1
|
Inverse Expression Levels of EphrinA3 and EphrinA5 Contribute to Dopaminergic Differentiation of Human SH-SY5Y Cells. J Mol Neurosci 2016; 59:483-92. [PMID: 27217159 DOI: 10.1007/s12031-016-0759-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/22/2016] [Indexed: 10/21/2022]
Abstract
Two key principles underlying successful cellular therapies for Parkinson's disease (PD) are appropriate differentiation of dopaminergic (DA) neurons from transplanted cells and precise axon growth. EphrinAs, a subclass of ephrins, act as axon guidance molecules and are highly expressed in DA brain regions. Existing evidences indicate that they act as either repulsion or attraction signals to guide axon growth. This study investigated whether ephrinAs are involved in DA neuron differentiation. Data from miRCURY™ LNA mRNAs/microRNAs microarrays and quantitative real-time polymerase chain reaction (qRT-PCR) showed upregulated ephrinA3 mRNA (EFNA3) and downregulated ephrinA5 mRNA (EFNA5) during DA neuron differentiation. In addition, hsa-miR-4271 was downregulated, which could influence EFNA3 translation. Furthermore, immunofluorescence (IF) and western blotting confirmed the mRNA results and showed increased ephrinA3 and decreased ephrinA5 protein levels in differentiating DA neurons. Taken together, our results indicate that inverse expression levels of ephrinA3 and ephrinA5, which are possibly influenced by microRNAs, contribute to DA neuron differentiation by guiding axon growth.
Collapse
|
2
|
Kim YJ, Ibrahim LA, Wang SZ, Yuan W, Evgrafov OV, Knowles JA, Wang K, Tao HW, Zhang LI. EphA7 regulates spiral ganglion innervation of cochlear hair cells. Dev Neurobiol 2015; 76:452-69. [PMID: 26178595 DOI: 10.1002/dneu.22326] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 06/10/2015] [Accepted: 07/14/2015] [Indexed: 01/11/2023]
Abstract
During the development of periphery auditory circuitry, spiral ganglion neurons (SGNs) form a spatially precise pattern of innervation of cochlear hair cells (HCs), which is an essential structural foundation for central auditory processing. However, molecular mechanisms underlying the developmental formation of this precise innervation pattern remain not well understood. Here, we specifically examined the involvement of Eph family members in cochlear development. By performing RNA-sequencing for different types of cochlear cell, in situ hybridization, and immunohistochemistry, we found that EphA7 was strongly expressed in a large subset of SGNs. In EphA7 deletion mice, there was a reduction in the number of inner radial bundles originating from SGNs and projecting to HCs as well as in the number of ribbon synapses on inner hair cells (IHCs), as compared with wild-type or heterozygous mutant mice, attributable to fewer type I afferent fibers. The overall activity of the auditory nerve in EphA7 deletion mice was also reduced, although there was no significant change in the hearing intensity threshold. In vitro analysis further suggested that the reduced innervation of HCs by SGNs could be attributed to a role of EphA7 in regulating outgrowth of SGN neurites as knocking down EphA7 in SGNs resulted in diminished SGN fibers. In addition, suppressing the activity of ERK1/2, a potential downstream target of EphA7 signaling, either with specific inhibitors in cultured explants or by knocking out Prkg1, also resulted in reduced SGN fibers. Together, our results suggest that EphA7 plays an important role in the developmental formation of cochlear innervation pattern through controlling SGN fiber ontogeny. Such regulation may contribute to the salience level of auditory signals presented to the central auditory system.
