Y, Gabbiani F. Feedforward Inhibition Conveys Time-Varying Stimulus Information in a Collision Detection Circuit. Curr Biol 2018; 28:1509-1521.e3. [PMID: 29754904 DOI: 10.1016/j.cub.2018.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/06/2018] [Accepted: 04/03/2018] [Indexed: 10/16/2022]
Abstract
Feedforward inhibition is ubiquitous as a motif in the organization of neuronal circuits. During sensory information processing, it is traditionally thought to sharpen the responses and temporal tuning of feedforward excitation onto principal neurons. As it often exhibits complex time-varying activation properties, feedforward inhibition could also convey information used by single neurons to implement dendritic computations on sensory stimulus variables. We investigated this possibility in a collision-detecting neuron of the locust optic lobe that receives both feedforward excitation and inhibition. We identified a small population of neurons mediating feedforward inhibition, with wide visual receptive fields and whose responses depend both on the size and speed of moving stimuli. By studying responses to simulated objects approaching on a collision course, we determined that they jointly encode the angular size of expansion of the stimulus. Feedforward excitation, on the other hand, encodes a function of the angular velocity of expansion and the targeted collision-detecting neuron combines these two variables non-linearly in its firing output. Thus, feedforward inhibition actively contributes to the detailed firing-rate time course of this collision-detecting neuron, a feature critical to the appropriate execution of escape behaviors. These results suggest that feedforward inhibition could similarly convey time-varying stimulus information in other neuronal circuits.
Collapse
Affiliation(s)
- Hongxia Wang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Richard B Dewell
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ying Zhu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Quantitative and Computational Biosciences, Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Fabrizio Gabbiani
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Quantitative and Computational Biosciences, Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA; Electrical and Computer Engineering Department, Rice University, Houston, TX 77005, USA.
| |
Collapse
|
5
|
Thoen HH, Sayre ME, Marshall J, Strausfeld NJ. Representation of the stomatopod's retinal midband in the optic lobes: Putative neural substrates for integrating chromatic, achromatic and polarization information. J Comp Neurol 2018; 526:1148-1165. [PMID: 29377111 DOI: 10.1002/cne.24398] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/18/2018] [Accepted: 01/18/2018] [Indexed: 02/05/2023]
Abstract
Stomatopods have an elaborate visual system served by a retina that is unique to this class of pancrustaceans. Its upper and lower eye hemispheres encode luminance and linear polarization while an equatorial band of photoreceptors termed the midband detects color, circularly polarized light and linear polarization in the ultraviolet. In common with many malacostracan crustaceans, stomatopods have stalked eyes, but they can move these independently within three degrees of rotational freedom. Both eyes separately use saccadic and scanning movements but they can also move in a coordinated fashion to track selected targets or maintain a forward eyestalk posture during swimming. Visual information is initially processed in the first two optic neuropils, the lamina and the medulla, where the eye's midband is represented by enlarged regions within each neuropil that contain populations of neurons, the axons of which are segregated from the neuropil regions subtending the hemispheres. Neuronal channels representing the midband extend from the medulla to the lobula where populations of putative inhibitory glutamic acid decarboxylase-positive neurons and tyrosine hydroxylase-positive neurons intrinsic to the lobula have specific associations with the midband. Here we investigate the organization of the midband representation in the medulla and the lobula in the context of their overall architecture. We discuss the implications of observed arrangements, in which midband inputs to the lobula send out collaterals that extend across the retinotopic mosaic pertaining to the hemispheres. This organization suggests an integrative design that diverges from the eumalacostracan ground pattern and, for the stomatopod, enables color and polarization information to be integrated with luminance information that presumably encodes shape and motion.
Collapse
Affiliation(s)
- Hanne Halkinrud Thoen
- Sensory Neurobiology Group, Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Marcel E Sayre
- Department of Neuroscience, School of Mind, Brain and Behavior, University of Arizona, Tucson, Arizona
| | - Justin Marshall
- Sensory Neurobiology Group, Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Nicholas James Strausfeld
- Department of Neuroscience, School of Mind, Brain and Behavior, University of Arizona, Tucson, Arizona
| |
Collapse
|
6
|
Stöckl AL, O'Carroll D, Warrant EJ. Higher-order neural processing tunes motion neurons to visual ecology in three species of hawkmoths. Proc Biol Sci 2018. [PMID: 28637860 DOI: 10.1098/rspb.2017.0880] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To sample information optimally, sensory systems must adapt to the ecological demands of each animal species. These adaptations can occur peripherally, in the anatomical structures of sensory organs and their receptors; and centrally, as higher-order neural processing in the brain. While a rich body of investigations has focused on peripheral adaptations, our understanding is sparse when it comes to central mechanisms. We quantified how peripheral adaptations in the eyes, and central adaptations in the wide-field motion vision system, set the trade-off between resolution and sensitivity in three species of hawkmoths active at very different light levels: nocturnal Deilephila elpenor, crepuscular Manduca sexta, and diurnal Macroglossum stellatarum. Using optical measurements and physiological recordings from the photoreceptors and wide-field motion neurons in the lobula complex, we demonstrate that all three species use spatial and temporal summation to improve visual performance in dim light. The diurnal Macroglossum relies least on summation, but can only see at brighter intensities. Manduca, with large sensitive eyes, relies less on neural summation than the smaller eyed Deilephila, but both species attain similar visual performance at nocturnal light levels. Our results reveal how the visual systems of these three hawkmoth species are intimately matched to their visual ecologies.
Collapse
Affiliation(s)
- A L Stöckl
- Department of Biology, University of Lund, Sölvegatan 35, 22362 Lund, Sweden
| | - D O'Carroll
- Department of Biology, University of Lund, Sölvegatan 35, 22362 Lund, Sweden
| | - E J Warrant
- Department of Biology, University of Lund, Sölvegatan 35, 22362 Lund, Sweden
| |
Collapse
|
7
|
Hempel de Ibarra N, Langridge KV, Vorobyev M. More than colour attraction: behavioural functions of flower patterns. CURRENT OPINION IN INSECT SCIENCE 2015; 12:64-70. [PMID: 27064650 PMCID: PMC4804388 DOI: 10.1016/j.cois.2015.09.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Flower patterns are thought to influence foraging decisions of insect pollinators. However, the resolution of insect compound eyes is poor. Insects perceive flower patterns only from short distances when they initiate landings or search for reward on the flower. From further away flower displays jointly form larger-sized patterns within the visual scene that will guide the insect's flight. Chromatic and achromatic cues in such patterns may help insects to find, approach and learn rewarded locations in a flower patch, bringing them close enough to individual flowers. Flight trajectories and the spatial resolution of chromatic and achromatic vision in insects determine the effectiveness of floral displays, and both need to be considered in studies of plant-pollinator communication.
Collapse
Affiliation(s)
- Natalie Hempel de Ibarra
- University of Exeter, Centre for Research in Animal Behaviour, Department of Psychology, Exeter, UK
| | - Keri V Langridge
- University of Exeter, Centre for Research in Animal Behaviour, Department of Psychology, Exeter, UK
| | - Misha Vorobyev
- University of Auckland, School of Optometry and Vision Science, Auckland, New Zealand
| |
Collapse
|
8
|
Sato K, Yamawaki Y. Role of a looming-sensitive neuron in triggering the defense behavior of the praying mantis Tenodera aridifolia. J Neurophysiol 2014; 112:671-82. [DOI: 10.1152/jn.00049.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In responses to looming objects, the praying mantis shows a defense behavior, which consists of retracting forelegs under the prothorax. The role of a looming-sensitive neuron in triggering this behavior was investigated by simultaneously recording the activity and behavioral responses of the neuron. The mantis initiated the defense behavior earlier in response to larger and slower looming stimuli. The time remaining to collision at defense initiation was linearly correlated with the ratio of the half-size of an approaching object to its speed ( l/| v|), suggesting that the defense behavior occurred a fixed delay after the stimuli had reached a fixed angular threshold. Furthermore, the results suggested that high-frequency spikes of the looming-sensitive neuron were involved in triggering the defense behavior: the distribution of maximum firing rate for trials with defense was shifted to larger rates compared with trials without defense; the firing rate of the neuron exceeded 150 Hz ∼100 ms before the defense initiation regardless of stimulus parameters; when a looming stimulus ceased approach prematurely, high-frequency spikes were removed, and the occurrence of defense was reduced.
