1
|
Wendt KD, Brown J, Lungova V, Mohad V, Kendziorski C, Thibeault SL. Transcriptome Dynamics in the Developing Larynx, Trachea, and Esophagus. Front Cell Dev Biol 2022; 10:942622. [PMID: 35938172 PMCID: PMC9353518 DOI: 10.3389/fcell.2022.942622] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/03/2022] [Indexed: 11/18/2022] Open
Abstract
The larynx, trachea, and esophagus share origin and proximity during embryonic development. Clinical and experimental evidence support the existence of neurophysiological, structural, and functional interdependencies before birth. This investigation provides the first comprehensive transcriptional profile of all three organs during embryonic organogenesis, where differential gene expression gradually assembles the identity and complexity of these proximal organs from a shared origin in the anterior foregut. By applying bulk RNA sequencing and gene network analysis of differentially expressed genes (DEGs) within and across developing embryonic mouse larynx, esophagus, and trachea, we identified co-expressed modules of genes enriched for key biological processes. Organ-specific temporal patterns of gene activity corresponding to gene modules within and across shared tissues during embryonic development (E10.5-E18.5) are described, and the laryngeal transcriptome during vocal fold development and maturation from birth to adulthood is characterized in the context of laryngeal organogenesis. The findings of this study provide new insights into interrelated gene sets governing the organogenesis of this tripartite organ system within the aerodigestive tract. They are relevant to multiple families of disorders defined by cardiocraniofacial syndromes.
Collapse
Affiliation(s)
- Kristy D. Wendt
- Department of Surgery, Division of Otolaryngology, Head, and Neck Surgery, University of Wisconsin, Madison, WI, United States
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Jared Brown
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, United States
| | - Vlasta Lungova
- Department of Surgery, Division of Otolaryngology, Head, and Neck Surgery, University of Wisconsin, Madison, WI, United States
| | - Vidisha Mohad
- Department of Surgery, Division of Otolaryngology, Head, and Neck Surgery, University of Wisconsin, Madison, WI, United States
| | - Christina Kendziorski
- Department of Biostatistics and Medical Information, University of Wisconsin-Madison, Madison, WI, United States
| | - Susan L. Thibeault
- Department of Surgery, Division of Otolaryngology, Head, and Neck Surgery, University of Wisconsin, Madison, WI, United States
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
- *Correspondence: Susan L. Thibeault,
| |
Collapse
|
2
|
Comai G, Heude E, Mella S, Paisant S, Pala F, Gallardo M, Langa F, Kardon G, Gopalakrishnan S, Tajbakhsh S. A distinct cardiopharyngeal mesoderm genetic hierarchy establishes antero-posterior patterning of esophagus striated muscle. eLife 2019; 8:e47460. [PMID: 31535973 PMCID: PMC6752947 DOI: 10.7554/elife.47460] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
In most vertebrates, the upper digestive tract is composed of muscularized jaws linked to the esophagus that permits food ingestion and swallowing. Masticatory and esophagus striated muscles (ESM) share a common cardiopharyngeal mesoderm (CPM) origin, however ESM are unusual among striated muscles as they are established in the absence of a primary skeletal muscle scaffold. Using mouse chimeras, we show that the transcription factors Tbx1 and Isl1 are required cell-autonomously for myogenic specification of ESM progenitors. Further, genetic loss-of-function and pharmacological studies point to MET/HGF signaling for antero-posterior migration of esophagus muscle progenitors, where Hgf ligand is expressed in adjacent smooth muscle cells. These observations highlight the functional relevance of a smooth and striated muscle progenitor dialogue for ESM patterning. Our findings establish a Tbx1-Isl1-Met genetic hierarchy that uniquely regulates esophagus myogenesis and identify distinct genetic signatures that can be used as framework to interpret pathologies arising within CPM derivatives.
Collapse
Affiliation(s)
- Glenda Comai
- Department of Developmental and Stem Cell BiologyInstitut PasteurParisFrance
- CNRS UMR 3738ParisFrance
| | - Eglantine Heude
- Department of Developmental and Stem Cell BiologyInstitut PasteurParisFrance
- CNRS UMR 3738ParisFrance
- Department Adaptation du VivantCNRS/MNHN UMR 7221, Muséum national d’Histoire naturelleParisFrance
| | - Sebastian Mella
- Department of Developmental and Stem Cell BiologyInstitut PasteurParisFrance
- CNRS UMR 3738ParisFrance
| | - Sylvain Paisant
- Department of Developmental and Stem Cell BiologyInstitut PasteurParisFrance
- CNRS UMR 3738ParisFrance
| | - Francesca Pala
- Department of Developmental and Stem Cell BiologyInstitut PasteurParisFrance
- CNRS UMR 3738ParisFrance
- Laboratory of Clinical Immunology and Microbiology (LCIM)National Institutes of HealthBethesdaUnited States
| | - Mirialys Gallardo
- Department of Human GeneticsUniversity of UtahSalt Lake CityUnited States
| | - Francina Langa
- Mouse Genetics Engineering CenterInstitut PasteurParisFrance
| | - Gabrielle Kardon
- Department of Human GeneticsUniversity of UtahSalt Lake CityUnited States
| | - Swetha Gopalakrishnan
- Department of Developmental and Stem Cell BiologyInstitut PasteurParisFrance
- CNRS UMR 3738ParisFrance
- Institute of Biotechnology, HiLIFEUniversity of HelsinkiHelsinkiFinland
| | - Shahragim Tajbakhsh
- Department of Developmental and Stem Cell BiologyInstitut PasteurParisFrance
- CNRS UMR 3738ParisFrance
| |
Collapse
|
3
|
Ye M, Zhang Q, Xu X, Zhang Q, Ge Y, Geng P, Yan J, Luo L, Sun Y, Liang X. Loss of JAM-C leads to impaired esophageal innervations and megaesophagus in mice. Dis Esophagus 2016; 29:864-871. [PMID: 26123848 DOI: 10.1111/dote.12383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Megaesophagus is a disease where peristalsis fails to occur properly and esophagus is enlarged. The etiology and mechanism of megaesophagus are not well understood. In this study, we reported that junctional adhesion molecule C (JAM-C) knockout mice on a C57/B6 background developed progressive megaesophagus from embryonic day (E) 15.5 onward with complete penetrance. JAM-C knockout mice exhibited a significant reduction in the number of nerve fibers/ganglia in the wall of the esophagus. However, histological analysis revealed that the esophageal wall thickness and structure of JAM-C knockout mice at embryonic stages and young adult were comparable to that of control littermates. Thus, megaesophagus observed in JAM-C knockout mice could be attributed, at least in part, to impaired esophageal innervations. Our data suggest JAM-C as a potential candidate gene for human megaesophagus, and JAM-C knockout mice might serve as a model for the study of human megaesophagus.
