1
|
Senevirathne C, Pflum MKH. Biotinylated phosphoproteins from kinase-catalyzed biotinylation are stable to phosphatases: implications for phosphoproteomics. Chembiochem 2013; 14:381-7. [PMID: 23335220 PMCID: PMC4524292 DOI: 10.1002/cbic.201200626] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Indexed: 11/11/2022]
Abstract
Kinase-catalyzed protein phosphorylation is involved in a wide variety of cellular events. Development of methods to monitor phosphorylation is critical to understand cell biology. Our lab recently discovered kinase-catalyzed biotinylation, where ATP-biotin is utilized by kinases to label phosphopeptides or phosphoproteins with a biotin tag. To exploit kinase-catalyzed biotinylation for phosphoprotein purification and identification in a cellular context, the susceptibility of the biotin tag to phosphatases was characterized. We found that the phosphorylbiotin group on peptide and protein substrates was relatively insensitive to protein phosphatases. To understand how phosphatase stability would impact phosphoproteomics research applications, kinase-catalyzed biotinylation of cell lysates was performed in the presence of kinase or phosphatase inhibitors. We found that biotinylation with ATP-biotin was sensitive to inhibitors, although with variable effects compared to ATP phosphorylation. The results suggest that kinase-catalyzed biotinylation is well suited for phosphoproteomics studies, with particular utility towards monitoring low-abundance phosphoproteins or characterizing the influence of inhibitor drugs on protein phosphorylation.
Collapse
Affiliation(s)
| | - Mary Kay H. Pflum
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, Fax: (+)
| |
Collapse
|
2
|
Abstract
Phosphopeptides are generally prepared by incorporation of suitable, protected phosphoamino acid derivatives during peptide synthesis using routine coupling protocols. The feasibility of chemical synthesis of phosphorylated peptides by Fmoc-SPPS was greatly enhanced by the introduction of the monobenzyl protecting group for the phosphate group. This minimized β-elimination of the phosphate group and made Fmoc-based synthesis of phosphopeptides the preferred synthesis strategy. Described here is our strategy for the synthesis of phosphopeptides attached to the solid support PEGA via a backbone amide linker type. This linker allows removal of side-chain protection groups without releasing the phosphopeptide from the solid support, thus enabling solid-phase-based pull-down reactions and peptide-protein interaction studies.
Collapse
|
3
|
Suwal S, Senevirathne C, Garre S, Pflum MKH. Structural analysis of ATP analogues compatible with kinase-catalyzed labeling. Bioconjug Chem 2012; 23:2386-91. [PMID: 23116557 PMCID: PMC3745010 DOI: 10.1021/bc300404s] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Kinase-catalyzed protein phosphorylation is an important biochemical process involved in cellular functions. We recently discovered that kinases promiscuously accept γ-modified ATP analogues as cosubstrates and used several ATP analogues as tools for studying protein phosphorylation. Herein, we explore the structural requirements of γ-modified ATP analogues for kinase compatibility. To understand the influence of linker length and composition, a series of ATP analogues was synthesized, and the efficiency of kinase-catalyzed labeling was determined by quantitative mass spectrometry. This study on factors influencing kinase cosubstrate promiscuity will enable design of ATP analogues for a variety of kinase-catalyzed labeling reactions.
