1
|
Cranz-Mileva S, Reilly E, Chalhoub N, Patel R, Atanassova T, Cao W, Ellison C, Zaratiegui M. Transposon Removal Reveals Their Adaptive Fitness Contribution. Genome Biol Evol 2024; 16:evae010. [PMID: 38245838 PMCID: PMC10836971 DOI: 10.1093/gbe/evae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/04/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024] Open
Abstract
Transposable elements are molecular parasites that persist in their host genome by generating new copies to outpace natural selection. Transposable elements exert a large influence on host genome evolution, in some cases providing adaptive changes. Here we measure the fitness effect of the transposable element insertions in the fission yeast Schizosaccharomyces pombe type strain by removing all insertions of its only native transposable element family, the long terminal repeat retrotransposon Tf2. We show that Tf2 elements provide a positive fitness contribution to its host. Tf2 ablation results in changes to the regulation of a mitochondrial gene and, consistently, the fitness effect are sensitive to growth conditions. We propose that Tf2 influences host fitness in a directed manner by dynamically rewiring the transcriptional response to metabolic stress.
Collapse
Affiliation(s)
- Susanne Cranz-Mileva
- Department of Molecular Biology and Biochemistry, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Eve Reilly
- Department of Molecular Biology and Biochemistry, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Noor Chalhoub
- Department of Molecular Biology and Biochemistry, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Rohan Patel
- Department of Molecular Biology and Biochemistry, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Tania Atanassova
- Department of Molecular Biology and Biochemistry, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Weihuan Cao
- Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Christopher Ellison
- Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Mikel Zaratiegui
- Department of Molecular Biology and Biochemistry, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
2
|
Tutaj H, Pirog A, Tomala K, Korona R. Genome-scale patterns in the loss of heterozygosity incidence in Saccharomyces cerevisiae. Genetics 2022; 221:6536968. [PMID: 35212738 PMCID: PMC9071580 DOI: 10.1093/genetics/iyac032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/17/2022] [Indexed: 02/07/2023] Open
Abstract
Former studies have established that loss of heterozygosity can be a key driver of sequence evolution in unicellular eukaryotes and tissues of metazoans. However, little is known about whether the distribution of loss of heterozygosity events is largely random or forms discernible patterns across genomes. To initiate our experiments, we introduced selectable markers to both arms of all chromosomes of the budding yeast. Subsequent extensive assays, repeated over several genetic backgrounds and environments, provided a wealth of information on the genetic and environmental determinants of loss of heterozygosity. Three findings stand out. First, the number of loss of heterozygosity events per unit time was more than 25 times higher for growing than starving cells. Second, loss of heterozygosity was most frequent when regions of homology around a recombination site were identical, about a half-% sequence divergence was sufficient to reduce its incidence. Finally, the density of loss of heterozygosity events was highly dependent on the genome's physical architecture. It was several-fold higher on short chromosomal arms than on long ones. Comparably large differences were seen within a single arm where regions close to a centromere were visibly less affected than regions close, though usually not strictly adjacent, to a telomere. We suggest that the observed uneven distribution of loss of heterozygosity events could have been caused not only by an uneven density of initial DNA damages. Location-depended differences in the mode of DNA repair, or its effect on fitness, were likely to operate as well.
Collapse
Affiliation(s)
- Hanna Tutaj
- Institute of Environmental Sciences, Jagiellonian University, 30-387 Cracow, Poland
| | - Adrian Pirog
- Institute of Environmental Sciences, Jagiellonian University, 30-387 Cracow, Poland
| | - Katarzyna Tomala
- Institute of Environmental Sciences, Jagiellonian University, 30-387 Cracow, Poland
| | - Ryszard Korona
- Institute of Environmental Sciences, Jagiellonian University, 30-387 Cracow, Poland,Corresponding author: Institute of Environmental Sciences, Jagiellonian University, Gronostajowa Street 7, 30-387 Krakow, Poland.
| |
Collapse
|
3
|
Bulankova P, Sekulić M, Jallet D, Nef C, van Oosterhout C, Delmont TO, Vercauteren I, Osuna-Cruz CM, Vancaester E, Mock T, Sabbe K, Daboussi F, Bowler C, Vyverman W, Vandepoele K, De Veylder L. Mitotic recombination between homologous chromosomes drives genomic diversity in diatoms. Curr Biol 2021; 31:3221-3232.e9. [PMID: 34102110 DOI: 10.1016/j.cub.2021.05.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/17/2021] [Accepted: 05/06/2021] [Indexed: 01/31/2023]
Abstract
Diatoms, an evolutionarily successful group of microalgae, display high levels of intraspecific genetic variability in natural populations. However, the contribution of various mechanisms generating such diversity is unknown. Here we estimated the genetic micro-diversity within a natural diatom population and mapped the genomic changes arising within clonally propagated diatom cell cultures. Through quantification of haplotype diversity by next-generation sequencing and amplicon re-sequencing of selected loci, we documented a rapid accumulation of multiple haplotypes accompanied by the appearance of novel protein variants in cell cultures initiated from a single founder cell. Comparison of the genomic changes between mother and daughter cells revealed copy number variation and copy-neutral loss of heterozygosity leading to the fixation of alleles within individual daughter cells. The loss of heterozygosity can be accomplished by recombination between homologous chromosomes. To test this hypothesis, we established an endogenous readout system and estimated that the frequency of interhomolog mitotic recombination was under standard growth conditions 4.2 events per 100 cell divisions. This frequency is increased under environmental stress conditions, including treatment with hydrogen peroxide and cadmium. These data demonstrate that copy number variation and mitotic recombination between homologous chromosomes underlie clonal variability in diatom populations. We discuss the potential adaptive evolutionary benefits of the plastic response in the interhomolog mitotic recombination rate, and we propose that this may have contributed to the ecological success of diatoms.
Collapse
Affiliation(s)
- Petra Bulankova
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium.
| | - Mirna Sekulić
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; Protistology and Aquatic Ecology, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Denis Jallet
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Charlotte Nef
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005 Paris, France
| | - Cock van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Tom O Delmont
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France
| | - Ilse Vercauteren
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
| | - Cristina Maria Osuna-Cruz
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; Bioinformatics Institute Ghent, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
| | - Emmelien Vancaester
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; Bioinformatics Institute Ghent, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
| | - Thomas Mock
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Koen Sabbe
- Protistology and Aquatic Ecology, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Fayza Daboussi
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Chris Bowler
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005 Paris, France
| | - Wim Vyverman
- Protistology and Aquatic Ecology, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Klaas Vandepoele
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; Bioinformatics Institute Ghent, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
| | - Lieven De Veylder
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium.
| |
Collapse
|
4
|
Jalal D, Chalissery J, Iqbal M, Hassan AH. The ATPase Irc20 facilitates Rad51 chromatin enrichment during homologous recombination in yeast Saccharomyces cerevisiae. DNA Repair (Amst) 2020; 97:103019. [PMID: 33202365 DOI: 10.1016/j.dnarep.2020.103019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 10/23/2022]
Abstract
DNA double-strand breaks (DSBs) constitute one of the most cytotoxic forms of DNA damage and pose a significant threat to cell viability, survival, and homeostasis. DSBs have the potential to promote aneuploidy, cell death and potentially deleterious mutations that promote tumorigenesis. Homologous recombination (HR) is one of the main DSB repair pathways and while being essential for cell survival under genotoxic stress, it requires proper regulation to avoid chromosome rearrangements. Here, we characterize the Saccharomyces cerevisiae E3 ubiquitin ligase/putative helicase Irc20 as a regulator of HR. Using purified Irc20, we show that it can hydrolyze ATP in the presence and absence of DNA, but does not increase access to DNA within a nucleosome. In addition, we show that both the ATPase and ubiquitin ligase activities of Irc20 are required for suppressing the spontaneous formation of recombination foci. Finally, we demonstrate a role for Irc20 in promoting Rad51 chromatin association and the removal of Rad52 recombinase from chromatin, thus facilitating subsequent HR steps and directing recombination to more error-free modes.
Collapse
Affiliation(s)
- Deena Jalal
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al-Ain, United Arab Emirates
| | - Jisha Chalissery
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al-Ain, United Arab Emirates
| | - Mehwish Iqbal
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al-Ain, United Arab Emirates
| | - Ahmed H Hassan
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al-Ain, United Arab Emirates.
| |
Collapse
|
5
|
Partner Choice in Spontaneous Mitotic Recombination in Wild Type and Homologous Recombination Mutants of Candida albicans. G3-GENES GENOMES GENETICS 2019; 9:3631-3644. [PMID: 31690596 PMCID: PMC6829120 DOI: 10.1534/g3.119.400516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Candida albicans, the most common fungal pathogen, is a diploid with a genome that is rich in repeats and has high levels of heterozygosity. To study the role of different recombination pathways on direct-repeat recombination, we replaced either allele of the RAD52 gene (Chr6) with the URA-blaster cassette (hisG-URA3-hisG), measured rates of URA3 loss as resistance to 5-fluoroorotic acid (5FOAR) and used CHEF Southern hybridization and SNP-RFLP analysis to identify recombination mechanisms and their frequency in wildtype and recombination mutants. FOAR rates varied little across different strain backgrounds. In contrast, the type and frequency of mechanisms underlying direct repeat recombination varied greatly. For example, wildtype, rad59 and lig4 strains all displayed a bias for URA3 loss via pop-out/deletion vs. inter-homolog recombination and this bias was reduced in rad51 mutants. In addition, in rad51-derived 5FOAR strains direct repeat recombination was associated with ectopic translocation (5%), chromosome loss/truncation (14%) and inter-homolog recombination (6%). In the absence of RAD52, URA3 loss was mostly due to chromosome loss and truncation (80–90%), and the bias of retained allele frequency points to the presence of a recessive lethal allele on Chr6B. However, a few single-strand annealing (SSA)-like events were identified and these were independent of either Rad59 or Lig4. Finally, the specific sizes of Chr6 truncations suggest that the inserted URA-blaster could represent a fragile site.
