1
|
Rampratap P, Lasorsa A, Arunachalam A, Kamperman M, Walvoort MTC, van der Wel PCA. Resolving Atomic-Level Dynamics and Interactions of High-Molecular-Weight Hyaluronic Acid by Multidimensional Solid-State NMR. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43317-43328. [PMID: 39121380 PMCID: PMC11345730 DOI: 10.1021/acsami.4c08428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/12/2024] [Accepted: 08/02/2024] [Indexed: 08/11/2024]
Abstract
High-molecular-weight (HMW) hyaluronic acid (HA) is a highly abundant natural polysaccharide and a fundamental component of the extracellular matrix (ECM). Its size and concentration regulate tissues' macro- and microenvironments, and its upregulation is a hallmark feature of certain tumors. Yet, the conformational dynamics of HMW-HA and how it engages with the components of the ECM microenvironment remain poorly understood at the molecular level. Probing the molecular structure and dynamics of HMW polysaccharides in a hydrated, physiological-like environment is crucial and also technically challenging. Here, we deploy advanced magic-angle spinning (MAS) solid-state NMR spectroscopy in combination with isotopic enrichment to enable an in-depth study of HMW-HA to address this challenge. This approach resolves multiple coexisting HA conformations and dynamics as a function of environmental conditions. By combining 13C-labeled HA with unlabeled ECM components, we detect by MAS NMR HA-specific changes in global and local conformational dynamics as a consequence of hydration and ECM interactions. These measurements reveal atom-specific variations in the dynamics and structure of the N-acetylglucosamine moiety of HA. We discuss possible implications for interactions that stabilize the structure of HMW-HA and facilitate its recognition by HA-binding proteins. The described methods apply similarly to the studies of the molecular structure and dynamics of HA in tumor contexts and in other biological tissues as well as HMW-HA hydrogels and nanoparticles used for biomedical and/or pharmaceutical applications.
Collapse
Affiliation(s)
- Pushpa Rampratap
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Alessia Lasorsa
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Abinaya Arunachalam
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Marleen Kamperman
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Marthe T. C. Walvoort
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 7, Groningen 9747 AG, The Netherlands
| | - Patrick C. A. van der Wel
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| |
Collapse
|
2
|
Rampratap P, Lasorsa A, Perrone B, van der Wel PCA, Walvoort MTC. Production of isotopically enriched high molecular weight hyaluronic acid and characterization by solid-state NMR. Carbohydr Polym 2023; 316:121063. [PMID: 37321744 DOI: 10.1016/j.carbpol.2023.121063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/12/2023] [Accepted: 05/24/2023] [Indexed: 06/17/2023]
Abstract
Hyaluronic acid (HA) is a naturally occurring polysaccharide that is abundant in the extracellular matrix (ECM) of all vertebrate cells. HA-based hydrogels have attracted great interest for biomedical applications due to their high viscoelasticity and biocompatibility. In both ECM and hydrogel applications, high molecular weight (HMW)-HA can absorb a large amount of water to yield matrices with a high level of structural integrity. To understand the molecular underpinnings of structural and functional properties of HA-containing hydrogels, few techniques are available. Nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for such studies, e.g. 13C NMR measurements can reveal the structural and dynamical features of (HMW) HA. However, a major obstacle to 13C NMR is the low natural abundance of 13C, necessitating the generation of HMW-HA that is enriched with 13C isotopes. Here we present a convenient method to obtain 13C- and 15N-enriched HMW-HA in good yield from Streptococcus equi subsp. zooepidemicus. The labeled HMW-HA has been characterized by solution and magic angle spinning (MAS) solid-state NMR spectroscopy, as well as other methods. These results will open new ways to study the structure and dynamics of HMW-HA-based hydrogels, and interactions of HMW-HA with proteins and other ECM components, using advanced NMR techniques.
Collapse
Affiliation(s)
- Pushpa Rampratap
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, the Netherlands.
| | - Alessia Lasorsa
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, the Netherlands.
| | - Barbara Perrone
- Bruker Switzerland AG, Industriestrasse 26, CH-8117, Switzerland.
| | - Patrick C A van der Wel
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, the Netherlands.
| | - Marthe T C Walvoort
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, the Netherlands.
