1
|
Tong S, Xie L, Xie X, Xu J, You Y, Sun Y, Zhou S, Ma C, Jiang G, Ma F, Wang Z, Gao X, Chen J. Nano-Plumber Reshapes Glymphatic-Lymphatic System to Sustain Microenvironment Homeostasis and Improve Long-Term Prognosis after Traumatic Brain Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304284. [PMID: 37867233 PMCID: PMC10700187 DOI: 10.1002/advs.202304284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/24/2023] [Indexed: 10/24/2023]
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. Long-term changes in the microenvironment of the brain contribute to the degeneration of neurological function following TBI. However, current research focuses primarily on short-term modulation during the early phases of TBI, not on the critical significance of long-term homeostasis in the brain microenvironment. Notably, dysfunction of the glymphatic-lymphatic system results in the accumulation of danger/damage-associated molecular patterns (DAMPs) in the brain, which is regarded as the leading cause of long-term microenvironmental disturbances following TBI. Here, a nanostructure, Nano-plumber, that co-encapsulates the microenvironment regulator pro-DHA and the lymphatic-specific growth factor VEGF-C is developed, allowing for a sustainable and orderly regulation of the microenvironment to promote long-term neurological recovery. Nano-plumber reverses the injury microenvironment by suppressing microglia and astrocytes activation and maintaining reduced activation via enhanced glymphatic-lymphatic drainage, and significantly improves the neurological function of rodents with TBI. This study demonstrates that glymphatic-lymphatic system reconstruction is essential for enhancing long-term prognosis following TBI, and that the Nano-plumber developed here may serve as a clinically translatable treatment option for TBI.
Collapse
Affiliation(s)
- Shiqiang Tong
- Department of PharmaceuticsSchool of Pharmacy & Shanghai Pudong HospitalFudan UniversityShanghai201203China
- Key Laboratory of Smart Drug DeliveryMinistry of EducationSchool of PharmacyFudan UniversityShanghai201203China
| | - Laozhi Xie
- Department of PharmaceuticsSchool of Pharmacy & Shanghai Pudong HospitalFudan UniversityShanghai201203China
- Key Laboratory of Smart Drug DeliveryMinistry of EducationSchool of PharmacyFudan UniversityShanghai201203China
| | - Xiaoying Xie
- Department of PharmaceuticsSchool of Pharmacy & Shanghai Pudong HospitalFudan UniversityShanghai201203China
- Key Laboratory of Smart Drug DeliveryMinistry of EducationSchool of PharmacyFudan UniversityShanghai201203China
| | - Jianpei Xu
- Department of PharmaceuticsSchool of Pharmacy & Shanghai Pudong HospitalFudan UniversityShanghai201203China
- Key Laboratory of Smart Drug DeliveryMinistry of EducationSchool of PharmacyFudan UniversityShanghai201203China
| | - Yang You
- Department of PharmaceuticsSchool of Pharmacy & Shanghai Pudong HospitalFudan UniversityShanghai201203China
- Key Laboratory of Smart Drug DeliveryMinistry of EducationSchool of PharmacyFudan UniversityShanghai201203China
| | - Yinzhe Sun
- Department of PharmaceuticsSchool of Pharmacy & Shanghai Pudong HospitalFudan UniversityShanghai201203China
- Key Laboratory of Smart Drug DeliveryMinistry of EducationSchool of PharmacyFudan UniversityShanghai201203China
| | - Songlei Zhou
- Department of PharmaceuticsSchool of Pharmacy & Shanghai Pudong HospitalFudan UniversityShanghai201203China
- Key Laboratory of Smart Drug DeliveryMinistry of EducationSchool of PharmacyFudan UniversityShanghai201203China
| | - Chuchu Ma
- Department of PharmaceuticsSchool of Pharmacy & Shanghai Pudong HospitalFudan UniversityShanghai201203China
- Key Laboratory of Smart Drug DeliveryMinistry of EducationSchool of PharmacyFudan UniversityShanghai201203China
| | - Gan Jiang
- Department of Pharmacology and Chemical BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Universities Collaborative Innovation Center for Translational MedicineShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Fenfen Ma
- Department of PharmaceuticsSchool of Pharmacy & Shanghai Pudong HospitalFudan UniversityShanghai201203China
- Key Laboratory of Smart Drug DeliveryMinistry of EducationSchool of PharmacyFudan UniversityShanghai201203China
- Department of PharmacyShanghai Pudong HospitalFudan UniversityShanghai201399China
| | - Zhihua Wang
- Department of EmergencyShanghai Pudong HospitalFudan University Pudong Medical CenterShanghai201399China
| | - Xiaoling Gao
- Department of Pharmacology and Chemical BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Universities Collaborative Innovation Center for Translational MedicineShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Jun Chen
- Department of PharmaceuticsSchool of Pharmacy & Shanghai Pudong HospitalFudan UniversityShanghai201203China
- Key Laboratory of Smart Drug DeliveryMinistry of EducationSchool of PharmacyFudan UniversityShanghai201203China
| |
Collapse
|
2
|
Lacalle-Aurioles M, Iturria-Medina Y. Fornix degeneration in risk factors of Alzheimer's disease, possible trigger of cognitive decline. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2023; 4:100158. [PMID: 36703699 PMCID: PMC9871745 DOI: 10.1016/j.cccb.2023.100158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Risk factors of late-onset Alzheimer's disease (AD) such as aging, type 2 diabetes, obesity, heart failure, and traumatic brain injury can facilitate the appearance of cognitive decline and dementia by triggering cerebrovascular pathology and neuroinflammation. White matter (WM) microstructure and function are especially vulnerable to these conditions. Microstructural WM changes, assessed with diffusion weighted magnetic resonance imaging, can already be detected at preclinical stages of AD, and in the presence of the aforementioned risk factors. Particularly, the limbic system and cortico-cortical association WM tracts, which myelinate late during brain development, degenerate at the earliest stages. The fornix, a C-shaped WM tract that originates from the hippocampus, is one of the limbic tracts that shows early microstructural changes. Fornix integrity is necessary for ensuring an intact executive function and memory performance. Thus, a better understanding of the mechanisms that cause fornix degeneration is critical in the development of therapeutic strategies aiming to prevent cognitive decline in populations at risk. In this literature review, i) we deepen the idea that partial loss of forniceal integrity is an early event in AD, ii) we describe the role that common risk factors of AD can play in the degeneration of the fornix, and iii) we discuss some potential cellular and physiological mechanisms of WM degeneration in the scenario of cerebrovascular disease and inflammation.