Collapse
Affiliation(s)
- Keiichiro Sato
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Yoshifumi Yamawaki
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
9
|
Yamawaki Y, Ishibashi W. Antennal pointing at a looming object in the cricket Acheta domesticus. JOURNAL OF INSECT PHYSIOLOGY 2014; 60:80-91. [PMID: 24287453 DOI: 10.1016/j.jinsphys.2013.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 11/12/2013] [Accepted: 11/13/2013] [Indexed: 06/02/2023]
Abstract
Antennal pointing responses to approaching objects were observed in the house cricket Acheta domesticus. In response to a ball approaching from the lateral side, crickets oriented the antenna ipsilateral to the ball towards it. In response to a ball approaching from the front, crickets oriented both antennae forward. Response rates of antennal pointing were higher when the ball was approaching from the front than from behind. The antennal angle ipsilateral to the approaching ball was positively correlated with approaching angle of the ball. Obstructing the cricket's sight decreased the response rate of antennal pointing, suggesting that this response was elicited mainly by visual stimuli. Although the response rates of antennal pointing decreased when the object ceased its approach at a great distance from the cricket, antennal pointing appeared to be resistant to habituation and was not substantially affected by the velocity, size and trajectory of an approaching ball. When presented with computer-generated visual stimuli, crickets frequently showed the antennal pointing response to a darkening stimulus as well as looming and linearly-expanding stimuli. Drifting gratings rarely elicited the antennal pointing. These results suggest that luminance change is sufficient to elicit antennal pointing.
Collapse
Affiliation(s)
- Yoshifumi Yamawaki
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka 812-8581, Japan.
| | - Wakako Ishibashi
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka 812-8581, Japan
| |
Collapse
|
10
|
Krishnan A, Sane SP. Visual feedback influences antennal positioning in flying hawk moths. ACTA ACUST UNITED AC 2013; 217:908-17. [PMID: 24265427 DOI: 10.1242/jeb.094276] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Insect antennae serve a variety of sensory functions including tactile sensing, olfaction and flight control. For all of these functions, the precise positioning of the antenna is essential to ensure the proper acquisition of sensory feedback. Although antennal movements in diverse insects may be elicited or influenced by multimodal sensory stimuli, the relative effects of these cues and their integration in the context of antennal positioning responses are not well understood. In previous studies, we have shown that fields of Böhm's bristles located at the base of the antennae provide crucial mechanosensory input for antennal positioning in flying hawk moths. Here, we present electrophysiological and behavioral evidence to show that, in addition to the Böhm's bristles, antennal muscles of hawk moths also respond to bilateral visual input. Moreover, in contrast to the mechanosensory-motor circuit, which is entirely contained within the ipsilateral side, visual feedback influences antennal positioning on both contralateral and ipsilateral sides. Electromyograms recorded from antennal muscles show that the latency of muscle responses to visual stimulation ranged from 35 to 60 ms, considerably slower than their responses to mechanosensory stimuli (<10 ms). Additionally, the visual inputs received by antennal muscles are both motion-sensitive and direction-selective. We characterized the influence of visual feedback on antennal positioning by presenting open-loop translational and rotational visual stimuli to tethered flying moths. During rotational stimuli, we observed that the antenna contralateral to the direction of the turn moved forward through larger angles than the ipsilateral antenna. These observations suggest that whereas input from the Böhm's bristles mediates rapid corrections of antennal position, visual feedback may be involved in slower, bilaterally coordinated movements of the antenna during visually guided flight maneuvers. Thus, visual feedback can modulate the set point at which the antenna is held during flight in hawk moths.
Collapse
Affiliation(s)
- Anand Krishnan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore 560065, India
| | | |
Collapse
|
11
|
Lin C, Strausfeld NJ. A precocious adult visual center in the larva defines the unique optic lobe of the split-eyed whirligig beetle Dineutus sublineatus. Front Zool 2013; 10:7. [PMID: 23421712 PMCID: PMC3607853 DOI: 10.1186/1742-9994-10-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 02/04/2013] [Indexed: 12/03/2022] Open
Abstract
Introduction Whirligig beetles (Coleoptera: Gyrinidae) are aquatic insects living on the water surface. They are equipped with four compound eyes, an upper pair viewing above the water surface and a lower submerged pair viewing beneath the water surface, but little is known about how their visual brain centers (optic lobes) are organized to serve such unusual eyes. We show here, for the first time, the peculiar optic lobe organization of the larval and adult whirligig beetle Dineutus sublineatus. Results The divided compound eyes of adult whirligig beetles supply optic lobes that are split into two halves, an upper half and lower half, comprising an upper and lower lamina, an upper and lower medulla and a bilobed partially split lobula. However, the lobula plate, a neuropil that in flies is known to be involved in mediating stabilized flight, exists only in conjunction with the lower lobe of the lobula. We show that, as in another group of predatory beetle larvae, in the whirligig beetle the aquatic larva precociously develops a lobula plate equipped with wide-field neurons. It is supplied by three larval laminas serving the three dorsal larval stemmata, which are adjacent to the developing upper compound eye. Conclusions In adult whirligig beetles, dual optic neuropils serve the upper aerial eyes and the lower subaquatic eyes. The exception is the lobula plate. A lobula plate develops precociously in the larva where it is supplied by inputs from three larval stemmata that have a frontal-upper field of view, in which contrasting objects such as prey items trigger a body lunge and mandibular grasp. This precocious lobula plate is lost during pupal metamorphosis, whereas another lobula plate develops normally during metamorphosis and in the adult is associated with the lower eye. The different roles of the upper and lower lobula plates in supporting, respectively, larval predation and adult optokinetic balance are discussed. Precocious development of the upper lobula plate represents convergent evolution of an ambush hunting lifestyle, as exemplified by the terrestrial larvae of tiger beetles (Cicindelinae), in which activation of neurons in their precocious lobula plates, each serving two large larval stemmata, releases reflex body extension and mandibular grasp.
Collapse
Affiliation(s)
- Chan Lin
- Graduate Interdisciplinary Program in Entomology & Insect Science, University of Arizona, Tucson, AZ, 85721, USA.
| | | |
Collapse
|
12
|
Kern R, Boeddeker N, Dittmar L, Egelhaaf M. Blowfly flight characteristics are shaped by environmental features and controlled by optic flow information. ACTA ACUST UNITED AC 2012; 215:2501-14. [PMID: 22723490 DOI: 10.1242/jeb.061713] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Blowfly flight consists of two main components, saccadic turns and intervals of mostly straight gaze direction, although, as a consequence of inertia, flight trajectories usually change direction smoothly. We investigated how flight behavior changes depending on the surroundings and how saccadic turns and intersaccadic translational movements might be controlled in arenas of different width with and without obstacles. Blowflies do not fly in straight trajectories, even when traversing straight flight arenas; rather, they fly in meandering trajectories. Flight speed and the amplitude of meanders increase with arena width. Although saccade duration is largely constant, peak angular velocity and succession into either direction are variable and depend on the visual surroundings. Saccade rate and amplitude also vary with arena layout and are correlated with the 'time-to-contact' to the arena wall. We provide evidence that both saccade and velocity control rely to a large extent on the intersaccadic optic flow generated in eye regions looking well in front of the fly, rather than in the lateral visual field, where the optic flow at least during forward flight tends to be strongest.
Collapse
Affiliation(s)
- Roland Kern
- Department of Neurobiology and Center of Excellence, Cognitive Interaction Technology, Bielefeld University, D-33501 Bielefeld, Germany.
| | | | | | | |
Collapse
|
13
|
McMillan GA, Gray JR. A looming-sensitive pathway responds to changes in the trajectory of object motion. J Neurophysiol 2012; 108:1052-68. [DOI: 10.1152/jn.00847.2011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Two identified locust neurons, the lobula giant movement detector (LGMD) and its postsynaptic partner, the descending contralateral movement detector (DCMD), constitute one motion-sensitive pathway in the visual system that responds preferentially to objects that approach on a direct collision course and are implicated in collision-avoidance behavior. Previously described responses to the approach of paired objects and approaches at different time intervals (Guest BB, Gray JR. J Neurophysiol 95: 1428–1441, 2006) suggest that this pathway may also be affected by more complicated movements in the locust's visual environment. To test this possibility we presented stationary locusts with disks traveling along combinations of colliding (looming), noncolliding (translatory), and near-miss trajectories. Distinctly different responses to different trajectories and trajectory changes demonstrate that DCMD responds to complex aspects of local visual motion. DCMD peak firing rates associated with the time of collision remained relatively invariant after a trajectory change from translation to looming. Translatory motion initiated in the frontal visual field generated a larger peak firing rate relative to object motion initiated in the posterior visual field, and the peak varied with simulated distance from the eye. Transition from translation to looming produced a transient decrease in the firing rate, whereas transition away from looming produced a transient increase. The change in firing rate at the time of transition was strongly correlated with unique expansion parameters described by the instantaneous angular acceleration of the leading edge and subtense angle of the disk. However, response time remained invariant. While these results may reflect low spatial resolution of the compound eye, they also suggest that this motion-sensitive pathway may be capable of monitoring dynamic expansion properties of objects that change the trajectory of motion.