Collapse
|
6
|
Fungal species and their boundaries matter – Definitions, mechanisms and practical implications. FUNGAL BIOL REV 2018. [DOI: 10.1016/j.fbr.2017.11.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Abstract
Somatic recombination is essential to protect genomes of somatic cells from DNA damage but it also has important clinical implications, as it is a driving force of tumorigenesis leading to inactivation of tumor suppressor genes. Despite this importance, our knowledge about somatic recombination in adult tissues remains very limited. Our recent work, using the Drosophila adult midgut has demonstrated that spontaneous events of mitotic recombination accumulate in aging adult intestinal stem cells and result in frequent loss of heterozygosity (LOH). In this Extra View article, we provide further data supporting long-track chromosome LOH and discuss potential mechanisms involved in the process. In addition, we further discuss relevant questions surrounding somatic recombination and how the mechanisms and factors influencing somatic recombination in adult tissues can be explored using the Drosophila midgut model.
Collapse
Affiliation(s)
- Katarzyna Siudeja
- a Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis group , Paris , France , Sorbonne Universités, UPMC Univ Paris 6 , Paris , France
| | - Allison J Bardin
- a Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis group , Paris , France , Sorbonne Universités, UPMC Univ Paris 6 , Paris , France
| |
Collapse
|
8
|
The RecQ DNA helicase Rqh1 constrains Exonuclease 1-dependent recombination at stalled replication forks. Sci Rep 2016; 6:22837. [PMID: 26957021 PMCID: PMC4783781 DOI: 10.1038/srep22837] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/22/2016] [Indexed: 01/28/2023] Open
Abstract
DNA double-strand break (DSB) repair by homologous recombination (HR) involves resection of the break to expose a 3' single-stranded DNA tail. In budding yeast, resection occurs in two steps: initial short-range resection, performed by Mre11-Rad50-Xrs2 and Sae2; and long-range resection catalysed by either Exo1 or Sgs1-Dna2. Here we use genetic assays to investigate the importance of Exo1 and the Sgs1 homologue Rqh1 for DNA repair and promotion of direct repeat recombination in the fission yeast Schizosaccharomyces pombe. We find that Exo1 and Rqh1 function in alternative redundant pathways for promoting survival following replication fork breakage. Exo1 promotes replication fork barrier-induced direct repeat recombination but intriguingly limits recombination induced by fork breakage. Direct repeat recombination induced by ultraviolet light depends on either Exo1 or Rqh1. Finally, we show that Rqh1 plays a major role in limiting Exo1-dependent direct repeat recombination induced by replication fork stalling but only a minor role in constraining recombination induced by fork breakage. The implications of our findings are discussed in the context of the benefits that long-range resection may bring to processing perturbed replication forks.
Collapse
|
9
|
Bokszczanin KL, Krezdorn N, Fragkostefanakis S, Müller S, Rycak L, Chen Y, Hoffmeier K, Kreutz J, Paupière MJ, Chaturvedi P, Iannacone R, Müller F, Bostan H, Chiusano ML, Scharf KD, Rotter B, Schleiff E, Winter P. Identification of novel small ncRNAs in pollen of tomato. BMC Genomics 2015; 16:714. [PMID: 26385469 PMCID: PMC4575465 DOI: 10.1186/s12864-015-1901-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 09/09/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The unprecedented role of sncRNAs in the regulation of pollen biogenesis on both transcriptional and epigenetic levels has been experimentally proven. However, little is known about their global regulation, especially under stress conditions. We used tomato pollen in order to identify pollen stage-specific sncRNAs and their target mRNAs. We further deployed elevated temperatures to discern stress responsive sncRNAs. For this purpose high throughput sncRNA-sequencing as well as Massive Analysis of cDNA Ends (MACE) were performed for three-replicated sncRNAs libraries derived from tomato tetrad, post-meiotic, and mature pollen under control and heat stress conditions. RESULTS Using the omiRas analysis pipeline we identified known and predicted novel miRNAs as well as sncRNAs from other classes, responsive or not to heat. Differential expression analysis revealed that post-meiotic and mature pollen react most strongly by regulation of the expression of coding and non-coding genomic regions in response to heat. To gain insight to the function of these miRNAs, we predicted targets and annotated them to Gene Ontology terms. This approach revealed that most of them belong to protein binding, transcription, and Serine/Threonine kinase activity GO categories. Beside miRNAs, we observed differential expression of both tRNAs and snoRNAs in tetrad, post-meiotic, and mature pollen when comparing normal and heat stress conditions. CONCLUSIONS Thus, we describe a global spectrum of sncRNAs expressed in pollen as well as unveiled those which are regulated at specific time-points during pollen biogenesis. We integrated the small RNAs into the regulatory network of tomato heat stress response in pollen.
Collapse
Affiliation(s)
| | | | - Sotirios Fragkostefanakis
- Cluster of Excellence Frankfurt, Centre of Membrane Proteomics, Department of Biosciences, Goethe University, Frankfurt am Main, Germany
| | | | | | | | | | | | - Marine J Paupière
- Department of Plant Breeding, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Palak Chaturvedi
- Department for Molecular Systems Biology, University of Vienna, Vienna, Austria
| | - Rina Iannacone
- ALSIA Research Center Metapontum Agrobios Metaponto (MT), Metaponto, Italy
| | - Florian Müller
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Hamed Bostan
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, Italy
| | - Maria Luisa Chiusano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, Italy
| | - Klaus-Dieter Scharf
- Cluster of Excellence Frankfurt, Centre of Membrane Proteomics, Department of Biosciences, Goethe University, Frankfurt am Main, Germany
| | | | - Enrico Schleiff
- Cluster of Excellence Frankfurt, Centre of Membrane Proteomics, Department of Biosciences, Goethe University, Frankfurt am Main, Germany
| | | | | |
Collapse
|
10
|
Genome-wide high-resolution mapping of UV-induced mitotic recombination events in Saccharomyces cerevisiae. PLoS Genet 2013; 9:e1003894. [PMID: 24204306 PMCID: PMC3814309 DOI: 10.1371/journal.pgen.1003894] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 09/05/2013] [Indexed: 11/24/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae and most other eukaryotes, mitotic recombination is important for the repair of double-stranded DNA breaks (DSBs). Mitotic recombination between homologous chromosomes can result in loss of heterozygosity (LOH). In this study, LOH events induced by ultraviolet (UV) light are mapped throughout the genome to a resolution of about 1 kb using single-nucleotide polymorphism (SNP) microarrays. UV doses that have little effect on the viability of diploid cells stimulate crossovers more than 1000-fold in wild-type cells. In addition, UV stimulates recombination in G1-synchronized cells about 10-fold more efficiently than in G2-synchronized cells. Importantly, at high doses of UV, most conversion events reflect the repair of two sister chromatids that are broken at approximately the same position whereas at low doses, most conversion events reflect the repair of a single broken chromatid. Genome-wide mapping of about 380 unselected crossovers, break-induced replication (BIR) events, and gene conversions shows that UV-induced recombination events occur throughout the genome without pronounced hotspots, although the ribosomal RNA gene cluster has a significantly lower frequency of crossovers. Nearly every living organism has to cope with DNA damage caused by ultraviolet (UV) exposure from the sun. UV causes various types of DNA damage. Defects in the repair of these DNA lesions are associated with the human disease xeroderma pigmentosum, one symptom of which is predisposition to skin cancer. The DNA damage introduced by UV stimulates recombination and, in this study, we characterize the resulting recombination events at high resolution throughout the yeast genome. At high UV doses, we show that most recombination events reflect the repair of two sister chromatids broken at the same position, indicating that UV can cause double-stranded DNA breaks. At lower doses of UV, most events involve the repair of a single broken chromatid. Our mapping of events also demonstrates that certain regions of the yeast genome are relatively resistant to UV-induced recombination. Finally, we show that most UV-induced DNA lesions are repaired during the first cell cycle, and do not lead to recombination in subsequent cycles.