Collapse
Affiliation(s)
- María Lacalle-Aurioles
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada,Corresponding author at: Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada.
| | - Yasser Iturria-Medina
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada,Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, Canada,McConnell Brain Imaging Centre, McGill University, Montreal, Canada
| |
Collapse
|
3
|
Lu ZG, Shen J, Yang J, Wang JW, Zhao RC, Zhang TL, Guo J, Zhang X. Nucleic acid drug vectors for diagnosis and treatment of brain diseases. Signal Transduct Target Ther 2023; 8:39. [PMID: 36650130 PMCID: PMC9844208 DOI: 10.1038/s41392-022-01298-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/08/2022] [Accepted: 12/21/2022] [Indexed: 01/18/2023] Open
Abstract
Nucleic acid drugs have the advantages of rich target selection, simple in design, good and enduring effect. They have been demonstrated to have irreplaceable superiority in brain disease treatment, while vectors are a decisive factor in therapeutic efficacy. Strict physiological barriers, such as degradation and clearance in circulation, blood-brain barrier, cellular uptake, endosome/lysosome barriers, release, obstruct the delivery of nucleic acid drugs to the brain by the vectors. Nucleic acid drugs against a single target are inefficient in treating brain diseases of complex pathogenesis. Differences between individual patients lead to severe uncertainties in brain disease treatment with nucleic acid drugs. In this Review, we briefly summarize the classification of nucleic acid drugs. Next, we discuss physiological barriers during drug delivery and universal coping strategies and introduce the application methods of these universal strategies to nucleic acid drug vectors. Subsequently, we explore nucleic acid drug-based multidrug regimens for the combination treatment of brain diseases and the construction of the corresponding vectors. In the following, we address the feasibility of patient stratification and personalized therapy through diagnostic information from medical imaging and the manner of introducing contrast agents into vectors. Finally, we take a perspective on the future feasibility and remaining challenges of vector-based integrated diagnosis and gene therapy for brain diseases.
Collapse
Affiliation(s)
- Zhi-Guo Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| | - Jie Shen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jun Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jing-Wen Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Rui-Chen Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Tian-Lu Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Jing Guo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Xin Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| |
Collapse
|
4
|
Galectins—Potential Therapeutic Targets for Neurodegenerative Disorders. Int J Mol Sci 2022; 23:ijms231911012. [PMID: 36232314 PMCID: PMC9569834 DOI: 10.3390/ijms231911012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Advancements in medicine have increased the longevity of humans, resulting in a higher incidence of chronic diseases. Due to the rise in the elderly population, age-dependent neurodegenerative disorders are becoming increasingly prevalent. The available treatment options only provide symptomatic relief and do not cure the underlying cause of the disease. Therefore, it has become imperative to discover new markers and therapies to modulate the course of disease progression and develop better treatment options for the affected individuals. Growing evidence indicates that neuroinflammation is a common factor and one of the main inducers of neuronal damage and degeneration. Galectins (Gals) are a class of β-galactoside-binding proteins (lectins) ubiquitously expressed in almost all vital organs. Gals modulate various cellular responses and regulate significant biological functions, including immune response, proliferation, differentiation, migration, and cell growth, through their interaction with glycoproteins and glycolipids. In recent years, extensive research has been conducted on the Gal superfamily, with Gal-1, Gal-3, and Gal-9 in prime focus. Their roles have been described in modulating neuroinflammation and neurodegenerative processes. In this review, we discuss the role of Gals in the causation and progression of neurodegenerative disorders. We describe the role of Gals in microglia and astrocyte modulation, along with their pro- and anti-inflammatory functions. In addition, we discuss the potential use of Gals as a novel therapeutic target for neuroinflammation and restoring tissue damage in neurodegenerative diseases.
Collapse
|
5
|
Kumagawa T, Moro N, Maeda T, Kobayashi M, Furukawa Y, Shijo K, Yoshino A. Anti-inflammatory effect of P2Y1 receptor blocker MRS2179 in a rat model of traumatic brain injury. Brain Res Bull 2022; 181:46-54. [DOI: 10.1016/j.brainresbull.2022.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023]
|
6
|
Soares LC, Al-Dalahmah O, Hillis J, Young CC, Asbed I, Sakaguchi M, O’Neill E, Szele FG. Novel Galectin-3 Roles in Neurogenesis, Inflammation and Neurological Diseases. Cells 2021; 10:3047. [PMID: 34831271 PMCID: PMC8618878 DOI: 10.3390/cells10113047] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
Galectin-3 (Gal-3) is an evolutionarily conserved and multifunctional protein that drives inflammation in disease. Gal-3's role in the central nervous system has been less studied than in the immune system. However, recent studies show it exacerbates Alzheimer's disease and is upregulated in a large variety of brain injuries, while loss of Gal-3 function can diminish symptoms of neurodegenerative diseases such as Alzheimer's. Several novel molecular pathways for Gal-3 were recently uncovered. It is a natural ligand for TREM2 (triggering receptor expressed on myeloid cells), TLR4 (Toll-like receptor 4), and IR (insulin receptor). Gal-3 regulates a number of pathways including stimulation of bone morphogenetic protein (BMP) signaling and modulating Wnt signalling in a context-dependent manner. Gal-3 typically acts in pathology but is now known to affect subventricular zone (SVZ) neurogenesis and gliogenesis in the healthy brain. Despite its myriad interactors, Gal-3 has surprisingly specific and important functions in regulating SVZ neurogenesis in disease. Gal-1, a similar lectin often co-expressed with Gal-3, also has profound effects on brain pathology and adult neurogenesis. Remarkably, Gal-3's carbohydrate recognition domain bears structural similarity to the SARS-CoV-2 virus spike protein necessary for cell entry. Gal-3 can be targeted pharmacologically and is a valid target for several diseases involving brain inflammation. The wealth of molecular pathways now known further suggest its modulation could be therapeutically useful.
Collapse
Affiliation(s)
- Luana C. Soares
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, South Parks Road, Oxford OX1 3QX, UK; (L.C.S.); (I.A.)
- Department of Oncology, University of Oxford, Oxford OX1 3QX, UK;
| | - Osama Al-Dalahmah
- Irving Medical Center, Columbia University, New York, NY 10032, USA;
| | - James Hillis
- Massachusets General Hospital, Harvard Medical School, 15 Parkman Street, Boston, MA 02114, USA;
| | - Christopher C. Young
- Department of Neurological Surgery, University of Washington, 325 Ninth Avenue, Seattle, WA 98104, USA;
| | - Isaiah Asbed
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, South Parks Road, Oxford OX1 3QX, UK; (L.C.S.); (I.A.)
| | - Masanori Sakaguchi
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba 305-8575, Japan;
| | - Eric O’Neill
- Department of Oncology, University of Oxford, Oxford OX1 3QX, UK;
| | - Francis G. Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, South Parks Road, Oxford OX1 3QX, UK; (L.C.S.); (I.A.)