| |
Collapse
|
3
|
Xue Y, Ucieklak K, Gohil S, Niedziela T, Nestor G, Sandström C. Metabolic labeling of hyaluronan: Biosynthesis and quantitative analysis of 13C, 15N-enriched hyaluronan by NMR and MS-based methods. Carbohydr Res 2023; 531:108888. [PMID: 37390793 DOI: 10.1016/j.carres.2023.108888] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
Hyaluronan (HA), a member of the GAG family of glycans, has many diverse biological functions that vary a lot depending on the length of the HA chain and its concentration. A better understanding of the structure of different-sized HA at the atomic level is therefore crucial to decipher these biological functions. NMR is a method of choice for conformational studies of biomolecules, but there are limitations due to the low natural abundance of the NMR active nuclei 13C and 15N. We describe here the metabolic labeling of HA using the bacterium Streptococcus equi subsp. Zooepidemicus and the subsequent analysis by NMR and mass spectrometry. The level of 13C and 15N isotope enrichment at each position was determined quantitatively by NMR spectroscopy and was further confirmed by high-resolution mass spectrometry analysis. This study provides a valid methodological approach that can be applied to the quantitative assessment of isotopically labeled glycans and will help improve detection capabilities and facilitate future structure-function relationship analysis of complex glycans.
Collapse
Affiliation(s)
- Yan Xue
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07, Uppsala, Sweden.
| | - Karolina Ucieklak
- Hirszfeld Institute of Immunology and Experimental Therapy, 53-114, Wroclaw, Poland.
| | - Suresh Gohil
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07, Uppsala, Sweden.
| | - Tomasz Niedziela
- Hirszfeld Institute of Immunology and Experimental Therapy, 53-114, Wroclaw, Poland.
| | - Gustav Nestor
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07, Uppsala, Sweden.
| | - Corine Sandström
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07, Uppsala, Sweden.
| |
Collapse
|
4
|
Feura ES, Maloney SE, Conlon IL, Broberg CA, Yang F, Schoenfisch MH. Injectable polysaccharide hydrogels as localized nitric oxide delivery formulations. ADVANCED MATERIALS TECHNOLOGIES 2023; 8:2201529. [PMID: 39211298 PMCID: PMC11361346 DOI: 10.1002/admt.202201529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Indexed: 09/04/2024]
Abstract
A series of injectable polysaccharide hydrogels were prepared with oxidized dextran and diethylenetriamine-modified carboxymethylcellulose or hyaluronic acid. Rheological evaluation revealed that carboxymethylcellulose-based hydrogels achieved the largest storage moduli (>1 kPa) when prepared from 5 wt. % solutions. However, carboxymethylcellulose-based hydrogels with storage moduli >100 Pa were prepared from solutions with concentrations as low as 2 wt. %. Hyaluronic acid-based hydrogels demonstrated smaller storage moduli but had swelling ratios more than four times that of the carboxymethylcellulose systems at the same polymer concentrations. The incorporation of N-diazeniumdiolate NO donors into the hydrogels resulted in reduced hydrogel storage moduli as a function of NO donor concentration. The impact of the hydrogel architecture on NO-release kinetics proved dependent on the identity of the NO donor. Hydrogel degradation over 14 d was measured at pH 5.4 and 7.4 and indicated that hyaluronic acid-based hydrogels degraded more rapidly than carboxymethylcellulose hydrogels and that the addition of NO to the hydrogels increased the rate at which they degraded. In vitro cytotoxicity of hydrogel extracts was evaluated against five cell lines, with no observed toxicity except for that of hyaluronic acid-based hydrogel extracts against human gingival fibroblasts. The diverse properties, versatility, and non-toxic characteristics of these injectable hydrogels should facilitate local delivery of nitric oxide for a range of biomedical applications.
Collapse
Affiliation(s)
- Evan S. Feura
- Department of Chemistry, University of North Carolina at Chapel Hill CB 3290, Chapel Hill, NC 27599
| | - Sara E. Maloney
- Department of Chemistry, University of North Carolina at Chapel Hill CB 3290, Chapel Hill, NC 27599
| | - Ivie L. Conlon
- Department of Chemistry, University of North Carolina at Chapel Hill CB 3290, Chapel Hill, NC 27599
| | - Christopher A. Broberg
- Department of Chemistry, University of North Carolina at Chapel Hill CB 3290, Chapel Hill, NC 27599
| | - Feichen Yang
- Department of Chemistry, University of North Carolina at Chapel Hill CB 3290, Chapel Hill, NC 27599
| | - Mark H. Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill CB 3290, Chapel Hill, NC 27599
| |
Collapse
|
5
|
Guvench O. Atomic-Resolution Experimental Structural Biology and Molecular Dynamics Simulations of Hyaluronan and Its Complexes. Molecules 2022; 27:7276. [PMID: 36364098 PMCID: PMC9658939 DOI: 10.3390/molecules27217276] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/28/2023] Open
Abstract
This review summarizes the atomic-resolution structural biology of hyaluronan and its complexes available in the Protein Data Bank, as well as published studies of atomic-resolution explicit-solvent molecular dynamics simulations on these and other hyaluronan and hyaluronan-containing systems. Advances in accurate molecular mechanics force fields, simulation methods and software, and computer hardware have supported a recent flourish in such simulations, such that the simulation publications now outnumber the structural biology publications by an order of magnitude. In addition to supplementing the experimental structural biology with computed dynamic and thermodynamic information, the molecular dynamics studies provide a wealth of atomic-resolution information on hyaluronan-containing systems for which there is no atomic-resolution structural biology either available or possible. Examples of these summarized in this review include hyaluronan pairing with other hyaluronan molecules and glycosaminoglycans, with ions, with proteins and peptides, with lipids, and with drugs and drug-like molecules. Despite limitations imposed by present-day computing resources on system size and simulation timescale, atomic-resolution explicit-solvent molecular dynamics simulations have been able to contribute significant insight into hyaluronan's flexibility and capacity for intra- and intermolecular non-covalent interactions.