Collapse
Affiliation(s)
- Young J Kim
- Zilkha Neurogenetic Institute, Keck School of Medicine, University Of Southern California, Los Angeles, California, 90033.,Neuroscience Graduate Program, University Of Southern California, Los Angeles, California
| | - Leena A Ibrahim
- Zilkha Neurogenetic Institute, Keck School of Medicine, University Of Southern California, Los Angeles, California, 90033.,Neuroscience Graduate Program, University Of Southern California, Los Angeles, California
| | - Sheng-Zhi Wang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University Of Southern California, Los Angeles, California, 90033
| | - Wei Yuan
- Department of Otolaryngology of Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Oleg V Evgrafov
- Zilkha Neurogenetic Institute, Keck School of Medicine, University Of Southern California, Los Angeles, California, 90033.,Department of Psychiatry, Keck School Of Medicine, University Of Southern California, Los Angeles, California
| | - James A Knowles
- Zilkha Neurogenetic Institute, Keck School of Medicine, University Of Southern California, Los Angeles, California, 90033.,Department of Psychiatry, Keck School Of Medicine, University Of Southern California, Los Angeles, California
| | - Kai Wang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University Of Southern California, Los Angeles, California, 90033.,Department of Psychiatry, Keck School Of Medicine, University Of Southern California, Los Angeles, California
| | - Huizhong W Tao
- Zilkha Neurogenetic Institute, Keck School of Medicine, University Of Southern California, Los Angeles, California, 90033.,Department of Cell And Neurobiology, Keck School Of Medicine, University Of Southern California, Los Angeles, California
| | - Li I Zhang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University Of Southern California, Los Angeles, California, 90033.,Department of Physiology and Biophysics, Keck School Of Medicine, University Of Southern California, Los Angeles, California
| |
Collapse
|
3
|
Xiao RR, Wang L, Zhang L, Liu YN, Yu XL, Huang WH. Quantifying biased response of axon to chemical gradient steepness in a microfluidic device. Anal Chem 2014; 86:11649-56. [PMID: 25381866 DOI: 10.1021/ac504159g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Axons are very sensitive to molecular gradients and can discriminate extremely small differences in gradient steepness. Microfluidic devices capable of generating chemical gradients and adjusting their steepness could be used to quantify the sensitivity of axonal response. Here, we present a versatile and robust microfluidic device that can generate substrate-bound molecular gradients with evenly varying steepness on a single chip to precisely quantify axonal response. In this device, two solutions are perfused into a central channel via two inlets while partially flowing into two peripheral channels through interconnecting grooves, which gradually decrease the fluid velocity along the central channel. Molecular gradients with evenly and gradually decreased steepness can therefore be generated with a high resolution that is less than 0.05%/mm. In addition, the overall distribution range and resolution of the gradient steepness can be highly and flexibly controlled by adjusting various parameters of the device. Using this device, we quantified the hippocampal axonal response to substrate-bound laminin and ephrin-A5 gradients with varying steepnesses. Our results provided more detailed information on how and to what extent different steepnesses guide hippocampal neuron development during the initial outgrowth. Furthermore, our results show that axons can sensitively respond to very shallow laminin and ephrin-A5 gradients, which could effectively initiate biased differentiation of hippocampal neurons in the steepness range investigated in this study.
Collapse
Affiliation(s)
- Rong-Rong Xiao
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University , Wuhan, Hubei 430072, China
| | | | | | | | | | | |
Collapse
|
4
|
Ephrin-A5 deficiency alters sensorimotor and monoaminergic development. Behav Brain Res 2012; 236:139-147. [PMID: 22954718 DOI: 10.1016/j.bbr.2012.08.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 08/17/2012] [Accepted: 08/20/2012] [Indexed: 12/26/2022]
Abstract
The Eph receptors and their ligands, the ephrins, play an important role during neural development. In particular, ephrin-A5 is highly expressed in the developing nervous system in several brain regions including the olfactory bulb, frontal cortex, striatum and hypothalamus. Although a number of studies have characterized the expression of ephrin-A5 in these regions, very little is known about the functional consequences that might follow alterations in the expression of this ligand. Previously, we demonstrated that ephrin-A5 acts as a guidance molecule regulating the trajectory of the ascending midbrain dopaminergic pathways. In light of this finding and the critical role of dopamine in modulating a number of behaviors, we sought to determine whether loss of ephrin-A5 altered neurobehavioral development. Our results indicate that ephrin-A5-null mice exhibit delays in reaching developmental milestones and in the maturation of motor skills. In addition, they exhibit increased locomotor activity and reduced levels of brain monoamines. Therefore, we conclude that ephrin-A5 expression appears to be critical for proper development of central monoaminergic pathways and that its loss results in a number of neurodevelopmental abnormalities. Because alterations in monoamine function are associated with a variety of neurodevelopmental disorders, these data suggest that further study on the potential role of ephrin-A5 in such disorders is warranted.
Collapse
|
5
|
Angibaud J, Louveau A, Baudouin SJ, Nerrière-Daguin V, Evain S, Bonnamain V, Hulin P, Csaba Z, Dournaud P, Thinard R, Naveilhan P, Noraz N, Pellier-Monnin V, Boudin H. The immune molecule CD3zeta and its downstream effectors ZAP-70/Syk mediate ephrin signaling in neurons to regulate early neuritogenesis. J Neurochem 2011; 119:708-22. [PMID: 21895656 DOI: 10.1111/j.1471-4159.2011.07469.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Recent studies have highlighted the key role of the immune protein CD3ζ in the maturation of neuronal circuits in the CNS. Yet, the upstream signals that might recruit and activate CD3ζ in neurons are still unknown. In this study, we show that CD3ζ functions early in neuronal development and we identify ephrinA1-dependent EphA4 receptor activation as an upstream regulator of CD3ζ. When newly born neurons are still spherical, before neurite extension, we found a transient CD3ζ aggregation at the cell periphery matching the initiation site of the future neurite. This accumulation of CD3ζ correlated with a stimulatory effect on filopodia extension via a Rho-GEF Vav2 pathway and a repression of neurite outgrowth. Conversely, cultured neurons lacking CD3ζ isolated from CD3ζ(-/-) mice showed a decreased number of filopodia and an enhanced neurite number. Stimulation with ephrinA1 induces the translocation of both CD3ζ and its activated effector molecules, ZAP-70/Syk tyrosine kinases, to EphA4 receptor clusters. EphrinA1-induced growth cone collapse was abrogated in CD3ζ(-/-) neurons and was markedly reduced by ZAP-70/Syk inhibition. Moreover, ephrinA1-induced ZAP-70/Syk activation was inhibited in CD3ζ(-/-) neurons. Altogether, our data suggest that CD3ζ mediates the ZAP-70/Syk kinase activation triggered by ephrinA-activated pathway to regulate early neuronal morphogenesis.
