1
|
Ali LMA, Gary-Bobo M. Photochemical Internalization of siRNA for Cancer Therapy. Cancers (Basel) 2022; 14:cancers14153597. [PMID: 35892854 PMCID: PMC9331967 DOI: 10.3390/cancers14153597] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary The objective of this review is to focus on the different nanovectors capable of transporting genetic material such as small-interfering RNA (siRNA) in order to block the expression of genes responsible for the development of cancer. Usually, these nanovectors are internalized by cancer cells via the endo-lysosomal pathway. To increase the lysosomal cargo escape, excitation using a lamp or a laser, can be applied to induce a more efficient leakage of siRNA to the cytoplasm, which is the site of action of the siRNA to block the translation of RNA into proteins. This is the mechanism of photochemical internalization. Abstract In the race to design ever more effective therapy with ever more focused and controlled actions, nanomedicine and phototherapy seem to be two allies of choice. Indeed, the use of nanovectors making it possible to transport and protect genetic material is becoming increasingly important. In addition, the use of a method allowing the release of genetic material in a controlled way in space and time is also a strategy increasingly studied thanks to the use of lasers. In parallel, the use of interfering RNA and, more particularly, of small-interfering RNA (siRNA) has demonstrated significant potential for gene therapy. In this review, we focused on the design of the different nanovectors capable of transporting siRNAs and releasing them so that they can turn off the expression of deregulated genes in cancers through controlled photoexcitation with high precision. This mechanism, called photochemical internalization (PCI), corresponds to the lysosomal leakage of the cargo (siRNA in this case) after destabilization of the lysosomal membrane under light excitation.
Collapse
Affiliation(s)
- Lamiaa Mohamed Ahmed Ali
- IBMM, University Montpellier, CNRS, ENSCM, 34093 Montpellier, France;
- Department of Biochemistry, Medical Research Institute, University of Alexandria, Alexandria 21561, Egypt
- Correspondence:
| | - Magali Gary-Bobo
- IBMM, University Montpellier, CNRS, ENSCM, 34093 Montpellier, France;
| |
Collapse
|
2
|
Polli JR, Chen P, Bordeau BM, Balthasar JP. Targeted Delivery of Endosomal Escape Peptides to Enhance Immunotoxin Potency and Anti-cancer Efficacy. AAPS J 2022; 24:47. [PMID: 35338415 PMCID: PMC9044403 DOI: 10.1208/s12248-022-00698-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/05/2022] [Indexed: 01/10/2023] Open
Abstract
This work describes use of anti-carcinoembryonic antigen antibodies (10H6, T84.66) for targeted delivery of an endosomal escape peptide (H6CM18) and gelonin, a type I ribosome inactivating protein. The viability of colorectal cancer cells (LS174T, LoVo) was assessed following treatment with gelonin or gelonin immunotoxins, with or without co-treatment with T84.66-H6CM18. Fluorescent microscopy was used to visualize the escape of immunoconjugates from endosomes of treated cells, and efficacy and toxicity were assessed in vivo in xenograft tumor-bearing mice following single- and multiple-dose regimens. Application of 25 pM T84.66-H6CM18 combined with T84.66-gelonin increased gelonin potency by ~ 1,000-fold and by ~ 6,000-fold in LS174T and LoVo cells. Intravenous 10H6-gelonin at 1.0 mg/kg was well tolerated by LS174T tumor-bearing mice, while 10 and 25 mg/kg doses led to signs of toxicity. Single-dose administration of PBS, gelonin conjugated to T84.66 or 10H6, T84.66-H6CM18, or gelonin immunotoxins co-administered with T84.66-H6CM18 were evaluated. The combinations of T84.66-gelonin + 1.0 mg/kg T84.66-H6CM18 and 10H6-gelonin + 0.1 mg/kg T84.66-H6CM18 led to significant delays in LS174T growth. Use of a multiple-dose regimen allowed further anti-tumor effects, significantly extending median survival time by 33% and by 69%, for mice receiving 1 mg/kg 10H6-gelonin + 0.1 mg/kg T84.66-H6CM18 (p = 0.0072) and 1 mg/kg 10H6-gelonin + 1 mg/kg T84.66-H6CM18 (p = 0.0017). Combined administration of gelonin immunoconjugates with antibody-targeted endosomal escape peptides increased the delivery of gelonin to the cytoplasm of targeted cells, increased gelonin cell killing in vitro by 1,000-6,000 fold, and significantly increased in vivo efficacy.
Collapse
Affiliation(s)
- Joseph Ryan Polli
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, 14214, USA
| | - Ping Chen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, 14214, USA
| | - Brandon M Bordeau
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, 14214, USA
| | - Joseph P Balthasar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, 14214, USA.
| |
Collapse
|
3
|
Jerjes W, Hamdoon Z, Berg K, Høgset A, Hopper C. Squamous cell carcinoma of the ear treated by photochemical internalization. Photodiagnosis Photodyn Ther 2021; 36:102528. [PMID: 34509683 DOI: 10.1016/j.pdpdt.2021.102528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/30/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
A 77-year-old Caucasian male was diagnosed with squamous cell cancer of the right ear. The patient elected to take part in the first-in-man phase I TPCS2a based bleomycin photochemical internalization (PCI). On Day 0, The patient received the photosensitiser [Amphinex (TPCS2a)], by slow intravenous injection. Four days later, surface illumination based (PCI) was implemented 3 h after the slow infusion of Bleomycin. Four weeks following the infusion of the photosensitiser, the cancerous area turned into black rigid mass with clear demarcation from the macroscopically normal skin. The size of the treated area has been substantially reduced. Histopathologic assessment of the excised necrotic mass revealed no viable tumour and the excised margins (PCI-treated margins) were tumour-free. This case was a clear indication that PCI is a clinically relevant technique that has potential in the treatment of such cancers to avoid radical intervention.
Collapse
Affiliation(s)
- Waseem Jerjes
- North End Medical Centre, London, UK; UCL Medical School, London, UK.
| | - Zaid Hamdoon
- College of Dental Medicine, University of Sharjah, United Arab Emirates; Unit of OMFS, UCL Eastman Dental Institute, London, UK
| | - Kristian Berg
- Oslo University Hospital, Institute of Cancer Research, Dept. of Radiation Biology, Oslo, Norway
| | | | - Colin Hopper
- North End Medical Centre, London, UK; College of Dental Medicine, University of Sharjah, United Arab Emirates
| |
Collapse
|
4
|
Production of Recombinant Gelonin Using an Automated Liquid Chromatography System. Toxins (Basel) 2020; 12:toxins12080519. [PMID: 32823678 PMCID: PMC7472732 DOI: 10.3390/toxins12080519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 11/28/2022] Open
Abstract
Advances in recombinant DNA technology have opened up new possibilities of exploiting toxic proteins for therapeutic purposes. Bringing forth these protein toxins from the bench to the bedside strongly depends on the availability of production methods that are reproducible, scalable and comply with good manufacturing practice (GMP). The type I ribosome-inhibiting protein, gelonin, has great potential as an anticancer drug, but is sequestrated in endosomes and lysosomes. This can be overcome by combination with photochemical internalization (PCI), a method for endosomal drug release. The combination of gelonin-based drugs and PCI represents a tumor-targeted therapy with high precision and efficiency. The aim of this study was to produce recombinant gelonin (rGel) at high purity and quantity using an automated liquid chromatography system. The expression and purification process was documented as highly efficient (4.4 mg gelonin per litre induced culture) and reproducible with minimal loss of target protein (~50% overall yield compared to after initial immobilized metal affinity chromatography (IMAC)). The endotoxin level of 0.05–0.09 EU/mg was compatible with current standards for parenteral drug administration. The automated system provided a consistent output with minimal human intervention and close monitoring of each purification step enabled optimization of both yield and purity of the product. rGel was shown to have equivalent biological activity and cytotoxicity, both with and without PCI-mediated delivery, as rGelref produced without an automated system. This study presents a highly refined and automated manufacturing procedure for recombinant gelonin at a quantity and quality sufficient for preclinical evaluation. The methods established in this report are in compliance with high quality standards and compose a solid platform for preclinical development of gelonin-based drugs.
Collapse
|
5
|
Photochemical Internalization for Intracellular Drug Delivery. From Basic Mechanisms to Clinical Research. J Clin Med 2020; 9:jcm9020528. [PMID: 32075165 PMCID: PMC7073817 DOI: 10.3390/jcm9020528] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/14/2020] [Accepted: 02/01/2020] [Indexed: 02/06/2023] Open
Abstract
Photochemical internalisation (PCI) is a unique intervention which involves the release of endocytosed macromolecules into the cytoplasmic matrix. PCI is based on the use of photosensitizers placed in endocytic vesicles that, following light activation, lead to rupture of the endocytic vesicles and the release of the macromolecules into the cytoplasmic matrix. This technology has been shown to improve the biological activity of a number of macromolecules that do not readily penetrate the plasma membrane, including type I ribosome-inactivating proteins (RIPs), gene-encoding plasmids, adenovirus and oligonucleotides and certain chemotherapeutics, such as bleomycin. This new intervention has also been found appealing for intracellular delivery of drugs incorporated into nanocarriers and for cancer vaccination. PCI is currently being evaluated in clinical trials. Data from the first-in-human phase I clinical trial as well as an update on the development of the PCI technology towards clinical practice is presented here.
Collapse
|
6
|
Photochemical Internalization: Light Paves Way for New Cancer Chemotherapies and Vaccines. Cancers (Basel) 2020; 12:cancers12010165. [PMID: 31936595 PMCID: PMC7016662 DOI: 10.3390/cancers12010165] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 12/19/2022] Open
Abstract
Photochemical internalization (PCI) is a further development of photodynamic therapy (PDT). In this report, we describe PCI as a potential tool for cellular internalization of chemotherapeutic agents or antigens and systematically review the ongoing research. Eighteen published papers described the pre-clinical and clinical developments of PCI-mediated delivery of chemotherapeutic agents or antigens. The studies were screened against pre-defined eligibility criteria. Pre-clinical studies suggest that PCI can be effectively used to deliver chemotherapeutic agents to the cytosol of tumor cells and, thereby, improve treatment efficacy. One Phase-I clinical trial has been conducted, and it demonstrated that PCI-mediated bleomycin treatment was safe and identified tolerable doses of the photosensitizer disulfonated tetraphenyl chlorin (TPCS2a). Likewise, PCI was pre-clinically shown to mediate major histocompatibility complex (MHC) class I antigen presentation and generation of tumor-specific cytotoxic CD8+ T-lymphocytes (CTL) and cancer remission. A first clinical Phase I trial with the photosensitizer TPCS2a combined with human papilloma virus antigen (HPV) was recently completed and results are expected in 2020. Hence, photosensitizers and light can be used to mediate cytosolic delivery of endocytosed chemotherapeutics or antigens. While the therapeutic potential in cancer has been clearly demonstrated pre-clinically, further clinical trials are needed to reveal the true translational potential of PCI in humans.