Collapse
Affiliation(s)
- Glyn A. McMillan
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - John R. Gray
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
14
|
van Breugel F, Dickinson MH. The visual control of landing and obstacle avoidance in the fruit fly Drosophila melanogaster. J Exp Biol 2012; 215:1783-98. [DOI: 10.1242/jeb.066498] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Landing behavior is one of the most critical, yet least studied, aspects of insect flight. In order to land safely, an insect must recognize a visual feature, navigate towards it, decelerate, and extend its legs in preparation for touchdown. Although previous studies have focused on the visual stimuli that trigger these different components, the complete sequence has not been systematically studied in a free-flying animal. Using a real-time 3D tracking system in conjunction with high speed digital imaging, we were able to capture the landing sequences of fruit flies (Drosophila melanogaster) from the moment they first steered toward a visual target, to the point of touchdown. This analysis was made possible by a custom-built feedback system that actively maintained the fly in the focus of the high speed camera. The results suggest that landing is composed of three distinct behavioral modules. First, a fly actively turns towards a stationary target via a directed body saccade. Next, it begins to decelerate at a point determined by both the size of the visual target and its rate of expansion on the retina. Finally, the fly extends its legs when the visual target reaches a threshold retinal size of approximately 60 deg. Our data also let us compare landing sequences with flight trajectories that, although initially directed toward a visual target, did not result in landing. In these ‘fly-by’ trajectories, flies steer toward the target but then exhibit a targeted aversive saccade when the target subtends a retinal size of approximately 33 deg. Collectively, the results provide insight into the organization of sensorimotor modules that underlie the landing and search behaviors of insects.
Collapse
Affiliation(s)
- Floris van Breugel
- California Institute of Technology, Mail Code 138-78, Pasadena, CA 91125, USA
| | - Michael H. Dickinson
- Department of Biology, University of Washington, Box 351800, 24 Kincaid Hall, Seattle, WA 98195, USA
| |
Collapse
|
15
|
Thomas PJ, Cowan JD. Generalized spin models for coupled cortical feature maps obtained by coarse graining correlation based synaptic learning rules. J Math Biol 2011; 65:1149-86. [PMID: 22101498 DOI: 10.1007/s00285-011-0484-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 06/11/2011] [Indexed: 11/26/2022]
Abstract
We derive generalized spin models for the development of feedforward cortical architecture from a Hebbian synaptic learning rule in a two layer neural network with nonlinear weight constraints. Our model takes into account the effects of lateral interactions in visual cortex combining local excitation and long range effective inhibition. Our approach allows the principled derivation of developmental rules for low-dimensional feature maps, starting from high-dimensional synaptic learning rules. We incorporate the effects of smooth nonlinear constraints on net synaptic weight projected from units in the thalamic layer (the fan-out) and on the net synaptic weight received by units in the cortical layer (the fan-in). These constraints naturally couple together multiple feature maps such as orientation preference and retinotopic organization. We give a detailed illustration of the method applied to the development of the orientation preference map as a special case, in addition to deriving a model for joint pattern formation in cortical maps of orientation preference, retinotopic location, and receptive field width. We show that the combination of Hebbian learning and center-surround cortical interaction naturally leads to an orientation map development model that is closely related to the XY magnetic lattice model from statistical physics. The results presented here provide justification for phenomenological models studied in Cowan and Friedman (Advances in neural information processing systems 3, 1991), Thomas and Cowan (Phys Rev Lett 92(18):e188101, 2004) and provide a developmental model realizing the synaptic weight constraints previously assumed in Thomas and Cowan (Math Med Biol 23(2):119-138, 2006).
Collapse
Affiliation(s)
- Peter J Thomas
- Department of Mathematics, Case Western Reserve University, Cleveland, OH, USA.
| | | |
Collapse
|
16
|
Abstract
Visually guided collision avoidance is critical for the survival of many animals. The execution of successful collision-avoidance behaviors requires accurate processing of approaching threats by the visual system and signaling of threat characteristics to motor circuits to execute appropriate motor programs in a timely manner. Consequently, visually guided collision avoidance offers an excellent model with which to study the neural mechanisms of sensory-motor integration in the context of a natural behavior. Neurons that selectively respond to approaching threats and brain areas processing them have been characterized across many species. In locusts in particular, the underlying sensory and motor processes have been analyzed in great detail: These animals possess an identified neuron, called the LGMD, that responds selectively to approaching threats and conveys that information through a second identified neuron, the DCMD, to motor centers, generating escape jumps. A combination of behavioral and in vivo electrophysiological experiments has unraveled many of the cellular and network mechanisms underlying this behavior.
Collapse
Affiliation(s)
- Haleh Fotowat
- Department of Biology, McGill University, Montreal, Quebec, H3A-1B1, Canada.
| | | |
Collapse
|
17
|
Horseman BG, Macauley MWS, Barnes WJP. Neuronal processing of translational optic flow in the visual system of the shore crab Carcinus maenas. ACTA ACUST UNITED AC 2011; 214:1586-98. [PMID: 21490266 DOI: 10.1242/jeb.050955] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This paper describes a search for neurones sensitive to optic flow in the visual system of the shore crab Carcinus maenas using a procedure developed from that of Krapp and Hengstenberg. This involved determining local motion sensitivity and its directional selectivity at many points within the neurone's receptive field and plotting the results on a map. Our results showed that local preferred directions of motion are independent of velocity, stimulus shape and type of motion (circular or linear). Global response maps thus clearly represent real properties of the neurones' receptive fields. Using this method, we have discovered two families of interneurones sensitive to translational optic flow. The first family has its terminal arborisations in the lobula of the optic lobe, the second family in the medulla. The response maps of the lobula neurones (which appear to be monostratified lobular giant neurones) show a clear focus of expansion centred on or just above the horizon, but at significantly different azimuth angles. Response maps such as these, consisting of patterns of movement vectors radiating from a pole, would be expected of neurones responding to self-motion in a particular direction. They would be stimulated when the crab moves towards the pole of the neurone's receptive field. The response maps of the medulla neurones show a focus of contraction, approximately centred on the horizon, but at significantly different azimuth angles. Such neurones would be stimulated when the crab walked away from the pole of the neurone's receptive field. We hypothesise that both the lobula and the medulla interneurones are representatives of arrays of cells, each of which would be optimally activated by self-motion in a different direction. The lobula neurones would be stimulated by the approaching scene and the medulla neurones by the receding scene. Neurones tuned to translational optic flow provide information on the three-dimensional layout of the environment and are thought to play a role in the judgment of heading.
Collapse
Affiliation(s)
- B Geoff Horseman
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | |
Collapse
|
18
|
Goyret J, Kelber A. How does a diurnal hawkmoth find nectar? Differences in sensory control with a nocturnal relative. Behav Ecol 2011. [DOI: 10.1093/beheco/arr078] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
19
|
Liu YJ, Wang Q, Li B. Neuronal responses to looming objects in the superior colliculus of the cat. BRAIN, BEHAVIOR AND EVOLUTION 2011; 77:193-205. [PMID: 21546772 DOI: 10.1159/000327045] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 03/02/2011] [Indexed: 11/19/2022]
Abstract
The superior colliculus (SC) in the mammalian mesencephalon is involved in avoidance or escape behaviors, but little is known about the response properties of collicular neurons to an object approaching on a collision course towards the animal. The present study identified two classes of looming-sensitive neurons, rho and eta cells, in the SC of the cat, but did not find any tau cell, which has been observed in the pigeon tectofugal pathway. The looming responses were characterized by distinct firing patterns, in which the neuronal discharge steadily increased as the object was approaching, and peaked approximately at the time of collision (rho cell) or some time earlier (eta cell). The response onset time of both rho and eta cells was linearly related to the square root of the diameter/velocity ratio of looming objects; whereas for eta cells, the response peak time was linearly related to the diameter/velocity ratio. The receptive fields of these collicular cells were composed of an excitatory center and a suppressive surround, but the occurrence and development of neuronal responses to looming stimuli were independent of the receptive-field organization. Although the cell number was relatively small in the deep layers of the SC, the proportion of looming-sensitive neurons was close to that in the superficial layers. These results suggest that a population of collicular cells is involved in signaling impending collision of a looming object with the animal and the neural mechanisms underlying the collision avoidance behaviors are to some extent conservative across species from insects to mammals.