Collapse
Affiliation(s)
- M Ye
- Research Center for Translational Medicine, East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Q Zhang
- Research Center for Translational Medicine, East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - X Xu
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Q Zhang
- Research Center for Translational Medicine, East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Y Ge
- Research Center for Translational Medicine, East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - P Geng
- Research Center for Translational Medicine, East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - J Yan
- Research Center for Translational Medicine, East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - L Luo
- Research Center for Translational Medicine, East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Y Sun
- Research Center for Translational Medicine, East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - X Liang
- Research Center for Translational Medicine, East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
4
|
Neuhuber WL, Wörl J. Enteric co-innervation of striated muscle in the esophagus: still enigmatic? Histochem Cell Biol 2016; 146:721-735. [PMID: 27678007 DOI: 10.1007/s00418-016-1500-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2016] [Indexed: 01/10/2023]
Abstract
The existence of a distinct ganglionated myenteric plexus between the two layers of the striated tunica muscularis of the mammalian esophagus has represented an enigma for quite a while. Although an enteric co-innervation of vagally innervated motor endplates in the esophagus has been suggested repeatedly, it was not possible until recently to demonstrate this dual innervation. Twenty-two years ago, we were able to demonstrate that motor endplates in the rat esophagus receive dual innervation from both vagal nerve fibers originating in the brain stem and from varicose enteric nerve fibers originating in the myenteric plexus. Meanwhile, a considerable amount of data has been gathered on enteric co-innervation and its occurrence in the esophagus of a variety of species including humans, its neurochemistry, spatial relationships on motor endplates, ontogeny and possible functional roles. These data underline the significance of this newly discovered innervation component, although its function in vivo is still largely unknown. The aim of this review, which is an update of our previous paper (Wörl and Neuhuber in Histochem Cell Biol 123(2):117-130. doi: 10.1007/s00418-005-0764-7 , 2005a), is to summarize the current knowledge about enteric co-innervation of esophageal striated muscle and to provide some hints as to its functional significance.
Collapse
Affiliation(s)
- Winfried L Neuhuber
- Institut für Anatomie I, Friedrich-Alexander Universität Erlangen-Nürnberg, Krankenhausstraße 9, 91054, Erlangen, Germany.
| | - Jürgen Wörl
- Institut für Anatomie I, Friedrich-Alexander Universität Erlangen-Nürnberg, Krankenhausstraße 9, 91054, Erlangen, Germany
| |
Collapse
|
5
|
Krauss RS, Chihara D, Romer AI. Embracing change: striated-for-smooth muscle replacement in esophagus development. Skelet Muscle 2016; 6:27. [PMID: 27504178 PMCID: PMC4976477 DOI: 10.1186/s13395-016-0099-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/11/2016] [Indexed: 12/30/2022] Open
Abstract
The esophagus functions to transport food from the oropharyngeal region to the stomach via waves of peristalsis and transient relaxation of the lower esophageal sphincter. The gastrointestinal tract, including the esophagus, is ensheathed by the muscularis externa (ME). However, while the ME of the gastrointestinal tract distal to the esophagus is exclusively smooth muscle, the esophageal ME of many vertebrate species comprises a variable amount of striated muscle. The esophageal ME is initially composed only of smooth muscle, but its developmental maturation involves proximal-to-distal replacement of smooth muscle with striated muscle. This fascinating phenomenon raises two important questions: what is the developmental origin of the striated muscle precursor cells, and what are the cellular and morphogenetic mechanisms underlying the process? Studies addressing these questions have provided controversial answers. In this review, we discuss the development of ideas in this area and recent work that has shed light on these issues. A working model has emerged that should permit deeper understanding of the role of ME development and maturation in esophageal disorders and in the functional and evolutionary underpinnings of the variable degree of esophageal striated myogenesis in vertebrate species.
Collapse
Affiliation(s)
- Robert S Krauss
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1020, New York, NY 10029 USA
| | - Daisuke Chihara
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1020, New York, NY 10029 USA
| | - Anthony I Romer
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1020, New York, NY 10029 USA ; Present address: Department of Genetics and Development, Columbia University, 701 West 168th Street, HHSC 1602, New York, NY 10032 USA
| |
Collapse
|
6
|
A Cranial Mesoderm Origin for Esophagus Striated Muscles. Dev Cell 2015; 34:694-704. [PMID: 26387456 DOI: 10.1016/j.devcel.2015.07.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 06/08/2015] [Accepted: 07/10/2015] [Indexed: 11/21/2022]
Abstract
The esophagus links the oral cavity to the stomach and facilitates the transfer of bolus. Using genetic tracing and mouse mutants, we demonstrate that esophagus striated muscles (ESMs) are not derived from somites but are of cranial origin. Tbx1 and Isl1 act as key regulators of ESMs, which we now identify as a third derivative of cardiopharyngeal mesoderm that contributes to second heart field derivatives and head muscles. Isl1-derived ESM progenitors colonize the mouse esophagus in an anterior-posterior direction but are absent in the developing chick esophagus, thus providing evolutionary insight into the lack of ESMs in avians. Strikingly, different from other myogenic regions, in which embryonic myogenesis establishes a scaffold for fetal fiber formation, ESMs are established directly by fetal myofibers. We propose that ESM progenitors use smooth muscle as a scaffold, thereby bypassing the embryonic program. These findings have important implications in understanding esophageal dysfunctions, including dysphagia, and congenital disorders, such as DiGeorge syndrome.