Collapse
|
7
|
Jerjes W, Hamdoon Z, Berg K, Høgset A, Hopper C. Apparent Complete Response of a Treatment Refractory and Recurrent Squamous Cell Carcinoma Lesion to Photochemical Internalization: A Clinical Case Study. Photochem Photobiol 2020; 96:680-683. [PMID: 31901218 DOI: 10.1111/php.13210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 11/27/2019] [Indexed: 10/25/2022]
Abstract
Photochemical internalization (PCI) depends on the delivery of sublethal photodynamic reaction to facilitate the work of a chemotherapeutic agent. We discuss our experience in managing a patient with extensive squamous cell carcinoma of the right face and scalp under the TPCS2a -based bleomycin PCI treatment protocol. In this case, an 84-year-old Caucasian received 0.25 mg kg-1 of TPCS2a (Amphinex® , PCI Biotech AS, Oslo, Norway). Surface illumination photochemical internalization was carried out after 4 days, which was preceded by the chemotherapeutic agent infusion (Bleomycin). After one week from the illumination time, tissue necrosis was evident and tumor shrinkage was most noticeable at day 14 postillumination. Follow-up at 6 weeks continued to show tissue healing and regeneration with no clinical evidence of recurrence. Multiple surgical biopsies were taken at 1 and 3 months postillumination and found to be tumor free. PCI's depth of effect has been very significant with negligible damage to the collateral tissues. This technology has a role in interventional oncology especially when managing challenging cases.
Collapse
Affiliation(s)
- Waseem Jerjes
- UCL Medical School, London, UK.,North End Medical Centre, London, UK
| | - Zaid Hamdoon
- Unit of OMFS, UCL Eastman Dental Institute, London, UK.,College of Dental Medicine, University of Sharjah, Sharjah, UAE
| | - Kristian Berg
- Department of Radiation Biology, Oslo University Hospital, Institute of Cancer Research, Oslo, Norway
| | | | - Colin Hopper
- UCL Medical School, London, UK.,Unit of OMFS, UCL Eastman Dental Institute, London, UK
| |
Collapse
|
8
|
Soe TH, Nanjo T, Watanabe K, Ohtsuki T. Relation of Photochemical Internalization to Heat, pH and Ca 2+ Ions. Photochem Photobiol 2019; 95:1395-1402. [PMID: 31359440 DOI: 10.1111/php.13146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/26/2019] [Indexed: 12/18/2022]
Abstract
The inefficient endosomal escape of drugs or macromolecules is a major obstacle to achieving successful delivery to therapeutic targets. An efficient approach to circumvent this barrier is photochemical internalization (PCI), which uses light and photosensitizers for endosomal escape of the delivered macromolecules. The PCI mechanism is related to photogenerated singlet oxygen, but the mechanism is still unclear. In this study, we examined the relation of PCI to heat, pH and Ca2+ ions using cell penetrating peptide (CPP)-cargo-photosensitizer (Alexa546 or Alexa633) conjugates. A cell temperature changing experiment demonstrated that heat (thermal mechanism) does not significantly contribute to the photoinduced endosomal escape. Inhibition of V-ATPase proton pump activity and endosomal pH upregulation indicated that PCI-mediated endosomal escape needs endosomal acidification prior to photoirradiation. Imaging of the CPP-cargo-photosensitizer and Ca2+ ions during photostimulation showed that intracellular calcium increase is not the cause of the endosomal escape of the complex. The increment is mainly due to Ca2+ influx. These findings show the importance of extra- and intracellular milieu conditions in the PCI mechanism and enrich our understanding of PCI-related changes in cell.
Collapse
Affiliation(s)
- Tet Htut Soe
- Department of Medical Bioengineering, Okayama University, Okayama, Japan
| | - Tomotaka Nanjo
- Department of Medical Bioengineering, Okayama University, Okayama, Japan
| | - Kazunori Watanabe
- Department of Medical Bioengineering, Okayama University, Okayama, Japan.,Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Takashi Ohtsuki
- Department of Medical Bioengineering, Okayama University, Okayama, Japan.,Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| |
Collapse
|
9
|
Jerjes W, Hamdoon Z, Berg K, Høgset A, Hopper C. Recurrent chondroblastic osteosarcoma of the right mandible subjected to photochemical internalization. Photodiagnosis Photodyn Ther 2019; 27:288-290. [PMID: 31252139 DOI: 10.1016/j.pdpdt.2019.06.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 06/24/2019] [Indexed: 11/17/2022]
Affiliation(s)
- Waseem Jerjes
- UCL Medical School, London, UK; North End Medical Centre, London, UK.
| | - Zaid Hamdoon
- Unit of OMFS, UCL Eastman Dental Institute, London, UK; College of Dental Medicine, University of Sharjah, United Arab Emirates
| | - Kristian Berg
- Oslo University Hospital, Institute of Cancer Research, Dept. of Radiation Biology, Oslo, Norway
| | | | - Colin Hopper
- UCL Medical School, London, UK; Unit of OMFS, UCL Eastman Dental Institute, London, UK
| |
Collapse
|
10
|
Light-enhanced VEGF 121/rGel: A tumor targeted modality with vascular and immune-mediated efficacy. J Control Release 2018; 288:161-172. [PMID: 30217739 DOI: 10.1016/j.jconrel.2018.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 09/06/2018] [Accepted: 09/09/2018] [Indexed: 12/12/2022]
Abstract
Interactions between stromal cells and tumor cells pay a major role in cancer growth and progression. This is reflected in the composition of anticancer drugs which includes compounds directed towards the immune system and tumor-vasculature in addition to drugs aimed at the cancer cells themselves. Drug-based treatment regimens are currently designed to include compounds targeting the tumor stroma in addition to the cancer cells. Treatment limiting adverse effects remains, however, one of the major challenges for drug-based therapy and novel tolerable treatment modalities with diverse high efficacy on both tumor cells and stroma is therefore of high interest. It was hypothesized that the vascular targeted fusion toxin VEGF121/rGel in combination with the intracellular drug delivery technology photochemical internalization (PCI) stimulate direct cancer parenchymal cell death in addition to inhibition of tumor perfusion, and that an immune mediated response is relevant for treatment outcome. The aim of the present study was therefore to elucidate the anticancer mechanisms of VEGF121/rGel-PCI. In contrast to VEGF121/rGel monotherapy, VEGF121/rGel-PCI was found to mediate its effect through VEGFR1 and VEGFR2, and a targeted treatment effect was shown on two VEGFR1 expressing cancer cell lines. A cancer parenchymal treatment effect was further indicated on H&E stains of CT26-CL25 and 4 T1 tumors. VEGF121/rGel-PCI was shown, by dynamic contrast enhanced MRI, to induce a sustained inhibition of tumor perfusion in both tumor models. A 50% complete remission (CR) of CT26.CL25 colon carcinoma allografts was found in immunocompetent mice while no CR was detected in CT26.CL25 bearing athymic mice. In conclusion, the present report indicate VEGF121/rGel -PCI as a treatment modality with multimodal tumor targeted efficacy that should be further developed towards clinical utilization.
Collapse
|
11
|
Ali S, Muhammad S, Khurshid A, Ikram M, Maqsood M, Fisher C, Cathcart J, Lilge L. Effective phthalocyanines mediated photodynamic therapy with doxorubicin or methotrexate combination therapy at sub-micromolar concentrations in vitro. Photodiagnosis Photodyn Ther 2018; 22:51-64. [PMID: 29476826 DOI: 10.1016/j.pdpdt.2018.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 01/11/2018] [Accepted: 02/16/2018] [Indexed: 12/28/2022]
Abstract
To improve a cancer patient's quality of life, short treatment duration resulting in rapid tumour removal while sparing normal tissue are highly desirable. Photodynamic therapy (PDT) commonly applied in a single treatment, while often effective can be limited at low photosensitizer or light doses. Combination therapies can overcome the efficacy limitations while not increasing treatment-associated morbidity. Here the efficacy of combination therapy comprised of doxorubicin (DOX) or methotrexate (MTX) with Photosens mediated PDT was investigated in three cell lines in vitro, employing multiple incubation sequences. Photosense is a mixture of aluminium phthalocyanines with different sulfonation. The results demonstrated higher synergistic effects when DOX or MTX-mediated chemotherapy preceded PDT light activation by 24 h. MTX is marginally more cytotoxic than DOX, when combined with Photosens (AlPcS2-4) mediated PDT. While MTX and DOX exposure prior to AlPcS2-4 incubation may enhance mitochondrial localisation photosensitizer, the simultaneous targeting of DNA, proteins, and lipids of the combination therapies leads to the observed high cytotoxicity at sub μM drug doses.