Collapse
Affiliation(s)
- Olgun Guvench
- Department of Pharmaceutical Sciences and Administration, School of Pharmacy, Westbrook College of Health Professions, University of New England, 716 Stevens Avenue, Portland, ME 04103, USA
| |
Collapse
|
6
|
Kolaříková A, Kutálková E, Buš V, Witasek R, Hrnčiřík J, Ingr M. Salt-dependent intermolecular interactions of hyaluronan molecules mediate the formation of temporary duplex structures. Carbohydr Polym 2022; 286:119288. [DOI: 10.1016/j.carbpol.2022.119288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/10/2022] [Accepted: 02/21/2022] [Indexed: 11/02/2022]
|
7
|
Physicochemical Characterization of Hyaluronic Acid and Chitosan Liposome Coatings. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112412071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hyaluronic acid (HA) and chitosan (CH) are biopolymers that are widely used in many biomedical applications and for cosmetic purposes. Their chemical properties are fundamental to them working as drug delivery systems and improving their synergistic effects. In this work, two different protocols were used to obtain zwitterionic liposomes coated with either hyaluronic acid or chitosan. Specifically, the methodologies used to perform vesicle preparation were chosen by taking into account the specific chemical properties of these two polysaccharides. In the case of chitosan, liposomes were first synthesized and then coated, whereas the coating of hyaluronic acid was achieved through lipidic film hydration in an HA aqueous solution. The size and the zeta-potential of the polysaccharide-coated liposomes were determined by dynamic light scattering (DLS). This approach allowed coated liposomes to be obtained with hydrodynamic diameters of 264.4 ± 12.5 and 450.3 ± 16.7 nm for HA- and CH-coated liposomes, respectively. The chemical characterization of the coated liposomal systems was obtained by surface infrared (ATR-FTIR) and nuclear magnetic resonance (NMR) spectroscopies. In particular, the presence of polysaccharides was confirmed by the bands assigned to amides and saccharides being in the 1500–1700 cm−1 and 800–1100 cm−1 regions, respectively. This approach allowed confirmation of the efficiency of the coating processes, evidencing the presence of HA or CH at the liposomal surface. These data were also supported by time-of-flight secondary ion mass spectrometry (ToF-SIMS), which provided specific assessments of surface (3–5 nm deep) composition and structure of the polysaccharide-coated liposomes. In this work, the synthesis and the physical chemistry characterization of coated liposomes with HA or CH represent an important step in improving the pharmacological properties of drug delivery systems.
Collapse
|
8
|
Kutálková E, Hrnčiřík J, Witasek R, Ingr M. Effect of solvent and ions on the structure and dynamics of a hyaluronan molecule. Carbohydr Polym 2020; 234:115919. [PMID: 32070538 DOI: 10.1016/j.carbpol.2020.115919] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/18/2020] [Accepted: 01/25/2020] [Indexed: 12/13/2022]
Abstract
Hyaluronic acid (hyaluronan, HA) is a negatively charged polysaccharide forming highly swollen random coils in aqueous solutions. Their size decreases along with growing salt concentration, but the mechanism of this phenomenon remains unclear. We carry out molecular-dynamics simulations of a 48-monosaccharide HA oligomer in varying salt concentration and temperature. They identify the interaction points of Na+ ions with the HA chain and reveal their influence on the HA solvation-shell structure. The salt-dependent variation of the molecular size does not consist in the distribution of the dihedral angles of the glycosidic connections but is driven by the random flips of individual dihedral angles, which cause the formation of temporary hairpin-like structures effectively shortening the chain. They are induced by the frequency of cation-chain interactions that grow with the salt concentration, but is reduced by the simultaneous decrease of ions' activities. This leads to an anomalous random-coil shrinkage at 0.6 M salt concentration.