Collapse
Affiliation(s)
- Yong-Jun Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | | | |
Collapse
|
20
|
Multiplexing of motor information in the discharge of a collision detecting neuron during escape behaviors. Neuron 2011; 69:147-58. [PMID: 21220105 DOI: 10.1016/j.neuron.2010.12.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2010] [Indexed: 11/20/2022]
Abstract
Locusts possess an identified neuron, the descending contralateral movement detector (DCMD), conveying visual information about impending collision from the brain to thoracic motor centers. We built a telemetry system to simultaneously record, in freely behaving animals, the activity of the DCMD and of motoneurons involved in jump execution. Cocontraction of antagonistic leg muscles, a required preparatory phase, was triggered after the DCMD firing rate crossed a threshold. Thereafter, the number of DCMD spikes predicted precisely motoneuron activity and jump occurrence. Additionally, the time of DCMD peak firing rate predicted that of jump. Ablation experiments suggest that the DCMD, together with a nearly identical ipsilateral descending neuron, is responsible for the timely execution of the escape. Thus, three distinct features that are multiplexed in a single neuron's sensory response to impending collision-firing rate threshold, peak firing time, and spike count-probably control three distinct motor aspects of escape behaviors.
Collapse
|
21
|
Abstract
With their highly sensitive visual systems, nocturnal insects have evolved a remarkable capacity to discriminate colors, orient themselves using faint celestial cues, fly unimpeded through a complicated habitat, and navigate to and from a nest using learned visual landmarks. Even though the compound eyes of nocturnal insects are significantly more sensitive to light than those of their closely related diurnal relatives, their photoreceptors absorb photons at very low rates in dim light, even during demanding nocturnal visual tasks. To explain this apparent paradox, it is hypothesized that the necessary bridge between retinal signaling and visual behavior is a neural strategy of spatial and temporal summation at a higher level in the visual system. Exactly where in the visual system this summation takes place, and the nature of the neural circuitry that is involved, is currently unknown but provides a promising avenue for future research.
Collapse
Affiliation(s)
- Eric Warrant
- Department of Biology, University of Lund, S-22362 Lund, Sweden
| | | |
Collapse
|
22
|
Response properties and receptive field organization of collision-sensitive neurons in the optic tectum of bullfrog, Rana catesbeiana. Neurosci Bull 2010; 26:304-16. [PMID: 20651812 DOI: 10.1007/s12264-010-0306-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
OBJECTIVE Many studies have reported that animals will display collision avoidance behavior when the size of retinal image of an object reaches a threshold. The present study aimed to investigate the neural correlates underlying the frog collision avoidance behavior. METHODS Different types of visual stimuli simulating the retinal image of an approaching or a recessing object were generated by a computer and presented to the right eye of frog. A multielectrode array was used to examine the activity of collision-sensitive neurons, and single electrode recordings were employed to quantify visual parameter(s) of the frog collision-sensitive neurons. RESULTS The multielectrode array revealed that 40 neurons in the optic tectum showed selective responsiveness to objects approaching on a direct collision course. The response profiles of these collision-sensitive neurons were similar to those of lobula giant movement detector (LGMD) in the locust or to those of neurons in the pigeon. However, the receptive field (RF) size of the frog neurons [(18.5+/-3.8) degrees, n=33)] was smaller than those of collision-sensitive neurons of the locust and the pigeon. Multielectrode recordings also showed that the collision-sensitive neurons were activated only when the focus of expansion of a looming retinal image was located within the center of its RF. There was a linear relationship between the parameter l/v (l denotes half-size of the object, v denotes approaching velocity) and time-to-collision (time difference between the peak of the neuronal activity and the predictive collision) in 16 collision-sensitive neurons. Theoretical consideration showed that the peak firing rate always occurred at a fixed delay of (60.1 +/- 39.5) ms (n=16) after the object had reached a constant angular size of (14.8 +/- 3.4) degrees (n=16) on the retina. CONCLUSION The results may help clarify the mechanisms underlying the collision avoidance behavior in bullfrog.
Collapse
|
23
|
Nakagawa H, Hongjian K. Collision-Sensitive Neurons in the Optic Tectum of the Bullfrog, Rana catesbeiana. J Neurophysiol 2010; 104:2487-99. [DOI: 10.1152/jn.01055.2009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this study, we examined the neuronal correlates of frog collision avoidance behavior. Single unit recordings in the optic tectum showed that 11 neurons gave selective responses to objects approaching on a direct collision course. The collision-sensitive neurons exhibited extremely tight tuning for collision bound trajectories with mean half-width at half height values of 0.8 and 0.9° ( n = 4) for horizontal and vertical deviations, respectively. The response of frog collision-sensitive neurons can be fitted by a function that simply multiplies the size dependence of its response, e−αθ( t), by the image's instantaneous angular velocity θ′( t). Using fitting analysis, we showed that the peak firing rate always occurred after the approaching object had reached a constant visual angle of 24.2 ± 2.6° (mean ± SD; n = 8), regardless of the approaching velocity. Moreover, a linear relationship was demonstrated between parameters l/v ( l: object's half-size, v: approach velocity) and time-to-collision (time difference between peak neuronal activity and the predicted collision) in the 11 collision-sensitive neurons. In addition, linear regression analysis was used to show that peak firing rate always occurred after the object had reached a constant angular size of 21.1° on the retina. The angular thresholds revealed by both theoretical analyses were comparable and showed a good agreement with that revealed by our previous behavioral experiments. This strongly suggests that the collision-sensitive neurons of the frog comprise a threshold detector, which triggers collision avoidance behavior.
Collapse
Affiliation(s)
- Hideki Nakagawa
- Department of Brain Science and Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka, Japan
| | - Kang Hongjian
- Department of Brain Science and Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka, Japan
| |
Collapse
|
24
|
Goyret J. Look and touch: multimodal sensory control of flower inspection movements in the nocturnal hawkmoth Manduca sexta. J Exp Biol 2010; 213:3676-82. [DOI: 10.1242/jeb.045831] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
A crucial stage in the interaction between pollinators and plants is the moment of physical contact between them, known as flower inspection, or handling. Floral guides – conspicuous colour markings, or structural features of flower corollas – have been shown to be important in the inspecting behaviour of many insects, particularly in diurnal species. For the nocturnal hawkmoth Manduca sexta tactile input has an important role in flower inspection, but there is no knowledge about the use of visual floral guides in this behaviour. I carried out a series of experiments to first, evaluate the putative role of floral guides during flower inspection and second, to explore how simultaneous tactile and visual guides could influence this behaviour. Results show that visual floral guides affect flower inspection by M. sexta. Moths confine proboscis placement to areas of higher light reflectance regardless of their chromaticity, but do not appear to show movements in any particular direction within these areas. I also recorded inspection times, finding that moths can learn to inspect flowers more efficiently when visual floral guides are available. Additionally, I found that some visual floral guides can affect the body orientation that moths adopt while hovering in front of horizontal models. Finally, when presented with flower models offering both visual and tactile guides, the former influenced proboscis placement, whereas the latter controlled proboscis movements. Results show that innate inspection behaviour is under multimodal sensory control, consistent with other components of the foraging task. Fine scale inspection movements (elicited by diverse floral traits) and the tight adjustment between the morphology of pollinators and flowers appear to be adaptively integrated, facilitating reward assessment and effective pollen transfer.