Collapse
Affiliation(s)
- Safdar Ali
- Department of Physics, University of Swabi, Swabi, Pakistan; Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan; Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON, M5G1L7, Canada
| | - Saleh Muhammad
- Department of Physics, University of Swabi, Swabi, Pakistan
| | - Ahmat Khurshid
- Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Masroor Ikram
- Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Muhammad Maqsood
- Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan; Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON, M5G1L7, Canada
| | - Carl Fisher
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, M5G1L7, Canada
| | - Judy Cathcart
- Advanced Optical Microscopy Facility at University Health Network, 101 College Street, Toronto, ON, M5G1L7, Canada
| | - Lothar Lilge
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON, M5G1L7, Canada; Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, M5G1L7, Canada.
| |
Collapse
|
12
|
Yarani R, Shiraishi T, Nielsen PE. Effective photo-enhancement of cellular activity of fluorophore-octaarginine antisense PNA conjugates correlates with singlet oxygen formation, endosomal escape and chromophore lipophilicity. Sci Rep 2018; 8:638. [PMID: 29330463 PMCID: PMC5766568 DOI: 10.1038/s41598-017-18947-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/19/2017] [Indexed: 01/08/2023] Open
Abstract
Photochemical internalization (PCI) is a cellular drug delivery method based on the generation of light-induced reactive oxygen species (ROS) causing damage to the endosomal membrane and thereby resulting in drug release to the cytoplasm. In our study a series of antisense fluorophore octaarginine peptide nucleic acid (PNA) conjugates were investigated in terms of PCI assisted cellular activity. It is found that tetramethylrhodamine and Alexa Fluor 555 conjugated octaarginine PNA upon irradiation exhibit more than ten-fold increase in antisense activity in the HeLa pLuc705 luciferase splice correction assay. An analogous fluorescein conjugate did not show any significant enhancement due to photobleaching, and neither did an Alexa Fluor 488 conjugate. Using fluorescence microscopy a correlation between endosomal escape and antisense activity was demonstrated, and in parallel a correlation to localized formation of ROS assigned primarily to singlet oxygen was also observed. The results show that tetramethylrhodamine (and to lesser extent Alexa Fluor 555) conjugated octaarginine PNAs are as effectively delivered to the cytosol compartment by PCI as by chloroquine assisted delivery and also indicate that efficient photodynamic endosomal escape is strongly dependent on the quantum yield for photochemical singlet oxygen formation, photostability as well as the lipophilicity of the chromophore.
Collapse
Affiliation(s)
- Reza Yarani
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Takehiko Shiraishi
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter E Nielsen
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
13
|
Lund K, Olsen CE, Wong JJW, Olsen PA, Solberg NT, Høgset A, Krauss S, Selbo PK. 5-FU resistant EMT-like pancreatic cancer cells are hypersensitive to photochemical internalization of the novel endoglin-targeting immunotoxin CD105-saporin. J Exp Clin Cancer Res 2017; 36:187. [PMID: 29258566 PMCID: PMC5738190 DOI: 10.1186/s13046-017-0662-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/07/2017] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Development of resistance to 5-fluorouracil (5-FU) is a major problem in treatment of various cancers including pancreatic cancer. In this study, we reveal important resistance mechanisms and photochemical strategies to overcome 5-FU resistance in pancreatic adenocarcinoma. METHODS 5-FU resistant (5-FUR), epithelial-to-mesenchymal-like sub-clones of the wild type pancreatic cancer cell line Panc03.27 were previously generated in our lab. We investigated the cytotoxic effect of the endosomal/lysosomal-localizing photosensitizer TPCS2a (fimaporfin) combined with light (photochemical treatment, PCT) using MTS viability assay, and used fluorescence microscopy to show localization of TPCS2a and to investigate the effect of photodamage of lysosomes. Flow cytometric analysis was performed to investigate uptake of photosensitizer and to assess intracellular ROS levels. Expression and localization of LAMP1 was assessed using RT-qPCR, western blotting, and structured illumination microscopy. MTS viability assay was used to assess the effect of combinations of 5-FU, chloroquine (CQ), and photochemical treatment. Expression of CD105 was investigated using RT-qPCR, western blotting, flow cytometry, and fluorescence microscopy, and co-localization of TPCS2a and anti-CD105-saporin was assessed using microscopy. Lastly, the MTS assay was used to investigate cytotoxic effects of photochemical internalization (PCI) of the anti-CD105-immunotoxin. RESULTS The 5-FUR cell lines display hypersensitivity to PCT, which was linked to increased uptake of TPCS2a, altered lysosomal distribution, lysosomal photodamage and increased expression of the lysosomal marker LAMP-1 in the 5-FUR cells. We show that inhibition of autophagy induced by either chloroquine or lysosomal photodamage increases the sensitivity to 5-FU in the resistant cells. The three 5-FUR sub-clones overexpress Endoglin (CD105). Treatment with the immunotoxin anti-CD105-saporin alone significantly reduced the viability of the CD105-expressing 5-FUR cells, whereas little effect was seen in the CD105-negative non-resistant parental cancer cell lines. Strikingly, using the intracellular drug delivery method photochemical internalization (PCI) by combining light-controlled activation of the TPCS2a with nanomolar levels of CD105-saporin resulted in strong cytotoxic effects in the 5-FUR cell population. CONCLUSION Our findings suggested that autophagy is an important resistance mechanism against the chemotherapeutic drug 5-FU in pancreatic cancer cells, and that inhibition of the autophagy process, either by CQ or lysosomal photodamage, can contribute to increased sensitivity to 5-FU. For the first time, we demonstrate the promise of PCI-based targeting of CD105 in site-specific elimination of 5-FU resistant pancreatic cancer cells in vitro. In conclusion, PCI-based targeting of CD105 may represent a potent anticancer strategy and should be further evaluated in pre-clinical models.
Collapse
Affiliation(s)
- Kaja Lund
- Unit for Cell Signaling, Institute of Microbiology, Rikshospitalet, 0372 Oslo, Norway
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, PO Box 1112, Blindern, 0317 Oslo, Norway
| | - Cathrine Elisabeth Olsen
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
| | - Judith Jing Wen Wong
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
| | - Petter Angell Olsen
- Unit for Cell Signaling, Institute of Microbiology, Rikshospitalet, 0372 Oslo, Norway
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, PO Box 1112, Blindern, 0317 Oslo, Norway
| | - Nina Therese Solberg
- Unit for Cell Signaling, Institute of Microbiology, Rikshospitalet, 0372 Oslo, Norway
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, PO Box 1112, Blindern, 0317 Oslo, Norway
| | - Anders Høgset
- PCI Biotech AS, Ullernchaussèn 64, 0379 Oslo, Norway
| | - Stefan Krauss
- Unit for Cell Signaling, Institute of Microbiology, Rikshospitalet, 0372 Oslo, Norway
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, PO Box 1112, Blindern, 0317 Oslo, Norway
| | - Pål Kristian Selbo
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
| |
Collapse
|
14
|
Norum OJ, Fremstedal ASV, Weyergang A, Golab J, Berg K. Photochemical delivery of bleomycin induces T-cell activation of importance for curative effect and systemic anti-tumor immunity. J Control Release 2017; 268:120-127. [PMID: 29042319 DOI: 10.1016/j.jconrel.2017.10.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/09/2017] [Accepted: 10/13/2017] [Indexed: 12/27/2022]
Abstract
Photochemical internalization (PCI) is a technology to enhance intracellular drug delivery by light-induced translocation of endocytosed therapeutics into the cytosol. The aim of this study was to explore the efficacy of PCI-based delivery of bleomycin and the impact on systemic anti-tumor immunity. Mouse colon carcinoma cells (CT26.CL25), stably expressing the bacterial β-galactosidase, were inoculated into the legs of athymic or immuno-competent BALB/c mice strains. The mice were injected with the photosensitizer AlPcS2a and bleomycin (BLM) prior to tumor light exposure from a 670nm diode laser. Photochemical activation of BLM was found to induce synergistic inhibition of tumor growth as compared to the sum of the individual treatments. However, a curative effect was not observed in the athymic mice exposed to 30J/cm2 of light while >90% of the thymic mice were cured after exposure to only 15J/cm2 light. Cured thymic mice, re-challenged with CT26.CL25 tumor cells on the contralateral leg, rejected 57-100% of the tumor cells inoculated immediately and up to 2months after the photochemical treatment. T-cells from the spleen of PCI-treated mice were found to inhibit the growth of CT26.CL25 cells in naïve thymic mice with a 60% rejection rate. The results show that treatment of CT26.CL25 tumors in thymic mice by PCI of BLM induces a systemic anti-tumor immunity.
Collapse
Affiliation(s)
- Ole-Jacob Norum
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital - Radium Hospital, Montebello, 0379 Oslo, Norway; Division of Orthopaedic Surgery, Oslo University Hospital, Montebello, 0379 Oslo, Norway
| | - Ane Sofie Viset Fremstedal
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital - Radium Hospital, Montebello, 0379 Oslo, Norway
| | - Anette Weyergang
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital - Radium Hospital, Montebello, 0379 Oslo, Norway
| | - Jakub Golab
- Department of Immunology, Medical University of Warsaw, 1A Banacha Str, F building, 02-097 Warsaw, Poland
| | - Kristian Berg
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital - Radium Hospital, Montebello, 0379 Oslo, Norway.
| |
Collapse
|
15
|
Sellevold S, Peng Q, Fremstedal ASV, Berg K. Photochemical internalization (PCI) of bleomycin is equally effective in two dissimilar leiomyosarcoma xenografts in athymic mice. Photodiagnosis Photodyn Ther 2017; 20:95-106. [PMID: 28865875 DOI: 10.1016/j.pdpdt.2017.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/21/2017] [Accepted: 08/27/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Photochemical internalization (PCI) is a novel technique for delivery of active macromolecules into cancerous cells, via light activation of a specific photosensitizer and a low dose systemic drug. Numerous pre-clinical studies and one clinical trial have confirmed the treatment potential in carcinomas. Soft tissue sarcomas are rare and generally resistant to radio- and chemotherapy. Due to treatment resistance and surgical morbidity in sarcoma care, we seek to increase knowledge on PCI effects in sarcomas by studying two different, but closely related leiomyosarcomas. METHODS MES-SA and SK-LMS-1 tumours were established in the leg muscles of athymic mice. Treatment effects after AlPcS2a-PCI of bleomycin, PCI with no drug (photodynamic therapy, PDT) and control groups were evaluated by: 1) assessment of tumour growth, 2) uptake of contrast agent during MRI and 3) histopathology. RESULTS PCI of bleomycin induced a similar and significant increase in time to reach the end point in both tumour models, while neither responded to AlPcS2a-PDT. In the MES-SA tumours PCI reduced the growth rate, while in the SK-LMS-1 tumours the growth was blocked for 12days followed by exponential growth close to that of untreated tumours. SK-LMS-1 tumours were more homogenously and better vascularized than MES-SA. After PCI the vascular shutdown was more complete in the SK-LMS-1 tumours than in the MES-SA tumours. CONCLUSIONS AlPcS2a-based PCI, but not PDT, induced significant tumour growth delay in the evaluated sarcomas. Cellular responsiveness to bleomycin and tumour vascularity are identified as predictive markers for PCI treatment effects.