Collapse
|
6
|
Arocho LC, Figueroa JD, Torrado AI, Santiago JM, Vera AE, Miranda JD. Expression profile and role of EphrinA1 ligand after spinal cord injury. Cell Mol Neurobiol 2011; 31:1057-69. [PMID: 21603973 DOI: 10.1007/s10571-011-9705-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 04/30/2011] [Indexed: 10/18/2022]
Abstract
Spinal cord injury (SCI) triggers the re-expression of inhibitory molecules present in early stages of development, contributing to prevention of axonal regeneration. Upregulation of EphA receptor tyrosine kinases after injury suggest their involvement in the nervous system's response to damage. However, the expression profile of their ephrinA ligands after SCI is unclear. In this study, we determined the expression of ephrinA ligands after contusive SCI. Adult Sprague-Dawley female rats were injured using the MASCIS impactor device at the T10 vertebrae, and levels of ephrinA mRNA and protein determined at different time points. Identification of the cell phenotype expressing the ephrin ligand and colocalization with Eph receptors was performed with immunohistochemistry and confocal microscopy. Behavioral studies were made, after blocking ephrinA1 expression with antisense (AS) oligonucleotides, to assess hindlimb locomotor activity. Real-time PCR demonstrated basal mRNA levels of ephrin (A1, A2, A3, and A5) in the adult spinal cord. Interestingly, ephrinA1 was the only ligand whose mRNA levels were significantly altered after SCI. Although ephrinA1 mRNA levels increased after 2 weeks and remain elevated, we did not observe this pattern at the protein level as revealed by western blot analysis. Immunohistochemical studies showed ephrinA1 expression in reactive astrocytes, axons, and neurons and also their colocalization with EphA4 and A7 receptors. Behavioral studies revealed worsening of locomotor activity when ephrinA1 expression was reduced. This study suggests that ephrinA1 ligands play a role in the pathophysiology of SCI.
Collapse
Affiliation(s)
- Luz C Arocho
- Physiology Department, University of Puerto Rico School of Medicine, P.O. Box 365067, San Juan, PR 00936-5067, USA
| | | | | | | | | | | |
Collapse
|
7
|
Rudolph J, Zimmer G, Steinecke A, Barchmann S, Bolz J. Ephrins guide migrating cortical interneurons in the basal telencephalon. Cell Adh Migr 2010; 4:400-8. [PMID: 20473036 DOI: 10.4161/cam.4.3.11640] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cortical interneurons are born in the proliferative zones of the ganglionic eminences in the subpallium and migrate to the developing cortex along well-defined tangential routes. The mechanisms regulating interneuron migration are not completely understood. Here we examine the role of class-A members of the Eph/ephrin system in directing the migration of interneurons. In situ hybridizations demonstrated that ephrin-A3 is expressed in the developing striatum, an area that is strictly avoided by migrating cortical interneurons in vivo, which express the EphA4 receptor. We then examined interneuron migration in grafting experiments, where explants of the medial ganglionic eminence (MGE) from enhanced green fluorescent protein-expressing transgenic mice were homotopically grafted into host slices from wildtype littermate embryos. After blocking ephrin-A ligands, many interneurons invaded the striatal anlage. Moreover, stripe assay experiments revealed that ephrin-A3 acts as a repellent cue for neurons from the medial ganglionic eminence. Downregulation of the EphA4 receptor via siRNA transfection reduced the repulsive effect of ephrin-A3, indicating that EphA4 mediates at least in part the repulsive effect of ephrin-A3 on these cells. Together, these results suggest that ephrin-A3 acts as a repulsive cue that restricts cortical interneurons from entering inappropriate regions and thus contributes to define the migratory route of cortical interneurons.