Collapse
Affiliation(s)
| | | | - Satish Garre
- Department of chemistry, Wayne State University, Detroit, MI, 48202
| | | |
Collapse
|
4
|
Pershad K, Wypisniak K, Kay BK. Directed evolution of the forkhead-associated domain to generate anti-phosphospecific reagents by phage display. J Mol Biol 2012; 424:88-103. [PMID: 22985966 DOI: 10.1016/j.jmb.2012.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 08/10/2012] [Accepted: 09/05/2012] [Indexed: 10/27/2022]
Abstract
While affinity reagents are valuable tools for monitoring protein phosphorylation and studying signaling events in cells, generating them through immunization of animals with phosphopeptides is expensive, laborious, and time-consuming. An attractive alternative is to use protein evolution techniques and isolate new anti-phosphopeptide binding specificities from a library of variants of a phosphopeptide-binding domain. To explore this strategy, we attempted to display on the surface of bacteriophage M13 the N-terminal Forkhead-associated (FHA1) domain of yeast Rad53p, which is a naturally occurring phosphothreonine (pT)-binding domain, and found it to be nonfunctional due to misfolding in the bacterial periplasm. To overcome this limitation, we constructed a library of FHA1 variants by mutagenic PCR and isolated functional variants after three rounds of affinity selection with its pT peptide ligand. A hydrophobic residue at position 34 in the β1 strand was discovered to be essential for phage display of a functional FHA1 domain. Additionally, by heating the phage library to 50°C prior to affinity selection with its cognate pT peptide, we identified a variant (G2) that was ~8°C more thermally stable than the wild-type domain. Using G2 as a scaffold, we constructed phage-displayed libraries of FHA1 variants and affinity selected for variants that bound selectively to five pT peptides. These reagents are renewable and have high protein yields (~20-25mg/L), when expressed in Escherichia coli. Thus, we have changed the specificity of the FHA1 domain and demonstrated that engineering phosphopeptide-binding domains is an attractive avenue for generating new anti-phosphopeptide binding specificities in vitro by phage display.
Collapse
Affiliation(s)
- Kritika Pershad
- Department of Biological Sciences, Laboratory for Molecular Biology (M/C 567), University of Illinois at Chicago, Molecular Biology Research Building, Chicago, IL 60607, USA.
| | | | | |
Collapse
|
5
|
Abstract
Kinase-catalyzed protein phosphorylation plays an essential role in a variety of biological processes. Methods to detect phosphoproteins and phosphopeptides in cellular mixtures will aid in cell biological and signaling research. Our laboratory recently discovered the utility of γ-modified ATP analogues as tools for studying phosphorylation. Specifically, ATP-biotin can be used for labeling and visualizing phosphoproteins from cell lysates. Because the biotin tag is suitable for protein detection, the biotinylation reaction can be applied to multiple phosphoproteomics applications. Herein we report a general protocol for labeling phosphopeptides and phosphoproteins in biological samples using kinase-catalyzed biotinylation.
Collapse
Affiliation(s)
| | - Keith D Green
- Department of Chemistry, Wayne State University, Detroit, MI, 48202
| | - Mary Kay H Pflum
- Department of Chemistry, Wayne State University, Detroit, MI, 48202
| |
Collapse
|
6
|
Halle C, Lando M, Svendsrud DH, Clancy T, Holden M, Sundfør K, Kristensen GB, Holm R, Lyng H. Membranous expression of ectodomain isoforms of the epidermal growth factor receptor predicts outcome after chemoradiotherapy of lymph node-negative cervical cancer. Clin Cancer Res 2011; 17:5501-12. [PMID: 21737508 DOI: 10.1158/1078-0432.ccr-11-0297] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE We compared the prognostic significance of ectodomain isoforms of the epidermal growth factor receptor (EGFR), which lack the tyrosine kinase (TK) domain, with that of the full-length receptor and its autophosphorylation status in cervical cancers treated with conventional chemoradiotherapy. EXPERIMENTAL DESIGN Expression of EGFR isoforms was assessed by immunohistochemistry in a prospectively collected cohort of 178 patients with squamous cell cervical carcinoma, and their detection was confirmed with Western blotting and reverse transcriptase PCR. A proximity ligation immunohistochemistry assay was used to assess EGFR-specific autophosphorylation. Pathways associated with the expression of ectodomain isoforms were studied by gene expression analysis with Illumina beadarrays in 110 patients and validated in an independent cohort of 41 patients. RESULTS Membranous expression of ectodomain isoforms alone, without the coexpression of the full-length receptor, showed correlations to poor clinical outcome that were highly significant for lymph node-negative patients (locoregional control, P = 0.0002; progression-free survival, P < 0.0001; disease-specific survival, P = 0.005 in the log-rank test) and independent of clinical variables. The ectodomain isoforms were primarily 60-kD products of alternative EGFR transcripts. Their membranous expression correlated with transcriptional regulation of oncogenic pathways including activation of MYC and MAX, which was significantly associated with poor outcome. This aggressive phenotype of ectodomain EGFR expressing tumors was confirmed in the independent cohort. Neither total nor full-length EGFR protein level, or autophosphorylation status, showed prognostic significance. CONCLUSION Membranous expression of ectodomain EGFR isoforms, and not TK activation, predicts poor outcome after chemoradiotherapy for patients with lymph node-negative cervical cancer.