Collapse
|
7
|
Minchin JEN, Williams VC, Hinits Y, Low S, Tandon P, Fan CM, Rawls JF, Hughes SM. Oesophageal and sternohyal muscle fibres are novel Pax3-dependent migratory somite derivatives essential for ingestion. Development 2013; 140:2972-84. [PMID: 23760954 DOI: 10.1242/dev.090050] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Striated muscles that enable mouth opening and swallowing during feeding are essential for efficient energy acquisition, and are likely to have played a fundamental role in the success of early jawed vertebrates. The developmental origins and genetic requirements of these muscles are uncertain. Here, we determine by indelible lineage tracing in mouse that fibres of sternohyoid muscle (SHM), which is essential for mouth opening during feeding, and oesophageal striated muscle (OSM), which is crucial for voluntary swallowing, arise from Pax3-expressing somite cells. In vivo Kaede lineage tracing in zebrafish reveals the migratory route of cells from the anteriormost somites to OSM and SHM destinations. Expression of pax3b, a zebrafish duplicate of Pax3, is restricted to the hypaxial region of anterior somites that generate migratory muscle precursors (MMPs), suggesting that Pax3b plays a role in generating OSM and SHM. Indeed, loss of pax3b function led to defective MMP migration and OSM formation, disorganised SHM differentiation, and inefficient ingestion and swallowing of microspheres. Together, our data demonstrate Pax3-expressing somite cells as a source of OSM and SHM fibres, and highlight a conserved role of Pax3 genes in the genesis of these feeding muscles of vertebrates.
Collapse
Affiliation(s)
- James E N Minchin
- Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Romer AI, Singh J, Rattan S, Krauss RS. Smooth muscle fascicular reorientation is required for esophageal morphogenesis and dependent on Cdo. ACTA ACUST UNITED AC 2013; 201:309-23. [PMID: 23569214 PMCID: PMC3628509 DOI: 10.1083/jcb.201301005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cdo-deficient mice have defects in smooth muscle fascicular reorientation during esophageal morphogenesis, resulting in structural and functional defects including an aberrantly proximal skeletal–smooth muscle boundary and achalasia. Postnatal maturation of esophageal musculature involves proximal-to-distal replacement of smooth muscle with skeletal muscle by elusive mechanisms. We report that this process is impaired in mice lacking the cell surface receptor Cdo and identify the underlying developmental mechanism. A myogenic transition zone containing proliferative skeletal muscle precursor cells migrated in a proximal–distal direction, leaving differentiated myofibers in its wake. Distal to the transition zone, smooth muscle fascicles underwent a morphogenetic process whereby they changed their orientation relative to each other and to the lumen. Consequently, a path was cleared for the transition zone, and smooth muscle ultimately occupied only the distal-most esophagus; there was no loss of smooth muscle. Cdo−/− mice were specifically defective in fascicular reorientation, resulting in an aberrantly proximal skeletal–smooth muscle boundary. Furthermore, Cdo−/− mice displayed megaesophagus and achalasia, and their lower esophageal sphincter was resistant to nitric oxide–induced relaxation, suggesting a developmental linkage between patterning and sphincter function. Collectively, these results illuminate mechanisms of esophageal morphogenesis and motility disorders.
Collapse
Affiliation(s)
- Anthony I Romer
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | |
Collapse
|
9
|
Abstract
Muscularis externa of mouse esophagus is composed of two skeletal muscle layers in the adult. But less attention is paid to the histogenesis of the muscularis externa of the esophagus, and controversies still exist about the developmental process and the spatio-temporal expression characteristics of muscle-specific proteins during the development of esophageal muscularis externa. To further probe into the developmental pattern of muscularis externa of the mouse esophagus and the expression characteristics of different muscle-specific proteins, immunohistochemical and terminal deoxyribonucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP)-digoxigenin nick-end labeling apoptotic staining methods are used to investigate the expression patterns of different muscle-specific proteins and to elucidate the relationship of these protein expressions with the development of muscularis externa of the mouse esophagus. Thus, an understanding of the developing esophageal muscularis externa may be important for developing therapeutic strategies for the treatment of human esophagus diseases. Serial sections of mouse embryos from embryonic day (ED) 12 to ED18, and full-length esophagi from postnatal first to 5th day were stained with monoclonal antibodies against α-smooth muscle actin (α-SMA), α-sarcomerical actin (α-SCA), desmin, and monoclonal anti-skeletal myosin (MHC), while apoptosis was determined using the terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick-end labeling assay. The expression of α-SMA was started at ED12. During the development of ED14-ED15, α-SMA positive cells were seen extending from the walls of left three, four, and six arch arteries toward the dorsal wall of esophagus. Stronger expression of α-SCA and desmin could be detected at ED14 and ED15, expression intensity in caudal segment and inner layer was stained stronger than that of cranial segment and outer layer, but after ED16, strong expression of α-SCA and desmin was found in the outer layer of muscularis externa. Expression of MHC was first detected in the outer layer of cranial segment of muscularis externa at ED17. At ED18, MHC had extended to the level of thyroid gland, staining intensity in the outer layer and cranial segment was stronger than that of inner layer and caudal segment. One to five days after birth, the thickness of the esophageal muscle layer was obviously increased. Most of the muscle cells in the cranial segment of esophagus showed strong expression of α-SCA and clear cross striations at higher magnification. With progression toward the caudal segment, expression intensity of α-SCA became weaker, but the expression intensity of desmin was the same at different levels of esophagus. The muscle fibers were arranged densely with high expression of MHC in the cranial segment. During the development of esophageal muscularis externa, few apoptotic cells were observed. α-SMA, α-SCA, desmin, and MHC show different expression patterns. The differentiation of outer layer of esophageal muscularis externa is quicker than that of inner layer, and the caudal segment is quicker than that of the cranial segment. Besides, apoptosis may not participate in the development of esophageal muscularis externa. The smooth muscle cells from arch arteries may participate in the development of esophageal muscularis externa.