| |
Collapse
|
7
|
Nio-Kobayashi J, Itabashi T. Galectins and Their Ligand Glycoconjugates in the Central Nervous System Under Physiological and Pathological Conditions. Front Neuroanat 2021; 15:767330. [PMID: 34720894 PMCID: PMC8554236 DOI: 10.3389/fnana.2021.767330] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/17/2021] [Indexed: 11/20/2022] Open
Abstract
Galectins are β-galactoside-binding lectins consisting of 15 members in mammals. Galectin-1,-3,-4,-8, and -9 are predominantly expressed in the central nervous system (CNS) and regulate various physiological and pathological events. This review summarizes the current knowledge of the cellular expression and role of galectins in the CNS, and discusses their functions in neurite outgrowth, myelination, and neural stem/progenitor cell niches, as well as in ischemic/hypoxic/traumatic injuries and neurodegenerative diseases such as multiple sclerosis. Galectins are expressed in both neurons and glial cells. Galectin-1 is mainly expressed in motoneurons, whereas galectin-3-positive neurons are broadly distributed throughout the brain, especially in the hypothalamus, indicating its function in the regulation of homeostasis, stress response, and the endocrine/autonomic system. Astrocytes predominantly contain galectin-1, and galectin-3 and−9 are upregulated along with its activation. Activated, but not resting, microglia contain galectin-3, supporting its phagocytic activity. Galectin-1,−3, and -4 are characteristically expressed during oligodendrocyte differentiation. Galectin-3 from microglia promotes oligodendrocyte differentiation and myelination, while galectin-1 and axonal galectin-4 suppress its differentiation and myelination. Galectin-1- and- 3-positive cells are involved in neural stem cell niche formation in the subventricular zone and hippocampal dentate gyrus, and the migration of newly generated neurons and glial cells to the olfactory bulb or damaged lesions. In neurodegenerative diseases, galectin-1,-8, and -9 have neuroprotective and anti-inflammatory activities. Galectin-3 facilitates pro-inflammatory action; however, it also plays an important role during the recovery period. Several ligand glycoconjugates have been identified so far such as laminin, integrins, neural cell adhesion molecule L1, sulfatide, neuropilin-1/plexinA4 receptor complex, triggering receptor on myeloid cells 2, and T cell immunoglobulin and mucin domain. N-glycan branching on lymphocytes and oligodendroglial progenitors mediated by β1,6-N-acetylglucosaminyltransferase V (Mgat5/GnTV) influences galectin-binding, modulating inflammatory responses and remyelination in neurodegenerative diseases. De-sulfated galactosaminoglycans such as keratan sulfate are potential ligands for galectins, especially galectin-3, regulating neural regeneration. Galectins have multitudinous functions depending on cell type and context as well as post-translational modifications, including oxidization, phosphorylation, S-nitrosylation, and cleavage, but there should be certain rules in the expression patterns of galectins and their ligand glycoconjugates, possibly related to glucose metabolism in cells.
Collapse
Affiliation(s)
- Junko Nio-Kobayashi
- Laboratory of Histology and Cytology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tetsuya Itabashi
- Laboratory of Histology and Cytology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
8
|
da Rosa MM, de Aguiar Ferreira M, de Oliveira Lima CA, Santos Mendonça AC, Silva YM, Sharjeel M, de Melo Rego MJB, Pereira MC, da Rocha Pitta MG. Alzheimer's disease: Is there a role for galectins? Eur J Pharmacol 2021; 909:174437. [PMID: 34450113 DOI: 10.1016/j.ejphar.2021.174437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is the world's leading cause of neurological dysfunction, cognitive decline, and neuronal loss in the elderly. The sedimentation of beta amyloid (Aβ)-containing plaque, and formation of tau-containing neurofibrillary tangles (NFTs) along with extensive neuroinflammation, are the events that characterize the pathogenesis of AD. Galectins (gal) are carbohydrate-containing-ligand molecules recognized as potential modulators of the brain microglia polarization, immunosurveillance, neuroinflammation, and neuroprotection. Galectins 1, 3, 4, 8, and 9 are amongst the 15 members of the galectin family which are expressed in the brain. These galectins possess a significant correlation with neuromodulation through the glial cell-induced cytokine production that plays either a complementary or antagonistic role in the disturbance of the CNS physiology. Therefore, elaborating the hypothesis of galectins in the development of AD is of potential interest. This review aims at discussing the interaction between galectins and the neuropathophysiology of AD. An understanding about how galectins communicate with AD progression could lead to the development of improved diagnostic and therapeutic strategies for this leading cause of dementia worldwide.
Collapse
Affiliation(s)
- Michelle Melgarejo da Rosa
- Department of Biochemistry, Federal University of Pernambuco, Recife, Brazil; Center for Therapeutic Innovation - Suelly Galdino (NUPIT-SG), Recife, Brazil.
| | | | | | | | | | | | | | - Michelly Cristiny Pereira
- Center for Therapeutic Innovation - Suelly Galdino (NUPIT-SG), Recife, Brazil; Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | | |
Collapse
|
9
|
Wesley UV, Sutton IC, Cunningham K, Jaeger JW, Phan AQ, Hatcher JF, Dempsey RJ. Galectin-3 protects against ischemic stroke by promoting neuro-angiogenesis via apoptosis inhibition and Akt/Caspase regulation. J Cereb Blood Flow Metab 2021; 41:857-873. [PMID: 33736511 PMCID: PMC7983501 DOI: 10.1177/0271678x20931137] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Post-stroke neurological deficits and mortality are often associated with vascular disruption and neuronal apoptosis. Galectin-3 (Gal3) is a potent pro-survival and angiogenic factor. However, little is known about its protective role in the cerebral ischemia/reperfusion (I/R) injury. We have previously shown significant up-regulation of Gal3 in the post-stroke rat brain, and that blocking of Gal3 with neutralizing antibody decreases the cerebral blood vessel density. Our current study demonstrates that intracerebral local delivery of the Gal3 into rat brain at the time of reperfusion exerts neuroprotection. Ischemic lesion volume and neuronal cell death were significantly reduced as compared with the vehicle-treated MCAO rat brains. Gal3 increased vessel density and neuronal survival after I/R in rat brains. Importantly, Gal3-treated groups showed significant improvement in motor and sensory functional recovery. Gal3 increased neuronal cell viability under in vitro oxygen-glucose deprivation conditions in association with increased phosphorylated-Akt, decreased phosphorylated-ERK1/2, and reduced caspase-3 activity. Gene expression analysis showed down regulation of pro-apoptotic and inflammatory genes including Fas-ligand, and upregulation of pro-survival and pro-angiogenic genes including Bcl-2, PECAM, and occludin. These results indicate a key role for Gal3 in neuro-vascular protection and functional recovery following ischemic stroke through modulation of angiogenic and apoptotic pathways.