Collapse
|
11
|
Nonrandom distribution of interhomolog recombination events induced by breakage of a dicentric chromosome in Saccharomyces cerevisiae. Genetics 2013; 194:69-80. [PMID: 23410835 PMCID: PMC3632482 DOI: 10.1534/genetics.113.150144] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dicentric chromosomes undergo breakage in mitosis, resulting in chromosome deletions, duplications, and translocations. In this study, we map chromosome break sites of dicentrics in Saccharomyces cerevisiae by a mitotic recombination assay. The assay uses a diploid strain in which one homolog has a conditional centromere in addition to a wild-type centromere, and the other homolog has only the wild-type centromere; the conditional centromere is inactive when cells are grown in galactose and is activated when the cells are switched to glucose. In addition, the two homologs are distinguishable by multiple single-nucleotide polymorphisms (SNPs). Under conditions in which the conditional centromere is activated, the functionally dicentric chromosome undergoes double-stranded DNA breaks (DSBs) that can be repaired by mitotic recombination with the homolog. Such recombination events often lead to loss of heterozygosity (LOH) of SNPs that are centromere distal to the crossover. Using a PCR-based assay, we determined the position of LOH in multiple independent recombination events to a resolution of ∼4 kb. This analysis shows that dicentric chromosomes have recombination breakpoints that are broadly distributed between the two centromeres, although there is a clustering of breakpoints within 10 kb of the conditional centromere.
Collapse
|
12
|
Laluce C, Schenberg ACG, Gallardo JCM, Coradello LFC, Pombeiro-Sponchiado SR. Advances and Developments in Strategies to Improve Strains of Saccharomyces cerevisiae and Processes to Obtain the Lignocellulosic Ethanol−A Review. Appl Biochem Biotechnol 2012; 166:1908-26. [DOI: 10.1007/s12010-012-9619-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 02/16/2012] [Indexed: 10/28/2022]
|
13
|
Clemente-Ruiz M, González-Prieto R, Prado F. Histone H3K56 acetylation, CAF1, and Rtt106 coordinate nucleosome assembly and stability of advancing replication forks. PLoS Genet 2011; 7:e1002376. [PMID: 22102830 PMCID: PMC3213180 DOI: 10.1371/journal.pgen.1002376] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 09/23/2011] [Indexed: 12/26/2022] Open
Abstract
Chromatin assembly mutants accumulate recombinogenic DNA damage and are sensitive to genotoxic agents. Here we have analyzed why impairment of the H3K56 acetylation-dependent CAF1 and Rtt106 chromatin assembly pathways, which have redundant roles in H3/H4 deposition during DNA replication, leads to genetic instability. We show that the absence of H3K56 acetylation or the simultaneous knock out of CAF1 and Rtt106 increases homologous recombination by affecting the integrity of advancing replication forks, while they have a minor effect on stalled replication fork stability in response to the replication inhibitor hydroxyurea. This defect in replication fork integrity is not due to defective checkpoints. In contrast, H3K56 acetylation protects against replicative DNA damaging agents by DNA repair/tolerance mechanisms that do not require CAF1/Rtt106 and are likely subsequent to the process of replication-coupled nucleosome deposition. We propose that the tight connection between DNA synthesis and histone deposition during DNA replication mediated by H3K56ac/CAF1/Rtt106 provides a mechanism for the stabilization of advancing replication forks and the maintenance of genome integrity, while H3K56 acetylation has an additional, CAF1/Rtt106-independent function in the response to replicative DNA damage. Loss of replication fork integrity is a primary source of genetic instability. In eukaryotes DNA synthesis is rapidly followed by its assembly into chromatin, and these two processes are tightly connected. Defective chromatin assembly mutants accumulate DNA damage and are sensitive to genotoxic agents, even though the mechanisms responsible for this genetic instability remain unclear because chromatin assembly also plays essential roles in transcription, silencing, DNA repair, and checkpoint signaling. A good example is the acetylation of histone H3 at lysine 56, which promotes histone deposition by the chromatin assembly factors CAF1 and Rtt106. In this case, the absence of this modification also causes a loss of structural and/or coding information at chromatin. Here we show that defective replication-coupled chromatin assembly leads to an accumulation of recombinogenic DNA damage by affecting the integrity of advancing, but not stalled, replication forks. Therefore, we propose that H3K56ac/CAF1/Rtt106-dependent chromatin assembly provides a mechanism for the stabilization of replication forks. Besides, H3K56 acetylation promotes replicative DNA damage repair/tolerance through a function that is independent of CAF1/Rtt106 and likely subsequent to its deposition at chromatin, revealing this modification as a key regulator of genome integrity.
Collapse
Affiliation(s)
- Marta Clemente-Ruiz
- Departamento de Biología Molecular, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| | - Román González-Prieto
- Departamento de Biología Molecular, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| | - Félix Prado
- Departamento de Biología Molecular, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
- * E-mail:
| |
Collapse
|
14
|
The over-expression of the β2 catalytic subunit of the proteasome decreases homologous recombination and impairs DNA double-strand break repair in human cells. J Biomed Biotechnol 2011; 2011:757960. [PMID: 21660142 PMCID: PMC3110333 DOI: 10.1155/2011/757960] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 03/16/2011] [Indexed: 02/02/2023] Open
Abstract
By a human cDNA library screening, we have previously identified two sequences coding two different catalytic subunits of the proteasome which increase homologous recombination (HR) when overexpressed in the yeast Saccharomyces cerevisiae. Here, we investigated the effect of proteasome on spontaneous HR and DNA repair in human cells. To determine if the proteasome has a role in the occurrence of spontaneous HR in human cells, we overexpressed the β2 subunit of the proteasome in HeLa cells and determined the effect on intrachromosomal HR. Results showed that the overexpression of β2 subunit decreased HR in human cells without altering the cell proteasome activity and the Rad51p level. Moreover, exposure to MG132 that inhibits the proteasome activity reduced HR in human cells. We also found that the expression of the β2 subunit increases the sensitivity to the camptothecin that induces DNA double-strand break (DSB). This suggests that the β2 subunit has an active role in HR and DSB repair but does not alter the intracellular level of the Rad51p.
Collapse
|
15
|
Orozco-Mosqueda MDC, Altamirano-Hernandez J, Farias-Rodriguez R, Valencia-Cantero E, Santoyo G. Homologous recombination and dynamics of rhizobial genomes. Res Microbiol 2009; 160:733-41. [DOI: 10.1016/j.resmic.2009.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 09/17/2009] [Accepted: 09/21/2009] [Indexed: 10/20/2022]
|
16
|
Lee PS, Greenwell PW, Dominska M, Gawel M, Hamilton M, Petes TD. A fine-structure map of spontaneous mitotic crossovers in the yeast Saccharomyces cerevisiae. PLoS Genet 2009; 5:e1000410. [PMID: 19282969 PMCID: PMC2646836 DOI: 10.1371/journal.pgen.1000410] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 02/06/2009] [Indexed: 12/04/2022] Open
Abstract
Homologous recombination is an important mechanism for the repair of DNA damage in mitotically dividing cells. Mitotic crossovers between homologues with heterozygous alleles can produce two homozygous daughter cells (loss of heterozygosity), whereas crossovers between repeated genes on non-homologous chromosomes can result in translocations. Using a genetic system that allows selection of daughter cells that contain the reciprocal products of mitotic crossing over, we mapped crossovers and gene conversion events at a resolution of about 4 kb in a 120-kb region of chromosome V of Saccharomyces cerevisiae. The gene conversion tracts associated with mitotic crossovers are much longer (averaging about 12 kb) than the conversion tracts associated with meiotic recombination and are non-randomly distributed along the chromosome. In addition, about 40% of the conversion events have patterns of marker segregation that are most simply explained as reflecting the repair of a chromosome that was broken in G1 of the cell cycle. Most higher organisms have two copies of several different types of chromosomes. For example, the human female has 23 pairs of chromosomes. Although the chromosome pairs have very similar sequences, they are not identical. Members of a chromosome pair can swap segments from one chromosome to the other; these exchanges are called “recombination.” Most previous studies of recombination have been done in cells undergoing meiosis, the process that leads to the formation of eggs and sperm (gametes). Recombination, however, can also occur in cells that are dividing mitotically. In our study, we examine the properties of mitotic recombination in yeast. We show that mitotic recombination differs from meiotic recombination in two important ways. First, the sizes of the chromosome segments that are non-reciprocally transferred during mitotic recombination are much larger than those transferred during meiotic exchange. Second, in meiosis, most recombination events involve the repair of a single chromosome break, whereas in mitosis, about half of the recombination events appear to involve the repair of two chromosome breaks.