Collapse
Affiliation(s)
- X-M Cao
- Department of Histology and Embryology, Shanxi Medical University, Taiyuan, China
| | | | | | | | | |
Collapse
|
10
|
Su PH, Wang TC, Wong ZR, Huang BM, Yang HY. The expression of nestin delineates skeletal muscle differentiation in the developing rat esophagus. J Anat 2011; 218:311-23. [PMID: 21323914 DOI: 10.1111/j.1469-7580.2010.01331.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The muscularis externa of the developing rodent esophagus is initially composed of smooth muscle, and later replaced by skeletal muscle in a craniocaudal progression. There is growing evidence of distinct developmental origins for esophageal smooth and skeletal muscles. However, the identification of skeletal muscle progenitor cells is controversial, and the detailed cell lineage of their descendants remains elusive. In the current study, we carried out multiple labeling immunofluorescence microscopy of nestin and muscle type-specific markers to characterize the dynamic process of rat esophageal myogenesis. The results showed that nestin was transiently expressed in immature esophageal smooth muscle cells in early developing stages. After nestin was downregulated in smooth muscle cells, a distinct population of nestin-positive cells emerged as skeletal muscle precursors. They were mitotically active, and subsequently co-expressed MyoD, followed by the embryonic and later the fast type of skeletal muscle myosin heavy chain. Thus, the cell lineage of esophageal skeletal muscle differentiation was established by an immunotyping approach, which revealed that skeletal myocytes arise from a distinct lineage rather than through transdifferentiation of smooth muscle cells during rat esophageal myogenesis.
Collapse
Affiliation(s)
- Peng-Han Su
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
11
|
Katori Y, Cho BH, Song CH, Fujimiya M, Murakami G, Kawase T. Smooth-to-striated muscle transition in human esophagus: an immunohistochemical study using fetal and adult materials. Ann Anat 2009; 192:33-41. [PMID: 20004561 DOI: 10.1016/j.aanat.2009.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 09/21/2009] [Accepted: 09/22/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND A craniocaudal transition from smooth to striated muscle occurs in the fetal mouse esophagus muscularis propria, until finally the entire muscle component becomes striated. Although no such investigation has been conducted using human fetuses, the transition appears to be incomplete. METHODS In horizontal sections of 10 human fetuses between 9 and 16 weeks of gestation, we identified immunoreactivity for smooth muscle actin (SMA), striated muscle myosin heavy chain (MyH), desmin, PGP9.5, S100 protein, c-kit, and CD68 in the thoracic esophagus. The TUNEL method was used to identify apoptosis. For comparison, the same immunohistochemistry was conducted using 10 adult esophaguses. RESULTS In fetuses at all stages examined, a transition zone was found in the upper thoracic esophagus that was attached to the middle one-third of the trachea. In the transition zone, the MyH-positive longitudinal muscle fibers were surrounded by flat, SMA-positive cells, whereas the MyH-positive circular fibers were sometimes located adjacent to the SMA-positive fibers. However, in adults, smooth muscle tended to be clearly separated from striated muscle. The distribution of cells showing immunoreactivity for PGP9.5, S100 or c-kit did not differ between the oral and anal sides of the transition zone. Desmin was positive in the muscularis propria, but negative in the muscularis mucosae. Neither CD68-positive macrophages nor TUNEL-positive cells were present in the esophagus. CONCLUSIONS In the human esophagus, the smooth-to-striated muscle transition appears to stop at the mid-thoracic level. Cell death or transdifferentiation of smooth muscle appears unlikely, but phenotypic transformation into desmin-positive myofibroblasts is a possibility.
Collapse
Affiliation(s)
- Yukio Katori
- Department of Otolaryngology & Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | | | | | | | | | | |
Collapse
|
12
|
Sahota AP, Dhoot GK. A novel SULF1 splice variant inhibits Wnt signalling but enhances angiogenesis by opposing SULF1 activity. Exp Cell Res 2009; 315:2752-64. [DOI: 10.1016/j.yexcr.2009.06.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 06/25/2009] [Accepted: 06/27/2009] [Indexed: 10/20/2022]
|
13
|
Wörl J, Breuer C, Neuhuber WL. Deletion of Pax7 changes the tunica muscularis of the mouse esophagus from an entirely striated into a mixed phenotype. Dev Dyn 2009; 238:864-74. [PMID: 19301402 DOI: 10.1002/dvdy.21898] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The mechanisms responsible for the different amounts of striated muscle in mammalian esophagi are still enigmatic. A recent ultrastructural analysis in mouse esophagus pointed to a particular role of satellite cells during postnatal growth of striated muscle. The aim of this study was to investigate satellite cell development and the influence of Pax7 on this process. Developing and adult esophagi of wild-type and mice carrying a targeted mutation in Pax7 were analyzed by electron microscopy. We found a gene dose-dependent delayed development of striated muscle and a severe loss of satellite cells in Pax7(+/-) and Pax7(-/-) esophagi. In contrast to the entirely striated wild-type esophagus, Pax7(-/-) mutants developed a mixed phenotype with predominantly smooth muscle caudally. We conclude that Pax7-dependent myogenic progenitor cells are of prime importance for striated muscle formation and the degree of smooth-to-striated muscle conversion during esophageal ontogeny.