Collapse
Affiliation(s)
- Umadevi V Wesley
- Department of Neurosurgery, University of Wisconsin, Madison, WI, USA
| | - Ian C Sutton
- Department of Neurosurgery, University of Wisconsin, Madison, WI, USA
| | | | - Jacob W Jaeger
- Department of Neurosurgery, University of Wisconsin, Madison, WI, USA
| | - Allan Q Phan
- Department of Neurosurgery, University of Wisconsin, Madison, WI, USA
| | - James F Hatcher
- Department of Neurosurgery, University of Wisconsin, Madison, WI, USA
| | - Robert J Dempsey
- Department of Neurosurgery, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
10
|
King DR, Salako DC, Arthur-Bentil SK, Rubin AE, Italiya JB, Tan JS, Macris DG, Neely HK, Palka JM, Grodin JL, Davis-Bordovsky K, Faubion M, North CS, Brown ES. Relationship between novel inflammatory biomarker galectin-3 and depression symptom severity in a large community-based sample. J Affect Disord 2021; 281:384-389. [PMID: 33352408 PMCID: PMC7856258 DOI: 10.1016/j.jad.2020.12.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 01/13/2023]
Abstract
Major depressive disorder is associated with pro-inflammatory markers, such as cytokines TNF-alpha, IL-6, IL-1ß, and C-reactive protein. Galectin-3 is a novel emerging biomarker with pro-inflammatory properties. It is a saccharide binding protein distributed throughout many tissues with varying functions and is a predictor of poor outcomes in patients with heart failure and stroke. However, its role as a predictor in depressive symptom severity remains undefined. Data from the community-based Dallas Heart Study (n = 2554) were examined using a multiple linear regression analysis to evaluate the relationship between galectin-3 and depressive symptom severity as assessed with Quick Inventory of Depressive Symptomatology Self-Report (QIDS-SR) scores. Additional covariates included age, sex, race/ethnicity, body mass index (BMI), years of education, serum creatinine, history of diabetes, and smoking history. Galectin-3 levels statistically significantly predicted QIDS-SR depressive symptom severity (β = 0.055, p = .015). Female sex, smoking status, and BMI were found to be statistically significant positive predictors of depression severity, while age, years of education, non-Hispanic White race, and Hispanic ethnicity were negative predictors of depressive symptom severity. In this large sample, higher galectin-3 levels were associated with higher levels of depressive symptoms. The findings suggest that galectin-3 may be a new and useful inflammatory biomarker associated with depression.
Collapse
Affiliation(s)
- Darlene R. King
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, MC 8849 Dallas, TX 75390-8849, USA
| | - Damilola C. Salako
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, MC 8849 Dallas, TX 75390-8849, USA
| | - Samia Kate Arthur-Bentil
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, MC 8849 Dallas, TX 75390-8849, USA
| | - Arielle E. Rubin
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, MC 8849 Dallas, TX 75390-8849, USA
| | - Jay B. Italiya
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, MC 8849 Dallas, TX 75390-8849, USA
| | - Jenny S. Tan
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, MC 8849 Dallas, TX 75390-8849, USA
| | - Dimitri G. Macris
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, MC 8849 Dallas, TX 75390-8849, USA
| | - Hunter K. Neely
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, MC 8849 Dallas, TX 75390-8849, USA
| | - Jayme M. Palka
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, MC 8849 Dallas, TX 75390-8849, USA
| | - Justin L. Grodin
- Division of Cardiology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8830, USA
| | - Kaylee Davis-Bordovsky
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, MC 8849 Dallas, TX 75390-8849, USA
| | - Matthew Faubion
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, MC 8849 Dallas, TX 75390-8849, USA
| | - Carol S. North
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, MC 8849 Dallas, TX 75390-8849, USA,The Altshuler Center for Education & Research, Metrocare Services, 1250 Mockingbird Ln, Suite 330, Dallas, TX 75247, USA
| | - E. Sherwood Brown
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, MC 8849 Dallas, TX 75390-8849, USA,Corresponding author: E. Sherwood Brown, M.D., Ph.D., Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8849, Tel: 214-645-6950, Fax: 214-645-6951,
| |
Collapse
|
11
|
Abstract
Galectins are an ancient family of lectins characterized by evolutionarily conserved amino acid sequences and β-galactoside recognition and binding sites. Galectin-3 (Gal-3) is one of 15 known galectins. This protein has important functions in numerous biological activities, including cardiac fibrosis and heart failure. In recent years, many studies have shown that Gal-3 is closely associated with acute myocardial infarction (AMI) and may be a promising biomarker for the assessment of severity as well as prognosis prediction in AMI patients, but controversy still exists. In this review, we summarize the latest literature on the relationship between Gal-3 and unstable plaques, the secretion kinetics of Gal-3 during the acute phase of AMI, and the value of Gal-3 in the prediction of post-AMI remodeling. Finally, the possible value of Gal-3 as a biological target for AMI therapy is examined.
Collapse
Affiliation(s)
- Mingxing Li
- Department of Cardiology, Zhongshan People's Hospital, Zhongshan, Guangdong, China
| | - Yong Yuan
- Department of Cardiology, Zhongshan People's Hospital, Zhongshan, Guangdong, China
| | - Kai Guo
- Department of Cardiology, Zhongshan People's Hospital, Zhongshan, Guangdong, China
| | - Yi Lao
- Department of Cardiology, Zhongshan People's Hospital, Zhongshan, Guangdong, China
| | - Xuansheng Huang
- Department of Cardiology, Zhongshan People's Hospital, Zhongshan, Guangdong, China
| | - Li Feng
- Department of Cardiology, Zhongshan People's Hospital, Zhongshan, Guangdong, China.
| |
Collapse
|
12
|
Taniguchi M, Okazaki T. Ceramide/Sphingomyelin Rheostat Regulated by Sphingomyelin Synthases and Chronic Diseases in Murine Models. J Lipid Atheroscler 2020; 9:380-405. [PMID: 33024732 PMCID: PMC7521967 DOI: 10.12997/jla.2020.9.3.380] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/16/2020] [Accepted: 07/19/2020] [Indexed: 12/16/2022] Open
Abstract
Ceramide and sphingomyelin (SM) are major components of the double membrane-bound sphingolipids. Ceramide is an essential bioactive lipid involved in numerous cell processes including apoptosis, necrosis, and autophagy-dependent cell death. Inversely, SM regulates opposite cellular processes such as proliferation and migration by changing receptor-mediated signal transduction in the lipid microdomain. SM is generated through a transfer of phosphocholine from phosphatidylcholine to ceramide by SM synthases (SMSs). Research during the past several decades has revealed that the ceramide/SM balance in cellular membranes regulated by SMSs is important to decide the cell fate, survival, and proliferation. In addition, recent experimental studies utilizing SMS knockout mice and murine disease models provide evidence that SMS-regulated ceramide/SM balance is involved in human diseases. Here, we review the basic structural and functional characteristics of SMSs and focus on their cellular functions through the regulation of ceramide/SM balance in membrane microdomains. In addition, we present the pathological or physiological implications of SMSs by analyzing their role in SMS-knockout mice and human disease models. This review finally presents evidence indicating that the regulation of ceramide/SM balance through SMS could be a therapeutic target for human disorders.
