1
|
Hasunuma I. Central regulation of reproduction in amphibians. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:219-229. [PMID: 38084833 DOI: 10.1002/jez.2769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 02/27/2024]
Abstract
This review article includes a literature review of synteny analysis of the amphibian gonadotropin-releasing hormone (GnRH) genes, the distribution of GnRH 1 and GnRH2 neurons in the central nervous system of amphibians, the function and regulation of hypophysiotropic GnRH1, and the function of GnRH1 in amphibian reproductive behaviors. It is generally accepted that GnRH is the key regulator of the hypothalamic-pituitary-gonadal axis. Three independent GnRH genes, GnRH1, GnRH2, and GnRH3, have been identified in vertebrates. Previous genome synteny analyses suggest that there are likely just two genes, gnrh1 and gnrh2, in amphibians. In three groups of amphibians: Anura, Urodela, and Gymnophiona, the distributions of GnRH1 and GnRH2 neurons in the central nervous system have also been previously reported. Moreover, these neuronal networks were determined to be structurally independent in all species examined. The somata of GnRH1 neurons are located in the terminal nerve, medial septum (MS), and preoptic area (POA), and some GnRH1 neurons in the MS and POA project into the median eminence. In contrast, the somata of GnRH2 neurons are located in the midbrain tegmentum. In amphibians, GnRH1 neurons originate from the embryonic olfactory placode, while GnRH2 neurons originate from the midbrain. The characterization and feedback regulation mechanisms of hypophysiotropic GnRH1 neurons in amphibians, the involvement of GnRH1 in amphibian reproductive behavior, and its possible mechanism of action should be elucidated in future.
Collapse
Affiliation(s)
- Itaru Hasunuma
- Department of Biology, Faculty of Science, Toho University, Funabashi, Chiba, Japan
| |
Collapse
|
2
|
Nie H, Zhang R, Yu X, Zhang Y, Yan P, Li E, Wang R, Wu X. Molecular cloning, immunological characterization, and expression analysis of gonadotropin-releasing hormone (GnRH) in the brain of the Chinese alligator during different stages of reproductive cycle. Gene 2021; 789:145672. [PMID: 33882325 DOI: 10.1016/j.gene.2021.145672] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 04/01/2021] [Accepted: 04/15/2021] [Indexed: 11/16/2022]
Abstract
The neurohormone gonadotropin-releasing hormone (GnRH) plays an essential role in the control of reproductive functions in vertebrates. However, the full-length complementary DNA (cDNA) encoding the GnRHs precursor and it role in the reproductive cycles regulating has not been illustrated in crocodilian species. In the present study, full-length cDNAs encoding GnRH1 forms, its predominant localization within brain and peripheral tissues, and GnRH1 peptide concentrations in the hypothalamus and pituitary in relation to seasonal gonadal development of Chinese alligator were investigated. The cDNA of GnRH1 is consisted of 282 bp open reading frame encoding 93 amino acids. The deduced amino acid sequence of alligator GnRH1 contains several conserved regions and shows a closer genetic relationship to the avian species than to other reptile species. The GnRH1 immunopositive cells were not only detected widely in cerebrum, diencephalon, medulla oblongata but also observed in peripheral tissues, these widespread distribution characteristics indicated that GnRH1 possibly possess the multi-functionality in Chinese Alligator. GnRH1 peptide concentration within hypothalamus were observed be the highest in RP group (P < 0.05), in association with an peak value in GSI and emerging of late vitellogenic follicles in the ovary. Taken together, our results suggested that GnRH1 was predominantly involved in the vitellogenesis process of seasonal gonadal development of Chinese Alligator.
Collapse
Affiliation(s)
- Haitao Nie
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Ruidong Zhang
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China; College of Life Sciences, Inner Mongolia Normal University, Hohhot, Inner Mongolia 010022, China
| | - Xiaoqin Yu
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Yuqian Zhang
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Peng Yan
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - En Li
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Renping Wang
- Alligator Research Center of Anhui Province, Xuanzhou 242000, China
| | - Xiaobing Wu
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China.