Collapse
Affiliation(s)
- Judith Rudolph
- Universität Jena, Institut für Allgemeine Zoologie und Tierphysiologie, Jena, Germany
| | | | | | | | | |
Collapse
|
8
|
Reverse signaling by glycosylphosphatidylinositol-linked Manduca ephrin requires a SRC family kinase to restrict neuronal migration in vivo. J Neurosci 2009; 29:3404-18. [PMID: 19295147 DOI: 10.1523/jneurosci.5464-08.2009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Reverse signaling via glycosylphosphatidylinositol (GPI)-linked Ephrins may help control cell proliferation and outgrowth within the nervous system, but the mechanisms underlying this process remain poorly understood. In the embryonic enteric nervous system (ENS) of the moth Manduca sexta, migratory neurons forming the enteric plexus (EP cells) express a single Ephrin ligand (GPI-linked MsEphrin), whereas adjacent midline cells that are inhibitory to migration express the cognate receptor (MsEph). Knocking down MsEph receptor expression in cultured embryos with antisense morpholino oligonucleotides allowed the EP cells to cross the midline inappropriately, consistent with the model that reverse signaling via MsEphrin mediates a repulsive response in the ENS. Src family kinases have been implicated in reverse signaling by type-A Ephrins in other contexts, and MsEphrin colocalizes with activated forms of endogenous Src in the leading processes of the EP cells. Pharmacological inhibition of Src within the developing ENS induced aberrant midline crossovers, similar to the effect of blocking MsEphrin reverse signaling. Hyperstimulating MsEphrin reverse signaling with MsEph-Fc fusion proteins induced the rapid activation of endogenous Src specifically within the EP cells, as assayed by Western blots of single embryonic gut explants and by whole-mount immunostaining of cultured embryos. In longer cultures, treatment with MsEph-Fc caused a global inhibition of EP cell migration and outgrowth, an effect that was prevented by inhibiting Src activation. These results support the model that MsEphrin reverse signaling induces the Src-dependent retraction of EP cell processes away from the enteric midline, thereby helping to confine the neurons to their appropriate pathways.
Collapse
|
9
|
Tremblay ME, Riad M, Chierzi S, Murai KK, Pasquale EB, Doucet G. Developmental course of EphA4 cellular and subcellular localization in the postnatal rat hippocampus. J Comp Neurol 2009; 512:798-813. [PMID: 19086003 DOI: 10.1002/cne.21922] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
From embryonic development to adulthood, the EphA4 receptor and several of its ephrin-A or -B ligands are expressed in the hippocampus, where they presumably play distinct roles at different developmental stages. To help clarify these diverse roles in the assembly and function of the hippocampus, we examined the cellular and subcellular localization of EphA4 in postnatal rat hippocampus by light and electron microscopic immunocytochemistry. On postnatal day (P) 1, the EphA4 immunostaining was robust in most layers of CA1, CA3, and dentate gyrus and then decreased gradually, until P21, especially in the cell body layers. At the ultrastructural level, focal spots of EphA4 immunoreactivity were detected all over the plasma membrane of pyramidal and granule cells, between P1 and P14, from the perikarya to the dendritic and axonal extremities, including growth cones and filopodia. This cell surface immunoreactivity then became restricted to the synapse-associated dendritic spines and axon terminals by P21. In astrocytes, the EphA4 immunolabeling showed a similar cell surface redistribution, from the perikarya and large processes at P1-P7, to small perisynaptic processes at P14-P21. In both cell types, spots of EphA4 immunoreactivity were also detected, with an incidence decreasing with maturation, on the endoplasmic reticulum, Golgi apparatus, and vesicles, organelles involved in protein synthesis, posttranslational modifications, and transport. The cell surface evolution of EphA4 localization in neuronal and glial cells is consistent with successive involvements in the developmental movements of cell bodies first, followed by process outgrowth and guidance, synaptogenesis, and finally synaptic maintenance and plasticity.
Collapse
Affiliation(s)
- Marie-Eve Tremblay
- Département de Pathologie et Biologie Cellulaire, Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
10
|
Giocomo LM, Hasselmo ME. Time constants of h current in layer ii stellate cells differ along the dorsal to ventral axis of medial entorhinal cortex. J Neurosci 2008; 28:9414-25. [PMID: 18799674 PMCID: PMC2990529 DOI: 10.1523/jneurosci.3196-08.2008] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 08/11/2008] [Indexed: 11/21/2022] Open
Abstract
Chronic recordings in the medial entorhinal cortex of behaving rats have found grid cells, neurons that fire when the rat is in a hexagonal array of locations. Grid cells recorded at different dorsal-ventral anatomical positions show systematic changes in size and spacing of firing fields. To test possible mechanisms underlying these differences, we analyzed properties of the hyperpolarization-activated cation current I(h) in voltage-clamp recordings from stellate cells in entorhinal slices from different dorsal-ventral locations. The time constant of h current was significantly different between dorsal and ventral neurons. The time constant of h current correlated with membrane potential oscillation frequency and the time constant of the sag potential in the same neurons. Differences in h current could underlie differences in membrane potential oscillation properties and contribute to grid cell periodicity along the dorsal-ventral axis of medial entorhinal cortex.