Collapse
Affiliation(s)
- Eva Kutálková
- Tomas Bata University in Zlín, Faculty of Technology, Department of Physics and Materials Engineering, Nám. T.G. Masaryka 5555, 76001 Zlín, Czech Republic.
| | - Josef Hrnčiřík
- Tomas Bata University in Zlín, Faculty of Technology, Department of Physics and Materials Engineering, Nám. T.G. Masaryka 5555, 76001 Zlín, Czech Republic.
| | - Roman Witasek
- Tomas Bata University in Zlín, Faculty of Technology, Department of Physics and Materials Engineering, Nám. T.G. Masaryka 5555, 76001 Zlín, Czech Republic.
| | - Marek Ingr
- Tomas Bata University in Zlín, Faculty of Technology, Department of Physics and Materials Engineering, Nám. T.G. Masaryka 5555, 76001 Zlín, Czech Republic; Charles University, Faculty of Science, Department of Biochemistry, Hlavova 8/2030, 12843 Praha 2, Czech Republic.
| |
Collapse
|
9
|
Hewlett JC, Kropski JA, Blackwell TS. Idiopathic pulmonary fibrosis: Epithelial-mesenchymal interactions and emerging therapeutic targets. Matrix Biol 2018; 71-72:112-127. [PMID: 29625182 PMCID: PMC6146058 DOI: 10.1016/j.matbio.2018.03.021] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/11/2018] [Accepted: 03/29/2018] [Indexed: 12/18/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic fibrotic disease of the lung that is marked by progressive decline in pulmonary function and ultimately respiratory failure. Genetic and environmental risk factors have been identified that indicate injury to, and dysfunction of the lung epithelium is central to initiating the pathogenic process. Following injury to the lung epithelium, growth factors, matrikines and extracellular matrix driven signaling together activate a variety of repair pathways that lead to inflammatory cell recruitment, fibroblast proliferation and expansion of the extracellular matrix, culminating in tissue fibrosis. This tissue fibrosis then leads to changes in the biochemical and biomechanical properties of the extracellular matrix, which potentiate profibrotic mechanisms through a "feed-forward cycle." This review provides an overview of the interactions of the pathogenic mechanisms of IPF with a focus on epithelial-mesenchymal crosstalk and the extracellular matrix as a therapeutic target for idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Justin C Hewlett
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jonathan A Kropski
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Veterans Affairs Medical Center, Nashville, TN, United States.
| | - Timothy S Blackwell
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Veterans Affairs Medical Center, Nashville, TN, United States; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, United States.
| |
Collapse
|
10
|
Ingr M, Kutálková E, Hrnčiřík J. Hyaluronan random coils in electrolyte solutions—a molecular dynamics study. Carbohydr Polym 2017; 170:289-295. [DOI: 10.1016/j.carbpol.2017.04.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/07/2017] [Accepted: 04/20/2017] [Indexed: 01/11/2023]
|
11
|
Cappelli A, Paolino M, Grisci G, Razzano V, Giuliani G, Donati A, Bonechi C, Mendichi R, Battiato S, Samperi F, Scialabba C, Giammona G, Makovec F, Licciardi M. Hyaluronan-coated polybenzofulvene brushes as biomimetic materials. Polym Chem 2016. [DOI: 10.1039/c6py01644h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A polybenzofulvene brush was enveloped by means of nona(ethylene glycol) arms into hyaluronan shells.
Collapse
|
12
|
Valacchi G, Grisci G, Sticozzi C, Lim Y, Paolino M, Giuliani G, Mendichi R, Belmonte G, Artusi R, Zanardi A, Garofalo P, Giorgi G, Cappelli A, Rovati L. Wound healing properties of hyaluronan derivatives bearing ferulate residues. J Mater Chem B 2015; 3:7037-7045. [DOI: 10.1039/c5tb00661a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The results obtained suggestHAFAgraft copolymers as possible future drugs for the therapeutic treatment of acute and chronic wounds.