Collapse
Affiliation(s)
- Joaquín Goyret
- Department of Neurobiology and Behavior, Seeley G. Mudd Hall, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
25
|
El Jundi B, Huetteroth W, Kurylas AE, Schachtner J. Anisometric brain dimorphism revisited: Implementation of a volumetric 3D standard brain in Manduca sexta. J Comp Neurol 2009; 517:210-25. [PMID: 19731336 DOI: 10.1002/cne.22150] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Lepidopterans like the giant sphinx moth Manduca sexta are known for their conspicuous sexual dimorphism in the olfactory system, which is especially pronounced in the antennae and in the antennal lobe, the primary integration center of odor information. Even minute scents of female pheromone are detected by male moths, facilitated by a huge array of pheromone receptors on their antennae. The associated neuropilar areas in the antennal lobe, the glomeruli, are enlarged in males and organized in the form of the so-called macroglomerular complex (MGC). In this study we searched for anatomical sexual dimorphism more downstream in the olfactory pathway and in other neuropil areas in the central brain. Based on freshly eclosed animals, we created a volumetric female and male standard brain and compared 30 separate neuropilar regions. Additionally, we labeled 10 female glomeruli that were homologous to previously quantitatively described male glomeruli including the MGC. In summary, the neuropil volumes reveal an isometric sexual dimorphism in M. sexta brains. This proportional size difference between male and female brain neuropils masks an anisometric or disproportional dimorphism, which is restricted to the sex-related glomeruli of the antennal lobes and neither mirrored in other normal glomeruli nor in higher brain centers like the calyces of the mushroom bodies. Both the female and male 3D standard brain are also used for interspecies comparisons, and may serve as future volumetric reference in pharmacological and behavioral experiments especially regarding development and adult plasticity. J. Comp. Neurol. 517:210-225, 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Basil El Jundi
- Department of Biology, Animal Physiology, Philipps-University, Marburg, Germany
| | | | | | | |
Collapse
|
26
|
Theobald JC, Warrant EJ, O'Carroll DC. Wide-field motion tuning in nocturnal hawkmoths. Proc Biol Sci 2009; 277:853-60. [PMID: 19906663 DOI: 10.1098/rspb.2009.1677] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Nocturnal hawkmoths are known for impressive visually guided behaviours in dim light, such as hovering while feeding from nectar-bearing flowers. This requires tight visual feedback to estimate and counter relative motion. Discrimination of low velocities, as required for stable hovering flight, is fundamentally limited by spatial resolution, yet in the evolution of eyes for nocturnal vision, maintenance of high spatial acuity compromises absolute sensitivity. To investigate these trade-offs, we compared responses of wide-field motion-sensitive neurons in three species of hawkmoth: Manduca sexta (a crepuscular hoverer), Deilephila elpenor (a fully nocturnal hoverer) and Acherontia atropos (a fully nocturnal hawkmoth that does not hover as it feeds uniquely from honey in bees' nests). We show that despite smaller eyes, the motion pathway of D. elpenor is tuned to higher spatial frequencies and lower temporal frequencies than A. atropos, consistent with D. elpenor's need to detect low velocities for hovering. Acherontia atropos, however, presumably evolved low-light sensitivity without sacrificing temporal acuity. Manduca sexta, active at higher light levels, is tuned to the highest spatial frequencies of the three and temporal frequencies comparable with A. atropos. This yields similar tuning to low velocities as in D. elpenor, but with the advantage of shorter neural delays in processing motion.
Collapse
Affiliation(s)
- Jamie C Theobald
- Biology Department, University of Washington, 24 Kincaid Hall, Seattle, WA 98195-1800, USA.
| | | | | |
Collapse
|
27
|
Verspui R, Gray JR. Visual stimuli induced by self-motion and object-motion modify odour-guided flight of male moths (Manduca sexta L.). J Exp Biol 2009; 212:3272-82. [DOI: 10.1242/jeb.031591] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Animals rely on multimodal sensory integration for proper orientation within their environment. For example, odour-guided behaviours often require appropriate integration of concurrent visual cues. To gain a further understanding of mechanisms underlying sensory integration in odour-guided behaviour, our study examined the effects of visual stimuli induced by self-motion and object-motion on odour-guided flight in male M. sexta. By placing stationary objects (pillars) on either side of a female pheromone plume, moths produced self-induced visual motion during odour-guided flight. These flights showed a reduction in both ground and flight speeds and inter-turn interval when compared with flight tracks without stationary objects. Presentation of an approaching 20 cm disc, to simulate object-motion,resulted in interrupted odour-guided flight and changes in flight direction away from the pheromone source. Modifications of odour-guided flight behaviour in the presence of stationary objects suggest that visual information, in conjunction with olfactory cues, can be used to control the rate of counter-turning. We suggest that the behavioural responses to visual stimuli induced by object-motion indicate the presence of a neural circuit that relays visual information to initiate escape responses. These behavioural responses also suggest the presence of a sensory conflict requiring a trade-off between olfactory and visually driven behaviours. The mechanisms underlying olfactory and visual integration are discussed in the context of these behavioural responses.
Collapse
Affiliation(s)
- Remko Verspui
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E2
| | - John R. Gray
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E2
| |
Collapse
|
28
|
Fotowat H, Fayyazuddin A, Bellen HJ, Gabbiani F. A novel neuronal pathway for visually guided escape in Drosophila melanogaster. J Neurophysiol 2009; 102:875-85. [PMID: 19474177 DOI: 10.1152/jn.00073.2009] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Drosophila melanogaster exhibits a robust escape response to objects approaching on a collision course. Although a pair of large command interneurons called the giant fibers (GFs) have been postulated to trigger such behaviors, their role has not been directly demonstrated. Here, we show that escape from visual stimuli like those generated by approaching predators does not rely on the activation of the GFs and consists of a more complex and less stereotyped motor sequence than that evoked by the GFs. Instead, the timing of escape is tightly correlated with the activity of previously undescribed descending interneurons that signal a threshold angular size of the approaching object. The activity pattern of these interneurons shares features with those of visual escape circuits of several species, including pigeons, frogs, and locusts, and may therefore have evolved under similar constraints. These results show that visually evoked escapes in Drosophila can rely on at least two descending neuronal pathways: the GFs and the novel pathway we characterize electrophysiologically. These pathways exhibit very different patterns of sensory activity and are associated with two distinct motor programs.
Collapse
Affiliation(s)
- Haleh Fotowat
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
29
|
Duistermars BJ, Chow DM, Condro M, Frye MA. The spatial, temporal and contrast properties of expansion and rotation flight optomotor responses inDrosophila. J Exp Biol 2007; 210:3218-27. [PMID: 17766299 DOI: 10.1242/jeb.007807] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYFruit flies respond to panoramic retinal patterns of visual expansion with robust steering maneuvers directed away from the focus of expansion to avoid collisions and maintain an upwind flight posture. Panoramic rotation elicits comparatively weak syndirectional steering maneuvers, which also maintain visual stability. Full-field optic flow patterns like expansion and rotation are elicited by distinct flight maneuvers such as body translation during straight flight or body rotation during hovering, respectively. Recent analyses suggest that under some experimental conditions the rotation optomotor response reflects the linear sum of different expansion response components. Are expansion and rotation-mediated visual stabilization responses part of a single optomotor response subserved by a neural circuit that is differentially stimulated by the two flow fields, or rather do the two behavioral responses reflect two distinct control systems? Guided by the principle that the properties of neural circuits are revealed in the behaviors they mediate, we systematically varied the spatial, temporal and contrast properties of expansion and rotation stimuli, and quantified the time course and amplitude of optomotor responses during tethered flight. Our results support the conclusion that expansion and rotation optomotor responses are indeed two separate reflexes, which draw from the same system of elementary motion detectors, but are likely mediated by separate pre-motor circuits having different spatial integration properties, low-pass characteristics and contrast sensitivity.
Collapse
Affiliation(s)
- Brian J Duistermars
- Department of Physiological Science, University of California, Los Angeles, CA 90095-1606, USA
| | | | | | | |
Collapse
|
30
|
Oliva D, Medan V, Tomsic D. Escape behavior and neuronal responses to looming stimuli in the crab Chasmagnathus granulatus (Decapoda: Grapsidae). ACTA ACUST UNITED AC 2007; 210:865-80. [PMID: 17297146 DOI: 10.1242/jeb.02707] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Behavioral responses to looming stimuli have been studied in many vertebrate and invertebrate species, but neurons sensitive to looming have been investigated in very few animals. In this paper we introduce a new experimental model using the crab Chasmagnathus granulatus, which allows investigation of the processes of looming detection and escape decision at both the behavioral and neuronal levels. By analyzing the escape response of the crab in a walking simulator device we show that: (i) a robust and reliable escape response can be elicited by computer-generated looming stimuli in all tested animals; (ii) parameters such as distance, speed, timing and directionality of the escape run, are easy to record and quantify precisely in the walking device; (iii) although the magnitude of escape varies between animals and stimulus presentations, the timing of the response is remarkably consistent and does not habituate at 3 min stimulus intervals. We then study the response of neurons from the brain of the crab by means of intracellular recordings in the intact animal and show that: (iv) two subclasses of previously identified movement detector neurons from the lobula (third optic neuropil) exhibit robust and reliable responses to the same looming stimuli that trigger the behavioral response; (v) the neurons respond to the object approach by increasing their rate of firing in a way that closely matches the dynamics of the image expansion. Finally, we compare the neuronal with the behavioral response showing that: (vi) differences in the neuronal responses to looming, receding or laterally moving stimuli closely reflect the behavioral differences to such stimuli; (vii) during looming, the crab starts to run soon after the looming-sensitive neurons begin to increase their firing rate. The increase in the running speed during stimulus approach faithfully follows the increment in the firing rate, until the moment of maximum stimulus expansion. Thereafter, the neurons abruptly stop firing and the animal immediately decelerates its run. The results are discussed in connection with studies of responses to looming stimuli in the locust.