Collapse
Affiliation(s)
- Phoebe S Lee
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | | | | | | | | | | |
Collapse
|
17
|
Lopandic K, Tiefenbrunner W, Gangl H, Mandl K, Berger S, Leitner G, Abd-Ellah GA, Querol A, Gardner RC, Sterflinger K, Prillinger H. Molecular profiling of yeasts isolated during spontaneous fermentations of Austrian wines. FEMS Yeast Res 2008; 8:1063-75. [DOI: 10.1111/j.1567-1364.2008.00385.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
18
|
Zara G, Mannazzu I, Sanna ML, Orro D, Farris GA, Budroni M. Exploitation of the semi-homothallic life cycle ofSaccharomyces cerevisiaefor the development of breeding strategies. FEMS Yeast Res 2008; 8:1147-54. [DOI: 10.1111/j.1567-1364.2008.00393.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
19
|
Abstract
Loss of heterozygosity (LOH) can be a driving force in the evolution of mitotic/somatic diploid cells, and cellular changes that increase the rate of LOH have been proposed to facilitate this process. In the yeast Saccharomyces cerevisiae, spontaneous LOH occurs by a number of mechanisms including chromosome loss and reciprocal and nonreciprocal recombination. We performed a screen in diploid yeast to identify mutants with increased rates of LOH using the collection of homozygous deletion alleles of nonessential genes. Increased LOH was quantified at three loci (MET15, SAM2, and MAT) on three different chromosomes, and the LOH events were analyzed as to whether they were reciprocal or nonreciprocal in nature. Nonreciprocal LOH was further characterized as chromosome loss or truncation, a local mutational event (gene conversion or point mutation), or break-induced replication (BIR). The 61 mutants identified could be divided into several groups, including ones that had locus-specific effects. Mutations in genes involved in DNA replication and chromatin assembly led to LOH predominantly via reciprocal recombination. In contrast, nonreciprocal LOH events with increased chromosome loss largely resulted from mutations in genes implicated in kinetochore function, sister chromatid cohesion, or relatively late steps of DNA recombination. Mutants of genes normally involved in early steps of DNA damage repair and signaling produced nonreciprocal LOH without an increased proportion of chromosome loss. Altogether, this study defines a genetic landscape for the basis of increased LOH and the processes by which it occurs.
Collapse
|
20
|
Loewe L, Lamatsch DK. Quantifying the threat of extinction from Muller's ratchet in the diploid Amazon molly (Poecilia formosa). BMC Evol Biol 2008; 8:88. [PMID: 18366680 PMCID: PMC2292145 DOI: 10.1186/1471-2148-8-88] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Accepted: 03/19/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Amazon molly (Poecilia formosa) is a small unisexual fish that has been suspected of being threatened by extinction from the stochastic accumulation of slightly deleterious mutations that is caused by Muller's ratchet in non-recombining populations. However, no detailed quantification of the extent of this threat is available. RESULTS Here we quantify genomic decay in this fish by using a simple model of Muller's ratchet with the most realistic parameter combinations available employing the evolution@home global computing system. We also describe simple extensions of the standard model of Muller's ratchet that allow us to deal with selfing diploids, triploids and mitotic recombination. We show that Muller's ratchet creates a threat of extinction for the Amazon molly for many biologically realistic parameter combinations. In most cases, extinction is expected to occur within a time frame that is less than previous estimates of the age of the species, leading to a genomic decay paradox. CONCLUSION How then does the Amazon molly survive? Several biological processes could individually or in combination solve this genomic decay paradox, including paternal leakage of undamaged DNA from sexual sister species, compensatory mutations and many others. More research is needed to quantify the contribution of these potential solutions towards the survival of the Amazon molly and other (ancient) asexual species.
Collapse
Affiliation(s)
- Laurence Loewe
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, King's Buildings, Edinburgh EH9 3JT, UK
- Centre for Systems Biology Edinburgh, School of Biological Sciences, University of Edinburgh, Darwin Building, King's Buildings, Edinburgh EH9 3JU, UK
| | - Dunja K Lamatsch
- Universität Würzburg, Institute of Physiological Chemistry I, Biocenter, Würzburg, 97074 Würzburg, Germany
- Freshwater Biology, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, B – 1000 Brussels, Belgium
- University of Sheffield, Department of Animal and Plant Sciences, Alfred Denny Building, Western Bank, Sheffield, S10 2TN, UK
- Austrian Academy of Sciences, Institute for Limnology, Mondseestrasse 9, 5310 Mondsee, Austria
| |
Collapse
|
21
|
Martínez C, Cosgaya P, Vásquez C, Gac S, Ganga A. High degree of correlation between molecular polymorphism and geographic origin of wine yeast strains. J Appl Microbiol 2007; 103:2185-95. [DOI: 10.1111/j.1365-2672.2007.03493.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Mandegar MA, Otto SP. Mitotic recombination counteracts the benefits of genetic segregation. Proc Biol Sci 2007; 274:1301-7. [PMID: 17360283 PMCID: PMC2176173 DOI: 10.1098/rspb.2007.0056] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The ubiquity of sexual reproduction despite its cost has lead to an extensive body of research on the evolution and maintenance of sexual reproduction. Previous work has suggested that sexual reproduction can substantially speed up the rate of adaptation in diploid populations, because sexual populations are able to produce the fittest homozygous genotype by segregation and mating of heterozygous individuals. In contrast, asexual populations must wait for two rare mutational events, one producing a heterozygous carrier and the second converting a heterozygous to a homozygous carrier, before a beneficial mutation can become fixed. By avoiding this additional waiting time, it was shown that the benefits of segregation could overcome a twofold cost of sex. This previous result ignores mitotic recombination (MR), however. Here, we show that MR significantly hastens the spread of beneficial mutations in asexual populations. Indeed, given empirical data on MR, we find that adaptation in asexual populations proceeds as fast as that in sexual populations, especially when beneficial alleles are partially recessive. We conclude that asexual populations can gain most of the benefit of segregation through MR while avoiding the costs associated with sexual reproduction.
Collapse
|
23
|
Navarro MS, Bi L, Bailis AM. A mutant allele of the transcription factor IIH helicase gene, RAD3, promotes loss of heterozygosity in response to a DNA replication defect in Saccharomyces cerevisiae. Genetics 2007; 176:1391-402. [PMID: 17483411 PMCID: PMC1931537 DOI: 10.1534/genetics.107.073056] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Increased mitotic recombination enhances the risk for loss of heterozygosity, which contributes to the generation of cancer in humans. Defective DNA replication can result in elevated levels of recombination as well as mutagenesis and chromosome loss. In the yeast Saccharomyces cerevisiae, a null allele of the RAD27 gene, which encodes a structure-specific nuclease involved in Okazaki fragment processing, stimulates mutation and homologous recombination. Similarly, rad3-102, an allele of the gene RAD3, which encodes an essential helicase subunit of the core TFIIH transcription initiation and DNA repairosome complexes confers a hyper-recombinagenic and hypermutagenic phenotype. Combining the rad27 null allele with rad3-102 dramatically stimulated interhomolog recombination and chromosome loss but did not affect unequal sister-chromatid recombination, direct-repeat recombination, or mutation. Interestingly, the percentage of cells with Rad52-YFP foci also increased in the double-mutant haploids, suggesting that rad3-102 may increase lesions that elicit a response by the recombination machinery or, alternatively, stabilize recombinagenic lesions generated by DNA replication failure. This net increase in lesions led to a synthetic growth defect in haploids that is relieved in diploids, consistent with rad3-102 stimulating the generation and rescue of collapsed replication forks by recombination between homologs.
Collapse
Affiliation(s)
- Michelle S Navarro
- Division of Molecular Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California 91010-0269, USA
| | | | | |
Collapse
|
24
|
Freeman KM, Hoffmann GR. Frequencies of mutagen-induced coincident mitotic recombination at unlinked loci in Saccharomyces cerevisiae. Mutat Res 2006; 616:119-32. [PMID: 17156798 DOI: 10.1016/j.mrfmmm.2006.11.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Revised: 08/08/2006] [Indexed: 10/23/2022]
Abstract
Frequencies of coincident genetic events were measured in strain D7 of Saccharomyces cerevisiae. This diploid strain permits the detection of mitotic gene conversion involving the trp5-12 and trp5-27 alleles, mitotic crossing-over and gene conversion leading to the expression of the ade2-40 and ade2-119 alleles as red and pink colonies, and reversion of the ilv1-92 allele. The three genes are on different chromosomes, and one might expect that coincident (simultaneous) genetic alterations at two loci would occur at frequencies predicted by those of the single alterations acting as independent events. Contrary to this expectation, we observed that ade2 recombinants induced by bleomycin, beta-propiolactone, and ultraviolet radiation occur more frequently among trp5 convertants than among total colonies. This excess among trp5 recombinants indicates that double recombinants are more common than expected for independent events. No similar enrichment was found among Ilv(+) revertants. The possibility of an artifact in which haploid yeasts that mimic mitotic recombinants are generated by a low frequency of cryptic meiosis has been excluded. Several hypotheses that can explain the elevated incidence of coincident mitotic recombination have been evaluated, but the cause remains uncertain. Most evidence suggests that the excess is ascribable to a subset of the population being in a recombination-prone state.
Collapse
Affiliation(s)
- Kathryn M Freeman
- Department of Biology, College of the Holy Cross, One College Street, Worcester, MA 01610-2395, USA
| | | |
Collapse
|
25
|
Omilian AR, Cristescu MEA, Dudycha JL, Lynch M. Ameiotic recombination in asexual lineages of Daphnia. Proc Natl Acad Sci U S A 2006; 103:18638-43. [PMID: 17121990 PMCID: PMC1693715 DOI: 10.1073/pnas.0606435103] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Indexed: 11/18/2022] Open
Abstract
Despite the enormous theoretical attention given to the evolutionary consequences of sexual reproduction, the validity of the key assumptions on which the theory depends rarely has been evaluated. It is often argued that a reduced ability to purge deleterious mutations condemns asexual lineages to an early extinction. However, most well characterized asexual lineages fail to exhibit the high levels of neutral allelic divergence expected in the absence of recombination. With purely descriptive data, it is difficult to evaluate whether this pattern is a consequence of the rapid demise of asexual lineages, an unusual degree of mutational stability, or recombination. Here, we show in mutation-accumulation lines of asexual Daphnia that the rate of loss of nucleotide heterozygosity by ameiotic recombination is substantially greater than the rate of introduction of new variation by mutation. This suggests that the evolutionary potential of asexual diploid species is not only a matter of mutation accumulation and reduced efficiency of selection, and [corrected] it underscores the limited utility of using neutral allelic divergence as an indicator of ancient asexuality.