Collapse
Affiliation(s)
- Giuseppe Valacchi
- Dipartimento di Scienze della Vita e Biotecnologie
- Università degli Studi di Ferrara
- 44121 Ferrara
- Italy
- Department of Food and Nutrition
| | - Giorgio Grisci
- Dipartimento di Biotecnologie
- Chimica e Farmacia and European Research Centre for Drug Discovery and Development
- Università degli Studi di Siena
- 53100 Siena
- Italy
| | - Claudia Sticozzi
- Dipartimento di Scienze della Vita e Biotecnologie
- Università degli Studi di Ferrara
- 44121 Ferrara
- Italy
| | - Yoonsuk Lim
- Department of Food and Nutrition
- Kyung Hee University
- Seoul 130-701
- Republic of Korea
| | - Marco Paolino
- Dipartimento di Biotecnologie
- Chimica e Farmacia and European Research Centre for Drug Discovery and Development
- Università degli Studi di Siena
- 53100 Siena
- Italy
| | - Germano Giuliani
- Dipartimento di Biotecnologie
- Chimica e Farmacia and European Research Centre for Drug Discovery and Development
- Università degli Studi di Siena
- 53100 Siena
- Italy
| | - Raniero Mendichi
- Istituto per lo Studio delle Macromolecole (CNR)
- 20133 Milano
- Italy
| | - Giuseppe Belmonte
- Dipartimento di Scienze della Vita e Biotecnologie
- Università degli Studi di Ferrara
- 44121 Ferrara
- Italy
| | | | | | | | - Gianluca Giorgi
- Dipartimento di Biotecnologie
- Chimica e Farmacia and European Research Centre for Drug Discovery and Development
- Università degli Studi di Siena
- 53100 Siena
- Italy
| | - Andrea Cappelli
- Dipartimento di Biotecnologie
- Chimica e Farmacia and European Research Centre for Drug Discovery and Development
- Università degli Studi di Siena
- 53100 Siena
- Italy
| | | |
Collapse
|
13
|
Cappelli A, Grisci G, Paolino M, Giuliani G, Donati A, Mendichi R, Artusi R, Demiranda M, Zanardi A, Giorgi G, Vomero S. Hyaluronan derivatives bearing variable densities of ferulic acid residues. J Mater Chem B 2014; 2:4489-4499. [PMID: 32261551 DOI: 10.1039/c3tb21824d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A synthetic procedure has been developed to conjugate ferulic acid (FA) to an important natural polysaccharide derivative such as hyaluronic acid (HA). The activation of FA with 1,1'-carbonyldiimidazole (CDI) has been investigated. Two reactive intermediates, namely monoimidazolide 2 [i.e. (E)-3-(4-hydroxy-3-methoxyphenyl)-1-(1H-imidazol-1-yl)prop-2-en-1-one] and bisimidazolide 3 [i.e. (E)-4-(3-(1H-imidazol-1-yl)-3-oxoprop-1-enyl)-2-methoxyphenyl 1H-imidazole-1-carboxylate] were characterized from the point of view of their structure and reactivity. The ready isolation of bisimidazolide 3 and its reactivity support its potential usefulness in the feruloylation of molecular or macromolecular materials bearing hydroxyl moieties. Bisimidazolide derivative 3 has been found to be an effective reagent in the feruloylation of HA to give HAFA graft copolymers showing different grafting degrees (GD), which could be modulated by varying the reaction conditions. A series of HAFA derivatives showing different GD values has been prepared and submitted to an extensive macromolecular and rheological characterization in order to ascertain that the grafting of HA with FA does not degrade the polysaccharide backbone and to evaluate the role of GD in affecting solubility and rheological properties. The results suggested that relatively low GD values were sufficient to confer physical cross-linking capabilities resulting in the features of a strong gel of HAFA dispersions.
Collapse
Affiliation(s)
- A Cappelli
- Dipartimento di Biotecnologie, Chimica e Farmacia and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro 2, 53100 Siena, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Cilurzo F, Vistoli G, Gennari CGM, Selmin F, Gardoni F, Franzè S, Campisi M, Minghetti P. The Role of the Conformational Profile of Polysaccharides on Skin Penetration: The Case of Hyaluronan and Its Sulfates. Chem Biodivers 2014; 11:551-61. [DOI: 10.1002/cbdv.201300130] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Indexed: 11/09/2022]
|
15
|
Okubo T, Tsuchida A. Drying dissipative structure of sodium salts of hyaluronic acid. Colloid Polym Sci 2014. [DOI: 10.1007/s00396-013-3082-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Abstract
Dynamical behaviors of glycosaminoglycans, as here illustrated with a hyaluronan oligosaccharide, are key regulators of biological functions.