Collapse
Affiliation(s)
- Cathinka Halle
- Department of Radiation Biology, The Norwegian Radium Hospital, Oslo, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Halle C, Lando M, Sundfør K, Kristensen GB, Holm R, Lyng H. Phosphorylation of EGFR measured with in situ proximity ligation assay: relationship to EGFR protein level and gene dosage in cervical cancer. Radiother Oncol 2011; 101:152-7. [PMID: 21680035 DOI: 10.1016/j.radonc.2011.05.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 05/20/2011] [Accepted: 05/20/2011] [Indexed: 10/18/2022]
Abstract
PURPOSE We have applied the sensitive and specific in situ proximity ligation assay (PLA) to characterize Tyr1068 phosphorylation of the epidermal growth factor receptor (EGFR) in cervical cancer in relation to the protein level and gene dosage. MATERIALS AND METHODS Pretreatment tumor biopsies from 178 patients were analyzed. EGFR protein level was determined by immunohistochemistry, and Tyr1068 phosphorylation was detected with PLA in 97 EGFR positive tumors. EGFR gene dosage was derived from array comparative genomic hybridization of 86 cases. RESULTS EGFR was expressed in most tumors, whereas phosphorylation was seen in about half of the EGFR positive ones. A correlation was found between the expression of EGFR and phosphorylated EGFR (p=0.016, membrane; p=0.012, cytoplasm). However, tumor regions with high protein level without phosphorylation were occasionally seen and the percentage of EGFR positive cells was higher than the phosphorylated percentage (p<0.001). Moreover, an increase in the phosphorylation in both the membrane (p=0.014) and cytoplasm (p=0.002) was seen in 11 tumors with gain of EGFR. The protein level was not correlated with gene dosage. CONCLUSION In contrast to gain of the EGFR chromosomal region, high EGFR protein level may not necessarily indicate Tyr1068 phosphorylation and thereby receptor activation in cervical cancer.
Collapse
Affiliation(s)
- Cathinka Halle
- Department of Radiation Biology, Oslo University Hospital, Norway
| | | | | | | | | | | |
Collapse
|
8
|
Waraich RS, Zaidi N, Moeschel K, Beck A, Weigert C, Voelter W, Kalbacher H, Lehmann R. Development and precise characterization of phospho-site-specific antibody of Ser357 of IRS-1: Elimination of cross reactivity with adjacent Ser358. Biochem Biophys Res Commun 2008; 376:26-31. [DOI: 10.1016/j.bbrc.2008.08.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 08/09/2008] [Indexed: 01/18/2023]
|
9
|
Sun T, Arlinghaus RB. Preparation and application of polyclonal and monoclonal sequence-specific anti-phosphoamino acid antibodies. ACTA ACUST UNITED AC 2008; Chapter 13:13.6.1-13.6.27. [PMID: 18429250 DOI: 10.1002/0471140864.ps1306s34] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This unit discusses the issues that must be considered in the design, production, and characterization of polyclonal and monoclonal sequence-specific anti-phosphoamino acid antibodies. Protocols are provided for generating and purifying such antibodies, and methods are also provided for producing useful polyclonal antibodies in a non-purified form. Support protocols describe coupling of peptides or phosphotyrosine to a solid support for use in affinity chromatography. An example of the generation, purification, and characterization of two sequence-specific anti-phosphopeptide antibodies specific for different sequences of a single phosphoprotein is described. The cross-reactivity of such antibodies, which is a common problem with anti-peptide antibodies, is also discussed.