| |
Collapse
|
3
|
Jadhao AG, Pinelli C, D'Aniello B, Tsutsui K. Gonadotropin-inhibitory hormone (GnIH) in the amphibian brain and its relationship with the gonadotropin releasing hormone (GnRH) system: An overview. Gen Comp Endocrinol 2017; 240:69-76. [PMID: 27667155 DOI: 10.1016/j.ygcen.2016.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 09/02/2016] [Accepted: 09/14/2016] [Indexed: 01/28/2023]
Abstract
It is well known that the hypothalamic neuropeptide gonadotropin-releasing hormone (GnRH) plays an important role as a primary factor regulating gonadotropin secretion in reproductive processes in vertebrates. The discovery of the presence of a gonadotropin-inhibitory hormone (GnIH) in the brains of birds has further contributed to our understanding of the reproduction control by the brain. GnIH plays a key role in inhibition of reproduction and acts on the pituitary gland and GnRH neurons via a novel G protein-coupled receptor (GPR147). GnIH decreases gonadotropin synthesis and release, thus inhibiting gonadal development and maintenance. The GnRH and GnIH neuronal peptidergic systems are well reported in mammals and birds, but limited information is available regarding their presence and localization in the brains of other vertebrate species, such as reptiles, amphibians and fishes. The aim of this review is to compile and update information on the localization of GnRH and GnIH neuronal systems, with a particular focus on amphibians, summarizing the neuroanatomical distribution of GnIH and GnRH and emphasizing the discovery of GnIH based on RFamide peptides and GnIH orthologous peptides found in other vertebrates and their functional significance.
Collapse
Affiliation(s)
- Arun G Jadhao
- Department of Zoology, RTM Nagpur University Campus, Nagpur 440 033, MS, India.
| | - Claudia Pinelli
- Department of Environmental, Biological, and Pharmaceutical Sciences & Technologies, Second University of Naples, 81100 Caserta, Italy
| | - Biagio D'Aniello
- Department of Biology, University of Naples "Federico II", 80126 Napoli, Italy
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Centre for Medical Life Science, Waseda University, Tokyo 162-8480, Japan
| |
Collapse
|
4
|
Charif SE, Inserra PIF, Di Giorgio NP, Schmidt AR, Lux-Lantos V, Vitullo AD, Dorfman VB. Sequence analysis, tissue distribution and molecular physiology of the GnRH preprogonadotrophin in the South American plains vizcacha (Lagostomus maximus). Gen Comp Endocrinol 2016; 232:174-84. [PMID: 26704854 DOI: 10.1016/j.ygcen.2015.12.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 12/10/2015] [Accepted: 12/14/2015] [Indexed: 12/14/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is the regulator of the hypothalamic-hypophyseal-gonadal (HHG) axis. GnRH and GAP (GnRH-associated protein) are both encoded by a single preprohormone. Different variants of GnRH have been described. In most mammals, GnRH is secreted in a pulsatile manner that stimulates the release of follicle-stimulating hormone (FSH) and luteinizing hormone (LH). The South-American plains vizcacha, Lagostomus maximus, is a rodent with peculiar reproductive features including natural poly-ovulation up to 800 oocytes per estrous cycle, pre-ovulatory follicle formation throughout pregnancy and an ovulatory process which takes place at mid-gestation and adds a considerable number of secondary corpora lutea. Such features should occur under a special modulation of the HHG axis, guided by GnRH. The aim of this study was to sequence hypothalamic GnRH preprogonadotrophin mRNA in the vizcacha, to compare it with evolutionarily related species and to identify its expression, distribution and pulsatile pattern of secretion. The GnRH1variant was detected and showed the highest homology with that of chinchilla, its closest evolutionarily related species. Two isoforms of transcripts were identified, carrying the same coding sequence, but different 5' untranslated regions. This suggests a sensitive equilibrium between RNA stability and translational efficiency. A predominant hypothalamic localization and a pulsatile secretion pattern of one pulse of GnRH every hour were found. The lower homology found for GAP, also among evolutionarily related species, depicts a potentially different bioactivity.