Collapse
Affiliation(s)
- Simen Sellevold
- Division of Orthopaedic Surgery, Oslo University Hospital, Norway; Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
| | - Qian Peng
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Norway
| | - Ane Sofie Viset Fremstedal
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
| | - Kristian Berg
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway.
| |
Collapse
|
16
|
Sultan AA, Jerjes W, Berg K, Høgset A, Mosse CA, Hamoudi R, Hamdoon Z, Simeon C, Carnell D, Forster M, Hopper C. Disulfonated tetraphenyl chlorin (TPCS2a)-induced photochemical internalisation of bleomycin in patients with solid malignancies: a phase 1, dose-escalation, first-in-man trial. Lancet Oncol 2016; 17:1217-29. [PMID: 27475428 DOI: 10.1016/s1470-2045(16)30224-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/25/2016] [Accepted: 06/02/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Photochemical internalisation, a novel minimally invasive treatment, has shown promising preclinical results in enhancing and site-directing the effect of anticancer drugs by illumination, which initiates localised chemotherapy release. We assessed the safety and tolerability of a newly developed photosensitiser, disulfonated tetraphenyl chlorin (TPCS2a), in mediating photochemical internalisation of bleomycin in patients with advanced and recurrent solid malignancies. METHODS In this phase 1, dose-escalation, first-in-man trial, we recruited patients (aged ≥18 to <85 years) with local recurrent, advanced, or metastatic cutaneous or subcutaneous malignancies who were clinically assessed as eligible for bleomycin chemotherapy from a single centre in the UK. Patients were given TPCS2a on day 0 by slow intravenous injection, followed by a fixed dose of 15 000 IU/m(2) bleomycin by intravenous infusion on day 4. After 3 h, the surface of the target tumour was illuminated with 652 nm laser light (fixed at 60 J/cm(2)). The TPCS2a starting dose was 0·25 mg/kg and was then escalated in successive dose cohorts of three patients (0·5, 1·0, and 1·5 mg/kg). The primary endpoints were safety and tolerability of TPCS2a; other co-primary endpoints were dose-limiting toxicity and maximum tolerated dose. The primary analysis was per protocol. This study is registered with ClinicalTrials.gov, number NCT00993512, and has been completed. FINDINGS Between Oct 3, 2009, and Jan 14, 2014, we recruited 22 patients into the trial. 12 patients completed the 3-month follow-up period. Adverse events related to photochemical internalisation were either local, resulting from the local inflammatory process, or systemic, mostly as a result of the skin-photosensitising effect of TPCS2a. The most common grade 3 or worse adverse events were unexpected higher transient pain response (grade 3) localised to the treatment site recorded in nine patients, and respiratory failure (grade 4) noted in two patients. One dose-limiting toxicity was reported in the 1·0 mg/kg cohort (skin photosensitivity [grade 2]). Dose-limiting toxicities were reported in two of three patients at a TPCS2a dose of 1·5 mg/kg (skin photosensitivity [grade 3] and wound infection [grade 3]); thus, the maximum tolerated dose of TPCS2a was 1·0 mg/kg. Administration of TPCS2a was found to be safe and tolerable by all patients. No deaths related to photochemical internalisation treatment occurred. INTERPRETATION TPCS2a-mediated photochemical internalisation of bleomycin is safe and tolerable. We identified TPCS2a 0·25 mg/kg as the recommended treatment dose for future trials. FUNDING PCI Biotech.
Collapse
Affiliation(s)
- Ahmed A Sultan
- Academic Unit of Oral and Maxillofacial Surgery, UCL Eastman Dental Institute, London, UK
| | - Waseem Jerjes
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Kristian Berg
- Department of Radiation Biology, Oslo University Hospital, Oslo, Norway
| | | | - Charles A Mosse
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Rifat Hamoudi
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Zaid Hamdoon
- Academic Unit of Oral and Maxillofacial Surgery, UCL Eastman Dental Institute, London, UK
| | - Celia Simeon
- Cancer Clinical Trials Unit, University College London Hospitals, London, UK
| | - Dawn Carnell
- Head and Neck Unit, University College London Hospitals, London, UK
| | - Martin Forster
- Head and Neck Unit, University College London Hospitals, London, UK; UCL Cancer Institute, London, UK
| | - Colin Hopper
- Academic Unit of Oral and Maxillofacial Surgery, UCL Eastman Dental Institute, London, UK; Head and Neck Unit, University College London Hospitals, London, UK; UCL Cancer Institute, London, UK.
| |
Collapse
|
17
|
Maurice-Duelli A, Ndoye A, Bouali S, Leroux A, Merlin JL. Enhanced Cell Growth Inhibition following PTEN Nonviral Gene Transfer Using Polyethylenimine and Photochemical Internalization in Endometrial Cancer Cells. Technol Cancer Res Treat 2016; 3:459-65. [PMID: 15453811 DOI: 10.1177/153303460400300507] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
PTEN is a tumor suppressor gene mapped on chromosome 10q23.3 and encodes a dual specificity phosphatase. PTEN has major implication in PI3 kinase (PI3K) signal transduction pathway and negatively controls PI3 phosphorylation. It has been reported to be implicated in cell cycle progression and cell death control through inhibition of PI3K-Akt signal transduction pathway and in the control of cell migration and spreading through its interaction with focal adhesion kinase. Somatic mutations of PTEN are frequently detected in several cancer types including brain, prostate and endometrium with more than 30% of tumor tissue specimens bearing PTEN mutations and/or deletions. Because of its high frequency of mutations and its important function as tumor suppressor gene, PTEN is a good candidate for gene therapy. Inducible expression of PTEN has been also reported. In cancer cells bearing PTEN abnormalities, the reversion of PTEN function by external gene transfer becomes more and more investigated in cancer treatment research. Several technologies including the photochemical internalization (PCI) and aiming at improving the transfection efficiency have been reported. PCI is an innovative procedure based on light-induced delivery of macromolecules such as DNA, proteins and other therapeutic molecules from endocytic vesicles to the cytosol of target cells. PCI has been reported to enhance the gene delivery potential of viral and nonviral vectors. The present study was designed to evaluate the influence of photochemical internalization on polyethylenimine (PEI)-mediated PTEN gene transfer and its effects on the cellular viability in Ishikawa endometrial cancer cells bearing PTEN abnormalities. PCI was found to significantly (P < 0.01) enhance PTEN mRNA expression (4.2 fold increase). Subsequently, following PEI-mediated PTEN gene transfer, the restoration of the PTEN protein expression was observed. As a consequence, significant cell growth inhibition (44%) was observed in Ishikawa endometrial cells. Using PCI for PEI-mediated PTEN gene transfer was found to further enhance PTEN mRNA and protein expression as well as PTEN-related cell growth inhibition reaching 89%.
Collapse
Affiliation(s)
- A Maurice-Duelli
- Unite de Biologie des Tumeurs, EA 3452 Universite Henri Poincare, Centre Alexis Vautrin, Avenue de Bourgogne, 54511 Vandoeuvre-les Nancy cedex, France
| | | | | | | | | |
Collapse
|
18
|
Bull-Hansen B, Berstad MB, Berg K, Cao Y, Skarpen E, Fremstedal AS, Rosenblum MG, Peng Q, Weyergang A. Photochemical activation of MH3-B1/rGel: a HER2-targeted treatment approach for ovarian cancer. Oncotarget 2016; 6:12436-51. [PMID: 26002552 PMCID: PMC4494949 DOI: 10.18632/oncotarget.3814] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 03/11/2015] [Indexed: 11/28/2022] Open
Abstract
HER2-targeted therapy has been shown to have limited efficacy in ovarian cancer despite frequent overexpression of this receptor. Photochemical internalization (PCI) is a modality for cytosolic drug delivery, currently undergoing clinical evaluation. In the present project we studied the application of PCI in combination with the HER2-targeted recombinant fusion toxin, MH3-B1/rGel, for the treatment of ovarian cancer. The SKOV-3 cell line, resistant to trastuzumab- and MH3-B1/rGel- monotherapy, was shown to respond strongly to PCI of MH3-B1/rGel to a similar extent as observed for the treatment-sensitive SK-BR-3 breast cancer cells. Extensive hydrolytic degradation of MH3-B1/rGel in acidic endocytic vesicles was indicated as the mechanism of MH3-B1/rGel resistance in SKOV-3 cells. This was shown by the positive Pearson's correlation coefficient between Alexa488-labeled MH3-B1/rGel and Lysotracker in SKOV-3 cells in contrast to the negative Pearson's correlation coefficient in SK-BR-3 cells. The application of PCI to induce the release of MH3-B1/rGel was also demonstrated to be effective on SKOV-3 xenografts. Application of PCI with MH3-B1/rGel was further found highly effective in the HER2 expressing HOC-7 and NuTu-19 ovarian cancer cell lines. The presented results warrant future development of PCI in combination with MH3-B1/rGel as a novel therapeutic approach in preclinical models of ovarian cancer.
Collapse
Affiliation(s)
- Bente Bull-Hansen
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Maria B Berstad
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Kristian Berg
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Yu Cao
- Immunopharmacology and Targeted Therapy Laboratory, Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, TX, USA.,Current address: The Scripps Research Institute, Department of Chemistry, La Jolla, CA, USA
| | - Ellen Skarpen
- Department of Biochemistry, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ane Sofie Fremstedal
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Michael G Rosenblum
- Immunopharmacology and Targeted Therapy Laboratory, Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, TX, USA
| | - Qian Peng
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Anette Weyergang
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
19
|
Peptide-mediated delivery: an overview of pathways for efficient internalization. Ther Deliv 2015; 5:1203-22. [PMID: 25491671 DOI: 10.4155/tde.14.72] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Poor cellular delivery and low bioavailability of novel potent therapeutic molecules continue to remain the bottleneck of modern cancer and gene therapy. Cell-penetrating peptides have provided immense opportunities for the intracellular delivery of bioactive cargos and have led to the first exciting successes in experimental therapy of muscular dystrophies. This review focuses on the mechanisms by which cell-penetrating peptides gain access to the cell interior and deliver cargos. Recent advances in augmenting delivery efficacy and facilitation of endosomal escape of cargo are presented, and the cell-penetrating peptide-mediated delivery of two of the most popular classes of cargo molecules, oligonucleotides and proteins, is analyzed. The arsenal of tools for oligonucleotide delivery has dramatically expanded in the last decade enabling harnessing of cell-surface receptors for targeted delivery.