Collapse
Affiliation(s)
- Angela R Omilian
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405, USA.
| | | | | | | |
Collapse
|
26
|
McTaggart SJ, Dudycha JL, Omilian A, Crease TJ. Rates of recombination in the ribosomal DNA of apomictically propagated Daphnia obtusa lines. Genetics 2006; 175:311-20. [PMID: 17110499 PMCID: PMC1775004 DOI: 10.1534/genetics.105.050229] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ribosomal (r)DNA undergoes concerted evolution, the mechanisms of which are unequal crossing over and gene conversion. Despite the fundamental importance of these mechanisms to the evolution of rDNA, their rates have been estimated only in a few model species. We estimated recombination rate in rDNA by quantifying the relative frequency of intraindividual length variants in an expansion segment of the 18S rRNA gene of the cladoceran crustacean, Daphnia obtusa, in four apomictically propagated lines. We also used quantitative PCR to estimate rDNA copy number. The apomictic lines were sampled every 5 generations for 90 generations, and we considered each significant change in the frequency distribution of length variants between time intervals to be the result of a recombination event. Using this method, we calculated the recombination rate for this region to be 0.02-0.06 events/generation on the basis of three different estimates of rDNA copy number. In addition, we observed substantial changes in rDNA copy number within and between lines. Estimates of haploid copy number varied from 53 to 233, with a mean of 150. We also measured the relative frequency of length variants in 30 lines at generations 5, 50, and 90. Although length variant frequencies changed significantly within and between lines, the overall average frequency of each length variant did not change significantly between the three generations sampled, suggesting that there is little or no bias in the direction of change due to recombination.
Collapse
Affiliation(s)
- Seanna J McTaggart
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | |
Collapse
|
27
|
Schmidt KH, Wu J, Kolodner RD. Control of translocations between highly diverged genes by Sgs1, the Saccharomyces cerevisiae homolog of the Bloom's syndrome protein. Mol Cell Biol 2006; 26:5406-20. [PMID: 16809776 PMCID: PMC1592713 DOI: 10.1128/mcb.00161-06] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Revised: 02/24/2006] [Accepted: 04/28/2006] [Indexed: 11/20/2022] Open
Abstract
Sgs1 is a RecQ family DNA helicase required for genome stability in Saccharomyces cerevisiae whose human homologs BLM, WRN, and RECQL4 are mutated in Bloom's, Werner, and Rothmund Thomson syndromes, respectively. Sgs1 and mismatch repair (MMR) are inhibitors of recombination between similar but divergent (homeologous) DNA sequences. Here we show that SGS1, but not MMR, is critical for suppressing spontaneous, recurring translocations between diverged genes in cells with mutations in the genes encoding the checkpoint proteins Mec3, Rad24, Rad9, or Rfc5, the chromatin assembly factors Cac1 or Asf1, and the DNA helicase Rrm3. The S-phase checkpoint kinase and telomere maintenance factor Tel1, a homolog of the human ataxia telangiectasia (ATM) protein, prevents these translocations, whereas the checkpoint kinase Mec1, a homolog of the human ATM-related protein, and the Rad53 checkpoint kinase are not required. The translocation structures observed suggest involvement of a dicentric intermediate and break-induced replication with multiple cycles of DNA template switching.
Collapse
Affiliation(s)
- Kristina H Schmidt
- Department of Biology, University of South Florida, 4202 E. Fowler Avenue, SCA110, Tampa, FL 33620, USA.
| | | | | |
Collapse
|
28
|
Despons L, Wirth B, Louis VL, Potier S, Souciet JL. An evolutionary scenario for one of the largest yeast gene families. Trends Genet 2005; 22:10-5. [PMID: 16269202 DOI: 10.1016/j.tig.2005.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Revised: 08/11/2005] [Accepted: 10/07/2005] [Indexed: 11/29/2022]
Abstract
The DUP gene family of Saccharomyces cerevisiae comprises 23 members that can be divided into two subfamilies--DUP240 and DUP380. The location of the DUP loci suggests that at least three mechanisms were responsible for their genomic dispersion: nonreciprocal translocation at chromosomal ends, tandem duplication and Ty-associated duplication. The data we present here suggest that these nonessential genes encode proteins that facilitate membrane trafficking processes. Dup240 proteins have three conserved domains (C1, C2 and C3) and two predicted transmembrane segments (H1 and H2). A direct repetition of the C1-H1-H2-C2 module is observed in Dup380p sequences. In this article, we propose an evolutionary model to account for the emergence of the two gene subfamilies.
Collapse
Affiliation(s)
- Laurence Despons
- UMR 7156 University Louis Pasteur-CNRS, Department of Microorganisms, Genomes and the Environment, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | | | | | | | | |
Collapse
|
29
|
Ercan S, Reese JC, Workman JL, Simpson RT. Yeast recombination enhancer is stimulated by transcription activation. Mol Cell Biol 2005; 25:7976-87. [PMID: 16135790 PMCID: PMC1234320 DOI: 10.1128/mcb.25.18.7976-7987.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Saccharomyces cerevisiae mating type switching is a gene conversion event that exhibits donor preference. MATa cells choose HMLalpha for recombination, and MATalpha cells choose HMRa. Donor preference is controlled by the recombination enhancer (RE), located between HMLalpha and MATa on the left arm of chromosome III. A number of a-cell specific noncoding RNAs are transcribed from the RE locus. Mcm1 and Fkh1 regulate RE activity in a cells. Here we show that Mcm1 binding is required for both the transcription of the noncoding RNAs and Fkh1 binding. This requirement can be bypassed by inserting another promoter into the RE. Moreover, the insertion of this promoter increases donor preference and opens the chromatin structure around the conserved domains of RE. Additionally, we determined that the level of Fkh1 binding positively correlates with the level of donor preference. We conclude that the role of Mcm1 in RE is to open chromatin around the conserved domains and activate transcription; this facilitates Fkh1 binding and the level of this binding determines the level of donor preference.
Collapse
Affiliation(s)
- Sevinc Ercan
- Stowers Institute for Medical Research, 1000 East 50th St., Kansas City, MO 64110, USA
| | | | | | | |
Collapse
|
30
|
Budroni M, Zara S, Zara G, Pirino G, Mannazzu I. Peculiarities of strains adapted to Sardinian sherry-like wine ageing conditions. FEMS Yeast Res 2005; 5:951-8. [PMID: 15946905 DOI: 10.1016/j.femsyr.2005.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Revised: 01/04/2005] [Accepted: 04/04/2005] [Indexed: 11/23/2022] Open
Abstract
Saccharomyces cerevisiae flor yeasts, which are subjected to stressful conditions during wine ageing, exhibit a number of characteristics which distinguish them from non-flor S. cerevisiae wine strains. In the present work, 22 flor and 14 non-flor S. cerevisiae wine strains are compared, in order to elucidate other possible peculiarities of these yeasts. The results obtained demonstrate that in contrast to the homothallic nature of the non-flor strains, 77% of the flor strains exhibit two variants of a semi-homothallic life cycle. Moreover, the flor-forming ability is shown to be inversely correlated to spore viability and the utilisation of maltose and galactose.
Collapse
Affiliation(s)
- Marilena Budroni
- Dipartimento di Scienze Ambientali Agrarie e Biotecnologie Agroalimentari, Sezione di Microbiologia Generale ed Applicata, Università degli Studi di Sassari, Viale Italia 39, 07100 Sassari, Italy.
| | | | | | | | | |
Collapse
|
31
|
Dunn B, Levine RP, Sherlock G. Microarray karyotyping of commercial wine yeast strains reveals shared, as well as unique, genomic signatures. BMC Genomics 2005; 6:53. [PMID: 15833139 PMCID: PMC1097725 DOI: 10.1186/1471-2164-6-53] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2004] [Accepted: 04/16/2005] [Indexed: 11/10/2022] Open
Abstract
Background Genetic differences between yeast strains used in wine-making may account for some of the variation seen in their fermentation properties and may also produce differing sensory characteristics in the final wine product itself. To investigate this, we have determined genomic differences among several Saccharomyces cerevisiae wine strains by using a "microarray karyotyping" (also known as "array-CGH" or "aCGH") technique. Results We have studied four commonly used commercial wine yeast strains, assaying three independent isolates from each strain. All four wine strains showed common differences with respect to the laboratory S. cerevisiae strain S288C, some of which may be specific to commercial wine yeasts. We observed very little intra-strain variation; i.e., the genomic karyotypes of different commercial isolates of the same strain looked very similar, although an exception to this was seen among the Montrachet isolates. A moderate amount of inter-strain genomic variation between the four wine strains was observed, mostly in the form of depletions or amplifications of single genes; these differences allowed unique identification of each strain. Many of the inter-strain differences appear to be in transporter genes, especially hexose transporters (HXT genes), metal ion sensors/transporters (CUP1, ZRT1, ENA genes), members of the major facilitator superfamily, and in genes involved in drug response (PDR3, SNQ1, QDR1, RDS1, AYT1, YAR068W). We therefore used halo assays to investigate the response of these strains to three different fungicidal drugs (cycloheximide, clotrimazole, sulfomethuron methyl). Strains with fewer copies of the CUP1 loci showed hypersensitivity to sulfomethuron methyl. Conclusion Microarray karyotyping is a useful tool for analyzing the genome structures of wine yeasts. Despite only small to moderate variations in gene copy numbers between different wine yeast strains and within different isolates of a given strain, there was enough variation to allow unique identification of strains; additionally, some of the variation correlated with drug sensitivity. The relatively small number of differences seen by microarray karyotyping between the strains suggests that the differences in fermentative and organoleptic properties ascribed to these different strains may arise from a small number of genetic changes, making it possible to test whether the observed differences do indeed confer different sensory properties in the finished wine.