Collapse
Affiliation(s)
- Santiago Elías Charif
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Pablo Ignacio Felipe Inserra
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Noelia Paula Di Giorgio
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IByME)-CONICET, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Alejandro Raúl Schmidt
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Victoria Lux-Lantos
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IByME)-CONICET, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Alfredo Daniel Vitullo
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Verónica Berta Dorfman
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
5
|
Burel D, Li JH, Do-Rego JL, Wang AF, Luu-The V, Pelletier G, Tillet Y, Taragnat C, Kwon HB, Seong JY, Vaudry H. Gonadotropin-releasing hormone stimulates the biosynthesis of pregnenolone sulfate and dehydroepiandrosterone sulfate in the hypothalamus. Endocrinology 2013; 154:2114-28. [PMID: 23554453 DOI: 10.1210/en.2013-1095] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The sulfated neurosteroids pregnenolone sulfate (Δ(5)PS) and dehydroepiandrosterone sulfate (DHEAS) are known to play a role in the control of reproductive behavior. In the frog Pelophylax ridibundus, the enzyme hydroxysteroid sulfotransferase (HST), responsible for the biosynthesis of Δ(5)PS and DHEAS, is expressed in the magnocellular nucleus and the anterior preoptic area, two hypothalamic regions that are richly innervated by GnRH1-containing fibers. This observation suggests that GnRH1 may regulate the formation of sulfated neurosteroids to control sexual activity. Double labeling of frog brain slices with HST and GnRH1 antibodies revealed that GnRH1-immunoreactive fibers are located in close vicinity of HST-positive neurons. The cDNAs encoding 3 GnRH receptors (designated riGnRHR-1, -2, and -3) were cloned from the frog brain. RT-PCR analyses revealed that riGnRHR-1 is strongly expressed in the hypothalamus and the pituitary whereas riGnRHR-2 and -3 are primarily expressed in the brain. In situ hybridization histochemistry indicated that GnRHR-1 and GnRHR-3 mRNAs are particularly abundant in preoptic area and magnocellular nucleus whereas the concentration of GnRHR-2 mRNA in these 2 nuclei is much lower. Pulse-chase experiments using tritiated Δ(5)P and DHEA as steroid precursors, and 3'-phosphoadenosine 5'-phosphosulfate as a sulfonate moiety donor, showed that GnRH1 stimulates, in a dose-dependent manner, the biosynthesis of Δ(5)PS and DHEAS in frog diencephalic explants. Because Δ(5)PS and DHEAS, like GnRH, stimulate sexual activity, our data strongly suggest that some of the behavioral effects of GnRH could be mediated via the modulation of sulfated neurosteroid production.
Collapse
Affiliation(s)
- Delphine Burel
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institut National de la Sante´ et de la Recherche Me´ dicale U982, Research Institute for Biomedecine (IRIB), International Associated Laboratory Samuel de Champlain, University of Rouen, 76821 Mont-Saint Aignan, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Chianese R, Ciaramella V, Fasano S, Pierantoni R, Meccariello R. Anandamide modulates the expression of GnRH-II and GnRHRs in frog, Rana esculenta, diencephalon. Gen Comp Endocrinol 2011; 173:389-95. [PMID: 21802420 DOI: 10.1016/j.ygcen.2011.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 06/17/2011] [Accepted: 07/08/2011] [Indexed: 10/18/2022]
Abstract
In the hypothalamus, endocannabinoids affect neuroendocrine activity by means of Gonadotropin-Releasing-Hormone-I (GnRH-I) inhibition. Since most vertebrates, human included, possess at least two GnRH molecular forms, the aim of this work was to investigate the effect of endocannabinoids on GnRH molecular forms other than GnRH-I and on GnRHRs. Thus, we cloned GnRH precursors as well as GnRH receptors (GnRHR-I, GnRHR-II, GnRHR-III) from the diencephalons of the anuran amphibian, Rana esculenta. GnRH-II expression was evaluated in pituitary, whole brain, spinal cord, hindbrain, midbrain and forebrain during the annual sexual cycle. Then, in post-reproductive period (May), GnRH-I, GnRH-II and GnRHRs expression was evaluated by quantitative real time (qPCR) after incubation of diencephalons with the endocannabinoid anandamide (AEA). AEA significantly decreased GnRH-I and GnRH-II expression, up regulated GnRHR-I and GnRHR-II mRNA and it had no effect upon GnRHR-III expression. These effects were counteracted by SR141716A (Rimonabant), a selective antagonist of type I cannabinoid receptor (CB1). In conclusion our results demonstrate a CB1 receptor dependent modulation of GnRH system expression rate (both ligands and receptors) in frog diencephalons. In particular, we show that AEA, besides GnRH-I, also acts on GnRH-II expression.
Collapse
Affiliation(s)
- Rosanna Chianese
- Dipartimento di Medicina Sperimentale sez F. Bottazzi, Seconda Università di Napoli, Via Costantinopoli 16, 80138 Napoli, Italy.
| | | | | | | | | |
Collapse
|
7
|
Chianese R, Chioccarelli T, Cacciola G, Ciaramella V, Fasano S, Pierantoni R, Meccariello R, Cobellis G. The contribution of lower vertebrate animal models in human reproduction research. Gen Comp Endocrinol 2011; 171:17-27. [PMID: 21192939 DOI: 10.1016/j.ygcen.2010.12.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 12/11/2010] [Accepted: 12/16/2010] [Indexed: 01/16/2023]
Abstract
Many advances have been carried out on the estrogens, GnRH and endocannabinoid system that have impact in the reproductive field. Indeed, estrogens, the generally accepted female hormones, have performed an unsuspected role in male sexual functions thanks to studies on non-mammalian vertebrates. Similarly, these animal models have provided important contributions to the identification of several GnRH ligand and receptor variants and their possible involvement in sexual behavior and gonadal function regulation. Moreover, the use of non-mammalian animal models has contributed to a better comprehension about the endocannabinoid system action in several mammalian reproductive events. We wish to highlight here how non-mammalian vertebrate animal model research contributes to advancements with implications on human health as well as providing a phylogenetic perspective on the evolution of reproductive systems in vertebrates.