Collapse
|
20
|
Martinez de Pinillos Bayona A, Moore CM, Loizidou M, MacRobert AJ, Woodhams JH. Enhancing the efficacy of cytotoxic agents for cancer therapy using photochemical internalisation. Int J Cancer 2015; 138:1049-57. [PMID: 25758607 PMCID: PMC4973841 DOI: 10.1002/ijc.29510] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 02/26/2015] [Indexed: 12/22/2022]
Abstract
Photochemical internalisation (PCI) is a technique for improving cellular delivery of certain bioactive agents which are prone to sequestration within endolysosomes. There is a wide range of agents suitable for PCI‐based delivery including toxins, oligonucleotides, genes and immunoconjugates which demonstrates the versatility of this technique. The basic mechanism of PCI involves triggering release of the agent from endolysosomes within the target cells using a photosensitiser which is selectively retained with the endolysosomal membranes. Excitation of the photosensitiser by visible light leads to disruption of the membranes via photooxidative damage thereby releasing the agent into the cytosol. This treatment enables the drugs to reach their intended subcellular target more efficiently and improves their efficacy. In this review we summarise the applications of this technique with the main emphasis placed on cancer chemotherapy.
Collapse
Affiliation(s)
| | - Caroline M Moore
- UCL Division of Surgery and Interventional Sciences, University College London, London, United Kingdom
| | - Marilena Loizidou
- UCL Division of Surgery and Interventional Sciences, University College London, London, United Kingdom
| | - Alexander J MacRobert
- UCL Division of Surgery and Interventional Sciences, University College London, London, United Kingdom
| | - Josephine H Woodhams
- UCL Division of Surgery and Interventional Sciences, University College London, London, United Kingdom
| |
Collapse
|
21
|
Bostad M, Olsen CE, Peng Q, Berg K, Høgset A, Selbo PK. Light-controlled endosomal escape of the novel CD133-targeting immunotoxin AC133-saporin by photochemical internalization - A minimally invasive cancer stem cell-targeting strategy. J Control Release 2015; 206:37-48. [PMID: 25758331 DOI: 10.1016/j.jconrel.2015.03.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 01/13/2023]
Abstract
The cancer stem cell (CSC) marker CD133 is an attractive target to improve antitumor therapy. We have used photochemical internalization (PCI) for the endosomal escape of the novel CD133-targeting immunotoxin AC133-saporin (PCIAC133-saporin). PCI employs an endocytic vesicle-localizing photosensitizer, which generates reactive oxygen species upon light-activation causing a rupture of the vesicle membranes and endosomal escape of entrapped drugs. Here we show that AC133-saporin co-localizes with the PCI-photosensitizer TPCS2a, which upon light exposure induces cytosolic release of AC133-saporin. PCI of picomolar levels of AC133-saporin in colorectal adenocarcinoma WiDr cells blocked cell proliferation and induced 100% inhibition of cell viability and colony forming ability at the highest light doses, whereas no cytotoxicity was obtained in the absence of light. Efficient PCI-based CD133-targeting was in addition demonstrated in the stem-cell-like, triple negative breast cancer cell line MDA-MB-231 and in the aggressive malignant melanoma cell line FEMX-1, whereas no enhanced targeting was obtained in the CD133-negative breast cancer cell line MCF-7. PCIAC133-saporin induced mainly necrosis and a minimal apoptotic response based on assessing cleavage of caspase-3 and PARP, and the TUNEL assay. PCIAC133-saporin resulted in S phase arrest and reduced LC3-II conversion compared to control treatments. Notably, co-treatment with Bafilomycin A1 and PCIAC133-saporin blocked LC3-II conversion, indicating a termination of the autophagic flux in WiDr cells. For the first time, we demonstrate laser-controlled targeting of CD133 in vivo. After only one systemic injection of AC133-saporin and TPCS2a, a strong anti-tumor response was observed after PCIAC133-saporin. The present PCI-based endosomal escape technology represents a minimally invasive strategy for spatio-temporal, light-controlled targeting of CD133+ cells in localized primary tumors or metastasis.
Collapse
Affiliation(s)
- Monica Bostad
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; Cancer Stem Cell Innovation Center (SFI-CAST), Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Cathrine Elisabeth Olsen
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; Cancer Stem Cell Innovation Center (SFI-CAST), Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Qian Peng
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Kristian Berg
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Anders Høgset
- Cancer Stem Cell Innovation Center (SFI-CAST), Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; PCI Biotech AS, Lysaker, Norway
| | - Pål Kristian Selbo
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; Cancer Stem Cell Innovation Center (SFI-CAST), Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
22
|
Berstad MB, Cheung LH, Berg K, Peng Q, Fremstedal ASV, Patzke S, Rosenblum MG, Weyergang A. Design of an EGFR-targeting toxin for photochemical delivery: in vitro and in vivo selectivity and efficacy. Oncogene 2015; 34:5582-92. [DOI: 10.1038/onc.2015.15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/16/2014] [Accepted: 01/02/2015] [Indexed: 12/24/2022]
|
23
|
Lund K, Bostad M, Skarpen E, Braunagel M, Kiprijanov S, Krauss S, Duncan A, Høgset A, Selbo PK. The novel EpCAM-targeting monoclonal antibody 3-17I linked to saporin is highly cytotoxic after photochemical internalization in breast, pancreas and colon cancer cell lines. MAbs 2015; 6:1038-50. [PMID: 24525727 PMCID: PMC4171007 DOI: 10.4161/mabs.28207] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The epithelial cell adhesion molecule (EpCAM) is expressed by a wide range of human carcinomas, making it an attractive diagnostic and therapeutic target in oncology. Its recent identification on cancer stem cells has raised further interest in its use for tumor targeting and therapy. Here, we present the characterization and therapeutic potential of 3-17I, a novel human EpCAM-targeting monoclonal antibody. Strong reaction of 3-17I was observed in all lung, colon, and breast human tumor biopsies evaluated. By flow cytometry and confocal fluorescence microscopy, we demonstrate that 3-17I specifically targets EpCAM-positive cell lines. We also show evidence for mAb-sequestration in endo-/lysosomes, suggesting internalization of 3-17I by receptor-mediated endocytosis. The ribosomal-inactivating toxin saporin was linked to 3-17I, creating the per se non-toxic immunotoxin 3-17I-saporin, a promising candidate for the drug delivery technology photochemical internalization (PCI). PCI is based on a light-controlled destruction of endolysosomal membranes and subsequent cytosolic release of the sequestered payload upon light exposure. EpCAM-positive human cancer cell lines MCF7 (breast), BxPC-3 (pancreas), WiDr (colon), and the EpCAM-negative COLO320DM (colon), were treated with 3-17I-saporin in combination with the clinically relevant photosensitizer TPCS2a (Amphinex), followed by exposure to light. No cytotoxicity was observed after treatment with 3-17I-saporin without light exposure. However, cell viability, proliferation and colony-forming capacity was strongly reduced in a light-dependent manner after PCI of 3-17I. Our results show that 3-17I is an excellent candidate for diagnosis of EpCAM-positive tumors and for development of clinically relevant antibody-drug conjugates, using PCI for the treatment of localized tumors.
Collapse
|
24
|
Peng PC, Hong RL, Tsai YJ, Li PT, Tsai T, Chen CT. Dual-effect liposomes encapsulated with doxorubicin and chlorin e6 augment the therapeutic effect of tumor treatment. Lasers Surg Med 2015; 47:77-87. [PMID: 25559348 DOI: 10.1002/lsm.22312] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2014] [Indexed: 01/11/2023]
Abstract
BACKGROUND AND OBJECTIVE Long circulating doxorubicin (Dox)-loaded PEGylated liposomes are clinically safer than the free form due to the significant reduction of cardiac toxicity. However, the therapeutic efficacy of the PEGylated liposome could further be improved if poor diffusivity and slow drug release of the liposome in tumor interstitium can be overcome. In this study, a dual-effect liposome triggered by photodynamic effect was developed to improve the therapeutic efficacy of Dox-loaded PEGylated liposomes. MATERIALS AND METHODS Dox and chlorin e6 (Ce6) were co-encapsulated in PEGylated liposomes (named as PL-Dox-Ce6). To induce the drug release, photodynamic effect was triggered by the light irradiation of a 662 nm diode laser. The cellular distribution of Dox and Ce6 was examined under confocal microscope. The in vitro and in vivo cytotoxicity of PL-Dox-Ce6 was determined via the colony formation assay and the synergistic C26 tumor model, respectively. RESULTS The cellular distribution of PL-Dox-Ce6 was in the cytoplasmic area; while under light irradiation, Dox was co-localized with nuclear staining positive signals. The cellular cytotoxicity of PL-Dox-Ce6 was significantly higher than the controls including liposomes encapsulating either Dox (PL-Dox) or Ce6 (PL-Ce6). The in vivo treatment efficacy of PL-Dox-Ce6 determined in the C26 tumor model reveals a significant therapeutic effect compared to that of PL-Ce6 and PL-Dox alone or in combination. CONCLUSION This study indicates that this dual-effect PEGylated liposome could provide clinical advantages in the combination regimen of photodynamic therapy and chemotherapy.
Collapse
Affiliation(s)
- Po-Chun Peng
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 106, Taiwan
| | | | | | | | | | | |
Collapse
|
25
|
Selbo PK, Bostad M, Olsen CE, Edwards VT, Høgset A, Weyergang A, Berg K. Photochemical internalisation, a minimally invasive strategy for light-controlled endosomal escape of cancer stem cell-targeting therapeutics. Photochem Photobiol Sci 2015; 14:1433-50. [DOI: 10.1039/c5pp00027k] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Despite progress in radio-, chemo- and photodynamic-therapy (PDT) of cancer, treatment resistance still remains a major problem for patients with aggressive tumours.