Collapse
Affiliation(s)
- Makoto Taniguchi
- Department of Life Science, Medical Research Institute, Kanazawa Medical University, Kahoku, Japan
| | - Toshiro Okazaki
- Research Institute for Bioresources and Biotechnology, Kanazawa Prefectural University, Nonoichi, Japan
| |
Collapse
|
13
|
Kiliç F, Işik Ü, Demirdaş A, Usta A. Serum galectin-3 levels are decreased in schizophrenia. ACTA ACUST UNITED AC 2020; 42:398-402. [PMID: 32159713 PMCID: PMC7430395 DOI: 10.1590/1516-4446-2019-0699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 11/12/2019] [Indexed: 11/22/2022]
Abstract
Objective: To determine whether changes in serum galectin-3 (gal-3) concentrations in schizophrenia patients have etiopathogenetic importance. Since very little research has assessed the connection between galectins and schizophrenia, we wanted to examine alterations in the inflammatory marker gal-3 in schizophrenia and investigate possible correlations between clinical symptomatology and serum concentrations. Methods: Forty-eight schizophrenia patients and 44 healthy controls were included in this study. The Scale for the Assessment of Positive Symptoms (SAPS) and the Scale for the Assessment of Negative Symptoms (SANS) were administered to determine symptom severity. Venous blood samples were collected, and serum gal-3 levels were measured. Results: Mean serum gal-3 levels were significantly lower in schizophrenia patients, and there were no significant differences in age or sex with the control group. There was also a significant positive correlation between serum gal-3 concentrations and negative schizophrenia symptoms according to the SANS. Conclusion: The results indicate that gal-3 is decreased in schizophrenia patients, which could contribute to inflammation in the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Faruk Kiliç
- Department of Psychiatry, Süleyman Demirel University Medicine Faculty, Isparta, Turkey
| | - Ümit Işik
- Department of Child and Adolescent Psychiatry, Süleyman Demirel University Medicine Faculty, Isparta, Turkey
| | - Arif Demirdaş
- Department of Psychiatry, Süleyman Demirel University Medicine Faculty, Isparta, Turkey
| | - Ayşe Usta
- Department of Psychiatry, Süleyman Demirel University Medicine Faculty, Isparta, Turkey
| |
Collapse
|
14
|
Xue J, Yu Y, Zhang X, Zhang C, Zhao Y, Liu B, Zhang L, Wang L, Chen R, Gao X, Jiao P, Song G, Jiang XC, Qin S. Sphingomyelin Synthase 2 Inhibition Ameliorates Cerebral Ischemic Reperfusion Injury Through Reducing the Recruitment of Toll-Like Receptor 4 to Lipid Rafts. J Am Heart Assoc 2019; 8:e012885. [PMID: 31718447 PMCID: PMC6915272 DOI: 10.1161/jaha.119.012885] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Inflammation is recognized as an important contributor of ischemia/reperfusion (I/R) damage after ischemic stroke. Sphingomyelin synthase 2 (SMS2), the key enzyme for the biosynthesis of sphingomyelin, can function as a critical mediator of inflammation. In the present study, we investigated the role of SMS2 in a mouse model of cerebral I/R. Methods and Results Cerebral I/R was induced by 60‐minute transient middle cerebral artery occlusion in SMS2 knockout (SMS2‐/‐) mice and wild‐type mice. Brain injury was determined by neurological deficits and infarct volume at 24 and 72 hours after transient middle cerebral artery occlusion. Microglia activation and inflammatory factors were detected by immunofluorescence staining, flow cytometry, western blot, and RT‐PCR. SMS2 deficiency significantly improved neurological function and minimized infarct volume at 72 hours after transient middle cerebral artery occlusion. The neuroprotective effects of SMS2 deficiency were associated with (1) suppression of microglia activation through Toll‐like receptor 4/nuclear factor kappa‐light‐chain‐enhancer of activated B cells pathway and (2) downregulation of the level of galactin‐3 and other proinflammatory cytokines. The mechanisms underlying the beneficial effects of SMS2 deficiency may include altering sphingomyelin components in lipid raft fractions, thus impairing the recruitment of Toll‐like receptor 4 to lipid rafts and subsequently reducing Toll‐like receptor 4/myeloid differentiation factor 2 complex formation on the surface of microglia. Conclusions SMS2 deficiency ameliorated inflammatory injury after cerebral I/R in mice, and SMS2 may be a key modulator of Toll‐like receptor 4/nuclear factor kappa‐light‐chain‐enhancer of activated B cells activation by disturbing the membrane component homeostasis during cerebral I/R.
Collapse
Affiliation(s)
- Jing Xue
- Department of Neurology Second Hospital of Hebei Medical University Shijiazhuang China.,Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis Shijiazhuang China
| | - Yang Yu
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis Shandong First Medical University & Shandong Academy of Medical Sciences Taian China.,Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis Shijiazhuang China
| | - Xiangjian Zhang
- Department of Neurology Second Hospital of Hebei Medical University Shijiazhuang China.,Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis Shijiazhuang China
| | - Cong Zhang
- Department of Neurology Second Hospital of Hebei Medical University Shijiazhuang China.,Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis Shijiazhuang China
| | - Yanan Zhao
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis Shandong First Medical University & Shandong Academy of Medical Sciences Taian China.,Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis Shijiazhuang China
| | - Boyan Liu
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis Shandong First Medical University & Shandong Academy of Medical Sciences Taian China.,Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis Shijiazhuang China
| | - Lan Zhang
- Department of Neurology Second Hospital of Hebei Medical University Shijiazhuang China.,Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis Shijiazhuang China
| | - Lina Wang
- Department of Neurology Second Hospital of Hebei Medical University Shijiazhuang China.,Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis Shijiazhuang China
| | - Rong Chen
- Department of Neurology Second Hospital of Hebei Medical University Shijiazhuang China.,Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis Shijiazhuang China
| | - Xuan Gao
- Department of Neurology Second Hospital of Hebei Medical University Shijiazhuang China.,Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis Shijiazhuang China
| | - Peng Jiao
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis Shandong First Medical University & Shandong Academy of Medical Sciences Taian China.,Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis Shijiazhuang China
| | - Guohua Song
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis Shandong First Medical University & Shandong Academy of Medical Sciences Taian China.,Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis Shijiazhuang China
| | - Xian-Cheng Jiang
- Department of Anatomy and Cell Biology SUNY Downstate Medical Center Brooklyn NY
| | - Shucun Qin
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis Shandong First Medical University & Shandong Academy of Medical Sciences Taian China.,Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis Shijiazhuang China
| |
Collapse
|
15
|
Araújo JRC, Coelho CB, Campos AR, de Azevedo Moreira R, de Oliveira Monteiro-Moreira AC. Animal Galectins and Plant Lectins as Tools for Studies in Neurosciences. Curr Neuropharmacol 2019; 18:202-215. [PMID: 31622208 PMCID: PMC7327950 DOI: 10.2174/1570159x17666191016092221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/13/2019] [Accepted: 10/03/2019] [Indexed: 12/12/2022] Open
Abstract
Lectins are proteins or glycoproteins of non-immunological origin capable of reversibly and specifically binding to glycoconjugates. They exist in free form or associated with cells and are widely distributed in nature, being found in plants, microorganisms, and animals. Due to their characteristics and mainly due to the possibility of reversible binding to glycoconjugates, lectins have stood out as important tools in research involving Neurobiology. These proteins have the ability to modulate molecular targets in the central nervous system (CNS) which may be involved with neuroplasticity, neurobehavioral effects, and neuroprotection. The present report integrates existing information on the activity of animal and plant lectins in different areas of Neuroscience, presenting perspectives to direct new research on lectin function in the CNS, providing alternatives for understanding neurological diseases such as mental disorders, neurodegenerative, and neuro-oncological diseases, and for the development of new drugs, diagnoses and therapies in the field of Neuroscience.