Collapse
Affiliation(s)
- Jürgen Wörl
- Institute of Anatomy, University of Erlangen-Nuremberg, Erlangen, Germany.
| | | | | |
Collapse
|
14
|
Rishniw M, Fisher PJ, Doran RM, Bliss SP, Kotlikoff MI. Striated myogenesis and peristalsis in the fetal murine esophagus occur without cell migration or interstitial cells of Cajal. Cells Tissues Organs 2008; 189:410-9. [PMID: 18784410 DOI: 10.1159/000155225] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2008] [Indexed: 11/19/2022] Open
Abstract
Esophageal striated myogenesis progresses differently from appendicular myogenesis, but the mechanism underlying this process is incompletely understood. Early theories of transdifferentiation of smooth muscle into striated muscle are not supported by transgenic fate-mapping experiments; however, the origin of esophageal striated muscle remains unknown. To better define the process of striated myogenesis, we examined myogenesis in murine fetal cultured esophageal whole-organ explants. Embryonic day 14.5 (E14.5) esophagi maintained a functional contractile phenotype for up to 7 days in culture. Striated myogenesis, as evidenced by myogenin expression, proceeded in a craniocaudal direction along the length of the esophagus. Esophageal length did not change during this process. Complete, but not partial, mechanical disruption of the rostral esophagus inhibited myogenesis distally. Addition of fibroblast growth factor-2 (FGF-2) to the culture media failed to inhibit striated myogenesis, but attenuated smooth muscle actin expression and reduced peristaltic activity. Inhibition of c-kit failed to inhibit peristalsis. These results suggest that striated myogenic precursors are resident along the entire length of the esophagus by day 14.5 and do not migrate along the esophagus after E14.5. Induction of myogenesis craniocaudally appears to require physical continuity of the esophagus and is not inhibited by FGF-2. Finally, peristalsis in E14.5 esophagi appears not to be regulated by interstitial cells of Cajal.
Collapse
Affiliation(s)
- M Rishniw
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853-6401, USA
| | | | | | | | | |
Collapse
|
15
|
Rishniw M, Fisher PW, Doran RM, Meadows E, Klein WH, Kotlikoff MI. Smooth muscle persists in the muscularis externa of developing and adult mouse esophagus. J Muscle Res Cell Motil 2007; 28:153-65. [PMID: 17638088 DOI: 10.1007/s10974-007-9112-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Accepted: 06/25/2007] [Indexed: 12/26/2022]
Abstract
Following initial patterning as differentiated smooth muscle (SM) cells, the muscularis externa of the murine esophagus is replaced by skeletal muscle, but the mechanism underlying this process is controversial. The hypothesis that committed SM cells transdifferentiate into striated muscle is not consistent with fate mapping studies. Similarly, apoptosis does not fully explain the process. Using immunohistochemical techniques and transgenic mice that express eGFP and Cre-recombinase exclusively in SM, we have identified a population of remnant SM cells that persist throughout the developing and mature murine esophagus. These cells display an atypical phenotype, are not associated with microvasculature, but are often apposed to cKit positive, interstitial cells of Cajal. The absolute length of the SM component of the developing esophagus remains constant during a period when total esophageal length increases 4-fold, resulting in a small maintained distal segment of smooth muscle. Esophageal SM cells fail to express myogenin during development, and striated muscle cell precursors expressing myogenin fail to express specific SM cell markers, indicating that they did not transdifferentiate from SM cells. Moreover, smooth muscle-specific myogenin inactivation has no effect on esophageal skeletal myogenesis. Taken together, our results provide an alternative hypothesis regarding the fate of SM cells in the developing murine esophagus, which does not invoke apoptosis or transdifferentiation.
Collapse
Affiliation(s)
- Mark Rishniw
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, T4 018 VRT, Box 11, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
16
|
Verreijdt L, Debiais-Thibaud M, Borday-Birraux V, Van der Heyden C, Sire JY, Huysseune A. Expression of thedlx gene family during formation of the cranial bones in the zebrafish (Danio rerio): Differential involvement in the visceral skeleton and braincase. Dev Dyn 2006; 235:1371-89. [PMID: 16534783 DOI: 10.1002/dvdy.20734] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We have used dlx genes to test the hypothesis of a separate developmental program for dermal and cartilage bones within the neuro- and splanchnocranium by comparing expression patterns of all eight dlx genes during cranial bone formation in zebrafish from 1 day postfertilization (dPF) to 15 dPF. dlx genes are expressed in the visceral skeleton but not during the formation of dermal or cartilage bones of the braincase. The spatiotemporal expression pattern of all the members of the dlx gene family, support the view that dlx genes impart cellular identity to the different arches, required to make arch-specific dermal bones. Expression patterns seemingly associated with cartilage (perichondral) bones of the arches, in contrast, are probably related to ongoing differentiation of the underlying cartilage rather than with differentiation of perichondral bones themselves. Whether dlx genes originally functioned in the visceral skeleton only, and whether their involvement in the formation of neurocranial bones (as in mammals) is secondary, awaits clarification.
Collapse
Affiliation(s)
- L Verreijdt
- Ghent University, Biology Department, Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
17
|
Wörl J, Neuhuber WL. Ultrastructural analysis of the smooth-to-striated transition zone in the developing mouse esophagus: emphasis on apoptosis of smooth and origin and differentiation of striated muscle cells. Dev Dyn 2005; 233:964-82. [PMID: 15918172 DOI: 10.1002/dvdy.20436] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The exact mechanism of smooth-to-striated muscle conversion in the mouse esophagus is controversial. Smooth-to-striated muscle cell transdifferentiation vs. distinct differentiation pathways for both muscle types were proposed. Main arguments for transdifferentiation were the failure to detect apoptotic smooth and the unknown origin of striated muscle cells during esophageal myogenesis. To reinvestigate this issue, we analyzed esophagi of 4-day-old mice by electron microscopy and a fine-grained sampling strategy considering that, in perinatal esophagus, the replacement of smooth by striated muscle progresses craniocaudally, while striated myogenesis advances caudocranially. We found numerous (1) apoptotic smooth muscle cells located mainly in a transition zone, where smooth intermingled with developing striated muscle cells, and (2) mesenchymal cells in the smooth muscle portion below the transition zone, which appeared to give rise to striated muscle fibers. Taken together, these results provide further evidence for distinct differentiation pathways of both muscle types during esophagus development.