Collapse
Affiliation(s)
- Pål Kristian Selbo
- Department of Radiation Biology
- Institute for Cancer Research
- The Norwegian Radium Hospital
- Oslo University Hospital
- Montebello
| | - Monica Bostad
- Department of Radiation Biology
- Institute for Cancer Research
- The Norwegian Radium Hospital
- Oslo University Hospital
- Montebello
| | - Cathrine Elisabeth Olsen
- Department of Radiation Biology
- Institute for Cancer Research
- The Norwegian Radium Hospital
- Oslo University Hospital
- Montebello
| | - Victoria Tudor Edwards
- Department of Radiation Biology
- Institute for Cancer Research
- The Norwegian Radium Hospital
- Oslo University Hospital
- Montebello
| | - Anders Høgset
- Cancer Stem Cell Innovation Center (SFI-CAST)
- Institute for Cancer Research
- Norwegian Radium Hospital
- Oslo University Hospital
- Oslo
| | - Anette Weyergang
- Department of Radiation Biology
- Institute for Cancer Research
- The Norwegian Radium Hospital
- Oslo University Hospital
- Montebello
| | - Kristian Berg
- Department of Radiation Biology
- Institute for Cancer Research
- The Norwegian Radium Hospital
- Oslo University Hospital
- Montebello
| |
Collapse
|
26
|
Bostad M, Kausberg M, Weyergang A, Olsen CE, Berg K, Høgset A, Selbo PK. Light-Triggered, Efficient Cytosolic Release of IM7-Saporin Targeting the Putative Cancer Stem Cell Marker CD44 by Photochemical Internalization. Mol Pharm 2014; 11:2764-76. [DOI: 10.1021/mp500129t] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | | | | | | | | | - Anders Høgset
- PCI Biotech
AS, Strandveien 55, N-1366 Lysaker, Norway
| | | |
Collapse
|
27
|
Enhanced efficacy of bleomycin in bladder cancer cells by photochemical internalization. BIOMED RESEARCH INTERNATIONAL 2014; 2014:921296. [PMID: 25101299 PMCID: PMC4101207 DOI: 10.1155/2014/921296] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 05/29/2014] [Accepted: 05/29/2014] [Indexed: 01/18/2023]
Abstract
Bleomycin is a cytotoxic chemotherapeutic agent widely used in cancer treatment. However, its efficacy in different cancers is low, possibly due to limited cellular internalization. In this study, a novel approach known as photochemical internalization (PCI) was explored to enhance bleomycin delivery in bladder cancer cells (human T24 and rat AY-27), as bladder cancer is a potential indication for use of PCI with bleomycin. The PCI technique was mediated by the amphiphilic photosensitizer disulfonated tetraphenyl chlorin (TPCS2a) and blue light (435 nm). Two additional strategies were explored to further enhance the cytotoxicity of bleomycin; a novel peptide drug ATX-101 which is known to impair DNA damage responses, and the protease inhibitor E-64 which may reduce bleomycin degradation by inhibition of bleomycin hydrolase. Our results demonstrate that the PCI technique enhances the bleomycin effect under appropriate conditions, and importantly we show that PCI-bleomycin treatment leads to increased levels of DNA damage supporting that the observed effect is due to increased bleomycin uptake. Impairing the DNA damage responses by ATX-101 further enhances the efficacy of the PCI-bleomycin treatment, while inhibiting the bleomycin hydrolase does not.
Collapse
|
28
|
Aubertin K, Bonneau S, Silva AKA, Bacri JC, Gallet F, Wilhelm C. Impact of photosensitizers activation on intracellular trafficking and viscosity. PLoS One 2013; 8:e84850. [PMID: 24386423 PMCID: PMC3874004 DOI: 10.1371/journal.pone.0084850] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 11/19/2013] [Indexed: 11/19/2022] Open
Abstract
The intracellular microenvironment is essential for the efficiency of photo-induced therapies, as short-lived reactive oxygen species generated must diffuse through their intracellular surrounding medium to reach their cellular target. Here, by combining measurements of local cytoplasmic dissipation and active trafficking, we found that photosensitizers activation induced small changes in surrounding viscosity but a massive decrease in diffusion. These effects are the signature of a return to thermodynamic equilibrium of the system after photo-activation and correlated with depolymerization of the microtubule network, as shown in a reconstituted system. These mechanical measurements were performed with two intracellular photosensitizing chlorins having similar quantum yield of singlet oxygen production but different intracellular localizations (cytoplasmic for mTHPC, endosomal for TPCS2a). These two agents demonstrated different intracellular impact.
Collapse
Affiliation(s)
- Kelly Aubertin
- Laboratoire Matière et Systèmes Complexes (MSC), CNRS and Université Paris Diderot, Paris, France
| | - Stéphanie Bonneau
- Laboratoire Jean Perrin-CNRS, Université Pierre et Marie Curie, Paris 6, Paris, France
| | - Amanda K. A. Silva
- Laboratoire Matière et Systèmes Complexes (MSC), CNRS and Université Paris Diderot, Paris, France
| | - Jean-Claude Bacri
- Laboratoire Matière et Systèmes Complexes (MSC), CNRS and Université Paris Diderot, Paris, France
| | - François Gallet
- Laboratoire Matière et Systèmes Complexes (MSC), CNRS and Université Paris Diderot, Paris, France
| | - Claire Wilhelm
- Laboratoire Matière et Systèmes Complexes (MSC), CNRS and Université Paris Diderot, Paris, France
- * E-mail:
| |
Collapse
|
29
|
Chen H, Xiao L, Anraku Y, Mi P, Liu X, Cabral H, Inoue A, Nomoto T, Kishimura A, Nishiyama N, Kataoka K. Polyion Complex Vesicles for Photoinduced Intracellular Delivery of Amphiphilic Photosensitizer. J Am Chem Soc 2013; 136:157-63. [DOI: 10.1021/ja406992w] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Huabing Chen
- Jiangsu
Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases,
and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
- Department
of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku,
Tokyo 113-8656, Japan
| | - Ling Xiao
- Center
for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku,
Tokyo 113-0033, Japan
| | - Yasutaka Anraku
- Department
of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku,
Tokyo 113-8656, Japan
| | - Peng Mi
- Department
of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Xueying Liu
- Center
for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku,
Tokyo 113-0033, Japan
| | - Horacio Cabral
- Department
of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Aki Inoue
- Department
of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku,
Tokyo 113-8656, Japan
| | - Takahiro Nomoto
- Department
of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Akihiro Kishimura
- Department
of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku,
Tokyo 113-8656, Japan
- Center for Molecular Systems & Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Nobuhiro Nishiyama
- Center for
NanoBio Integration (CNBI), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Polymer
Chemistry Division, Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Kazunori Kataoka
- Department
of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku,
Tokyo 113-8656, Japan
- Center
for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku,
Tokyo 113-0033, Japan
- Department
of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Center for
NanoBio Integration (CNBI), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
30
|
Vikdal M, Weyergang A, Selbo PK, Berg K. Vascular endothelial cells as targets for photochemical internalization (PCI). Photochem Photobiol 2013; 89:1185-92. [DOI: 10.1111/php.12126] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 06/25/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Marie Vikdal
- Department of Radiation Biology; Institute for Cancer Research; the Norwegian Radium Hospital; Oslo University Hospital; Oslo; Norway
| | - Anette Weyergang
- Department of Radiation Biology; Institute for Cancer Research; the Norwegian Radium Hospital; Oslo University Hospital; Oslo; Norway
| | | | - Kristian Berg
- Department of Radiation Biology; Institute for Cancer Research; the Norwegian Radium Hospital; Oslo University Hospital; Oslo; Norway
| |
Collapse
|
31
|
Vikdal M, Generalov R, Berg K. The photosensitizer disulfonated aluminum phthalocyanine reduces uptake and alters trafficking of fluid phase endocytosed drugs in vascular endothelial cells--impact on efficacy of photochemical internalization. Biochem Pharmacol 2013; 86:748-58. [PMID: 23876343 DOI: 10.1016/j.bcp.2013.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/10/2013] [Accepted: 07/11/2013] [Indexed: 01/31/2023]
Abstract
Targeting cancer vasculature is an emerging field in cancer treatment. Photochemical internalization (PCI) is a drug delivery technology based on photochemical lysis of drug-bearing endocytic vesicles originally designed to target cancer cells. Recent investigations have revealed a lower PCI efficacy in vascular endothelial cells (HUVECs) in vitro than in HT1080 fibrosarcoma cells. This manuscript aims to explore the limiting factor for the PCI effect in HUVECs. Cellular uptake of the photosensitizers AlPcS(2a) and TPPS(2a), and a model compound for macromolecular drugs taken up by fluid phase endocytosis, Alexa⁴⁸⁸-dextran, was explored by flow cytometry. The uptake of AlPcS(2a) and TPPS(2a) was 3.8-fold and 37-fold higher in HUVECs than in HT1080 cells, respectively, while the Alexa⁴⁸⁸-dextran uptake was 50% lower. AlPcS(2a) (but not TPPS(2a)) was shown to reduce Alexa⁴⁸⁸-dextran uptake in a concentration-dependent manner, resulting in 66% and 33% attenuation of Alexa⁴⁸⁸-dextran uptake at 20 μg/ml AlPcS(2a) in HUVECs and HT1080 cells respectively. Studies of intracellular localization of Alexa⁴⁸⁸-dextran and AlPcS(2a) by confocal microscopy in HUVECs uncovered a concentration-dependent AlPcS(2a)-induced inhibition of Alexa⁴⁸⁸-dextran trafficking into AlPcS(2a)-stained and acidic vesicles. The localization of Alexa⁴⁸⁸-dextran to AlPcS(2a)-localizing compartments was reduced by 40% when the AlPcS(2a) concentration was increased from 5 to 20 μg/ml. The treatment dose of AlPcS(2a) was found to influence on the efficacy of PCI of saporin, but to a lesser extent than expected considering the data from cellular uptake and intracellular trafficking of Alexa⁴⁸⁸-dextran. The implications of these results for further development of vascular targeting-PCI are discussed.