Collapse
Affiliation(s)
- Damián Oliva
- Laboratorio de Neurobiología de la Memoria, Depto. Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBYNE-CONICET, Buenos Aires 1428, Argentina
| | | | | |
Collapse
|
31
|
Duistermars BJ, Reiser MB, Zhu Y, Frye MA. Dynamic properties of large-field and small-field optomotor flight responses in Drosophila. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2007; 193:787-99. [PMID: 17551735 DOI: 10.1007/s00359-007-0233-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2007] [Revised: 04/15/2007] [Accepted: 04/21/2007] [Indexed: 11/25/2022]
Abstract
Optomotor flight control in houseflies shows bandwidth fractionation such that steering responses to an oscillating large-field rotating panorama peak at low frequency, whereas responses to small-field objects peak at high frequency. In fruit flies, steady-state large-field translation generates steering responses that are three times larger than large-field rotation. Here, we examine the optomotor steering reactions to dynamically oscillating visual stimuli consisting of large-field rotation, large-field expansion, and small-field motion. The results show that, like in larger flies, large-field optomotor steering responses peak at low frequency, whereas small-field responses persist under high frequency conditions. However, in fruit flies large-field expansion elicits higher magnitude and tighter phase-locked optomotor responses than rotation throughout the frequency spectrum, which may suggest a further segregation within the large-field pathway. An analysis of wing beat frequency and amplitude reveals that mechanical power output during flight varies according to the spatial organization and motion dynamics of the visual scene. These results suggest that, like in larger flies, the optomotor control system is organized into parallel large-field and small-field pathways, and extends previous analyses to quantify expansion-sensitivity for steering reflexes and flight power output across the frequency spectrum.
Collapse
Affiliation(s)
- Brian J Duistermars
- Department of Physiological Science, University of California, Los Angeles, CA 90095-1606, USA
| | | | | | | |
Collapse
|
32
|
Strausfeld NJ, Okamura JY. Visual system of calliphorid flies: organization of optic glomeruli and their lobula complex efferents. J Comp Neurol 2007; 500:166-88. [PMID: 17099891 DOI: 10.1002/cne.21196] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Reconstructions of silver-stained brains revealed 27 optic glomeruli that occupy a major volume of the lateral protocerebrum. Axons from different morphological types of columnar output neurons from the lobula complex sort out to specific glomeruli. Glomeruli are partially enwrapped by glial processes and are invaded by the dendrites and terminals of local interneurons that connect different glomeruli in a manner analogous to local interneurons in the antennal lobes. Each type of columnar neuron contributes to a palisade-like ensemble that extends across the whole or a circumscribed area of the retinotopic mosaic. A second class of outputs from the lobula comprises wide-field neurons, the dendrites of which interact with planar fields or column-like patches of retinotopic inputs from the medulla. These neurons also send their axons to optic glomeruli. Dye fills demonstrate that lobula complex neurons supplying glomeruli do not generally terminate directly on descending neurons. Local interneurons and projection neurons provide integrative circuitry within and among glomeruli. As exemplified by the anterior optic tubercle, optic glomeruli can also have elaborate internal architectures. The results are discussed with respect to the identification of motion- and orientation-selective neurons at the level of the lobula and lateral protocerebrum and with respect to the evolutionary implications raised by the existence of neural arrangements serving the compound eyes, which are organized like neuropils serving segmental ganglia equipped with appendages.
Collapse
Affiliation(s)
- Nicholas J Strausfeld
- Arizona Research Laboratories Division of Neurobiology, University of Arizona, Tucson, Arizona 85721, USA.
| | | |
Collapse
|
33
|
Guest BB, Gray JR. Responses of a Looming-Sensitive Neuron to Compound and Paired Object Approaches. J Neurophysiol 2006; 95:1428-41. [PMID: 16319198 DOI: 10.1152/jn.01037.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The lobula giant movement detector (LGMD) and its target neuron, the descending contralateral movement detector (DCMD), constitute a motion-sensitive pathway in the locust visual system that responds preferentially to objects approaching on a collision course. LGMD receptive field properties, anisotropic distribution of local retinotopic inputs across the visual field, and localized habituation to repeated stimuli suggest that this pathway should be sensitive to approaches of individual objects within a complex visual scene. We presented locusts with compound looming objects while recording from the DCMD to test the effects of nonuniform edge expansion on looming responses. We also presented paired objects approaching from different regions of the visual field at nonoverlapping, closely timed and simultaneous approach intervals to study DCMD responses to multiple looming stimuli. We found that looming compound objects evoked characteristic responses in the DCMD and that the time of peak firing was consistent with predicted values based on a weighted ratio of the half size of each distinct object edge and the absolute approach velocity. We also found that the azimuthal position and interval of paired approaches affected DCMD firing properties and that DCMDs responded to individual objects approaching within 106 ms of each other. Moreover, comparisons between individual and paired approaches revealed that overlapping approaches are processed in a strongly sublinear manner. These findings are consistent with biophysical mechanisms that produce nonlinear integration of excitatory and feed-forward inhibitory inputs onto the LGMD that have been shown to underlie responses to looming stimuli.
Collapse
Affiliation(s)
- Bruce B Guest
- Dept. of Biology, 112 Science Place, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | | |
Collapse
|
34
|
Otsuna H, Ito K. Systematic analysis of the visual projection neurons ofDrosophila melanogaster. I. Lobula-specific pathways. J Comp Neurol 2006; 497:928-58. [PMID: 16802334 DOI: 10.1002/cne.21015] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In insects, visual information is processed in the optic lobe and conveyed to the central brain. Although neural circuits within the optic lobe have been studied extensively, relatively little is known about the connection between the optic lobe and the central brain. To understand how visual information is read by the neurons of the central brain, and what kind of centrifugal neurons send the control signal from the central brain to the optic lobe, we performed a systematic analysis of the visual projection neurons that connect the optic lobe and the central brain of Drosophila melanogaster. By screening approximately 4,000 GAL4 enhancer-trap strains we identified 44 pathways. The overall morphology and the direction of information of each pathway were investigated by expressing cytoplasmic and presynapsis-targeted fluorescent reporters. A canonical nomenclature system was introduced to describe the area of projection in the central brain. As the first part of a series of articles, we here describe 14 visual projection neurons arising specifically from the lobula. Eight pathways form columnar arborization in the lobula, whereas the remaining six form tangential or tree-like arborization. Eleven are centripetal pathways, among which nine terminate in the ventrolateral protocerebrum. Terminals of each columnar pathway form glomerulus-like structures in different areas of the ventrolateral protocerebrum. The posterior lateral protocerebrum and the optic tubercle were each contributed by a single centripetal pathway. Another pathway connects the lobula on each side of the brain. Two centrifugal pathways convey signals from the posterior lateral protocerebrum to the lobula.
Collapse
Affiliation(s)
- Hideo Otsuna
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | |
Collapse
|
35
|
Gabbiani F, Cohen I, Laurent G. Time-dependent activation of feed-forward inhibition in a looming-sensitive neuron. J Neurophysiol 2005; 94:2150-61. [PMID: 15928055 PMCID: PMC1804290 DOI: 10.1152/jn.00411.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The lobula giant movement detector (LGMD) is an identified neuron in the locust visual system that responds preferentially to objects approaching on a collision course with the animal. For such looming stimuli, the LGMD firing rate gradually increases, peaks, and decays toward the end of approach. The LGMD receives both excitatory and feed-forward inhibitory inputs on distinct branches of its dendritic tree, but little is known about the contribution of feed-forward inhibition to its response properties. We used picrotoxin, a chloride channel blocker, to selectively block feed-forward inhibition to the LGMD. We then computed differences in firing rate and membrane potential between control and picrotoxin conditions to study the activation of feed-forward inhibition. For looming stimuli, a significant activation of inhibition was observed early, as objects exceeded on average approximately 23 degrees in angular extent at the retina. Inhibition then increased in parallel with excitation over the remainder of approach trials. Experiments in which the final angular size of the approaching objects was systematically varied revealed that the relative activation of excitation and inhibition remains well balanced over most of the course of looming trials. Feed-forward inhibition actively contributed to the termination of the response to approaching objects and was particularly effective for large or slowly moving objects. Suddenly appearing and receding objects activated excitation and feed-forward inhibition nearly simultaneously, in contrast to looming stimuli. Under these conditions, the activation of excitation and feed-forward inhibition was weaker than for approaching objects, suggesting that both are preferentially tuned to approaching objects. These results support a phenomenological model of multiplication within the LGMD and provide new constraints for biophysical models of its responses to looming and receding stimuli.