Collapse
Affiliation(s)
| | - Cauê Barbosa Coelho
- Programa de Pos-Graduacao em Ciencia e Tecnologia Ambiental para o Semiarido (PPGCTAS), State University of Pernambuco, Petrolina, Pernambuco, Brazil
| | - Adriana Rolim Campos
- Experimental Biology Centre (NUBEX), University of Fortaleza (UNIFOR), Fortaleza, Ceara, Brazil
| | | | | |
Collapse
|
16
|
Cengiz T, Türkboyları S, Gençler OS, Anlar Ö. The roles of galectin-3 and galectin-4 in the idiopatic Parkinson disease and its progression. Clin Neurol Neurosurg 2019; 184:105373. [PMID: 31147178 DOI: 10.1016/j.clineuro.2019.105373] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 05/07/2019] [Accepted: 05/21/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVES Idiopathic Parkinson's Disease is a neurodegenerative disease caused by the loss of cells that secrete dopamine in the basal ganglia. Galectins are multipotent, evolutionarily conserved, cell surface glycoconjugated and crosslinked carbohydrate-binding proteins. The roles of these proteins in the diagnosis of the disease have been investigated. PATIENT AND METHODS Patients who were diagnosed with idiopathic Parkinson's disease were classified as early (stage 1-2) and advanced stage (stage 3-5) according to the Hoehn-Yahr classification. In addition, voluntary cases without parkinson disease constituted the control group. Serum samples of consecutive Parkinson patients and age and gender matched healthy controls were used to measure serum galectin-3 and serum galectin-4 levels. The levels were compared between Parkinson's patients and control groups and early and advanced stage Parkinson's groups. RESULTS Thirty age and gender-matched healthy controls and 60 parkinson patients were enrolled in the study. Serum galectin-3 levels were lower in controls compared with patients (892.9 (168.2-2416.3) vs. 2271.8 (375.9-9673.4), respectively, P < 0.01). Serum galectin-3 levels were related to Hoehn-Yahr stages and (r: 0.691, P < 0.001). The early stage group (20 patients) had lower serum galectin-4 levels compared with advanced stages (40 patients) (197.97 ± 46.42 vs. 334.263 ± 37, respectively, P < 0.01). Serum galectin-4 levels were also lower in controls compared with patients 185.1 (116.2-313.3) vs. 282.3 (156.9-984.8), respectively, P < 0.01. ROC analysis showed that serum galectin-3 and galectin-4 were statistically significant in the identification of Parkinson disease and advanced stages. The results were significant for galectin-3 (AUC: 0.89, SE: 0.034, P < 0.001 and CI: 0.823-0.958; P < 0.001) and for galectin-4 (AUC: 0.758, SE: 0.05, P < 0.001). CONCLUSION Serum galectin-3 and galectin-4 may be potential noninvasive markers for the identification of Parkinson disease and advanced stages.
Collapse
Affiliation(s)
- Tuğba Cengiz
- Atatürk Training and Research Hospital, Department of Neurology, 06800, Bilkent, Ankara, Turkey.
| | - Saadet Türkboyları
- Dr. A.Y. Ankara Oncology Training and Research Hospital, Department of Neurology, 06520, Bilkent, Ankara, Turkey
| | - Onur Serdar Gençler
- Medical Park Hospital, Department of Neurology, 06370 Batıkent, Ankara, Turkey
| | - Ömer Anlar
- Yıldırım Beyazıt University Faculty of Medicine, Department of Neurology, 06800, Bilkent, Ankara, Turkey
| |
Collapse
|
17
|
Abel WF, Funk CR, Blenda AV. Galectins in the Pathogenesis of Cerebrovascular Accidents: An Overview. J Exp Neurosci 2019; 13:1179069519836794. [PMID: 31007530 PMCID: PMC6458655 DOI: 10.1177/1179069519836794] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/19/2019] [Indexed: 01/04/2023] Open
Abstract
Due to limitations of neuroimaging, such as the isodense appearance of blood to neuronal tissue in subacute hemorrhagic stroke, a body of studies have been performed to evaluate candidate biomarkers which may aid in accurate determination of cerebrovascular accident type. Beyond aiding in the delineation of stroke cause, biomarkers could also confer useful prognostic information to help clinicians plan use of resources. One of the candidate biomarkers studied for detection of cerebrovascular accident (CVA) includes a class of proteins called galectins. Galectins bind β-galactoside through a highly conserved carbohydrate recognition domain, endowing an ability to interact with carbohydrate moieties on glycoproteins, some of which are relevant to CVA response. Furthermore, galectins-1, -2, -3, -9, and -12 are expressed in tissues relevant to CVA, and some exhibit characteristics (eg, extracellular secretion) that could render feasible their detection in serum. Galectins-1 and -3 appear to have the largest amounts of preclinical evidence, consistently demonstrating increased activity and expression levels during CVA. However, a lack of standardization of biochemical assays across cohort studies limits further translation of these basic science studies. This review aims to increase awareness of the biochemical roles of galectins in CVA, while also highlighting challenges and remaining questions preventing the translation of basic science observations into a clinically useful test.