Collapse
Affiliation(s)
- Barbara Dunn
- Dept. of Genetics, Stanford University Medical Ctr., Stanford, CA 94305-5120, USA
| | - R Paul Levine
- Dept. of Biological Sciences, Stanford University, Stanford, CA 94305-5020, USA
| | - Gavin Sherlock
- Dept. of Genetics, Stanford University Medical Ctr., Stanford, CA 94305-5120, USA
| |
Collapse
|
32
|
Ramey CJ, Howar S, Adkins M, Linger J, Spicer J, Tyler JK. Activation of the DNA damage checkpoint in yeast lacking the histone chaperone anti-silencing function 1. Mol Cell Biol 2005; 24:10313-27. [PMID: 15542840 PMCID: PMC529054 DOI: 10.1128/mcb.24.23.10313-10327.2004] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The packaging of the eukaryotic genome into chromatin is likely to be important for the maintenance of genomic integrity. Chromatin structures are assembled onto newly synthesized DNA by the action of chromatin assembly factors, including anti-silencing function 1 (ASF1). To investigate the role of chromatin structure in the maintenance of genomic integrity, we examined budding yeast lacking the histone chaperone Asf1p. We found that yeast lacking Asf1p accumulate in metaphase of the cell cycle due to activation of the DNA damage checkpoint. Furthermore, yeast lacking Asf1p are highly sensitive to mutations in DNA polymerase alpha and to DNA replicational stresses. Although yeast lacking Asf1p do complete DNA replication, they have greatly elevated rates of DNA damage occurring during DNA replication, as indicated by spontaneous Ddc2p-green fluorescent protein foci. The presence of elevated levels of spontaneous DNA damage in asf1 mutants is due to increased DNA damage, rather than the failure to repair double-strand DNA breaks, because asf1 mutants are fully functional for double-strand DNA repair. Our data indicate that the altered chromatin structure in asf1 mutants leads to elevated rates of spontaneous recombination, mutation, and DNA damage foci formation arising during DNA replication, which in turn activates cell cycle checkpoints that respond to DNA damage.
Collapse
Affiliation(s)
- Christopher Josh Ramey
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center at Fitzsimons, P.O. Box 6511, Aurora, CO 80045, USA
| | | | | | | | | | | |
Collapse
|
33
|
Prusty R, Keil RL. SCH9, a putative protein kinase from Saccharomyces cerevisiae, affects HOT1 -stimulated recombination. Mol Genet Genomics 2004; 272:264-74. [PMID: 15349770 DOI: 10.1007/s00438-004-1049-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2004] [Accepted: 07/21/2004] [Indexed: 10/26/2022]
Abstract
HOT1 is a mitotic recombination hotspot derived from yeast rDNA. To further study HOT1 function, trans-acting H OT1 recombination mutants (hrm) that alter hotspot activity were isolated. hrm2-1 mutants have decreased HOT1 activity and grow slowly. The HRM2 gene was cloned and found to be identical to SCH9, a gene that affects a growth-control mechanism that is partially redundant with the cAMP-dependent protein kinase A (PKA) pathway. Deletion of SCH9 decreases HOT1 and rDNA recombination but not other mitotic exchange. Although high levels of RNA polymerase I transcription initiated at HOT1 are required for its recombination-stimulating activity, sch9 mutations do not affect transcription initiated within HOT1. Thus, transcription is necessary but not sufficient for HOT1 activity. TPK1, which encodes a catalytic subunit of PKA, is a multicopy suppressor of the recombination and growth defects of sch9 mutants, suggesting that increased PKA activity compensates for SCH9 loss. RAS2( val19), which codes for a hyperactive RAS protein and increases PKA activity, suppresses both phenotypic defects of sch9 mutants. In contrast to TPK1 and RAS2(val19), the gene for split zinc finger protein 1 (SFP1) on a multicopy vector suppresses only the growth defects of sch9 mutants, indicating that growth and HOT1 functions of Sch9p are separable. Sch9p may affect signal transduction pathways which regulate proteins that are specifically required for HOT1-stimulated exchange.
Collapse
Affiliation(s)
- R Prusty
- Department of Biochemistry and Molecular Biology, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey, PA 17033, USA
| | | |
Collapse
|
34
|
Keller-Seitz MU, Certa U, Sengstag C, Würgler FE, Sun M, Fasullo M. Transcriptional response of yeast to aflatoxin B1: recombinational repair involving RAD51 and RAD1. Mol Biol Cell 2004; 15:4321-36. [PMID: 15215318 PMCID: PMC515362 DOI: 10.1091/mbc.e04-05-0375] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The potent carcinogen aflatoxin B(1) is a weak mutagen but a strong recombinagen in Saccharomyces cerevisiae. Aflatoxin B(1) exposure greatly increases frequencies of both heteroallelic recombination and chromosomal translocations. We analyzed the gene expression pattern of diploid cells exposed to aflatoxin B(1) using high-density oligonucleotide arrays comprising specific probes for all 6218 open reading frames. Among 183 responsive genes, 46 are involved in either DNA repair or in control of cell growth and division. Inducible growth control genes include those in the TOR signaling pathway and SPO12, whereas PKC1 is downregulated. Eleven of the 15 inducible DNA repair genes, including RAD51, participate in recombination. Survival and translocation frequencies are reduced in the rad51 diploid after aflatoxin B(1) exposure. In mec1 checkpoint mutants, aflatoxin B(1) exposure does not induce RAD51 expression or increase translocation frequencies; however, when RAD51 is constitutively overexpressed in the mec1 mutant, aflatoxin B(1) exposure increased translocation frequencies. Thus the transcriptional profile after aflatoxin B(1) exposure may elucidate the genotoxic properties of aflatoxin B(1).
Collapse
Affiliation(s)
- Monika U Keller-Seitz
- Institute of Toxicology, Swiss Federal Institute of Technology ETH, CH-8603 Schwerzenbach, Switzerland
| | | | | | | | | | | |
Collapse
|
35
|
Klinner U, Schäfer B. Genetic aspects of targeted insertion mutagenesis in yeasts. FEMS Microbiol Rev 2004; 28:201-23. [PMID: 15109785 DOI: 10.1016/j.femsre.2003.10.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2003] [Revised: 08/20/2003] [Accepted: 10/02/2003] [Indexed: 11/16/2022] Open
Abstract
Targeted insertion mutagenesis is a main molecular tool of yeast science initially applied in Saccharomyces cerevisiae. The method was extended to fission yeast Schizosaccharomyces pombe and to "non-conventional" yeast species, which show specific properties of special interest to both basic and applied research. Consequently, the behaviour of such non-Saccharomyces yeasts is reviewed against the background of the knowledge of targeted insertion mutagenesis in S. cerevisiae. Data of homologous integration efficiencies obtained with circular, ends-in or ends-out vectors in several yeasts are compared. We follow details of targeted insertion mutagenesis in order to recognize possible rate-limiting steps. The route of the vector to the target and possible mechanisms of its integration into chromosomal genes are considered. Specific features of some yeast species are discussed. In addition, similar approaches based on homologous recombination that have been established for the mitochondrial genome of S. cerevisiae are described.