Collapse
Affiliation(s)
- Marie Vikdal
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0310 Oslo, Norway
| | | | | |
Collapse
|
32
|
Photochemical internalization of CD133-targeting immunotoxins efficiently depletes sarcoma cells with stem-like properties and reduces tumorigenicity. Biochim Biophys Acta Gen Subj 2013; 1830:4235-43. [PMID: 23643966 DOI: 10.1016/j.bbagen.2013.04.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 04/22/2013] [Accepted: 04/26/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND The normal stem cell marker CD133 is also a putative marker of cancer stem cells (CSCs) in different types of cancers. Hence, a major challenge when targeting CD133-expressing CSCs is to prevent depletion of the normal stem cell pool. We hypothesized that the site-specific and light-controlled drug delivery method photochemical internalization (PCI) may have the potential to enhance selectivity and endosomal escape of CD133-targeting immunotoxins in stem-like sarcoma cells. METHODS We have used a sarcoma model, SW872 cells isolated from xenografts harboring CSCs within a ~2% CD133(high) subpopulation to investigate the potential of PCI of CD133-targeting toxin as a novel strategy to kill CSCs. Model immunotoxins were generated by binding the ribosome-inactivating protein toxin saporin to each of the monoclonal antibodies CD133/1 (AC133) or CD133/2 (293C), specific for individual CD133-epitopes. Cellular targeting, intracellular co-localization with the PCI photosensitizer, disulfonated meso-tetraphenylchlorin (TPCS2a), and cytotoxic efficacy of PCI of the CD133-targeting toxins were evaluated. RESULTS PCI of CD133-saporin efficiently targets CD133-expressing SW872 and HT1080 sarcoma cells and results in loss of cell viability. Following sub-toxic treatment, surviving SW872 cells, depleted of the CD133-expressing population, display reduced proliferative capacity and attenuated CSC properties, such as reduced colony-forming ability and tumorigenicity. CONCLUSION Here we present a proof-of-concept study, where PCI enables light-triggered delivery of CD133-targeting antibody-drug conjugates, resulting in decreased sarcoma tumor-initiating capacity. GENERAL SIGNIFICANCE PCI of CD133-targeting toxins may be used as a minimal invasive strategy in the treatment of sarcomas, and potentially as a therapeutic for other solid tumors expressing CD133.
Collapse
|
33
|
Photochemical internalization (PCI) of immunotoxins targeting CD133 is specific and highly potent at femtomolar levels in cells with cancer stem cell properties. J Control Release 2013; 168:317-26. [PMID: 23567040 DOI: 10.1016/j.jconrel.2013.03.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 03/22/2013] [Accepted: 03/24/2013] [Indexed: 12/17/2022]
Abstract
CD133 is a putative cancer stem cell (CSC) marker for a number of different cancers and is suggested to be a therapeutic target. Since also normal stem cells express CD133 it is of paramount importance that targeting strategies provide a specific and efficient delivery of cytotoxic drugs in only CD133-positive CSCs. In this study, we have employed photochemical internalization (PCI), a minimally invasive method for light-controlled, specific delivery of membrane-impermeable macromolecules from endocytic vesicles to the cytosol, to specifically target CD133-positive cancer cells. We demonstrate that PCI increases the cytotoxic effect of an immunotoxin (IT) targeting CD133-expressing cancer cells of colon (WiDr and HCT116) and pancreas (BxPC-3) origin. The IT consisted of the mAb CD133/1 (AC133) bound to the ribosome inactivating plant toxin saporin (anti-CD133/1-sap). We show that TPCS2a-PCI of anti-CD133/1-sap is specific, and highly cytotoxic at femto-molar concentrations. Specific binding and uptake of CD133/1, was shown by fluorescence microscopy and co-localization with TPCS2a in endosomes/lysosomes was determined by confocal microscopy. CD133(high) WiDr cells, isolated by fluorescence activated cell sorting, had a 7-fold higher capacity to initiate spheroids than CD133(low) cells (P<0.001) and were resistant to photodynamic therapy (PDT). However, PDT-resistance was bypassed by the PCI strategy. Tumor initiation and aggressive growth in athymic nude mice was obtained with only 10 CD133(high) cells in contrast to CD133(low) cells where substantially higher cell numbers were needed. The excellent high efficacy and selectivity of eliminating CD133-expressing cells by PCI warrant further pre-clinical evaluations of this novel therapeutic approach.
Collapse
|
34
|
Mellert K, Lamla M, Scheffzek K, Wittig R, Kaufmann D. Enhancing endosomal escape of transduced proteins by photochemical internalisation. PLoS One 2012; 7:e52473. [PMID: 23285056 PMCID: PMC3528648 DOI: 10.1371/journal.pone.0052473] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 11/14/2012] [Indexed: 12/22/2022] Open
Abstract
Induced internalisation of functional proteins into cultured cells has become an important aspect in a rising number of in vitro and in vivo assays. The endo-lysosomal entrapment of the transduced proteins remains the major problem in all transduction protocols. In this study we compared the efficiency, cytotoxicity and protein targeting of different commercially available transduction reagents by transducing a well-studied fluorescently labelled protein (Atto488-bovine serum albumin) into cultured human sarcoma cells. The amount of internalised protein and toxicity differed between the different reagents, but the percentage of transduced cells was consistently high. Furthermore, in all protocols the signals of the transduced Atto488-BSA were predominantly punctual consistent with an endosomal localisation. To overcome the endosomal entrapment, the transduction protocols were combined with a photochemical internalisation (PCI) treatment. Using this combination revealed that an endosomal disruption is highly effective in cell penetrating peptide (CPP) mediated transduction, whereas lipid-mediated transductions lead to a lower signal spreading throughout the cytosol. No change in the signal distribution could be achieved in treatments using non-lipid polymers as a transduction reagent. Therefore, the combination of protein transduction protocols based on CPPs with the endosomolytic treatment PCI can facilitate protein transduction experiments in vitro.
Collapse
Affiliation(s)
- Kevin Mellert
- Institute of Human Genetics, University of Ulm, Ulm, Germany.
| | | | | | | | | |
Collapse
|
35
|
Erazo-Oliveras A, Muthukrishnan N, Baker R, Wang TY, Pellois JP. Improving the endosomal escape of cell-penetrating peptides and their cargos: strategies and challenges. Pharmaceuticals (Basel) 2012; 5:1177-1209. [PMID: 24223492 PMCID: PMC3816665 DOI: 10.3390/ph5111177] [Citation(s) in RCA: 300] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 10/25/2012] [Accepted: 10/26/2012] [Indexed: 12/13/2022] Open
Abstract
Cell penetrating peptides (CPPs) can deliver cell-impermeable therapeutic cargos into cells. In particular, CPP-cargo conjugates tend to accumulate inside cells by endocytosis. However, they often remain trapped inside endocytic organelles and fail to reach the cytosolic space of cells efficiently. In this review, the evidence for CPP-mediated endosomal escape is discussed. In addition, several strategies that have been utilized to enhance the endosomal escape of CPP-cargos are described. The recent development of branched systems that display multiple copies of a CPP is presented. The use of viral or synthetic peptides that can disrupt the endosomal membrane upon activation by the low pH of endosomes is also discussed. Finally, we survey how CPPs labeled with chromophores can be used in combination with light to stimulate endosomal lysis. The mechanisms and challenges associated with these intracellular delivery methodologies are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Jean-Philippe Pellois
- Author to whom correspondence should be addressed; ; Tel.: +1-979-845-0101; Fax: +1-979-862-4718
| |
Collapse
|
36
|
Photochemical internalisation: the journey from basic scientific concept to the threshold of clinical application. Curr Opin Pharmacol 2012; 12:434-8. [DOI: 10.1016/j.coph.2012.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/22/2012] [Accepted: 04/24/2012] [Indexed: 12/23/2022]
|
37
|
Strongly amphiphilic photosensitizers are not substrates of the cancer stem cell marker ABCG2 and provides specific and efficient light-triggered drug delivery of an EGFR-targeted cytotoxic drug. J Control Release 2012; 159:197-203. [PMID: 22349185 DOI: 10.1016/j.jconrel.2012.02.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 01/30/2012] [Accepted: 02/04/2012] [Indexed: 01/16/2023]
Abstract
A wide range of anti-cancer drugs are substrates of the ATP-binding cassette transporter ABCG2/CD338/BCRP/MXR, which is thought to play an important role in multi-drug resistance (MDR) and protection of cancer stem cells (CSC) against chemotherapeutics and photodynamic therapy (PDT). Hence, it is of importance to develop drugs that are not substrates of ABCG2. The aim of this study was to elucidate if photosensitizers utilized for the endo-lysosomal release drug delivery method photochemical internalization (PCI) are substrates for ABCG2. The breast carcinoma cell line MA11, with a Hoechst 33342 side population of >50% was used as an ABCG2high model. The photosensitizer Pheophorbide A (PhA) and Hoechst 33342 were used as positive control substrates of ABCG2. ABCG2-inhibition by fumitremorgin C (FTC) did neither induce an increased accumulation of three different PCI-photosensitizers (di-sulfonated meso-tetraphenylporphine (TPPS(2a)), di-sulfonated meso-tetraphenylchlorin (TPCS(2a)) and di-sulfonated aluminium phtalocyanine (AlPcS(2a))) nor enhanced the photosensitization (P=0.65 for TPCS(2a)-PDT) of these PCI-based photosensitizers in the MA11 cells. The same results were also obtained with TPPS(2a) in the malignant glioma cell line U87 having a SP of ~0.1%. In contrast, both uptake and PDT-induced cytotoxicity was strongly enhanced for PhA when combined with FTC (P<0.001)). Specific and efficient light-controlled killing of EGFR+/ABCG2+ MA11 cells was obtained by PCI of the targeting toxin EGF-saporin. The novel data obtained in this study demonstrates that strongly amphiphilic photosensitizers used for PCI-based drug delivery are not substrates of ABCG2. This important findings warrant further development of the PCI technology as a strategy for efficient and site-specific eradication of MDR cells and CSC.