Collapse
Affiliation(s)
- Rosanna Chianese
- Dipartimento di Medicina Sperimentale, Seconda Università degli Studi di Napoli, via Costantinopoli 16, 80138 Napoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Meccariello R, Franzoni MF, Chianese R, Cottone E, Scarpa D, Donna D, Cobellis G, Guastalla A, Pierantoni R, Fasano S. Interplay between the endocannabinoid system and GnRH-I in the forebrain of the anuran amphibian Rana esculenta. Endocrinology 2008; 149:2149-58. [PMID: 18218699 DOI: 10.1210/en.2007-1357] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The morphofunctional relationship between the endocannabinoid system and GnRH activity in the regulation of reproduction has poorly been investigated in vertebrates. Due to the anatomical features of lower vertebrate brain, in the present paper, we chose the frog Rana esculenta (anuran amphibian) as a suitable model to better investigate such aspects of the reproductive physiology. By using double-labeling immunofluorescence aided with a laser-scanning confocal microscope, we found a subpopulation of the frog hypothalamic GnRH neurons endowed with CB1 cannabinoid receptors. By means of semiquantitative RT-PCR assay, we have shown that, during the annual sexual cycle, GnRH-I mRNA (formerly known as mammalian GnRH) and CB1 mRNA have opposite expression profiles in the brain. In particular, this occurs in telencephalon and diencephalon, the areas mainly involved in GnRH release and control of the reproduction. Furthermore, we found that the endocannabinoid anandamide is able to inhibit GnRH-I mRNA synthesis; buserelin (a GnRH agonist), in turn, inhibits the synthesis of GnRH-I mRNA and induces an increase of CB1 transcription. Our observations point out the occurrence of a morphofunctional anatomical basis to explain a reciprocal relationship between the endocannabinoid system and GnRH neuronal activity.
Collapse
Affiliation(s)
- Rosaria Meccariello
- Dipartimento di Studi delle Istituzioni e dei Sistemi Territoriali, Università di Napoli Parthenope, 80133 Napoli, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Sherwood NM, Tello JA, Roch GJ. Neuroendocrinology of protochordates: Insights from Ciona genomics. Comp Biochem Physiol A Mol Integr Physiol 2006; 144:254-71. [PMID: 16413805 DOI: 10.1016/j.cbpa.2005.11.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Revised: 11/07/2005] [Accepted: 11/10/2005] [Indexed: 11/17/2022]
Abstract
The genome for two species of Ciona is available making these tunicates excellent models for studies on the evolution of the chordates. In this review most of the data is from Ciona intestinalis, as the annotation of the C. savignyi genome is not yet available. The phylogenetic position of tunicates at the origin of the chordates and the nature of the genome before expansion in vertebrates allows tunicates to be used as a touchstone for understanding genes that either preceded or arose in vertebrates. A comparison of Ciona, a sea squirt, to other model organisms such as a nematode, fruit fly, zebrafish, frog, chicken and mouse shows that Ciona has many useful traits including accessibility for embryological, lineage tracing, forward genetics, and loss- or gain-of-function experiments. For neuroendocrine studies, these traits are important for determining gene function, whereas the availability of the genome is critical for identification of ligands, receptors, transcription factors and signaling pathways. Four major neurohormones and their receptors have been identified by cloning and to some extent by function in Ciona: gonadotropin-releasing hormone, insulin, insulin-like growth factor, and cionin, a member of the CCK/gastrin family. The simplicity of tunicates should be an advantage in searching for novel functions for these hormones. Other neuroendocrine components that have been annotated in the genome are a multitude of receptors, which are available for cloning, expression and functional studies.