Collapse
Affiliation(s)
- U Klinner
- RWTH Aachen, Institut für Biologie IV (Mikrobiologie und Genetik), Worringer Weg, D-52056 Aachen, Germany.
| | | |
Collapse
|
36
|
Gray M, Kupiec M, Honigberg SM. Site-specific genomic (SSG) and random domain-localized (RDL) mutagenesis in yeast. BMC Biotechnol 2004; 4:7. [PMID: 15090068 PMCID: PMC406509 DOI: 10.1186/1472-6750-4-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Accepted: 04/16/2004] [Indexed: 11/30/2022] Open
Abstract
Background A valuable weapon in the arsenal available to yeast geneticists is the ability to introduce specific mutations into yeast genome. In particular, methods have been developed to introduce deletions into the yeast genome using PCR fragments. These methods are highly efficient because they do not require cloning in plasmids. Results We have modified the existing method for introducing deletions in the yeast (S. cerevisiae) genome using PCR fragments in order to target point mutations to this genome. We describe two PCR-based methods for directing point mutations into the yeast genome such that the final product contains no other disruptions. In the first method, site-specific genomic (SSG) mutagenesis, a specific point mutation is targeted into the genome. In the second method, random domain-localized (RDL) mutagenesis, a mutation is introduced at random within a specific domain of a gene. Both methods require two sequential transformations, the first transformation integrates the URA3 marker into the targeted locus, and the second transformation replaces URA3 with a PCR fragment containing one or a few mutations. This PCR fragment is synthesized using a primer containing a mutation (SSG mutagenesis) or is synthesized by error-prone PCR (RDL mutagenesis). In SSG mutagenesis, mutations that are proximal to the URA3 site are incorporated at higher frequencies than distal mutations, however mutations can be introduced efficiently at distances of at least 500 bp from the URA3 insertion. In RDL mutagenesis, to ensure that incorporation of mutations occurs at approximately equal frequencies throughout the targeted region, this region is deleted at the same time URA3 is integrated. Conclusion SSG and RDL mutagenesis allow point mutations to be easily and efficiently incorporated into the yeast genome without disrupting the native locus.
Collapse
Affiliation(s)
- Misa Gray
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City MO 64110, USA
| | - Martin Kupiec
- Dept. of Molecular Micro & Biotech, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Saul M Honigberg
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City MO 64110, USA
| |
Collapse
|
37
|
Prado F, Cortés-Ledesma F, Aguilera A. The absence of the yeast chromatin assembly factor Asf1 increases genomic instability and sister chromatid exchange. EMBO Rep 2004; 5:497-502. [PMID: 15071494 PMCID: PMC1299049 DOI: 10.1038/sj.embor.7400128] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2003] [Revised: 02/20/2004] [Accepted: 02/24/2004] [Indexed: 01/06/2023] Open
Abstract
Histone chaperone Asf1 participates in heterochromatin silencing, DNA repair and regulation of gene expression, and promotes the assembly of DNA into chromatin in vitro. To determine the influence of Asf1 on genetic stability, we have analysed the effect of asf1Delta on homologous recombination. In accordance with a defect in nucleosome assembly, asf1Delta leads to a loss of negative supercoiling in plasmids. Importantly, asf1Delta increases spontaneous recombination between inverted DNA sequences. This increase correlates with an accumulation of double-strand breaks (DSBs) as determined by immunodetection of phosphorylated histone H2A and fluorescent detection of Rad52-YFP foci during S and G2/M phases. In addition, asf1Delta shows high levels of sister chromatid exchange (SCE) and is proficient in DSB-induced SCE as determined by physical analysis. Our results suggest that defective chromatin assembly caused by asf1Delta leads to DSBs that can be repaired by SCE, affecting genetic stability.
Collapse
Affiliation(s)
- Félix Prado
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, 41012 Sevilla, Spain
| | - Felipe Cortés-Ledesma
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, 41012 Sevilla, Spain
| | - Andrés Aguilera
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, 41012 Sevilla, Spain
- Tel: +34 954557107; Fax: +34 954557104; E-mail:
| |
Collapse
|
38
|
Infante JJ, Dombek KM, Rebordinos L, Cantoral JM, Young ET. Genome-Wide Amplifications Caused by Chromosomal Rearrangements Play a Major Role in the Adaptive Evolution of Natural Yeast. Genetics 2003; 165:1745-59. [PMID: 14704163 PMCID: PMC1462916 DOI: 10.1093/genetics/165.4.1745] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
The relative importance of gross chromosomal rearrangements to adaptive evolution has not been precisely defined. The Saccharomyces cerevisiae flor yeast strains offer significant advantages for the study of molecular evolution since they have recently evolved to a high degree of specialization in a very restrictive environment. Using DNA microarray technology, we have compared the genomes of two prominent variants of S. cerevisiae flor yeast strains. The strains differ from one another in the DNA copy number of 116 genomic regions that comprise 38% of the genome. In most cases, these regions are amplicons flanked by repeated sequences or other recombination hotspots previously described as regions where double-strand breaks occur. The presence of genes that confer specific characteristics to the flor yeast within the amplicons supports the role of chromosomal rearrangements as a major mechanism of adaptive evolution in S. cerevisiae. We propose that nonallelic interactions are enhanced by ethanol- and acetaldehyde-induced double-strand breaks in the chromosomal DNA, which are repaired by pathways that yield gross chromosomal rearrangements. This mechanism of chromosomal evolution could also account for the sexual isolation shown among the flor yeast.
Collapse
Affiliation(s)
- Juan J Infante
- Laboratorio de Microbiología y Genética, CASEM, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
| | | | | | | | | |
Collapse
|
39
|
Abstract
There is a strong correlation between age and cancer, but the mechanism by which this phenomenon occurs is unclear. We chose Saccharomyces cerevisiae to examine one of the hallmarks of cancer--genomic instability--as a function of cellular age. As diploid yeast mother cells aged, an approximately 100-fold increase in loss of heterozygosity (LOH) occurred. Extending life-span altered neither the onset nor the frequency of age-induced LOH; the switch to hyper-LOH appears to be on its own clock. In young cells, LOH occurs by reciprocal recombination, whereas LOH in old cells was nonreciprocal, occurring predominantly in the old mother's progeny. Thus, nuclear genomes may be inherently unstable with age.
Collapse
Affiliation(s)
- Michael A McMurray
- Division of Basic Sciences, The Fred Hutchinson Cancer Research Center, and Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98109, USA
| | | |
Collapse
|
40
|
Bellaoui M, Chang M, Ou J, Xu H, Boone C, Brown GW. Elg1 forms an alternative RFC complex important for DNA replication and genome integrity. EMBO J 2003; 22:4304-13. [PMID: 12912927 PMCID: PMC175796 DOI: 10.1093/emboj/cdg406] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Genome-wide synthetic genetic interaction screens with mutants in the mus81 and mms4 replication fork-processing genes identified a novel replication factor C (RFC) homolog, Elg1, which forms an alternative RFC complex with Rfc2-5. This complex is distinct from the DNA replication RFC, the DNA damage checkpoint RFC and the sister chromatid cohesion RFC. As expected from its genetic interactions, elg1 mutants are sensitive to DNA damage. Elg1 is redundant with Rad24 in the DNA damage response and contributes to activation of the checkpoint kinase Rad53. We find that elg1 mutants display DNA replication defects and genome instability, including increased recombination and mutation frequencies, and minichromosome maintenance defects. Mutants in elg1 show genetic interactions with pathways required for processing of stalled replication forks, and are defective in recovery from DNA damage during S phase. We propose that Elg1-RFC functions both in normal DNA replication and in the DNA damage response.
Collapse
Affiliation(s)
- Mohammed Bellaoui
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | | | | | | | | | | |
Collapse
|
41
|
Sabourin M, Nitiss JL, Nitiss KC, Tatebayashi K, Ikeda H, Osheroff N. Yeast recombination pathways triggered by topoisomerase II-mediated DNA breaks. Nucleic Acids Res 2003; 31:4373-84. [PMID: 12888496 PMCID: PMC169887 DOI: 10.1093/nar/gkg497] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Topoisomerase II is a ubiquitous enzyme that removes knots and tangles from the genetic material by generating transient double-strand DNA breaks. While the enzyme cannot perform its essential cellular functions without cleaving DNA, this scission activity is inherently dangerous to chromosomal integrity. In fact, etoposide and other clinically important anticancer drugs kill cells by increasing levels of topoisomerase II-mediated DNA breaks. Cells rely heavily on recombination to repair double-strand DNA breaks, but the specific pathways used to repair topoisomerase II-generated DNA damage have not been defined. Therefore, Saccharomyces cerevisiae was used as a model system to delineate the recombination pathways that repair DNA breaks generated by topoisomerase II. Yeast cells that expressed wild-type or a drug-hypersensitive mutant topoisomerase II or overexpressed the wild-type enzyme were examined. Based on cytotoxicity and recombination induced by etoposide in different repair-deficient genetic backgrounds, double-strand DNA breaks generated by topoisomerase II appear to be repaired primarily by the single-strand invasion pathway of homologous recombination. Non-homologous end joining also was triggered by etoposide treatment, but this pathway was considerably less active than single-strand invasion and did not contribute significantly to cell survival in S.cerevisiae.