Collapse
Affiliation(s)
- Lisa M Giocomo
- Center for Memory and Brain, Program in Neuroscience and Department of Psychology, Boston University, Boston, Massachusetts 02215, USA.
| | | |
Collapse
|
11
|
Changes in attack behavior and activity in EphA5 knockout mice. Brain Res 2008; 1205:91-9. [PMID: 18353288 DOI: 10.1016/j.brainres.2008.02.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 02/14/2008] [Accepted: 02/17/2008] [Indexed: 11/21/2022]
Abstract
During development, Eph tyrosine kinase receptors and their ephrin ligands function as axon guidance molecules while, in adults, these molecules appear to be involved in the regulation of neural plasticity and emotion. The absence of EphA5 receptor mediated forward signaling may cause alterations in connectivity of neural networks and boundary formation during development, including central monoaminergic systems. In the present studies, we demonstrated altered aggressive responses by animals lacking functional EphA5 receptors. These behavioral changes were accompanied by altered concentrations of serotonin (5-HT) and the metabolite, 5-HIAA, in the hypothalamus. The changes of serotonin activity in hypothalamus also result in increase of body weight in EphA5 knockout mice. Furthermore, EphA5 knockout mice exhibited a significant decrease in activity levels following exposure to naïve intruders in their home cages. We conclude that the EphA5 receptor may be involved in mediation of aggressive behavior regulated, in part, by hypothalamic serotonin.
Collapse
|
12
|
Muñoz JJ, Alfaro D, García-Ceca J, Alonso-C LM, Jiménez E, Zapata A. Thymic Alterations in EphA4-Deficient Mice. THE JOURNAL OF IMMUNOLOGY 2006; 177:804-13. [DOI: 10.4049/jimmunol.177.2.804] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Martínez A, Otal R, Sieber BA, Ibáñez C, Soriano E. Disruption of ephrin-A/EphA binding alters synaptogenesis and neural connectivity in the hippocampus. Neuroscience 2006; 135:451-61. [PMID: 16112477 DOI: 10.1016/j.neuroscience.2005.06.052] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Revised: 05/26/2005] [Accepted: 06/15/2005] [Indexed: 11/26/2022]
Abstract
Ephrins are guidance cues that modulate axonal growth and the subsequent axonal topographic maps in many regions of the CNS. Here we studied the functional roles of ephrin-A/EphA interactions in the layer-specific pattern of axonal projections in the hippocampus by disrupting the ephrin-A signaling by over-expression of a soluble EphA receptor. Tracing experiments in EphA5-Fc over-expressing mice revealed that reduction of ephrin-A/EphA interactions did not affect the proper distribution of the main hippocampal afferents, i.e. entorhinal and commissural projections. However, further ultrastructural analyses showed a reduction in the density of synaptic terminals in the entorhinal and commissural termination layers in these mice. In addition, using anti-calbindin antibodies, we analyzed the dentate mossy fiber projections following disruption of ephrin-A/EphA interactions throughout developing hippocampus. While the main mossy fiber bundle appeared normal, the infrapyramidal bundle formed longer projections that established ectopic contacts in these transgenic mice. Later, the expected specific pruning of the infrapyramidal bundle was not observed at adult stages. Ultrastructural analyses confirmed a higher number of mossy fiber terminals in the infrapyramidal bundle in adult EphA5-Fc transgenic mice and showed that these terminals were larger and established a greater number of contacts than in controls. Our results demonstrate that ephrin-A/EphA interactions regulate the synaptogenesis of hippocampal afferents and the proper development and refinement of granule cell projections.
Collapse
Affiliation(s)
- A Martínez
- Department of Cell Biology and Barcelona Science Park (IRBB), University of Barcelona, Barcelona 08028, Spain.
| | | | | | | | | |
Collapse
|
14
|
Knöll B, Kretz O, Fiedler C, Alberti S, Schütz G, Frotscher M, Nordheim A. Serum response factor controls neuronal circuit assembly in the hippocampus. Nat Neurosci 2006; 9:195-204. [PMID: 16415869 DOI: 10.1038/nn1627] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Accepted: 12/08/2005] [Indexed: 11/09/2022]
Abstract
Higher organisms rely on multiple modes of memory storage using the hippocampal network, which is built by precisely orchestrated mechanisms of axonal outgrowth, guidance and synaptic targeting. We demonstrate essential roles of the transcription factor serum response factor (SRF), a sensor of cytoskeletal actin dynamics, in all these processes. Conditional deletion of the mouse Srf gene reduced neurite outgrowth and abolished mossy fiber segregation, resulting in ectopic fiber growth inside the pyramidal layer. SRF-deficient mossy fibers aberrantly targeted CA3 somata for synapse formation. Axon guidance assays showed that SRF was a key mediator of ephrin-A and semaphorin guidance cues; in SRF-deficient neurons, these resulted in the formation of F-actin-microtubule rings rather than complete growth cone collapse. Dominant-negative variants of the SRF cofactor megakaryocytic acute leukemia (MAL) severely impeded neurite outgrowth and guidance. These data highlight essential links between SRF-mediated transcription and axon guidance and circuit formation in the hippocampus.