Collapse
|
38
|
Sekkat N, van den Bergh H, Nyokong T, Lange N. Like a bolt from the blue: phthalocyanines in biomedical optics. Molecules 2011; 17:98-144. [PMID: 22198535 PMCID: PMC6269082 DOI: 10.3390/molecules17010098] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 12/05/2011] [Accepted: 12/14/2011] [Indexed: 01/08/2023] Open
Abstract
The purpose of this review is to compile preclinical and clinical results on phthalocyanines (Pcs) as photosensitizers (PS) for Photodynamic Therapy (PDT) and contrast agents for fluorescence imaging. Indeed, Pcs are excellent candidates in these fields due to their strong absorbance in the NIR region and high chemical and photo-stability. In particular, this is mostly relevant for their in vivo activation in deeper tissular regions. However, most Pcs present two major limitations, i.e., a strong tendency to aggregate and a low water-solubility. In order to overcome these issues, both chemical tuning and pharmaceutical formulation combined with tumor targeting strategies were applied. These aspects will be developed in this review for the most extensively studied Pcs during the last 25 years, i.e., aluminium-, zinc- and silicon-based Pcs.
Collapse
Affiliation(s)
- Nawal Sekkat
- School of Pharmaceutical Sciences, University of Lausanne/Geneva, Geneva, 30, quai Ernest Ansermet, Geneva CH-1211, Switzerland
| | - Hubert van den Bergh
- Laboratory of Photomedicine, Swiss Federal Institute of Technology (EPFL), Lausanne CH-1015, Switzerland
| | - Tebello Nyokong
- Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa
| | - Norbert Lange
- School of Pharmaceutical Sciences, University of Lausanne/Geneva, Geneva, 30, quai Ernest Ansermet, Geneva CH-1211, Switzerland
- Author to whom correspondence should be addressed; ; Tel.:+41-22-379-3335; Fax: +41-22-379-6567
| |
Collapse
|
39
|
Jerjes W, Upile T, Radhi H, Hopper C. Photodynamic therapy vs. photochemical internalization: the surgical margin. HEAD & NECK ONCOLOGY 2011; 3:53. [PMID: 22192485 PMCID: PMC3284871 DOI: 10.1186/1758-3284-3-53] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 12/22/2011] [Indexed: 12/26/2022]
Abstract
Controlling tumour margins in head and neck surgery is of the utmost importance in preventing loco-regional spread and distant metastasis, which will ultimately lead to a significant reduction in morbidity and mortality. We comment on the surgical margins in photodynamic therapy and photochemical internalization.
Collapse
Affiliation(s)
- Waseem Jerjes
- UCL Department of Surgery, University College London, UK
| | | | | | | |
Collapse
|
40
|
Kerdous R, Heuvingh J, Bonneau S. Photo-dynamic induction of oxidative stress within cholesterol-containing membranes: Shape transitions and permeabilization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2965-72. [DOI: 10.1016/j.bbamem.2011.08.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 07/15/2011] [Accepted: 08/02/2011] [Indexed: 11/16/2022]
|
41
|
Weyergang A, Selbo PK, Berstad MEB, Bostad M, Berg K. Photochemical internalization of tumor-targeted protein toxins. Lasers Surg Med 2011; 43:721-33. [DOI: 10.1002/lsm.21084] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
42
|
Bøe S, Prasmickaite L, Engesæter B, Hovig E. Light-directed delivery of nucleic acids. Methods Mol Biol 2011; 764:107-121. [PMID: 21748636 DOI: 10.1007/978-1-61779-188-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A major barrier within the field of non-viral gene therapy toward therapeutic strategies, e.g., tumor therapy, has been lack of appropriate specific delivery strategies to the intended target tissues or cells. In this chapter, we describe a protocol for light-directed delivery of nucleic acids through the use of photochemical internalization (PCI) technology. PCI is based on a photosensitizing compound that localizes to endocytic membranes. Upon illumination, the photosensitizing compound induces damage to the endocytic membranes, resulting in release of endocytosed material, i.e., nucleic acids into cytosol. The main benefit of the strategy described is the possibility for site-specific delivery of nucleic acids to a place of interest.
Collapse
Affiliation(s)
- Sigurd Bøe
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, Oslo, N-0310, Norway.
| | | | | | | |
Collapse
|
43
|
Berg K, Nordstrand S, Selbo PK, Tran DTT, Angell-Petersen E, Høgset A. Disulfonated tetraphenyl chlorin (TPCS2a), a novel photosensitizer developed for clinical utilization of photochemical internalization. Photochem Photobiol Sci 2011; 10:1637-51. [DOI: 10.1039/c1pp05128h] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
44
|
Bøe SL, Longva AS, Hovig E. Cyclodextrin-containing polymer delivery system for light-directed siRNA gene silencing. Oligonucleotides 2010; 20:175-82. [PMID: 20645877 DOI: 10.1089/oli.2010.0230] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In this study, we have investigated the possibility of combining a cyclodextrin-containing polymer (CDP) with siRNA molecules to modulate gene expression in a light-directed manner through photochemical internalization (PCI) technology. We utilized S100A4 as a model gene to evaluate the efficacy of gene silencing. After optimization of carrier/cargo ratio and illumination dose, real-time reverse transcriptase-polymerase chain reaction data showed between 80% and 90% silencing in the siRNA samples treated with PCI compared with untreated control. In contrast, only a 0%-10% silencing effect was detected in the siRNA samples without PCI treatment, demonstrating the potency of light-specific delivery of siRNA molecules. Light-directed siRNA delivery was shown in 2 different cell lines with corresponding potency. Further, time-lapse results demonstrated maximum gene silencing only at 5 hours after endosomal release, implying, for example, rapid carrier decondensation when using the CDP. This work represents a first success in using a CDP delivery agent, without endosomolytic properties for siRNA gene silencing in a light-directed manner, opening the opportunity to use CDPs for light-directed siRNA gene silencing in vivo.
Collapse
Affiliation(s)
- Sigurd Leinaes Bøe
- Department of Tumor Biology, Institute of Cancer Research, The Norwegian Radium Hospital, Montebello, Oslo, Norway.
| | | | | |
Collapse
|
45
|
Selbo PK, Weyergang A, Høgset A, Norum OJ, Berstad MB, Vikdal M, Berg K. Photochemical internalization provides time- and space-controlled endolysosomal escape of therapeutic molecules. J Control Release 2010; 148:2-12. [DOI: 10.1016/j.jconrel.2010.06.008] [Citation(s) in RCA: 190] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 05/31/2010] [Accepted: 06/13/2010] [Indexed: 12/18/2022]
|
46
|
Woodhams J, Lou PJ, Selbo PK, Mosse A, Oukrif D, MacRobert A, Novelli M, Peng Q, Berg K, Bown SG. Intracellular re-localisation by photochemical internalisation enhances the cytotoxic effect of gelonin — Quantitative studies in normal rat liver. J Control Release 2010; 142:347-53. [DOI: 10.1016/j.jconrel.2009.11.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 11/16/2009] [Indexed: 10/20/2022]
|
47
|
Heuvingh J, Bonneau S. Asymmetric oxidation of giant vesicles triggers curvature-associated shape transition and permeabilization. Biophys J 2010; 97:2904-12. [PMID: 19948119 DOI: 10.1016/j.bpj.2009.08.056] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 08/03/2009] [Accepted: 08/17/2009] [Indexed: 01/05/2023] Open
Abstract
Oxidation of unsaturated lipids is a fundamental process involved in cell bioenergetics as well as in cell death. Using giant unilamellar vesicles and a chlorin photosensitizer, we asymmetrically oxidized the outer or inner monolayers of lipid membranes. We observed different shape transitions such as oblate to prolate and budding, which are typical of membrane curvature modifications. The asymmetry of the shape transitions is in accordance with a lowered effective spontaneous curvature of the leaflet being targeted. We interpret this effect as a decrease in the preferred area of the targeted leaflet compared to the other, due to the secondary products of oxidation (cleaved-lipids). Permeabilization of giant vesicles by light-induced oxidation is observed after a lag and is characterized in relation with the photosensitizer concentration. We interpret permeabilization as the opening of a pore above a critical membrane tension, resulting from the budding of vesicles. The evolution of photosensitized giant vesicle lysis tension was measured and yields an estimation of the effective spontaneous curvature at lysis. Additionally photo-oxidation was shown to be fusogenic.
Collapse
Affiliation(s)
- Julien Heuvingh
- Université Paris Diderot, Laboratoire de Physique et Mécanique des Milieux Hétérogènes, UMR7636, Centre National de la Recherche Scientifique/Ecole Superieure Physique Chimie Industrielles Ville de Paris, Université Pierre et Marie Curie, Paris, France.
| | | |
Collapse
|
48
|
Bøe S, Sæbøe-Larssen S, Hovig E. Light-Induced Gene Expression Using Messenger RNA Molecules. Oligonucleotides 2010; 20:1-6. [DOI: 10.1089/oli.2009.0209] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sigurd Bøe
- Department of Tumor Biology, The Norwegian Radium Hospital, Rikshospitalet HF, Oslo, Norway
| | - Stein Sæbøe-Larssen
- Department of Immunology, Institute of Cancer Research, The Norwegian Radium Hospital, Rikshospitalet HF, Oslo, Norway
| | - Eivind Hovig
- Department of Tumor Biology, The Norwegian Radium Hospital, Rikshospitalet HF, Oslo, Norway
| |
Collapse
|
49
|
Choi YS, Lee JY, Suh JS, Kwon YM, Lee SJ, Chung JK, Lee DS, Yang VC, Chung CP, Park YJ. The systemic delivery of siRNAs by a cell penetrating peptide, low molecular weight protamine. Biomaterials 2010; 31:1429-43. [DOI: 10.1016/j.biomaterials.2009.11.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2009] [Accepted: 11/02/2009] [Indexed: 12/12/2022]
|
50
|
Photochemical internalization: a new tool for gene and oligonucleotide delivery. Top Curr Chem (Cham) 2010; 296:251-81. [PMID: 21504105 DOI: 10.1007/128_2010_63] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Photochemical internalization (PCI) is a novel technology for release of endocytosed macromolecules into the cytosol. The technology is based on the use of photosensitizers located in endocytic vesicles. Upon activation by light such photosensitizers induce a release of macromolecules from their compartmentalization in endocytic vesicles. PCI has been shown to increase the biological activity of a large variety of macromolecules and other molecules that do not readily penetrate the plasma membrane, including type I ribosome-inactivating proteins, immunotoxins, plasmids, adenovirus, various oligonucleotides, dendrimer-based delivery of chemotherapeutica and unconjugated chemotherapeutica such as bleomycin and doxorubicin. This review will present the basis for the PCI concept and the most recent significant developments.
Collapse
|