Collapse
Affiliation(s)
- Michelle Sabourin
- Department of Biochemistry,Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | | | | | | | | | | |
Collapse
|
42
|
González-Barrera S, García-Rubio M, Aguilera A. Transcription and double-strand breaks induce similar mitotic recombination events in Saccharomyces cerevisiae. Genetics 2002; 162:603-14. [PMID: 12399375 PMCID: PMC1462300 DOI: 10.1093/genetics/162.2.603] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have made a comparative analysis of double-strand-break (DSB)-induced recombination and spontaneous recombination under low- and high-transcription conditions in yeast. We constructed two different recombination substrates, one for the analysis of intermolecular gene conversions and the other for intramolecular gene conversions and inversions. Such substrates were based on the same leu2-HOr allele fused to the tet promoter and containing a 21-bp HO site. Gene conversions and inversions were differently affected by rad1, rad51, rad52, and rad59 single and double mutations, consistent with the actual view that such events occur by different recombination mechanisms. However, the effect of each mutation on each type of recombination event was the same, whether associated with transcription or induced by the HO-mediated DSB. Both the highly transcribed DNA and the HO-cut sequence acted as recipients of the gene conversion events. These results are consistent with the hypothesis that transcription promotes initiation of recombination along the DNA sequence being transcribed. The similarity between transcription-associated and DSB-induced recombination suggests that transcription promotes DNA breaks.
Collapse
|
43
|
Pérez-Ortín JE, Querol A, Puig S, Barrio E. Molecular characterization of a chromosomal rearrangement involved in the adaptive evolution of yeast strains. Genome Res 2002; 12:1533-9. [PMID: 12368245 PMCID: PMC187534 DOI: 10.1101/gr.436602] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Wine yeast strains show a high level of chromosome length polymorphism. This polymorphism is mainly generated by illegitimate recombination mediated by Ty transposons or subtelomeric repeated sequences. We have found, however, that the SSU1-R allele, which confers sulfite resistance to yeast cells, is the product of a reciprocal translocation between chromosomes VIII and XVI due to unequal crossing-over mediated by microhomology between very short sequences on the 5' upstream regions of the SSU1 and ECM34 genes. We also show that this translocation is only present in wine yeast strains, suggesting that the use for millennia of sulfite as a preservative in wine production could have favored its selection. This is the first time that a gross chromosomal rearrangement is shown to be involved in the adaptive evolution of Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- José E Pérez-Ortín
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Spain.
| | | | | | | |
Collapse
|
44
|
Segurado M, Gómez M, Antequera F. Increased recombination intermediates and homologous integration hot spots at DNA replication origins. Mol Cell 2002; 10:907-16. [PMID: 12419233 DOI: 10.1016/s1097-2765(02)00684-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We have studied the relationship between DNA replication and recombination in Schizosaccharomyces pombe using two-dimensional gel electrophoresis and functional analysis. Our results indicate that the activation of replication origins (ORIs) during the mitotic cell cycle is associated with the generation of joint DNA molecules between sister chromatids. The frequency of integration by homologous recombination was up to 50-fold higher than the genomic average within a narrow window overlapping the ars1 replication initiation site. The S. pombe rad22Delta, rhp51Delta, and rhp54Delta mutants, deficient in mitotic recombination, activate ORIs very inefficiently and accumulate abnormal replication intermediates. These results focus on the general link between replication and recombination previously found in several systems and suggest a role for recombination in the initiation of eukaryotic DNA replication.
Collapse
Affiliation(s)
- Mónica Segurado
- Instituto de Microbiología Bioquímica, CSIC/Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | | | | |
Collapse
|
45
|
Pérez-Ortín JE, García-Martínez J, Alberola TM. DNA chips for yeast biotechnology. The case of wine yeasts. J Biotechnol 2002; 98:227-41. [PMID: 12141989 DOI: 10.1016/s0168-1656(02)00134-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The yeast Saccharomyces cerevisiae is one of the most popular model organisms. It was the first eukaryote whose genome was sequenced. Since then many functional analysis projects have tried to find the function of many genes and to understand its metabolism in a holistic way. Apart from basic science this microorganism is of great interest in several biotechnology processes, such as winemaking. Only global studies of the cell as a whole can help us to understand many of the technical problems facing winemaking. DNA chip technology is one of the most promising tools for the analysis of cell physiology. Yeast has been the model organism for the development of this technique. Many of the studies can be applied to improve our knowledge of wine strains. Nevertheless wine strains are quite different in some aspects from the laboratory reference strains so a particular study of wine strains and especially during the winemaking process is needed. During the past two years some groups have started this study and the first results have been published. We review here the current state of the knowledge of wine yeast and the capacity of DNA chip technology for its improvement.
Collapse
Affiliation(s)
- José E Pérez-Ortín
- Departamento de Bioquímica y Biología Molecular and Servicio de Chips de DNA, Universitat de València, Spain.
| | | | | |
Collapse
|
46
|
Hendricks CA, Razlog M, Matsuguchi T, Goyal A, Brock AL, Engelward BP. The S. cerevisiae Mag1 3-methyladenine DNA glycosylase modulates susceptibility to homologous recombination. DNA Repair (Amst) 2002; 1:645-59. [PMID: 12509287 DOI: 10.1016/s1568-7864(02)00072-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
DNA glycosylases, such as the Mag1 3-methyladenine (3MeA) DNA glycosylase, initiate the base excision repair (BER) pathway by removing damaged bases to create abasic apurinic/apyrimidinic (AP) sites that are subsequently repaired by downstream BER enzymes. Although unrepaired base damage may be mutagenic or recombinogenic, BER intermediates (e.g. AP sites and strand breaks) may also be problematic. To investigate the molecular basis for methylation-induced homologous recombination events in Saccharomyces cerevisiae, spontaneous and methylation-induced recombination were studied in strains with varied MAG1 expression levels. We show that cells lacking Mag1 have increased susceptibility to methylation-induced recombination, and that disruption of nucleotide excision repair (NER; rad4) in mag1 cells increases cellular susceptibility to these events. Furthermore, expression of Escherichia coli Tag 3MeA DNA glycosylase suppresses recombination events, providing strong evidence that unrepaired 3MeA lesions induce recombination. Disruption of REV3 (required for polymerase zeta (Pol zeta)) in mag1 rad4 cells causes increased susceptibility to methylation-induced toxicity and recombination, suggesting that Pol zeta can replicate past 3MeAs. However, at subtoxic levels of methylation damage, disruption of REV3 suppresses methylation-induced recombination, indicating that the effects of Pol zeta on recombination are highly dose-dependent. We also show that overproduction of Mag1 can increase the levels of spontaneous recombination, presumably due to increased levels of BER intermediates. However, additional APN1 endonuclease expression or disruption of REV3 does not affect MAG1-induced recombination, suggesting that downstream BER intermediates (e.g. single strand breaks) are responsible for MAG1-induced recombination, rather than uncleaved AP sites. Thus, too little Mag1 sensitizes cells to methylation-induced recombination, while too much Mag1 can put cells at risk of recombination induced by single strand breaks formed during BER.
Collapse
Affiliation(s)
- C A Hendricks
- Division of Bioengineering and Environmental Health, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
Replication fork arrest is a source of genome re arrangements, and the recombinogenic properties of blocked forks are likely to depend on the cause of blockage. Here we study the fate of replication forks blocked at natural replication arrest sites. For this purpose, Escherichia coli replication terminator sequences Ter were placed at ectopic positions on the bacterial chromosome. The resulting strain requires recombinational repair for viability, but replication forks blocked at Ter are not broken. Linear DNA molecules are formed upon arrival of a second round of replication forks that copy the DNA strands of the first blocked forks to the end. A model that accounts for the requirement for homologous recombination for viability in spite of the lack of chromosome breakage is proposed. This work shows that natural and accidental replication arrests sites are processed differently.
Collapse
Affiliation(s)
| | | | - Bénédicte Michel
- Laboratoire de Génétique Microbienne, Institut National de la Recherche Agronomique, 78352 Jouy en Josas, France
Corresponding author e-mail:
| |
Collapse
|
48
|
Abstract
Transcription is a central aspect of DNA metabolism that takes place on the same substrate as replication, repair and recombination. Not surprisingly, therefore, there is a physical and functional connection between these processes. In recent years, transcription has proven to be a relevant player in the maintenance of genome integrity and in the induction of genetic instability and diversity. The aim of this review is to provide an integrative view on how transcription can control different aspects of genomic integrity, by exploring different mechanisms that might be responsible for transcription-associated mutation (TAM) and transcription-associated recombination (TAR).
Collapse
Affiliation(s)
- Andrés Aguilera
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla 41012, Spain.
| |
Collapse
|
49
|
Genetic diversity of yeasts in wine production. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s1874-5334(02)80005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
50
|
Khanna KK, Lavin MF, Jackson SP, Mulhern TD. ATM, a central controller of cellular responses to DNA damage. Cell Death Differ 2001; 8:1052-65. [PMID: 11687884 DOI: 10.1038/sj.cdd.4400874] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2001] [Accepted: 03/02/2001] [Indexed: 11/09/2022] Open
Abstract
Mutations in the ATM gene lead to the genetic disorder ataxia-telangiectasia. ATM encodes a protein kinase that is mainly distributed in the nucleus of proliferating cells. Recent studies reveal that ATM regulates multiple cell cycle checkpoints by phosphorylating different targets at different stages of the cell cycle. ATM also functions in the regulation of DNA repair and apoptosis, suggesting that it is a central regulator of responses to DNA double-strand breaks.
Collapse
Affiliation(s)
- K K Khanna
- The Queensland Institute of Medical Research, and Department of Pathology and Surgery, University of Queensland, PO Royal Brisbane Hospital, Brisbane, Qld4029, Australia
| | | | | | | |
Collapse
|