Collapse
Affiliation(s)
- Bernd Knöll
- Interfakultäres Institut für Zellbiologie, Abt. Molekularbiologie, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
Bsibsi M, Persoon-Deen C, Verwer RWH, Meeuwsen S, Ravid R, Van Noort JM. Toll-like receptor 3 on adult human astrocytes triggers production of neuroprotective mediators. Glia 2006; 53:688-95. [PMID: 16482523 DOI: 10.1002/glia.20328] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Toll-like receptors (TLRs) are innate immunity receptors that are expressed on a wide range of cell types, including CNS glial cells. In general, TLR engagement by specific sets of microbial ligands triggers production of pro-inflammatory factors and enhances antigen-presenting cell functions. The functional roles of TLR in the CNS, however, are still poorly understood. While adult human astrocytes in culture dominantly express TLR4, they display a strikingly strong and selective induction of TLR3 when activated by pro-inflammatory cytokines, TLR3 or TLR4 agonists, or oxidative stress. Gene profiling analysis of the astrocyte response to either TLR3 or TLR4 activation revealed that TLR3, but not TLR4, induces expression of a range of neuroprotective mediators and several other molecules that regulate cellular growth, differentiation, and migration. Also, TLR3 triggered enhanced production of anti-inflammatory cytokines including interleukin-9 (IL-9), IL-10, and IL-11 and downregulation of the p40 subunit of IL-12 and IL-23. The collective TLR3-induced products were found in functional assays to inhibit astrocyte growth, promote human endothelial cell growth, and importantly, to enhance neuronal survival in organotypic human brain slice cultures. Together, our data indicate that TLR3 is induced on human astrocytes upon inflammation and when activated, mediates a comprehensive neuroprotective response rather than a polarized pro-inflammatory reaction.
Collapse
Affiliation(s)
- Malika Bsibsi
- Division of Biomedical Research, TNO Quality of Life, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
16
|
Otal R, Burgaya F, Frisén J, Soriano E, Martínez A. Ephrin-A5 modulates the topographic mapping and connectivity of commissural axons in murine hippocampus. Neuroscience 2006; 141:109-21. [PMID: 16690216 DOI: 10.1016/j.neuroscience.2006.03.052] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 02/17/2006] [Accepted: 03/20/2006] [Indexed: 10/24/2022]
Abstract
Entorhinal and commissural/associational projections show a non-overlapping distribution in the hippocampus proper and the dentate gyrus. The expression of Ephrins and their Eph receptors in the developing hippocampus indicates that this family of axonal guidance molecules may modulate the formation of these connections. Here we focused on the role of the ephrin-A5 ligand in the development of the main hippocampal afferents. In situ hybridization showed that ephrin-A5 mRNA was detected mainly in the principal cells of the hippocampus proper and in the dentate gyrus throughout postnatal development. Immunocytochemical analyses revealed prominent expression of the EphA3 receptor, a putative receptor for ephrin-A5, in the main cells and the neuropil of the developing hippocampus. Tracing experiments in ephrin-A5(-/-) mice showed that commissural projections were transiently altered in the hippocampus proper at P5, but they were mistargeted throughout the postnatal development in the dentate gyrus. Immunocytochemistry with anti-calbindin antibodies revealed that the dentate mossy fiber projection was not altered in ephrin-A5(-/-) mice. Electron microscopy studies showed alterations in the density of synapses and spines in commissural/associational layers, but not in entorhinal layers, and in the mossy fibers in these animals. Taken together, these findings indicate that ephrin-A5 signaling is involved in the formation and maturation of synapses in the hippocampus.
Collapse
Affiliation(s)
- R Otal
- Department of Cell Biology, University of Barcelona and Institut de Recerca Biomèdica, Parc Científic de Barcelona, E-08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|
17
|
Wang Y, Ying GX, Liu X, Wang WY, Dong JH, Ni ZM, Zhou CF. Induction of ephrin-B1 and EphB receptors during denervation-induced plasticity in the adult mouse hippocampus. Eur J Neurosci 2005; 21:2336-46. [PMID: 15932593 DOI: 10.1111/j.1460-9568.2005.04093.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Abstract It has been widely demonstrated that Eph receptors and their ephrin ligands play multiple pivotal roles in the development of the nervous system. However, less is known about their roles in the adult brain. Here we reported the expression of ephrin-B1 and its cognate EphB receptors in the adult mouse hippocampus at 3, 7, 15, 30 and 60 days after transections of the entorhinal afferents. In situ hybridization and immunohistochemistry showed the time-dependent up-regulation of ephrin-B1 in the denervated areas of the hippocampus, which initiated at 3 days postlesion (dpl), reached maximal levels at 7-15 dpl, remained slightly elevated at 30 dpl and recovered to normal levels by 60 dpl. Double labeling of ephrin-B1 and glial fibrillary acidic protein revealed that ephrin-B1-expressing cells in the denervated areas were reactive astrocytes. Furthermore, a ligand-binding assay using ephrin-B1/Fc chimera protein also displayed the up-regulation of EphB receptors in the denervated areas of the hippocampus in a similar manner to that of ephrin-B1. Within the first week postlesion, the EphB receptors were expressed by reactive astrocytes. After 7 dpl, however, EphB receptors were expressed not only by reactive astrocytes but also first by sprouting axons and later by regrowing dendrites. These results suggest that the ephrin-B1/EphB system may participate in the lesion-induced plasticity processes in the adult mouse hippocampus.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Neurobiology, Shanghai Institute of Physiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, PR China