Collapse
Affiliation(s)
- Jürgen Wörl
- Anatomy Institute, University of Erlangen-Nuremberg, Erlangen, Germany.
| | | |
Collapse
|
18
|
Wörl J, Neuhuber WL. Enteric co-innervation of motor endplates in the esophagus: state of the art ten years after. Histochem Cell Biol 2005; 123:117-30. [PMID: 15729553 DOI: 10.1007/s00418-005-0764-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2004] [Indexed: 01/26/2023]
Abstract
The existence of a distinct ganglionated myenteric plexus between the two layers of the striated tunica muscularis of the mammalian esophagus represented an enigma for quite a while. Although an enteric co-innervation of vagally innervated motor endplates in the esophagus has been repeatedly suggested, it was not possible until recently to demonstrate this dual innervation. Ten years ago, we were able to demonstrate that motor endplates in the rat esophagus receive a dual innervation from both vagal nerve fibers originating in the brain stem and from varicose enteric nerve fibers originating in the myenteric plexus. Since then, a considerable amount of data could be raised on enteric co-innervation and its occurrence in a variety of species, including humans, its neurochemistry, spatial relationships on motor endplates, ontogeny, and possible roles during esophageal peristalsis. These data underline the significance of this newly discovered innervation component, although its function is still largely unknown. The aim of this review is to summarize current knowledge about enteric co-innervation of esophageal striated muscle and to provide some hints as to its functional significance.
Collapse
Affiliation(s)
- Jürgen Wörl
- Anatomy Institute, University of Erlangen-Nuremberg, Krankenhausstrasse 9, D-91054, Erlangen, Germany.
| | | |
Collapse
|
19
|
Reddy T, Kablar B. Evidence for the involvement of neurotrophins in muscle transdifferentiation and acetylcholine receptor transformation in the esophagus ofMyf5−/−:MyoD−/−andNT-3−/−embryos. Dev Dyn 2004; 231:683-92. [PMID: 15497153 DOI: 10.1002/dvdy.20165] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The primary aim of our study was to determine whether the esophageal innervation (i.e., vagal and enteric) and the skeletal muscle-secreted neurotrophins have a role in smooth-to-skeletal muscle transdifferentiation and in the muscarinic-to-nicotinic acetylcholine receptor type transition. To that end, we used genetically engineered embryos and immunohistochemistry. We found that, in the absence of Myf5 and MyoD, the esophageal muscle cells failed to develop the striated phenotype of acetylcholine receptors. In addition, the development of vagal and enteric innervation was delayed in Myf5(-/-):MyoD(-/-) and NT-3(-/-) mutants, but it was reestablished 2 days before the end of gestation. The smooth muscle cells in the esophagus appeared to be a distinct subpopulation of cells and their ability to transdifferentiate was based on their competence to express neurotrophins and their receptors. Finally, our data suggest a role for NT-3 in the esophageal muscle transdifferentiation.
Collapse
Affiliation(s)
- Tyler Reddy
- Dalhousie University, Department of Anatomy and Neurobiology, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
20
|
Sumiyoshi H, Mor N, Lee SY, Doty S, Henderson S, Tanaka S, Yoshioka H, Rattan S, Ramirez F. Esophageal muscle physiology and morphogenesis require assembly of a collagen XIX-rich basement membrane zone. ACTA ACUST UNITED AC 2004; 166:591-600. [PMID: 15302855 PMCID: PMC2172222 DOI: 10.1083/jcb.200402054] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Collagen XIX is an extremely rare extracellular matrix component that localizes to basement membrane zones and is transiently expressed by differentiating muscle cells. Characterization of mice harboring null and structural mutations of the collagen XIX (Col19a1) gene has revealed the critical contribution of this matrix protein to muscle physiology and differentiation. The phenotype includes smooth muscle motor dysfunction and hypertensive sphincter resulting from impaired swallowing-induced, nitric oxide–dependent relaxation of the sphincteric muscle. Muscle dysfunction was correlated with a disorganized matrix and a normal complement of enteric neurons and interstitial cells of Cajal. Mice without collagen XIX exhibit an additional defect, namely impaired smooth-to-skeletal muscle cell conversion in the abdominal segment of the esophagus. This developmental abnormality was accounted for by failed activation of myogenic regulatory factors that normally drive esophageal muscle transdifferentiation. Therefore, these findings identify collagen XIX as the first structural determinant of sphincteric muscle function, and as the first extrinsic factor of skeletal myogenesis in the murine esophagus.