Collapse
Affiliation(s)
- Fabrizio Gabbiani
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
36
|
Sinakevitch I, Niwa M, Strausfeld NJ. Octopamine-like immunoreactivity in the honey bee and cockroach: Comparable organization in the brain and subesophageal ganglion. J Comp Neurol 2005; 488:233-54. [PMID: 15952163 DOI: 10.1002/cne.20572] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A serum raised against octopamine reveals in cockroaches and honey bees structurally comparable systems of perikarya and their extensive yet discrete systems of arborizations in neuropils. Numerous and prominent clusters of lateral cell bodies in the brain as well as many midline perikarya provide octopamine-like immunoreactive processes to circumscribed regions of the subesophageal ganglion, antennal lobe glomeruli, optic neuropils, and neuropils of the protocerebrum. There is dense octopaminergic innervation in the protocerebral bridge and ellipsoid body of the central complex. The antennal lobes are supplied by at least three octopamine-immunoreactive neurons. In contrast, the mushroom bodies show the fewest immunoreactive elements. In Apis a single axon supplies sparse immunoreactive processes to the calyces' basal ring, collar, and lip. A diffuse arrangement of immunoreactive processes invades all zones of the mushroom body calyces in Periplaneta. These processes derive from an ascending axon ascribed to a dorsal unpaired median neuron at the maxillary segment of the subesophageal ganglion. In both taxa octopamine-immunoreactive processes invade only the gamma lobes of the mushroom bodies, omitting their other divisions. The present observations are discussed with respect to possible roles of octopamine in sensory integration and association.
Collapse
Affiliation(s)
- Irina Sinakevitch
- Arizona Research Laboratories, Division of Neurobiology, University of Arizona, Tucson, Arizona 85721, USA
| | | | | |
Collapse
|
37
|
Krapp HG, Gabbiani F. Spatial distribution of inputs and local receptive field properties of a wide-field, looming sensitive neuron. J Neurophysiol 2004; 93:2240-53. [PMID: 15548622 DOI: 10.1152/jn.00965.2004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The lobula giant movement detector (LGMD) in the locust visual system and its target neuron, the descending contralateral movement detector (DCMD), respond to approaching objects looming on a collision course with the animal. They thus provide a good model to study the cellular and network mechanisms underlying the sensitivity to this specific class of behaviorally relevant stimuli. We determined over an entire locust eye the density distribution of optical axes describing the spatial organization of local inputs to the visual system and compared it with the sensitivity distribution of the LGMD/DCMD to local motion stimuli. The density of optical axes peaks in the equatorial region of the frontal eye. Local motion sensitivity, however, peaks in the equatorial region of the caudolateral visual field and only correlates positively with the dorso-ventral density of optical axes. On local stimulation, both the velocity tuning and the response latency of the LGMD/DCMD depend on stimulus position within the visual field. Spatial and temporal integration experiments in which several local motion stimuli were activated either simultaneously or at fixed delays reveal that the LGMD processes local motion in a strongly sublinear way. Thus the neuron's integration properties seem to depend on several factors including its dendritic morphology, the local characteristics of afferent fiber inputs, and inhibition mediated by different pathways or by voltage-gated conductances. Our study shows that the selectivity of this looming sensitive neuron to approaching objects relies on more complex biophysical mechanisms than previously thought.
Collapse
Affiliation(s)
- Holger G Krapp
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
38
|
Soutar AR, Fullard JH. Nocturnal anti-predator adaptations in eared and earless Nearctic Lepidoptera. Behav Ecol 2004. [DOI: 10.1093/beheco/arh103] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
39
|
Higgins CM, Douglass JK, Strausfeld NJ. The computational basis of an identified neuronal circuit for elementary motion detection in dipterous insects. Vis Neurosci 2004; 21:567-86. [PMID: 15579222 DOI: 10.1017/s0952523804214079] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2003] [Indexed: 11/07/2022]
Abstract
Based on comparative anatomical studies and electrophysiological experiments, we have identified a conserved subset of neurons in the lamina, medulla, and lobula of dipterous insects that are involved in retinotopic visual motion direction selectivity. Working from the photoreceptors inward, this neuronal subset includes lamina amacrine (α) cells, lamina monopolar (L2) cells, the basket T-cell (T1 or β), the transmedullary cell Tm1, and the T5 bushy T-cell. Two GABA-immunoreactive neurons, the transmedullary cell Tm9 and a local interneuron at the level of T5 dendrites, are also implicated in the motion computation. We suggest that these neurons comprise the small-field elementary motion detector circuits the outputs of which are integrated by wide-field lobula plate tangential cells. We show that a computational model based on the available data about these neurons is consistent with existing models of biological elementary motion detection, and present a comparable version of the Hassenstein-Reichardt (HR) correlation model. Further, by using the model to synthesize a generic tangential cell, we show that it can account for the responses of lobula plate tangential cells to a wide range of transient stimuli, including responses which cannot be predicted using the HR model. This computational model of elementary motion detection is the first which derives specifically from the functional organization of a subset of retinotopic neurons supplying the lobula plate. A key prediction of this model is that elementary motion detector circuits respond quite differently to small-field transient stimulation than do spatially integrated motion processing neurons as observed in the lobula plate. In addition, this model suggests that the retinotopic motion information provided to wide-field motion-sensitive cells in the lobula is derived from a less refined stage of processing than motion inputs to the lobula plate.
Collapse
Affiliation(s)
- Charles M Higgins
- Arizona Research Laboratories, Division of Neurobiology, University of Arizona, Tucson, AZ 85721, USA.
| | | | | |
Collapse
|
40
|
Tammero LF, Frye MA, Dickinson MH. Spatial organization of visuomotor reflexes in Drosophila. ACTA ACUST UNITED AC 2004; 207:113-22. [PMID: 14638838 DOI: 10.1242/jeb.00724] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In most animals, the visual system plays a central role in locomotor guidance. Here, we examined the functional organization of visuomotor reflexes in the fruit fly, Drosophila, using an electronic flight simulator. Flies exhibit powerful avoidance responses to visual expansion centered laterally. The amplitude of these expansion responses is three times larger than those generated by image rotation. Avoidance of a laterally positioned focus of expansion emerges from an inversion of the optomotor response when motion is restricted to the rear visual hemisphere. Furthermore, motion restricted to rear quarter-fields elicits turning responses that are independent of the direction of image motion about the animal's yaw axis. The spatial heterogeneity of visuomotor responses explains a seemingly peculiar behavior in which flies robustly fixate the contracting pole of a translating flow field.
Collapse
Affiliation(s)
- Lance F Tammero
- Bioengineering Graduate Group, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
41
|
Frost BJ, Sun H. Chapter 2 The biological bases of time-to-collision computation. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/s0166-4115(04)80004-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
42
|
Sinakevitch I, Douglass JK, Scholtz G, Loesel R, Strausfeld NJ. Conserved and convergent organization in the optic lobes of insects and isopods, with reference to other crustacean taxa. J Comp Neurol 2003; 467:150-72. [PMID: 14595766 DOI: 10.1002/cne.10925] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The shared organization of three optic lobe neuropils-the lamina, medulla, and lobula-linked by chiasmata has been used to support arguments that insects and malacostracans are sister groups. However, in certain insects, the lobula is accompanied by a tectum-like fourth neuropil, the lobula plate, characterized by wide-field tangential neurons and linked to the medulla by uncrossed axons. The identification of a lobula plate in an isopod crustacean raises the question of whether the lobula plate of insects and isopods evolved convergently or are derived from a common ancestor. This question is here investigated by comparisons of insect and crustacean optic lobes. The basal branchiopod crustacean Triops has only two visual neuropils and no optic chiasma. This finding contrasts with the phyllocarid Nebalia pugettensis, a basal malacostracan whose lamina is linked by a chiasma to a medulla that is linked by a second chiasma to a retinotopic outswelling of the lateral protocerebrum, called the protolobula. In Nebalia, uncrossed axons from the medulla supply a minute fourth optic neuropil. Eumalacostracan crustaceans also possess two deep neuropils, one receiving crossed axons, the other uncrossed axons. However, in primitive insects, there is no separate fourth optic neuropil. Malacostracans and insects also differ in that the insect medulla comprises two nested neuropils separated by a layer of axons, called the Cuccati bundle. Comparisons suggest that neuroarchitectures of the lamina and medulla distal to the Cuccati bundle are equivalent to the eumalacostracan lamina and entire medulla. The occurrence of a second optic chiasma and protolobula are suggested to be synapomorphic for a malacostracan/insect clade.