Collapse
Affiliation(s)
- Vitor H. Pomin
- Program of Glycobiology
- Institute of Medical Biochemistry Leopoldo de Meis, and University Hospital Clementino Fraga Filho
- Federal University of Rio de Janeiro
- Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Chiapponi C, Di Bari MT, Gerelli Y, Deriu A, Chiessi E, Finelli I, Paradossi G, Russina M, Izaola Z, Sakai VG. Water dynamics in physical hydrogels based on partially hydrophobized hyaluronic acid. J Phys Chem B 2012; 116:12915-21. [PMID: 23067014 DOI: 10.1021/jp303657a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The dynamics of hyaluronate-based hydrogels has been investigated by quasielastic neutron scattering (QENS). Hyaluronate (HYA) has been compared, in the same conditions of temperature and polymer concentration, to a chemically modified form, HYADD, in which the backbone has been grafted with a hexadecyl (C(16)) side-chain with a degree of substitution of about 2% (mol/mol). This modification increases the hydrophobicity of the polysaccharide and leads to a stable gel already at polymer concentration of 0.3% (w/v), yielding a viscosupplementation with less quantity of polysaccharide. The time-scale covered by our measurements probes both water and segmental biopolymer motions. In both systems, the local dynamics of the network in the ps time-scale is mostly due to local reorientational motions of side groups. Such motions are not significantly affected by the small amount of aliphatic chains forming the hydrophobic junctions in HYADD. The diffusivity of water in both HYA and HYADD coincides with that of pure water within the experimental uncertainty. This result confirms previous ones on the dynamics of water in HYA solutions and it is of relevance for biomedical applications of hyaluronate-based systems because it affects the diffusive processes of metabolites and their interaction with tissues.
Collapse
Affiliation(s)
- Chiara Chiapponi
- Dipartimento di Fisica e Scienze della Terra, Università di Parma and CNISM, Parma, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Marx G, Gilon C. The molecular basis of memory. ACS Chem Neurosci 2012; 3:633-42. [PMID: 23050060 DOI: 10.1021/cn300097b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Accepted: 07/17/2012] [Indexed: 11/28/2022] Open
Abstract
We propose a tripartite biochemical mechanism for memory. Three physiologic components are involved, namely, the neuron (individual and circuit), the surrounding neural extracellular matrix, and the various trace metals distributed within the matrix. The binding of a metal cation affects a corresponding nanostructure (shrinking, twisting, expansion) and dielectric sensibility of the chelating node (address) within the matrix lattice, sensed by the neuron. The neural extracellular matrix serves as an electro-elastic lattice, wherein neurons manipulate multiple trace metals (n > 10) to encode, store, and decode coginive information. The proposed mechanism explains brains low energy requirements and high rates of storage capacity described in multiples of Avogadro number (N(A) = 6 × 10(23)). Supportive evidence correlates memory loss to trace metal toxicity or deficiency, or breakdown in the delivery/transport of metals to the matrix, or its degradation. Inherited diseases revolving around dysfunctional trace metal metabolism and memory dysfunction, include Alzheimer's disease (Al, Zn, Fe), Wilson's disease (Cu), thalassemia (Fe), and autism (metallothionein). The tripartite mechanism points to the electro-elastic interactions of neurons with trace metals distributed within the neural extracellular matrix, as the molecular underpinning of "synaptic plasticity" affecting short-term memory, long-term memory, and forgetting.