Collapse
Affiliation(s)
- Tong Sun
- University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | | |
Collapse
|
10
|
Tokonzaba E, Capelluto DGS, Kutateladze TG, Overduin M. Phosphoinositide, phosphopeptide and pyridone interactions of the Abl SH2 domain. Chem Biol Drug Des 2007; 67:230-7. [PMID: 16611216 PMCID: PMC2610419 DOI: 10.1111/j.1747-0285.2006.00361.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Signaling proteins are localized and regulated by Src homology 2 domains which recognize phosphotyrosine-containing sequences. Recently, noncanonical ligands have been proposed for Src homology 2 domains including that of Abl and its breakpoint cluster region fusion, which causes chronic myelogenous leukemia. Here, the Abl Src homology 2 domain's binding sites and affinities for phosphotyrosine- and phosphoserine-containing motifs, phosphoinositides as well as a pyridone-based peptidomimetic inhibitor were determined using nuclear magnetic resonance spectroscopy in order to define their roles. The cognate Crk peptide ligand was bound with an affinity of 69 microM and, like the higher affinity peptidomimetic, engages the phosphotyrosine and +3 hydrophobic pockets while putative phosphoserine-containing breakpoint cluster region ligands are ruled out. Surprisingly, phosphatidylinositol 4, 5 bisphosphate interacts with an overlapping site through an electrostatic mechanism that does not appear to involve hydrophobic insertion into micelles. The conserved Arg36 residue in the FLVRES motif is required for both phosphotyrosine binding and for localization to phosphatidylinositol 4, 5 bisphosphate-containing liposomes, while Arg59 in the betaD strand is necessary for the phosphoinositide interaction. Thus the Src homology 2 domain of Abl, a myristoylated and membrane-localized protein, is able to interact directly with phosphoinositides through a multifunctional basic site that overlaps the phosphotyrosine pocket.
Collapse
Affiliation(s)
- Etienne Tokonzaba
- Department of Pharmacology, University of Colorado Health Sciences Center,12801 East 17th Avenue, Aurora, CO 80045, USA
| | - Daniel G. S. Capelluto
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Tatiana G. Kutateladze
- Department of Pharmacology, University of Colorado Health Sciences Center,12801 East 17th Avenue, Aurora, CO 80045, USA
- Biomolecular Structure Program, University of Colorado Health Sciences Center,12801 East 17th Avenue, Aurora, CO 80045, USA
| | - Michael Overduin
- CR UK Institute for Cancer Studies, School of Medicine, University of Birmingham, Birmingham B15 2TT, UK
- Corresponding author: Michael Overduin, Tel: +44(0)121-414-3802, Fax: +44(0)121-414-4486,
| |
Collapse
|
11
|
Affiliation(s)
- Ralph Arlinghaus
- Department of Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, USA
| | | |
Collapse
|
12
|
Abstract
Presently, phosphorylation of proteins is the most studied and best understood PTM. However, the analysis of phosphoproteins and phosphopeptides is still one of the most challenging tasks in contemporary proteome research. Since not every phosphoprotein is accessible by a certain method and identification of the phosphorylated amino acid residue is required in the majority of cases, various strategies for the detection and localization of phosphorylations have been developed. Identification and localization of protein phosphorylations is mostly done by MS nowadays but phosphoproteins and -peptides are often suppressed in comparison to the unphosphorylated species if measured in complex mixtures. Thus, the isolation of pure phosphopeptide samples is a main task. This review gives an overview over the most frequently used methods in isolation and detection of phosphoproteins and -peptides such as specific enrichment or separation strategies as well as the localization of the phosphorylated residues by various mass spectrometric techniques.