Collapse
Affiliation(s)
- William F Abel
- University of South Carolina School of Medicine Greenville, Greenville, SC, USA
| | | | - Anna V Blenda
- University of South Carolina School of Medicine Greenville, Greenville, SC, USA
| |
Collapse
|
18
|
Ramírez E, Sánchez-Maldonado C, Mayoral MA, Mendieta L, Alatriste V, Patricio-Martínez A, Limón ID. Neuroinflammation induced by the peptide amyloid-β (25-35) increase the presence of galectin-3 in astrocytes and microglia and impairs spatial memory. Neuropeptides 2019; 74:11-23. [PMID: 30795916 DOI: 10.1016/j.npep.2019.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 02/10/2019] [Accepted: 02/12/2019] [Indexed: 01/05/2023]
Abstract
Galectins are animal lectins that bind to β-galactosides, such as lactose and N-acetyllactosamine, contained in glycoproteins or glycolipids. Galectin-1 (Gal-1) and Galectin-3 (Gal-3) are involved in pathologies associated with the inflammatory process, cell proliferation, adhesion, migration, and apoptosis. Recent evidence has shown that the administration of Amyloid-β 25-35 (Aβ25-35) into the hippocampus of rats increases the inflammatory response that is associated with memory impairment and neurodegeneration. Galectins could participate in the modulation of the neuroinflammation induced by the Aβ25-35. The aim of this study was to evaluate the presence of Gal-1 and Gal-3 in the neuroinflammation induced by administration of Aβ25-35 into the hippocampus and to examine spatial memory in the Morris water maze. After the administration of Aβ25-35, animals were tested for learning and spatial memory in the Morris water maze. Behavioral performance showed that Aβ25-35 didn't affect spatial learning but did impair memory, with animals taking longer to find the platform. On the day 32, hippocampus was examined for astrocytes (GFAP), microglia (Iba1), Gal-1 and Gal-3 via immunohistochemical analysis, and the cytokines IL-1β, TNF-α, IFN-γ by ELISA. This study's results showed a significant increase in the expression of Gal-3 in the microglia and astrocytes, while Gal-1 didn't increase in the dorsal hippocampus. The expression of galectins is associated with increased cytokines in the hippocampal formation of Aβ25-35 treated rats. These findings suggest that Gal-3 could participate in the inflammation induced by administration of Aβ25-35 and could be involved in the neurodegeneration progress and memory impairment.
Collapse
Affiliation(s)
- Eleazar Ramírez
- Laboratorio de Neurofarmacología, 105 C-FCQ BUAP, Puebla, Mexico
| | | | | | - Liliana Mendieta
- Laboratorio de Neurofarmacología, 105 C-FCQ BUAP, Puebla, Mexico
| | | | - Aleidy Patricio-Martínez
- Laboratorio de Neurofarmacología, 105 C-FCQ BUAP, Puebla, Mexico; Facultad de Ciencias Biológicas, BUAP, Puebla, Mexico
| | - I Daniel Limón
- Laboratorio de Neurofarmacología, 105 C-FCQ BUAP, Puebla, Mexico.
| |
Collapse
|
19
|
Thurgur H, Pinteaux E. Microglia in the Neurovascular Unit: Blood-Brain Barrier-microglia Interactions After Central Nervous System Disorders. Neuroscience 2018; 405:55-67. [PMID: 31007172 DOI: 10.1016/j.neuroscience.2018.06.046] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 12/11/2022]
Abstract
Over the past few decades, microglial cells have been regarded as the main executor of inflammation after acute and chronic central nervous system (CNS) disorders, responding rapidly to exogenous stimuli during acute trauma or infections, or signals released by cells undergoing cell death during conditions such as stroke, Alzheimer's disease (AD) and Parkinson's disease (PD). Barriers of the nervous system, and in particular the blood-brain barrier (BBB), play a key role in the normal physiological and cognitive functions of the brain. Being at the interface between the central and peripheral compartment, the BBB is regarded as a sensor of homeostasis, and any disruption within the brain or the systemic compartment triggers BBB dysfunction and neuroinflammation, both contributing to the pathogenesis of cerebrovascular disease. This involves a dynamic response mediated by all components of the neurovascular unit (NVU), and ongoing research suggests that BBB-microglia interaction is critical to dictate the microglial response to NVU injury. The present review aims to give an up-to-date account of the emerging critical role of BBB-microglia interactions during neuroinflammation, and how these could be targeted for the therapeutic treatment of major central inflammatory disease.
Collapse
Affiliation(s)
- Hannah Thurgur
- Faculty of Biology, Medicine and Health, AV Hill Building, The University of Manchester, United Kingdom
| | - Emmanuel Pinteaux
- Faculty of Biology, Medicine and Health, AV Hill Building, The University of Manchester, United Kingdom.
| |
Collapse
|
20
|
Nishikawa H, Nakatsuka Y, Shiba M, Kawakita F, Fujimoto M, Suzuki H. Increased Plasma Galectin-3 Preceding the Development of Delayed Cerebral Infarction and Eventual Poor Outcome in Non-Severe Aneurysmal Subarachnoid Hemorrhage. Transl Stroke Res 2017; 9:110-119. [PMID: 28831694 DOI: 10.1007/s12975-017-0564-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 07/17/2017] [Accepted: 08/11/2017] [Indexed: 12/31/2022]
Abstract
A matricellular protein galectin-3 is involved in tissue injury and inflammation, but the role of galectin-3 remains unclear in aneurysmal subarachnoid hemorrhage (SAH). The purpose of this study was to assess whether acute-stage galectin-3 levels were associated with the subsequent development of neurovascular events and outcome after SAH. This study included 83 consecutive patients diagnosed with aneurysmal SAH of resuscitated World Federation of Neurological Surgeons (WFNS) grades 1-3. Plasma galectin-3 levels were once measured on days 1-3 (the day after clipping or coiling). Fifteen patients had poor outcomes, which were associated with increasing age, female, pre-onset morbidity, worse WFNS grade, modified Fisher computed tomography scale, acute hydrocephalus, and higher galectin-3 levels compared with good outcomes. Multivariate analyses revealed that plasma galectin-3 was an independent determinant for poor outcome (odds ratio, 3.08; 95% confidence interval, 1.58-6.00; p = 0.001). Among post-SAH neurovascular events occurring on day 4 and thereafter, delayed cerebral ischemia and infarction, but not angiographic vasospasm and shunt-dependent hydrocephalus, showed significantly higher plasma galectin-3 levels on days 1-3. The receiver operating characteristic curve indicated that plasma galectin-3 with a cutoff value of 3.30 or 3.48 ng/ml predicted delayed cerebral infarction development or poor outcome (specificity, 62.5%, 70.6%; sensitivity, 90.9%, 73.3%, respectively). The findings suggest that plasma galectin-3 levels on days 1-3 would be a useful biomarker for predicting subsequent development of delayed cerebral infarction and eventual poor outcome and provide a new candidate, which may mediate between post-SAH early brain injury or inflammation and delayed cerebral infarction without vasospasm.