Collapse
Affiliation(s)
- Nancy M Sherwood
- Department of Biology, University of Victoria, Victoria, B.C., Canada V8W 3N5.
| | | | | |
Collapse
|
10
|
Guilgur LG, Moncaut NP, Canário AVM, Somoza GM. Evolution of GnRH ligands and receptors in gnathostomata. Comp Biochem Physiol A Mol Integr Physiol 2006; 144:272-83. [PMID: 16716622 DOI: 10.1016/j.cbpa.2006.02.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Revised: 01/19/2006] [Accepted: 02/14/2006] [Indexed: 10/24/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is the final common signaling molecule used by the brain to regulate reproduction in all vertebrates. Until now, a total of 24 GnRH structural variants have been characterized from vertebrate, protochordate and invertebrate nervous tissue. Almost all vertebrates already investigated have at least two GnRH forms coexisting in the central nervous system. Furthermore, it is now well accepted that three GnRH forms are present both in early and late evolved teleostean fishes. The number and taxonomic distribution of the different GnRH variants also raise questions about the phylogenetic relationships between them. Most of the GnRH phylogenetic analyses are in agreement with the widely accepted idea that the GnRH family can be divided into three main groups. However, the examination of the gnathostome GnRH phylogenetic relationships clearly shows the existence of two main paralogous GnRH lineages: the ''midbrain GnRH" group and the "forebrain GnRH" group. The first one, represented by chicken GnRH-II forms, and the second one composed of two paralogous lineages, the salmon GnRH cluster (only represented in teleostean fish species) and the hypophysotropic GnRH cluster, also present in tetrapods. This analysis suggests that the two forebrain clades share a common precursor and reinforces the idea that the salmon GnRH branch has originated from a duplication of the hypophysotropic lineage. GnRH ligands exert their activity through G protein-coupled receptors of the rhodopsin-like family. As with the ligands, multiple GnRHRs are expressed in individual vertebrate species and phylogenetic analyses have revealed that all vertebrate GnRHRs cluster into three main receptor types. However, new data and a new phylogenetic analysis propose a two GnRHR type model, in which different rounds of gene duplications may have occurred in different groups within each lineage.
Collapse
Affiliation(s)
- Leonardo G Guilgur
- Laboratorio de Ictiofisiología y Acuicultura, IIB-INTECH, CONICET-Universidad Nacional de General San Martín, IIB-INTECH, Camino de Circunvalación Laguna Km. 6, CC 164, B7130IWA, Chascomús, Provincia de Buenos Aires, Argentina
| | | | | | | |
Collapse
|
11
|
Silver MR, Nucci NV, Root AR, Reed KL, Sower SA. Cloning and characterization of a functional type II gonadotropin-releasing hormone receptor with a lengthy carboxy-terminal tail from an ancestral vertebrate, the sea lamprey. Endocrinology 2005; 146:3351-61. [PMID: 15878963 DOI: 10.1210/en.2005-0305] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A full-length transcript encoding a functional type II GnRH receptor was cloned from the pituitary of the sea lamprey, Petromyzon marinus. The current study is the first to identify a pituitary GnRH receptor transcript in an agnathan, which is the oldest vertebrate lineage. The cloned receptor retains the conserved structural features and amino acid motifs of other known GnRH receptors and notably includes a C-terminal intracellular tail of approximately 120 amino acids, the longest C-terminal tail of any vertebrate GnRH receptor identified to date. The lamprey GnRH receptor was shown to activate the inositol phosphate (IP) signaling system; stimulation with either lamprey GnRH-I or lamprey GnRH-III led to dose-dependent responses in transiently transfected COS7 cells. Furthermore, analyses of serially truncated lamprey GnRH receptor mutants indicate perturbations of the C-terminal tail disrupts IP accumulation, however, the tailless lamprey GnRH receptor was not only functional but was also capable of stimulating IP levels equal to wild type. Expression of the receptor transcript was demonstrated in the pituitary and testes using RT-PCR, whereas in situ hybridization showed expression and localization of the transcript in the proximal pars distalis of the pituitary. The phylogenetic placement and structural and functional features of this GnRH receptor suggest that it is representative of an ancestral GnRH receptor. In addition to having an important role in lamprey reproductive processes, the extensive C-terminal tail of this lamprey GnRH receptor may have great significance for understanding the evolutionary change of this vital structural feature within the GnRH receptor family.