Collapse
Affiliation(s)
- Joerg Reinders
- Protein Mass Spectrometry and Functional Proteomics Group, Rudolf-Virchow-Center for Experimental Biomedicine, Julius-Maximilians-University of Wuerzburg, Wuerzburg, Germany
| | | |
Collapse
|
13
|
Kocinsky HS, Girardi ACC, Biemesderfer D, Nguyen T, Mentone S, Orlowski J, Aronson PS. Use of phospho-specific antibodies to determine the phosphorylation of endogenous Na+/H+ exchanger NHE3 at PKA consensus sites. Am J Physiol Renal Physiol 2005; 289:F249-58. [PMID: 15687252 DOI: 10.1152/ajprenal.00082.2004] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transfection studies using mutant constructs have implicated one or both protein kinase A (PKA) consensus phosphorylation sites [serines 552 and 605 in rat Na+/H+ exchanger type 3 (NHE3)] as critical for mediating inhibition of NHE3 in response to several stimuli including dopamine. However, whether one or both of these sites is actually phosphorylated in endogenous NHE3 in proximal tubule cells is unknown. The purpose of this study was to generate phosphospecific antibodies so that the state of phosphorylation of these serine residues in endogenous NHE3 could be assessed in vitro and in vivo. To this end, polyclonal and monoclonal phosphospecific peptide antibodies were generated against each PKA consensus site. Phosphospecificity was established by ELISA and Western blot assays. We then used these antibodies in vitro to evaluate the effect of dopamine on phosphorylation of the corresponding PKA sites (serines 560 and 613) in NHE3 endogenously expressed in opossum kidney cells. Baseline phosphorylation of both sites was detected that was significantly increased by dopamine. Next, we determined the baseline phosphorylation state of each serine in rat kidney NHE3 in vivo. We found that serine 552 of NHE3 is phosphorylated to a much greater extent than serine 605 at baseline in vivo. Moreover, we detected a distinct subcellular localization for NHE3 phosphorylated at serine 552 compared with total NHE3. Specifically, NHE3 phosphorylated at serine 552 localized to the coated pit region of the brush-border membrane, where NHE3 is inactive, while total NHE3 was found throughout the brush-border membrane. These findings strongly suggest that phosphorylation of NHE3 plays a role in its subcellular trafficking in vivo. In conclusion, we successfully generated phosphospecific antibodies that should be useful to assess the phosphorylation of endogenous NHE3 at its two PKA consensus sites under a variety of physiological conditions in vitro and in vivo.
Collapse
Affiliation(s)
- Hetal S Kocinsky
- Department of Pediatrics, Yale School of Medicine, New Haven, CT 06520-8029, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Kim YJ, Sekiya F, Poulin B, Bae YS, Rhee SG. Mechanism of B-cell receptor-induced phosphorylation and activation of phospholipase C-gamma2. Mol Cell Biol 2004; 24:9986-99. [PMID: 15509800 PMCID: PMC525462 DOI: 10.1128/mcb.24.22.9986-9999.2004] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Phospholipase C-gamma2 (PLC-gamma2) plays an important role in B-cell signaling. Phosphorylation of various tyrosine residues of PLC-gamma2 has been implicated in regulation of its lipase activity. With the use of antibodies specific for each of the putative phosphorylation sites, we have now shown that PLC-gamma2 is phosphorylated on Y753, Y759, and Y1217 in response to engagement of the B-cell receptor in Ramos cells, as well as in murine splenic B cells. In cells stimulated maximally via this receptor, the extent of phosphorylation of Y1217 was three times that of Y753 or of Y759. Stimulation of Jurkat T cells or platelets via their immunoreceptors also elicited phosphorylation of Y753 and Y759 but not that of Y1217. A basal level of phosphorylation of Y753 was apparent in unstimulated lymphocytes. The extent of phosphorylation of Y753 and Y759, but not that of Y1217, correlated with the lipase activity of PLC-gamma2. Examination of the effects of various pharmacological inhibitors and of RNA interference in Ramos cells suggested that Btk is largely, but not completely, responsible for phosphorylation of Y753 and Y759, whereas phosphorylation of Y1217 is independent of Btk. Finally, phosphorylation of Y1217 and that of Y753 and Y759 occurred on different PLC-gamma2 molecules.