Collapse
Affiliation(s)
| | - Chaim Gilon
- Institute of Chemistry, Hebrew University, Jerusalem, Israel
| |
Collapse
|
19
|
Quinn RW, Hilbert SL, Converse GL, Bert AA, Buse E, Drake WB, Armstrong M, Moriarty SJ, Lofland GK, Hopkins RA. Enhanced Autologous Re-endothelialization of Decellularized and Extracellular Matrix Conditioned Allografts Implanted Into the Right Ventricular Outflow Tracts of Juvenile Sheep. Cardiovasc Eng Technol 2012. [DOI: 10.1007/s13239-011-0078-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
20
|
|
21
|
Hu X, Carmichael I, Serianni AS. N-Acetyl Side-Chains in Saccharides: NMR J-Coupling Equations Sensitive to CH−NH and NH−CO Bond Conformations in 2-Acetamido-2-deoxy-aldohexopyranosyl Rings. J Org Chem 2010; 75:4899-910. [DOI: 10.1021/jo100521g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
22
|
Nestor G, Kenne L, Sandström C. Experimental evidence of chemical exchange over the β(1→3) glycosidic linkage and hydrogen bonding involving hydroxy protons in hyaluronan oligosaccharides by NMR spectroscopy. Org Biomol Chem 2010; 8:2795-802. [DOI: 10.1039/b927159g] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Conformational properties of the disaccharide building units of hyaluronan. Carbohydr Res 2009; 344:1745-52. [DOI: 10.1016/j.carres.2009.05.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 05/22/2009] [Accepted: 05/31/2009] [Indexed: 11/24/2022]
|
24
|
Almond A, Deangelis PL, Blundell CD. Hyaluronan: The Local Solution Conformation Determined by NMR and Computer Modeling is Close to a Contracted Left-handed 4-Fold Helix. J Mol Biol 2006; 358:1256-69. [PMID: 16584748 DOI: 10.1016/j.jmb.2006.02.077] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Revised: 01/27/2006] [Accepted: 02/28/2006] [Indexed: 11/27/2022]
Abstract
The polysaccharide hyaluronan (HA) is a ubiquitous component of the vertebrate extracellular matrix with diverse physiological roles from space-filling to acting as a scaffold for other macromolecules. The molecular interactions responsible for these solution properties have been the subject of much debate and, primarily due to the lack of residue-specific experimental data, no consensus model for the three-dimensional conformation nor dynamics of HA in solution has emerged. Here, the solution conformation of HA is investigated using molecular dynamics (MD) simulations and high-field nuclear magnetic resonance (NMR). In contrast to previous studies, MD simulations incorporated explicit water molecules and sodium ions, while NMR experiments utilized (15)N-enriched oligosaccharides to allow residue-specific information to be obtained. The resultant average conformation is predicted to be almost a contracted left-handed 4-fold helix; i.e. similar to that observed for sodium hyaluronate fibers by X-ray diffraction, but with the acetamido side-chain trans to H(2). The glycosidic linkages and acetamido side-chains are predicted to have standard deviation rotations of 13 degrees and 18 degrees around their mean conformations in free solution, respectively, and are not observed to be stabilized by strong intramolecular hydrogen bonds as X-ray fiber diffraction refinements describe for the solid-state. Rather, weak and transient hydrogen bonds that are in rapid interchange with solvent molecules are predicted. These predictions are quantitatively consistent with demanding residue-specific NMR data and correspond to an HA molecule that is rod-like as an oligosaccharide and behaves as a stiffened random coil at large molecular mass, in close agreement with previous hydrodynamic observations. This new description of the solution conformation of HA is consistent with all available experimental data and accounts for its viscoelastic space-filling properties. This representation can be used as a basis for modeling the association between HA and proteins, which will elucidate important aspects of extracellular matrix assembly.
Collapse
Affiliation(s)
- Andrew Almond
- Faculty of Life Sciences, University of Manchester, Manchester Interdisciplinary Biocentre, Princess Street, Manchester, M1 7ND, UK.
| | | | | |
Collapse
|
25
|
Cowman MK, Matsuoka S. Experimental approaches to hyaluronan structure. Carbohydr Res 2005; 340:791-809. [PMID: 15780246 DOI: 10.1016/j.carres.2005.01.022] [Citation(s) in RCA: 236] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2004] [Accepted: 01/10/2005] [Indexed: 12/17/2022]
Abstract
A review of the literature describing experimental studies on hyaluronan (HA) is presented. Methods sensitive to the hydrodynamic properties of HA, analyzed in neutral aqueous solution containing NaCl at physiological concentration, can be shown to fit the expected behavior of a high molecular weight linear semi-flexible polymer. The significant nonideality of HA solutions can be predicted by a simple treatment for hydrodynamic interactions between polymer chains. Nuclear magnetic resonance and circular dichroism studies of HA are also in agreement with a model incorporating dynamically formed and broken hydrogen bonds, contributing to the semi-flexibility of the polymer chain, and segmental motions on the nanosecond time scale. HA shows the capability for self-association in the formation of a viscoelastic putty state at pH 2.5 in the presence of salt, and a gel state at pH 2.5 in mixed organic/aqueous solution containing salt. Ordered and associated structures have also been observed for HA on the surfaces, especially in the presence of surface-structured water. These phenomena can be understood in terms of counterion-mediated polyelectrolyte interactions. The possibility that hyaluronan exists in vivo in environments that induce ordered structures and assemblies is discussed.