Collapse
Affiliation(s)
- I Sinakevitch
- Arizona Research Laboratories, Division of Neurobiology, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | |
Collapse
|
43
|
Douglass JK, Strausfeld NJ. Anatomical organization of retinotopic motion-sensitive pathways in the optic lobes of flies. Microsc Res Tech 2003; 62:132-50. [PMID: 12966499 DOI: 10.1002/jemt.10367] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Anatomical methods have identified conserved neuronal morphologies and synaptic relationships among small-field retinotopic neurons in insect optic lobes. These conserved cell shapes occur across many species of dipteran insects and are also shared by Lepidoptera and Hymenoptera. The suggestion that such conserved neurons should participate in motion computing circuits finds support from intracellular recordings as well as older studies that used radioactive deoxyglucose labeling to reveal strata with motion-specific activity in an achromatic neuropil called the lobula plate. While intracellular recordings provide detailed information about the motion-sensitive or motion-selective responses of identified neurons, a full understanding of how arrangements of identified neurons compute and integrate information about visual motion will come from a multidisciplinary approach that includes morphological circuit analysis, the use of genetic mutants that exhibit specific deficits in motion processing, and biomimetic models. The latter must be based on the organization and connections of real neurons, yet provide output properties similar to those of more traditional theoretical models based on behavioral observations that date from the 1950s. Microsc. Res. Tech. 62:132-150, 2003.
Collapse
Affiliation(s)
- John K Douglass
- Arizona Research Laboratories, Division of Neurobiology, University of Arizona, Tucson, Arizona 85721, USA.
| | | |
Collapse
|
44
|
Wicklein M. Head movements and depth perception. Behav Processes 2003; 64:17-19. [PMID: 12914990 DOI: 10.1016/s0376-6357(03)00056-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Martina Wicklein
- Computational Neurobiology Laboratory, Howard Hughes Medical Institute, Salk Institute, 10010 N. Torrey Pines Road, 92037, La Jolla, CA, USA
| |
Collapse
|
45
|
Abstract
In Diptera, subsets of small retinotopic neurons provide a discrete channel from achromatic photoreceptors to large motion-sensitive neurons in the lobula complex. This pathway is distinguished by specific affinities of its neurons to antisera raised against glutamate, aspartate, gamma-aminobutyric acid (GABA), choline acetyltransferase (ChAT), and a N-methyl-D-aspartate type 1 receptor protein (NMDAR1). Large type 2 monopolar cells (L2) and type 1 amacrine cells, which in the external plexiform layer are postsynaptic to the achromatic photoreceptors R1-R6, express glutamate immunoreactivity as do directionally selective motion-sensitive tangential neurons of the lobula plate. L2 monopolar cells ending in the medulla are accompanied by terminals of a second efferent neuron T1, the dendrites of which match NMDAR1-immunoreactive profiles in the lamina. L2 and T1 endings visit ChAT and GABA-immunoreactive relays (transmedullary neurons) that terminate from the medulla in a special layer of the lobula containing the dendrites of directionally selective retinotopic T5 cells. T5 cells supply directionally selective wide-field neurons in the lobula plate. The present results suggest a circuit in which initial motion detection relies on interactions among amacrines and T1, and the subsequent convergence of T1 and L2 at transmedullary cell dendrites. Convergence of ChAT-immunoreactive and GABA-immunoreactive transmedullary neurons at T5 dendrites in the lobula, and the presence there of local GABA-immunoreactive interneurons, are suggested to provide excitatory and inhibitory elements for the computation of motion direction. A comparable immunocytological organization of aspartate- and glutamate-immunoreactive neurons in honeybees and cockroaches further suggests that neural arrangements providing directional motion vision in flies may have early evolutionary origins.
Collapse
Affiliation(s)
- Irina Sinakevitch
- Arizona Research Laboratories, Division of Neurobiology, University of Arizona, Tucson, Arizona 85721, USA
| | | |
Collapse
|
46
|
Abstract
Vision guides flight behaviour in numerous insects. Despite their small brain, insects easily outperform current man-made autonomous vehicles in many respects. Examples are the virtuosic chasing manoeuvres male flies perform as part of their mating behaviour and the ability of bees to assess, on the basis of visual motion cues, the distance travelled in a novel environment. Analyses at both the behavioural and neuronal levels are beginning to unveil reasons for such extraordinary capabilities of insects. One recipe for their success is the adaptation of visual information processing to the specific requirements of the behavioural tasks and to the specific spatiotemporal properties of the natural input.
Collapse
Affiliation(s)
- Martin Egelhaaf
- Lehrstuhl für Neurobiologie, Fakultät für Biologie, Universität Bielefeld, Postfach 100131, Germany
| | | |
Collapse
|
47
|
Gabbiani F, Krapp HG, Koch C, Laurent G. Multiplicative computation in a visual neuron sensitive to looming. Nature 2002; 420:320-4. [PMID: 12447440 DOI: 10.1038/nature01190] [Citation(s) in RCA: 230] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2002] [Accepted: 09/20/2002] [Indexed: 11/09/2022]
Abstract
Multiplicative operations are important in sensory processing, but their biophysical implementation remains largely unknown. We investigated an identified neuron (the lobula giant movement detector, LGMD, of locusts) whose output firing rate in response to looming visual stimuli has been described by two models, one of which involves a multiplication. In this model, the LGMD multiplies postsynaptically two inputs (one excitatory, one inhibitory) that converge onto its dendritic tree; in the other model, inhibition is presynaptic to the LGMD. By using selective activation and inactivation of pre- and postsynaptic inhibition, we show that postsynaptic inhibition has a predominant role, suggesting that multiplication is implemented within the neuron itself. Our pharmacological experiments and measurements of firing rate versus membrane potential also reveal that sodium channels act both to advance the response of the LGMD in time and to map membrane potential to firing rate in a nearly exponential manner. These results are consistent with an implementation of multiplication based on dendritic subtraction of two converging inputs encoded logarithmically, followed by exponentiation through active membrane conductances.
Collapse
Affiliation(s)
- Fabrizio Gabbiani
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA.
| | | | | | | |
Collapse
|
48
|
Tammero LF, Dickinson MH. Collision-avoidance and landing responses are mediated by separate pathways in the fruit fly,Drosophila melanogaster. J Exp Biol 2002; 205:2785-98. [PMID: 12177144 DOI: 10.1242/jeb.205.18.2785] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYFlies rely heavily on visual feedback for several aspects of flight control. As a fly approaches an object, the image projected across its retina expands, providing the fly with visual feedback that can be used either to trigger a collision-avoidance maneuver or a landing response. To determine how a fly makes the decision to land on or avoid a looming object, we measured the behaviors generated in response to an expanding image during tethered flight in a visual closed-loop flight arena. During these experiments, each fly varied its wing-stroke kinematics to actively control the azimuth position of a 15°×15° square within its visual field. Periodically, the square symmetrically expanded in both the horizontal and vertical directions. We measured changes in the fly's wing-stroke amplitude and frequency in response to the expanding square while optically tracking the position of its legs to monitor stereotyped landing responses. Although this stimulus could elicit both the landing responses and collision-avoidance reactions, separate pathways appear to mediate the two behaviors. For example, if the square is in the lateral portion of the fly's field of view at the onset of expansion, the fly increases stroke amplitude in one wing while decreasing amplitude in the other, indicative of a collision-avoidance maneuver. In contrast, frontal expansion elicits an increase in wing-beat frequency and leg extension,indicative of a landing response. To further characterize the sensitivity of these responses to expansion rate, we tested a range of expansion velocities from 100 to 10 000° s-1. Differences in the latency of both the collision-avoidance reactions and the landing responses with expansion rate supported the hypothesis that the two behaviors are mediated by separate pathways. To examine the effects of visual feedback on the magnitude and time course of the two behaviors, we presented the stimulus under open-loop conditions, such that the fly's response did not alter the position of the expanding square. From our results we suggest a model that takes into account the spatial sensitivities and temporal latencies of the collision-avoidance and landing responses, and is sufficient to schematically represent how the fly uses integration of motion information in deciding whether to turn or land when confronted with an expanding object.
Collapse
Affiliation(s)
- Lance F Tammero
- UCB/UCSF Joint Bioengineering Graduate Group, University of California, Berkeley 94720, USA.
| | | |
Collapse
|
49
|
Perception of change in depth in the hummingbird hawkmoth Manduca sexta (Sphingidae, Lepidoptera). Neurocomputing 2001. [DOI: 10.1016/s0925-2312(01)00566-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|