Collapse
Affiliation(s)
- Yeun Ju Kim
- Laboratory of Cell Signaling, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | |
Collapse
|
15
|
Morgan AG, McCauley TJ, Stanaitis ML, Mathrubutham M, Millis SZ. Development and Validation of a Fluorescence Technology for both Primary and Secondary Screening of Kinases That Facilitates Compound Selectivity and Site-Specific Inhibitor Determination. Assay Drug Dev Technol 2004; 2:171-81. [PMID: 15165513 DOI: 10.1089/154065804323056512] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The IQ Technology has been developed to serve as a homogeneous, universal detection platform for HTS of kinases and phosphatases. The technology is a direct, noncompetitive assay format that does not require antibodies or radioactive reagents to measure phosphorylation state. Fluorophore-labeled peptides are used as enzyme substrates, and kinase or phosphatase activity is quantitated by direct measurement of the phosphorylation state of the substrate. Phosphorylation is measured by the change in fluorescence intensity that occurs when a proprietary iron-containing compound binds specifically to phosphoryl groups on peptides. This change in observed fluorescence is proportional to the extent of phosphorylation of the fluorophore-labeled peptide. The technology provides a universal method that can be used with any peptide sequence and is insensitive to high concentrations of ATP. Inhibition at the ATP-binding site versus the phosphorylation site can be differentiated and compound selectivity identified using the same detection method as in the primary screen. The technology has been tested against a large number of detergents, organics, and other reagents found in reaction mixtures, and the detection method eliminates common issues associated with fluorescent and chromogenic compounds. The technology has been formatted for 96-, 384-, and 1,536-well microplate formats, and a representative Z' value of 0.7 was obtained. IC(50) values generated using this platform correlate with previously reported values, and screening of a small compound library was performed to evaluate the assay further.
Collapse
Affiliation(s)
- Aric G Morgan
- Research and Development, Pierce Biotechnology, Rockford, IL, USA
| | | | | | | | | |
Collapse
|
16
|
Veenstra TD. Proteome analysis of posttranslational modifications. ADVANCES IN PROTEIN CHEMISTRY 2004; 65:161-94. [PMID: 12964369 DOI: 10.1016/s0065-3233(03)01019-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Affiliation(s)
- Timothy D Veenstra
- SAIC-Frederick Inc., National Cancer Institute at Frederick, Frederick, Maryland 21702, USA
| |
Collapse
|
17
|
Steen H, Fernandez M, Ghaffari S, Pandey A, Mann M. Phosphotyrosine mapping in Bcr/Abl oncoprotein using phosphotyrosine-specific immonium ion scanning. Mol Cell Proteomics 2003; 2:138-45. [PMID: 12644574 DOI: 10.1074/mcp.m300001-mcp200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bcr/Abl is a fusion oncoprotein that is of paramount importance in chronic myelogenous leukemia and acute lymphocytic leukemia. The tyrosine-phosphorylated fraction of the p185 form of Bcr/Abl was isolated by immunoprecipitation with an anti-phosphotyrosine antibody and SDS-PAGE. The tryptic digest of the gel-separated protein was prefractionated on POROS R2/OLIGO R3 microcolumns and subjected to phosphotyrosine mapping by precursor ion scanning in positive ion mode utilizing the immonium ion of phosphotyrosine, also called phosphotyrosine-specific immonium ion scanning, on a quadrupole time-of-flight tandem mass spectrometer. In total, nine different phosphorylated tyrosine residues were unambiguously localized in 12 different precursor ions. These phosphorylation sites correspond to three previously described phosphotyrosine residues and six novel tyrosine phosphorylation sites, and most of them were not predicted by the phosphorylation motif prediction programs ProSite, NetPhos, or ScanSite. This study shows the power of phosphotyrosine-specific immonium ion scanning for sensitive phosphotyrosine mapping when limited amounts of samples are available.
Collapse
Affiliation(s)
- Hanno Steen
- Center for Experimental Bioinformatics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | | | | | | | | |
Collapse
|
18
|
Coba MP, Turyn D, Peña C. Synthesis and immunogenic properties of phosphopeptides related to the human insulin receptor. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 2003; 61:17-23. [PMID: 12472845 DOI: 10.1034/j.1399-3011.2003.21025.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Two phosphoserine tetradecapeptides corresponding to sequences 987-1000 (peptide pSer994) and 1017-1030 (peptide pSer1023/1025) from the human insulin receptor involved in the regulation of its activity were successfully synthesized using Fmoc-based chemistry. Phosphorylation was performed by post-assembly phosphitylation followed by oxidation. The selective phosphorylation of Ser residues was achieved incorporating into the peptide chain the Ser (Trt) derivative and t-Bu blocking groups at sites other than those intended to be phosphorylated. The Trt group was selectively removed with dichloroacetic acid while under this condition t-Bu protecting groups remained unaltered. Following conjugation to keyhole limpet hemocyanin phosphopeptides were used as immunogens to generate sequence-specific phosphoserine antibodies. Peptide pSer994 induced antibodies in New Zealand white rabbits which discriminated between the phosphorylated and nonphosphorylated forms of the peptide, thus representing promising candidates to recognize signaling pathways associated to the regulation of the human insulin receptor.