| | | | | | | | | | | | | |
Collapse
|
18
|
Martínez A, Soriano E. Functions of ephrin/Eph interactions in the development of the nervous system: emphasis on the hippocampal system. ACTA ACUST UNITED AC 2005; 49:211-26. [PMID: 16111551 DOI: 10.1016/j.brainresrev.2005.02.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2004] [Revised: 02/01/2005] [Accepted: 02/04/2005] [Indexed: 12/20/2022]
Abstract
Ephrins and their Eph receptors are membrane-anchored proteins that have key roles in the development of the Central Nervous System. The main characteristics of ephrin/Eph interactions are that their effect is mediated by cell-to-cell contacts and that they can propagate bidirectional signals downstream of the ligand-receptor complex. These characteristics make ephrins and Eph receptors critical cues in the regulation of migrating cells or axons, and in the establishment of tissue patterns and topographic maps in distinct regions of the developing brain. In addition, ephrins and Eph receptors regulate synapse formation and plasticity. These roles would be promoted by complementary gradual expression of receptors and ligands in the neurons involved. Although, historically, ephrins and Eph receptors have been considered as repulsion signals through barriers or gradients, new evidence indicates that they may be both inhibitory and permissive/active cues depending on expression levels. The expression of distinct ligands and receptors in the developing and mature hippocampus suggests that these proteins are involved in distinct processes during the development and maturation of the hippocampal region. In fact, recent studies have shown that ephrin/Eph signaling participates in the formation of the layer-specific patterns of hippocampal afferents, in synaptogenesis and in plasticity. Therefore, ephrin/Eph interactions should be considered a crucial system in the development and maturation of the brain regions, including the hippocampus.
Collapse
Affiliation(s)
- Albert Martínez
- Neuronal Development and Regeneration Group (S1-A1), Department of Cell Biology, University of Barcelona/Barcelona Science Park, Josep Samitier 1-5, Barcelona E-08028, Spain.
| | | |
Collapse
|
19
|
Halladay AK, Tessarollo L, Zhou R, Wagner GC. Neurochemical and behavioral deficits consequent to expression of a dominant negative EphA5 receptor. ACTA ACUST UNITED AC 2004; 123:104-11. [PMID: 15046871 DOI: 10.1016/j.molbrainres.2004.01.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2004] [Indexed: 11/29/2022]
Abstract
The Eph family tyrosine kinase receptors and their ligands have been linked to axon guidance and topographic mapping of the developing central nervous system. More specifically, the EphA5 receptor has been shown to play a role in development of hippocamposeptal, retinotectal and thalamocortical projections. Recently, a line of transgenic mice was developed which expresses a truncated EphA5 receptor lacking a functional tyrosine kinase domain. In a previous study, axonal tracing revealed that medial hippocampal axons in this strain projected laterally and ventrally away from their normal target area. In the current study, both transgenic and wild-type controls were evaluated in unconditioned (rotorod and locomotor activity) and conditioned (water maze and active avoidance) behavior tasks which tested hippocampal and striatal functioning. Compared to controls, the transgenic strain did not show differences in rotorod motor activity but did show a transient deficit in spatial navigation ability and a consistent impairment in active avoidance. The dominant-negative mutant receptor also resulted in a decrease in striatal dopamine and serotonin concentrations with no change in hippocampal monoamines. Collectively, these data suggest that animals expressing a truncated EphA5 receptor show deficits related to striatal functioning.
Collapse
Affiliation(s)
- A K Halladay
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ, USA
| | | | | | | |
Collapse
|
20
|
Abstract
Axon guidance cues of the ephrin ligand family have been hypothesized to regulate the formation of thalamocortical connections, but in vivo evidence for such a role has not been examined directly. To test whether ephrin-mediated repulsive cues participate in sorting the projections originating from distinct thalamic nuclei, we analyzed the organization of somatosensory and anterior cingulate afferents postnatally in mice lacking ephrin-A5 gene expression. Projections from ventrobasal and laterodorsal nuclei to their respective sensory and limbic cortical areas developed normally. However, a portion of limbic thalamic neurons from the laterodorsal nucleus also formed additional projections to somatosensory cortical territories, thus maintaining inappropriate dual projections to multiple cortical regions. These results suggest that ephrin-A5 is not required for the formation of normal cortical projections from the appropriate thalamic nuclei, but rather acts as a guidance cue that restricts limbic thalamic axons from inappropriate neocortical regions.