Collapse
Affiliation(s)
- Matthew R Silver
- Department of Biochemistry and Molecular Biology, University of New Hampshire, Durham, New Hampshire 03824, USA
| | | | | | | | | |
Collapse
|
12
|
Morgan K, Millar RP. Evolution of GnRH ligand precursors and GnRH receptors in protochordate and vertebrate species. Gen Comp Endocrinol 2004; 139:191-7. [PMID: 15560865 DOI: 10.1016/j.ygcen.2004.09.015] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Revised: 08/19/2004] [Accepted: 09/15/2004] [Indexed: 11/25/2022]
Abstract
Primary structure relationships between GnRH precursors or GnRH receptors have received significant attention recently due to rapid DNA sequence determination of gene fragments and cDNAs from diverse species. Concepts concerning the evolutionary history of the GnRH system and its function in mammals, including humans, are likely to be modified as more complete sequence information becomes available. Current evidence suggests occurrence of fewer GnRH ligand and GnRH receptor genes in mammals compared to protochordates, fish and amphibians. Whilst several sequence-related GnRH decapeptide precursors and 2 or 3 separate GnRH receptors are encoded within the genomes of protochordates, fish and amphibians, only two types of GnRH (GnRH-I and GnRH-II) and two GnRH receptors occur in mammals. In addition, fish and mammalian genomes both retain inactive remnants of GnRH ligand or GnRH receptor genes. The number of distinct GnRH receptor genes in teleosts (at least five complete genes in pufferfish and three in zebrafish) partly reflects whole genome duplication during the evolution of this order of animals. Three GnRH receptor genes occur in certain frog species, consistent with the occurrence of up to three types of prepro-GnRH in amphibians. In contrast, only one functional GnRH receptor gene (the type I GnRH receptor) has been identified in humans and chimpanzees and a gene encoding a second receptor, homologous to a functional monkey receptor (the type II GnRH receptor), is either partially or completely silenced in a range of mammalian species (human, chimpanzee, sheep, cow, rat, and mouse). Further work is required to determine the significance of species-specific differences in the GnRH system to reproductive biology. For instance, recent data show that even species as closely related as humans and chimpanzees exhibit important organisational changes in the genes comprising the GnRH system.
Collapse
Affiliation(s)
- Kevin Morgan
- MRC Human Reproductive Sciences Unit, Old Dalkeith Road, Edinburgh EH16 4SB, UK.
| | | |
Collapse
|
13
|
Tsai PS, Moenter SM, Cavolina JM. Development of a novel enzyme immunoassay for the measurement of in vitro GnRH release from rat and bullfrog hypothalamic explants. Comp Biochem Physiol A Mol Integr Physiol 2003; 136:693-700. [PMID: 14613797 DOI: 10.1016/s1095-6433(03)00221-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is critical for the initiation and maintenance of reproduction in vertebrates. Information regarding GnRH release is abundant in mammals, but absent in poikilothermic tetrapods. In this study, we established a novel GnRH enzyme immunoassay (EIA) to measure GnRH release over time from hypothalamic explants isolated from mature field-caught and commercially-acquired male bullfrogs, Rana catesbeiana. Hypothalamic explants from rats were used as a positive control to test the sensitivity and accuracy of our EIA and to ensure our in vitro system could detect GnRH pulses. Prominent GnRH pulses were present in the majority (9/10) of rat hypothalamic explants, but absent in all (17/17) of the commercial bullfrogs and the majority (5/8) of field-caught bullfrogs. In three cases where GnRH pulses were observed in field-caught bullfrogs, there was only one pulse during the 2-h incubation period; high-frequency pulses similar to those observed in rats were not observed. Veratridine, which opens voltage-gated sodium channels, stimulated GnRH release in all explants cultured in the presence of Ca(2+), demonstrating explant viability. The levels of both spontaneous and veratridine-induced GnRH release were significantly higher in field-caught than commercial bullfrogs. This study demonstrated, for the first time, the temporal pattern of GnRH release in a poikilothermic tetrapod. Further, our results suggest the levels and patterns of GnRH output in bullfrogs are subject to the dynamic regulation by physiological and environmental cues.
Collapse
Affiliation(s)
- Pei-San Tsai
- Department of Integrative Physiology, Campus Box 354, University of Colorado, 114 Clare Small, Boulder, CO 80309-0354, USA.