Collapse
Affiliation(s)
- Hideaki Sumiyoshi
- Research Division of the Hospital for Special Surgery at the Weill College of Medicine of Cornell University, New York, NY 10019, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Breuer C, Neuhuber WL, Wörl J. Development of neuromuscular junctions in the mouse esophagus: Morphology suggests a role for enteric coinnervation during maturation of vagal myoneural contacts. J Comp Neurol 2004; 475:47-69. [PMID: 15176084 DOI: 10.1002/cne.20156] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The time course of establishment of motor endplates and the subsequent developmental changes in their enteric and vagal innervation were examined in esophageal striated muscle of perinatal and adult C57/Bl6 mice by using immunocytochemistry and confocal laser scanning microscopy. Nicotinic acetylcholine receptors were visualized with alpha-bungarotoxin; vagal motor nerve terminals with antisera against vesicular acetylcholine transporter; and enteric nerve fibers with antisera against neuronal nitric oxide synthase, vasoactive intestinal peptide, and galanin. Because the various stages of esophageal striated myogenesis advance caudocranially, i.e., more mature stages are found cranial to immature stages, longitudinal cryosections through the esophagus were investigated. Synaptogenesis was divided into several distinct stages. 1) Mononucleated cells express acetylcholine receptors over their entire surface. 2) They start to cluster receptors without nerve fiber contacts. 3) The first nerve contact on a growing receptor cluster is made by a vagal nerve terminal, followed by an enteric terminal. 4) Vagal terminals grow until they match the size of endplate areas, and one to three enteric terminals intertwine with them on every receptor cluster. 5) After vagal terminals have covered the whole endplate area, enteric terminals are withdrawn from the majority of motor endplates. In a minority of endplates, enteric coinnervation persists through adulthood. The enteric innervation of all developing motor endplates, shortly after vagal terminals have contacted them, and the removal of enteric nerve fibers from the majority of mature motor endplates suggest a major role of enteric nerve fibers during maturation of esophageal neuromuscular junctions.
Collapse
Affiliation(s)
- Christian Breuer
- Anatomy Institute, University of Erlangen-Nuremberg, Krankenhausstrasse 9, D-91054 Erlangen, Germany
| | | | | |
Collapse
|
22
|
Weir AP, Morgan JE, Davies KE. A-utrophin up-regulation in mdx skeletal muscle is independent of regeneration. Neuromuscul Disord 2004; 14:19-23. [PMID: 14659408 DOI: 10.1016/j.nmd.2003.09.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Duchenne muscular dystrophy is a fatal childhood disease caused by mutations that abolish the expression of dystrophin in muscle. Utrophin is a paralogue of dystrophin and can functionally replace it in skeletal muscle. A method to induce utrophin up-regulation in muscle should therefore be therapeutically useful in Duchenne muscular dystrophy. The search for such a method needs to be informed by an understanding of the mechanisms controlling utrophin expression in muscle. Two full length utrophin isoforms are expressed: A and B. A-utrophin is up-regulated in dystrophin deficient skeletal muscle and we sought to test the hypothesis that this up-regulation occurs as a consequence of ongoing regeneration. We measured utrophin expression by immunohistochemistry and immunoblotting in the oesophageal outer muscular layer and in gamma-irradiated limb muscle from mdx mice. Skeletal muscle in these tissues is dystrophin deficient but not regenerating; we found that A-utrophin up-regulation still occurred. We conclude that utrophin up-regulation in skeletal muscle does not depend on regeneration. An alternative hypothesis involving competition for binding sites between utrophin and dystrophin is discussed. These results have important implications for future studies aiming to effect therapeutic utrophin up-regulation in Duchenne muscular dystrophy patients.
Collapse
Affiliation(s)
- Andrew P Weir
- Department of Human Anatomy and Genetics, University of Oxford, South Parks Rd, Oxford, UK
| | | | | |
Collapse
|
23
|
Rishniw M, Xin HB, Deng KY, Kotlikoff MI. Skeletal myogenesis in the mouse esophagus does not occur through transdifferentiation. Genesis 2003; 36:81-2. [PMID: 12820168 DOI: 10.1002/gene.10198] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To determine the developmental history of murine esophageal skeletal muscle, smooth muscle cells were fate mapped by lineage-specific recombination and phenotypically marked by eGFP. Examination of embryonic and postnatal tissues revealed that esophageal skeletal muscle does not arise from transdifferentiation of committed smooth muscle cells.
Collapse
|
24
|
Rumessen JJ, Vanderwinden JM. Interstitial Cells in the Musculature of the Gastrointestinal Tract: Cajal and Beyond. ACTA ACUST UNITED AC 2003; 229:115-208. [PMID: 14669956 DOI: 10.1016/s0074-7696(03)29004-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Expression of the receptor tyrosine kinase KIT on cells referred to as interstitial cells of Cajal (ICC) has been instrumental during the past decade in the tremendous interest in cells in the interstitium of the smooth muscle layers of the digestive tract. ICC generate the pacemaker component (electrical slow waves of depolarization) of the smooth musculature and are involved in neurotransmission. By integration of ICC functions, substantial progress has been made in our understanding of the neuromuscular control of gastrointestinal motility, opening novel therapeutic perspectives. In this article, the ultrastructure and light microscopic morphology, as well as the functions and the development of ICC and of neighboring fibroblast-like cells (FLC), are critically reviewed. Directions for future research are considered and a unifying concept of mesenchymal cells, either KIT positive (the "ICC") or KIT negative "non-Cajal" (including the FLC and possibly also other cell types) cell types in the interstitium of the smooth musculature of the gastrointestinal tract, is proposed. Furthermore, evidence is accumulating to suggest that, as postulated by Santiago Ramon y Cajal, the concept of interstitial cells is not likely to be restricted to the gastrointestinal musculature.
Collapse
Affiliation(s)
- Jüri J Rumessen
- Department of Gastroenterology, Hvidovre Hospital, Hvidovre, Denmark
| | | |
Collapse
|
25
|
Boreham MK, Wai CY, Miller RT, Schaffer JI, Word RA. Morphometric properties of the posterior vaginal wall in women with pelvic organ prolapse. Am J Obstet Gynecol 2002; 187:1501-8; discussion 1508-9. [PMID: 12501053 DOI: 10.1067/mob.2002.130005] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Our purpose was to analyze the morphometric properties of the posterior vaginal wall and compare the smooth muscle distribution in the posterior vaginal muscularis in women with and without pelvic organ prolapse. STUDY DESIGN Specimens were taken from the apex of the posterior vaginal wall after hysterectomy from 15 women with pelvic organ prolapse and from 8 healthy control subjects. Smooth muscle cells of the posterior vaginal wall were identified by immunohistochemistry with antibodies to smooth muscle alpha-actin. Morphometric analysis was performed on histologic cross-sections of the posterior vaginal wall to determine the fractional area of nonvascular smooth muscle in the muscularis. The innervation pattern of the vaginal wall was determined by use of S100 immunostaining. Statistical comparisons between two groups were conducted by a Student t test. Comparisons between multiple groups were conducted with a one-way analysis of variance followed by a post-hoc Student-Neuman-Keuls test. RESULTS The fractional area of nonvascular vaginal smooth muscle in the muscularis of women with posterior wall prolapse was significantly decreased compared with that of healthy control subjects. Nerve bundles were located in the deep vaginal muscularis and adventitia of the posterior vaginal wall. In women with posterior wall prolapse, nerve bundles were smaller and fewer in number. CONCLUSION Morphologic features of the posterior vaginal wall are significantly altered in women with posterior wall prolapse compared with asymptomatic control subjects.