Collapse
|
21
|
Yue Y, Chen ZY, Gale NW, Blair-Flynn J, Hu TJ, Yue X, Cooper M, Crockett DP, Yancopoulos GD, Tessarollo L, Zhou R. Mistargeting hippocampal axons by expression of a truncated Eph receptor. Proc Natl Acad Sci U S A 2002; 99:10777-82. [PMID: 12124402 PMCID: PMC125042 DOI: 10.1073/pnas.162354599] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Topographic mapping of axon terminals is a general principle of neural architecture that underlies the interconnections among many neural structures. The Eph family tyrosine kinase receptors and their ligands, the ephrins, have been implicated in the formation of topographic projection maps. We show that multiple Eph receptors and ligands are expressed in the hippocampus and its major subcortical projection target, the lateral septum, and that expression of a truncated Eph receptor in the mouse brain results in a pronounced alteration of the hippocamposeptal topographic map. Our observations provide strong support for a critical role of Eph family guidance factors in regulating ontogeny of hippocampal projections.
Collapse
Affiliation(s)
- Yong Yue
- Department of Chemical Biology, College of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Henderson JT, Georgiou J, Jia Z, Robertson J, Elowe S, Roder JC, Pawson T. The receptor tyrosine kinase EphB2 regulates NMDA-dependent synaptic function. Neuron 2001; 32:1041-56. [PMID: 11754836 DOI: 10.1016/s0896-6273(01)00553-0] [Citation(s) in RCA: 261] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Members of the Eph family of receptor tyrosine kinases control many aspects of cellular interactions during development, including axon guidance. Here, we demonstrate that EphB2 also regulates postnatal synaptic function in the mammalian CNS. Mice lacking the EphB2 intracellular kinase domain showed wild-type levels of LTP, whereas mice lacking the entire EphB2 receptor had reduced LTP at hippocampal CA1 and dentate gyrus synapses. Synaptic NMDA-mediated current was reduced in dentate granule neurons in EphB2 null mice, as was synaptically localized NR1 as revealed by immunogold localization. Finally, we show that EphB2 is upregulated in hippocampal pyramidal neurons in vitro and in vivo by stimuli known to induce changes in synaptic structure. Together, these data demonstrate that EphB2 plays an important role in regulating synaptic function.
Collapse
Affiliation(s)
- J T Henderson
- Program in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, M5G 1X5, Toronto, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Ascending sensory information reaches primary sensory cortical areas via thalamic relay neurons that are organized into modality-specific compartments or nuclei. Although the sensory relay nuclei of the thalamus show consistent modality-specific segregation of afferents, we now show in a wild-type mouse strain that the visual pathway can be surgically "rewired" so as to induce permanent retinal innervation of auditory thalamic cell groups. Applying the same rewiring paradigm to a transgenic mouse lacking the EphA receptor family ligands ephrin-A2 and ephrin-A5 results in more extensive rewiring than in the wild-type strain. We also show for the first time that ephrin-A2 and ephrin-A5 define a distinct border between visual and auditory thalamus. In the absence of this ephrin-A2/A5 border and after rewiring surgery, retinal afferents are better able to invade and innervate the deafferented auditory thalamus. These data suggest that signals that induce retinal axons to innervate the denervated auditory thalamus may compete with barriers, such as the ephrins, that serve to contain them within the normal target. The present findings thus show that the targeting of retinothalamic projections can be surgically manipulated in the mouse and that such plasticity can be controlled by proteins known to regulate topographic mapping.
Collapse
|
24
|
Hirate Y, Mieda M, Harada T, Yamasu K, Okamoto H. Identification of ephrin-A3 and novel genes specific to the midbrain-MHB in embryonic zebrafish by ordered differential display. Mech Dev 2001; 107:83-96. [PMID: 11520665 DOI: 10.1016/s0925-4773(01)00467-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Development of the tectum and the cerebellum is induced by a reciprocal inductive signaling between their respective primordia, the midbrain and the midbrain/hindbrain boundary (MHB). We set out to identify molecules that function in and downstream of this reciprocal signaling. Overexpression of LIM domain of the transcription factor Islet-3 (LIM(Isl-3)) leads to inhibition of this reciprocal signaling and to resultant defects in tectal and cerebellar development. We therefore searched for genes that may be either up- or down-regulated by overexpression of LIM(Isl-3) by comparing the gene expression profiles in the midbrain and the MHB of normal embryos and embryos in which Islet-3 function was repressed, using a combination of ordered differential display and whole-mount in situ hybridization. Among genes identified in this search, two cDNA fragments encoded Wnt1 and FGF8, which are already known to be essential for the reciprocal signaling between the midbrain and the MHB, confirming the effectiveness of our strategy. We identified four other partial cDNA clones that were specifically expressed around the MHB, ten cDNAs specifically expressed in the tectum, and three cDNAs expressed in neural crest cells including those derived from the midbrain level. The ephrin-A3 gene was specifically expressed in posterior tectum in a gradient that decreased anteriorly. Although ephrin-A2 and ephrin-A5 have been reported to be expressed in the corresponding region in mouse embryos, the superior/inferior colliculi, mouse ephrin-A3 is not expressed prominently in this region, suggesting that the role of ephrin-A3 in brain development may have been altered in the process of brain evolution.
Collapse
Affiliation(s)
- Y Hirate
- Laboratory for Developmental Gene Regulation, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | | | | | | | | |
Collapse
|