| | | | | |
Collapse
|
14
|
Ikemoto T, Park MK. Identification and characterization of the reptilian GnRH-II gene in the leopard gecko, Eublepharis macularius, and its evolutionary considerations. Gene 2003; 316:157-65. [PMID: 14563562 DOI: 10.1016/s0378-1119(03)00758-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To elucidate the molecular phylogeny and evolution of a particular peptide, one must analyze not the limited primary amino acid sequences of the low molecular weight mature polypeptide, but rather the sequences of the corresponding precursors from various species. Of all the structural variants of gonadotropin-releasing hormone (GnRH), GnRH-II (chicken GnRH-II, or cGnRH-II) is remarkably conserved without any sequence substitutions among vertebrates, but its precursor sequences vary considerably. We have identified and characterized the full-length complementary DNA (cDNA) encoding the GnRH-II precursor and determined its genomic structure, consisting of four exons and three introns, in a reptilian species, the leopard gecko Eublepharis macularius. This is the first report about the GnRH-II precursor cDNA/gene from reptiles. The deduced leopard gecko prepro-GnRH-II polypeptide had the highest identities with the corresponding polypeptides of amphibians. The GnRH-II precursor mRNA was detected in more than half of the tissues and organs examined. This widespread expression is consistent with the previous findings in several species, though the roles of GnRH outside the hypothalamus-pituitary-gonadal axis remain largely unknown. Molecular phylogenetic analysis combined with sequence comparison showed that the leopard gecko is more similar to fishes and amphibians than to eutherian mammals with respect to the GnRH-II precursor sequence. These results strongly suggest that the divergence of the GnRH-II precursor sequences seen in eutherian mammals may have occurred along with amniote evolution.
Collapse
Affiliation(s)
- Tadahiro Ikemoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, 113-0033 Tokyo, Japan.
| | | |
Collapse
|
15
|
Seong JY, Wang L, Oh DY, Yun O, Maiti K, Li JH, Soh JM, Choi HS, Kim K, Vaudry H, Kwon HB. Ala/Thr(201) in extracellular loop 2 and Leu/Phe(290) in transmembrane domain 6 of type 1 frog gonadotropin-releasing hormone receptor confer differential ligand sensitivity and signal transduction. Endocrinology 2003; 144:454-66. [PMID: 12538604 DOI: 10.1210/en.2002-220683] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recently, we have identified three distinct types of bullfrog GnRH receptor (designated bfGnRHR-1, bfGnRHR-2, and bfGnRHR-3). In the present study, we have isolated three GnRHR clones in Rana dybowskii (dyGnRHR-1, dyGnRHR-2, and dyGnRHR-3). Despite high homology of dyGnRHRs with the corresponding bfGnRHRs, dyGnRHRs revealed different signaling pathways and ligand sensitivity compared with the bfGnRHR counterparts. Activation of dyGnRHRs with GnRH stimulated cAMP-mediated gene expression. However, dyGnRHR-3 but not dyGnRHR-1 and -2 induced c-fos promoter-driven gene expression. Consistently, dyGnRHR-1 and dyGnRHR-2 were not able to increase GnRH-induced inositol phosphate accumulation, whereas all bfGnRHRs and dyGnRHR-3 were, indicating that dyGnRHR-1 and dyGnRHR-2 are coupled to solely G(s), whereas all bfGnRHRs and dyGnRHR-3 are coupled to both G(s) and G(q/11). Moreover, dyGnRHR-1 and dyGnRHR-2 showed about 10-fold less sensitivity to each ligand than that of the bfGnRHR counterparts. Using type 1 chimeric and point-mutated receptors, we further elucidated that specific amino acids, Ala/Thr(201) in extracellular loop 2 and Leu/Phe(290) in transmembrane domain 6 of the type 1 receptor, are responsible for ligand sensitivity and signal transduction pathway. Particularly, substitution of Leu(290) to Phe in dyGnRHR-1 increased GnRH-induced inositol phosphate production as well as c-fos promoter-driven gene expression whereas substitution of Phe(290) to Leu in bfGnRHR-1 decreased those activities. Collectively, these results demonstrate the presence of three types of GnRHR in amphibians, and suggest species- and type-specific ligand recognition and different signaling pathways in frog GnRHRs.
Collapse
Affiliation(s)
- Jae Young Seong
- Hormone Research Center, Chonnam National University, Kwangju, 500-757, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Somoza GM, Miranda LA, Strobl-Mazzulla P, Guilgur LG. Gonadotropin-releasing hormone (GnRH): from fish to mammalian brains. Cell Mol Neurobiol 2002; 22:589-609. [PMID: 12838906 DOI: 10.1023/a:1021888420271] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This work deals with a family of neuropeptides, gonadotropin-releasing hormone (GnRH), that play a key role in the development and maintenance of reproductive function in vertebrates. 2. Until now, a total of 16 GnRH structural variants have been isolated and characterized from vertebrate and protochordate nervous tissue. All vertebrate species already investigated have at least two GnRH forms coexisting in the central nervous system. However, it is now well accepted that three forms of GnRH in early and late evolved bony fishes are present. 3. In these cases, cGnRH-II is expressed by midbrain neurons, a species-specific GnRH is present mainly in the preoptic area and the hypothalamus, and sGnRH is localized in the terminal nerve ganglion (TNG). In this context it is possible to think that three GnRH forms and three GnRH receptor (GnRH-R) subtypes are expressed in the central nervous system of a given species. 4. Then it is possible to propose three different GnRH lineages expressed by distinct brain areas in vertebrates: (1) the conserved cGnRH-II or mesencephalic lineage; or (2) the hypothalamic or "releasing" lineage whose primary structure has diverged by point mutations (mGnRH and its orthologous forms: hrGnRH, wfGnRH, cfGnRH, sbGnRH, and pjGnRH); and (3) the telencephalic sGnRH form. Also different GnRH nomenclatures are discussed.