Collapse
Affiliation(s)
- Mary K Cowman
- Othmer Department of Chemical and Biological Sciences and Engineering, Polytechnic University, 6 Metrotech Center, Brooklyn, NY 11201, USA.
| | | |
Collapse
|
26
|
Furlan S, La Penna G, Perico A, Cesàro A. Hyaluronan chain conformation and dynamics. Carbohydr Res 2005; 340:959-70. [PMID: 15780260 DOI: 10.1016/j.carres.2005.01.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2004] [Accepted: 01/25/2005] [Indexed: 11/20/2022]
Abstract
An overview of the present state of research in the field of hyaluronan chain conformational aspects is presented. The relationship between structure and dynamics are illustrated for a series of hyaluronan oligomers. Conformational characteristics of hyaluronan chains are discussed, together with the dynamic chain patterns, evaluated by using a theoretical approach to diffusive polymer dynamics. The dependence of correlation times and NMR relaxation parameters from the chain dimension are investigated. Topological features and dimensional properties are related to the structural determinants by using classical computational methods of molecular mechanics and Monte Carlo simulation.
Collapse
Affiliation(s)
- Sara Furlan
- Department of Biochemistry, Biophysics and Macromolecular Chemistry, UdR INSTM, University of Trieste, I-34127 Trieste, Italy
| | | | | | | |
Collapse
|
27
|
Furlan S, La Penna G, Perico A, Cesàro A. Conformational Dynamics of Hyaluronan Oligomers in Solution. 3. Molecular Dynamics from Monte Carlo Replica-Exchange Simulations and Mode-Coupling Diffusion Theory. Macromolecules 2004. [DOI: 10.1021/ma049641v] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
D'Auria G, Flores G, Falcigno L, Oliva R, Vacatello M, Corsaro MM, Parrilli M, Paolillo L. Hyaluronate tetrasaccharide- Cu(II) interaction: a NMR study. Biopolymers 2003; 70:260-9. [PMID: 14517914 DOI: 10.1002/bip.10433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The coordination of Cu(II) to a hyaluronate tetrasaccharide (HAt) was investigated in aqueous solution by 13C and 1H relaxation measurements at two magnetic fields, 9 and 14 T. The HAt interaction with the metal ion was monitored following the nuclear paramagnetic relaxation enhancements R1p and R2p produced by the copper addition. The data analysis shows that the paramagnetic effect is differently experienced by the nuclei in different monosaccharide residues. A molecular model for the complex HAt-Cu(II) was built taking into account the experimental data. The model shows the presence of two binding sites, both involving the carboxylate groups of the two glucuronic acid units. The first site, that best simulates the HA binding site, is located on the ligand core, while the second one is located on the terminal glucuronic acid residue. Both binding sites involve, in addition to the carboxylate groups, the O4 oxygens of the glucuronic acid residues.
Collapse
Affiliation(s)
- Gabriella D'Auria
- Department of Chemistry, University Federico II of Naples, 80126 Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Maréchal Y, Milas M, Rinaudo M. Hydration of hyaluronan polysaccharide observed by IR spectrometry. III. Structure and mechanism of hydration. Biopolymers 2003; 72:162-73. [PMID: 12722112 DOI: 10.1002/bip.10343] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The results of the analysis of hydration spectra of Na(+) hyaluronan (HA) performed in a companion study are translated in terms of chemical mechanisms. We find that dried HA is characterized by chains having ordered parts of at least 6 disaccharide repeat units that extend over 60 A. The order is mainly due to C3O3H...O5 and C4O4H...O5 hydrogen bonds that hinder rotations around beta(1-4) and beta(1-3) glycoside bonds. Along one chain there are two-thirds of the N-H amide groups and carboxyl groups that are directly hydrogen bonded, with no water intermediate, to form N-H...(-)O-C=O hydrogen bonds, which are collateral to C3O3H...O5 hydrogen bonds. The existence of these N-H...(-)O-C=O bonds is somewhat in opposition to literature descriptions. In this dry state a "water wire" of 4-5 H(2)O molecules, which are anchored on C=O carboxyl groups and hydrating the Na(+) CO(-) ionic group, establishes hydrogen bonds on other hydrophilic groups of the same chain or other chains and remains embedded in HA, even at 104 degrees C. Hydration occurs at low hygrometry around the remaining one-third of the N-H...(-)O-C=O pairs that are not hydrogen bonded. Each of these N-H and (-)O-C=O groups is hydrated by a nanodroplet of some 25 H(2)O molecules that finds other sites for binding and hydrates 2 disaccharide repeat units. At higher hygrometry bigger nanodroplets hydrate all hydrophilic sites.
Collapse
Affiliation(s)
- Y Maréchal
- Département de Recherche Fondamentale sur la Matière Condensée, UMR5819/PCM, CEA/Grenoble, 17 Rue des Martyrs, F 38 054 Grenoble Cedex 9, France
| | | | | |
Collapse
|