Collapse
Affiliation(s)
- Muriel K Boreham
- Division of Urogynecology and Reconstructive Pelvic Surgery, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas 75390, USA.
| | | | | | | | | |
Collapse
|
26
|
Grounds MD, White JD, Rosenthal N, Bogoyevitch MA. The role of stem cells in skeletal and cardiac muscle repair. J Histochem Cytochem 2002; 50:589-610. [PMID: 11967271 DOI: 10.1177/002215540205000501] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In postnatal muscle, skeletal muscle precursors (myoblasts) can be derived from satellite cells (reserve cells located on the surface of mature myofibers) or from cells lying beyond the myofiber, e.g., interstitial connective tissue or bone marrow. Both of these classes of cells may have stem cell properties. In addition, the heretical idea that post-mitotic myonuclei lying within mature myofibers might be able to re-form myoblasts or stem cells is examined and related to recent observations for similar post-mitotic cardiomyocytes. In adult hearts (which previously were not considered capable of repair), the role of replicating endogenous cardiomyocytes and the recruitment of other (stem) cells into cardiomyocytes for new cardiac muscle formation has recently attracted much attention. The relative contribution of these various sources of precursor cells in postnatal muscles and the factors that may enhance stem cell participation in the formation of new skeletal and cardiac muscle in vivo are the focus of this review. We concluded that, although many endogenous cell types can be converted to skeletal muscle, the contribution of non-myogenic cells to the formation of new postnatal skeletal muscle in vivo appears to be negligible. Whether the recruitment of such cells to the myogenic lineage can be significantly enhanced by specific inducers and the appropriate microenvironment is a current topic of intense interest. However, dermal fibroblasts appear promising as a realistic alternative source of exogenous myoblasts for transplantation purposes. For heart muscle, experiments showing the participation of bone marrow-derived stem cells and endothelial cells in the repair of damaged cardiac muscle are encouraging.
Collapse
Affiliation(s)
- Miranda D Grounds
- Department of Anatomy & Human Biology, The University of Western Australia, Crawley, Western Australia.
| | | | | | | |
Collapse
|
27
|
Zhao W, Dhoot GK. Development and composition of skeletal muscle fibres in mouse oesophagus. J Muscle Res Cell Motil 2001; 21:463-73. [PMID: 11129437 DOI: 10.1023/a:1005617419247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The development of skeletal muscle in mouse oesophagus was investigated by studying the expression of skeletal muscle type myosin heavy chain (MHC), troponin I (TnI) and tropoinin T (TnT) using immunocytochemical and immunoblotting procedures. Both slow and fast muscle fibres were first detected in outer layer muscularis externa of cranial oesophagus at 14 days gestation. The fast MHC was present in all skeletal muscle fibres of oesophagus while the slow MHC was restricted to only a subset of myotubes during foetal development, indicating that slow and fast fibres emerged during early stages of myogenesis. A small number of cells expressed both slow and fast MHCs in the caudal region of adult mouse oesophagus, suggesting that some muscle fibres did not differentiate fully even in the adult. The conversion of some muscle fibre types, from slow to fast, was apparent during postnatal development. This was indicated by a gradual reduction in the number of slow MHC positive fibres during postnatal growth. The complete suppression of slow MHC was observed in cranial oesophagus by 4 weeks of age. However, the persistence of some slow MHC in the caudal oesophagus was apparent even in the adult. The conversion of muscle fibres from slow to fast type was also evidenced by immunoblotting study of fast and slow TnI. The expression level of slow TnI decreased while that of fast TnI increased during neonatal growth period. Compared with the limb skeletal muscles, the onset of the adult fast TnT isoform expression was delayed in mouse oesophagus and its developmental isoforms were not completely suppressed in the adult, although their expression level was reduced.
Collapse
Affiliation(s)
- W Zhao
- Department of Veterinary Basic Sciences, The Royal Veterinary College, London
| | | |
Collapse
|
28
|
Abstract
Mouse esophageal muscle is composed of skeletal muscle in the adult, but it has been proposed to be derived from differentiated smooth muscle cells by transdifferentiation during late fetal and early postnatal development (Patapoutian et al. [1995] Science 270:1818-1821). We characterize skeletal muscle precursors in mouse esophagus by investigating the expression of four myogenic regulatory factor transcripts: MyoD, Myf-5, myogenin, and MRF4. Myf-5 was first detected at cranial region of esophageal muscle at 12-13 days of gestation, followed by coexpression of MyoD and MRF4 at 14 days of gestation, and myogenin at embryonic day 15. The expression of these myogenic factors showed outer to inner layer and cranial to caudal progression during fetal and early postnatal development of mouse esophagus. The early appearance of myogenic regulatory factors starting at 12-13 days of gestation indicates that the cells in the mouse esophageal wall are committed to become skeletal muscle-type cells before any differentiated smooth or skeletal muscle cells are observed at 14-15 days of gestation.
Collapse
Affiliation(s)
- W Zhao
- Department of Veterinary Basic Sciences, The Royal Veterinary College, London, United Kingdom
| | | |
Collapse
|