Collapse
Affiliation(s)
- Gustavo M Somoza
- Laboratorio de Ictiofisiología, Instituto Tecnológico, Universidad Nacional de General San Martín, Chascomús, Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
17
|
Dubois EA, Zandbergen MA, Peute J, Goos HJT. Evolutionary development of three gonadotropin-releasing hormone (GnRH) systems in vertebrates. Brain Res Bull 2002; 57:413-8. [PMID: 11923000 DOI: 10.1016/s0361-9230(01)00676-1] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is the neuropeptide that links the brain to the reproductive system. Most vertebrate species express two forms of GnRH, which differ in amino acid sequence, localization, distribution, and embryological origin. The GnRH system in the ventral forebrain produces a species-specific GnRH form and projects toward the gonadotropic cell in the pituitary. The GnRH neurons of this system originate from the olfactory placode and migrate into the brain during early development. The other GnRH system is localized in a nucleus in the midbrain, where large cells express chicken-GnRH-II, of which the function is still unclear. In modern teleosts, a third GnRH system is present in the terminal nerve, which contains salmon GnRH. The three GnRH systems appear at different times during fish evolution. Besides the two accepted lineages in GnRH evolution (of conserved chicken GnRH-II in the midbrain and of mammalian GnRH or species-specific GnRH in the hypophysiotropic system), we propose a third lineage: of salmon GnRH in the terminal nerve.
Collapse
Affiliation(s)
- E A Dubois
- Research Group of Comparative Endocrinology, Graduate School for Developmental Biology, Faculty of Biology, The, Utrecht, Netherlands
| | | | | | | |
Collapse
|
18
|
Wang L, Oh DY, Bogerd J, Choi HS, Ahn RS, Seong JY, Kwon HB. Inhibitory activity of alternative splice variants of the bullfrog GnRH receptor-3 on wild-type receptor signaling. Endocrinology 2001; 142:4015-25. [PMID: 11517181 DOI: 10.1210/endo.142.9.8383] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recently we characterized three distinct GnRH receptors in the bullfrog (bfGnRHR-1, bfGnRHR-2, and bfGnRHR-3). In the present study, we further investigated the expression and function of splice variants, generated from the primary bfGnRHR-3 transcript by exon skipping (splice variant 1), intron retention (splice variants 2 and 3), and/or transcriptional slippage (splice variant 4), apart from the constitutively spliced form (wild-type). Cellular expression and function of the splice variants were examined using a transient expression system. Immunoblot analysis revealed that the wild-type receptor and all splice variant proteins were expressed in transfected HeLa cells with no significant differences in expression levels. These splice variants showed a very low binding affinity to ligand and did not induce signal transduction in response to GnRH treatment. Interestingly, cotransfection of the wild-type with splice variants 2--4, but not with splice variant 1, significantly inhibited wild-type receptor-mediated signaling. Subcellular localization analysis of green fluorescent protein-tagged wild-type and splice variant proteins revealed that the wild-type receptor protein was mainly localized in the cell membrane, whereas the splice variant 1 protein was exclusively detected in the cytoplasm. The splice variant 2--4 proteins, however, were found in both the cell membrane and cytoplasm. The inhibition of wild-type receptor signaling by splice variants 2--4 and the subcellular localization of splice variants 2-4 suggest a possible physical interaction of splice variants 2--4 with the wild-type receptor protein. In addition, the ratio of mRNA levels of the wild-type to splice variants 2--4 significantly varied from hibernation (wild-type < splice variants 2--4) to the prebreeding season (wild-type > splice variants 2--4). Collectively, these results suggest that alternative splicing of the bfGnRHR-3 primary transcript plays a role in fine-tuning GnRH receptor function in amphibians.
Collapse
Affiliation(s)
- L Wang
- Hormone Research Center and Department of Biology, Chonnam National University, Kwangju, 500-757, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|