Collapse
Affiliation(s)
- M P Coba
- Departamento de Química Biológica, Instituto de Química y Fisicoquímica Biológicas-CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín, Argentina
| | | | | |
Collapse
|
19
|
Abstract
The fusion of 5' parts of the BCR gene to the ABL gene at the second exon yields several forms of an oncogenic Bcr-Abl oncoprotein observed in several types of Philadelphia chromosome positive leukemia patients. The first exon of the BCR gene is a critical part of this fusion, as the coiled-coil domain at the amino terminal domain of the Bcr protein causes oligomerization of the Bcr-Abl oncoprotein forming tetramers, thereby activating the tyrosine kinase activity of the normally silent c-Abl protein. Another consequence of this Bcr-Abl fusion is the extensive autophosphorylation of the cis Bcr protein sequences on tyrosine residues. This review will summarize the effects of Bcr-Abl autophosphorylation on tyrosines as they relate to the oncogenic activity of Bcr-Abl, and as a means to inactivate the serine/threonine kinase activity of the Bcr protein. The review also discusses our findings that show that phosphoserine Bcr by means of a unique structure, binds to the Abl SH2 domain of the Bcr-Abl oncoprotein, and as a result this SH2 binding inhibits the oncogenic effects of the oncoprotein. Our results indicate that one effect of this binding is inhibition of the Bcr-Abl tyrosine kinase. Serine 354 of Bcr plays a major role in this inhibition. In the case of Bcr(64-413), serine 354 is required for the formation of the unique Bcr structure that binds to the Abl SH2 domain.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Fusion Proteins, bcr-abl
- Gene Expression Regulation, Enzymologic/physiology
- Gene Expression Regulation, Neoplastic/physiology
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mice
- Oncogene Proteins/physiology
- Phosphorylation
- Protein-Tyrosine Kinases/chemistry
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/metabolism
- Proto-Oncogene Proteins
- Proto-Oncogene Proteins c-bcr
- Tyrosine/metabolism
Collapse
Affiliation(s)
- Ralph B Arlinghaus
- Department of Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, TX 77030, USA.
| |
Collapse
|
20
|
Zhang X, Jin QK, Carr SA, Annan RS. N-Terminal peptide labeling strategy for incorporation of isotopic tags: a method for the determination of site-specific absolute phosphorylation stoichiometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2002; 16:2325-2332. [PMID: 12478578 DOI: 10.1002/rcm.864] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Determining the phosphorylation stoichiometry at specific sites in a phosphoprotein is a very challenging task. We describe here a novel mass spectrometry based method that is capable of measuring the absolute phosphorylation stoichiometry at specific sites without the need for specific internal standards, phospho-site antibodies or radioactivity. The method is based on a gentle chemical labeling strategy which specifically and differentially labels the N-terminus of all peptides in a sample with either a D(5)- or D(0)-propionyl group and measures the ratio of the abundance of the D(5)/D(0) peptide pairs simultaneously using mass spectrometry. Using matrix-assisted laser desorption/ionization (MALDI), the method can measure absolute stoichiometry to within at least 10% and can be applied to both in vitro and in vivo phosphorylated peptides and proteins. Furthermore, this method can potentially be applied to the quantitative study of other types of protein post-translational modifications, and the profiling of protein expression on the proteome level.
Collapse
Affiliation(s)
- Xiaolong Zhang
- Proteomics and Biological Mass Spectrometry, GlaxoSmithKline, King of Prussia, PA 19406, USA
| | | | | | | |
Collapse
|