Collapse
Affiliation(s)
- Hirofumi Nishikawa
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| | - Yoshinari Nakatsuka
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Masato Shiba
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Fumihiro Kawakita
- Department of Neurosurgery, Saiseikai Matsusaka General Hospital, Matsusaka, Japan
| | - Masashi Fujimoto
- Department of Neurosurgery, Saiseikai Matsusaka General Hospital, Matsusaka, Japan
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| |
Collapse
|
21
|
Neuroanatomical distribution of galectin-3 in the adult rat brain. J Mol Histol 2017; 48:133-146. [DOI: 10.1007/s10735-017-9712-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/15/2017] [Indexed: 01/11/2023]
|
22
|
John S, Mishra R. mRNA Transcriptomics of Galectins Unveils Heterogeneous Organization in Mouse and Human Brain. Front Mol Neurosci 2016; 9:139. [PMID: 28018170 PMCID: PMC5159438 DOI: 10.3389/fnmol.2016.00139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 11/23/2016] [Indexed: 12/22/2022] Open
Abstract
Background: Galectins, a family of non-classically secreted, β-galactoside binding proteins is involved in several brain disorders; however, no systematic knowledge on the normal neuroanatomical distribution and functions of galectins exits. Hence, the major purpose of this study was to understand spatial distribution and predict functions of galectins in brain and also compare the degree of conservation vs. divergence between mouse and human species. The latter objective was required to determine the relevance and appropriateness of studying galectins in mouse brain which may ultimately enable us to extrapolate the findings to human brain physiology and pathologies. Results: In order to fill this crucial gap in our understanding of brain galectins, we analyzed the in situ hybridization and microarray data of adult mouse and human brain respectively, from the Allen Brain Atlas, to resolve each galectin-subtype’s spatial distribution across brain distinct cytoarchitecture. Next, transcription factors (TFs) that may regulate galectins were identified using TRANSFAC software and the list obtained was further curated to sort TFs on their confirmed transcript expression in the adult brain. Galectin-TF cluster analysis, gene-ontology annotations and co-expression networks were then extrapolated to predict distinct functional relevance of each galectin in the neuronal processes. Data shows that galectins have highly heterogeneous expression within and across brain sub-structures and are predicted to be the crucial targets of brain enriched TFs. Lgals9 had maximal spatial distribution across mouse brain with inferred predominant roles in neurogenesis while LGALS1 was ubiquitously expressed in human. Limbic region associated with learning, memory and emotions and substantia nigra associated with motor movements showed strikingly high expression of LGALS1 and LGALS8 in human vs. mouse brain. The overall expression profile of galectin-8 was most preserved across both these species, however, galectin-9 showed maximal preservation only in the cerebral cortex. Conclusion: It is for the first time that a comprehensive description of galectins’ mRNA expression profile in brain is presented. Results suggests that spatial transcriptome changes in galectins may contribute to differential brain functions and evolution across species that highlights galectins as novel signatures of brain heterogeneity and functions, which if disturbed, can promote several brain disorders.
Collapse
Affiliation(s)
- Sebastian John
- Disease Biology Program, Department of Neurobiology and Genetics, Rajiv Gandhi Centre for Biotechnology Thiruvananthapuram, India
| | - Rashmi Mishra
- Disease Biology Program, Department of Neurobiology and Genetics, Rajiv Gandhi Centre for Biotechnology Thiruvananthapuram, India
| |
Collapse
|
23
|
Hellström Erkenstam N, Smith PLP, Fleiss B, Nair S, Svedin P, Wang W, Boström M, Gressens P, Hagberg H, Brown KL, Sävman K, Mallard C. Temporal Characterization of Microglia/Macrophage Phenotypes in a Mouse Model of Neonatal Hypoxic-Ischemic Brain Injury. Front Cell Neurosci 2016; 10:286. [PMID: 28018179 PMCID: PMC5156678 DOI: 10.3389/fncel.2016.00286] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 11/29/2016] [Indexed: 01/09/2023] Open
Abstract
Immune cells display a high degree of phenotypic plasticity, which may facilitate their participation in both the progression and resolution of injury-induced inflammation. The purpose of this study was to investigate the temporal expression of genes associated with classical and alternative polarization phenotypes described for macrophages and to identify related cell populations in the brain following neonatal hypoxia-ischemia (HI). HI was induced in 9-day old mice and brain tissue was collected up to 7 days post-insult to investigate expression of genes associated with macrophage activation. Using cell-markers, CD86 (classic activation) and CD206 (alternative activation), we assessed temporal changes of CD11b+ cell populations in the brain and studied the protein expression of the immunomodulatory factor galectin-3 in these cells. HI induced a rapid regulation (6 h) of genes associated with both classical and alternative polarization phenotypes in the injured hemisphere. FACS analysis showed a marked increase in the number of CD11b+CD86+ cells at 24 h after HI (+3667%), which was coupled with a relative suppression of CD11b+CD206+ cells and cells that did not express neither CD86 nor CD206. The CD11b+CD206+ population was mixed with some cells also expressing CD86. Confocal microscopy confirmed that a subset of cells expressed both CD86 and CD206, particularly in injured gray and white matter. Protein concentration of galectin-3 was markedly increased mainly in the cell population lacking CD86 or CD206 in the injured hemisphere. These cells were predominantly resident microglia as very few galectin-3 positive cells co-localized with infiltrating myeloid cells in Lys-EGFP-ki mice after HI. In summary, HI was characterized by an early mixed gene response, but with a large expansion of mainly the CD86 positive population during the first day. However, the injured hemisphere also contained a subset of cells expressing both CD86 and CD206 and a large population that expressed neither activation marker CD86 nor CD206. Interestingly, these cells expressed the highest levels of galectin-3 and were found to be predominantly resident microglia. Galectin-3 is a protein involved in chemotaxis and macrophage polarization suggesting a novel role in cell infiltration and immunomodulation for this cell population after neonatal injury.
Collapse
Affiliation(s)
- Nina Hellström Erkenstam
- Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska Academy Gothenburg, Sweden
| | - Peter L P Smith
- Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska Academy Gothenburg, Sweden
| | - Bobbi Fleiss
- Centre for the Developing Brain, Perinatal Imaging and Health, King's College London, St. Thomas' HospitalLondon, UK; PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris CitéParis, France
| | - Syam Nair
- Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska Academy Gothenburg, Sweden
| | - Pernilla Svedin
- Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska Academy Gothenburg, Sweden
| | - Wei Wang
- Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska Academy Gothenburg, Sweden
| | - Martina Boström
- Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska AcademyGothenburg, Sweden; Department of Pediatrics, Institute of Clinical Sciences, University of Gothenburg, Sahlgrenska AcademyGothenburg, Sweden
| | - Pierre Gressens
- Centre for the Developing Brain, Perinatal Imaging and Health, King's College London, St. Thomas' HospitalLondon, UK; PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris CitéParis, France
| | - Henrik Hagberg
- Centre for the Developing Brain, Perinatal Imaging and Health, King's College London, St. Thomas' HospitalLondon, UK; Department of Obstetrics and Gynecology, Perinatal Center, Institute of Clinical Sciences, University of Gothenburg, Sahlgrenska AcademyGothenburg, Sweden
| | - Kelly L Brown
- Department of Pediatrics, University of British Columbia and the Child and Family Research Institute Vancouver, BC, Canada
| | - Karin Sävman
- Department of Obstetrics and Gynecology, Perinatal Center, Institute of Clinical Sciences, University of Gothenburg, Sahlgrenska Academy Gothenburg, Sweden
| | - Carina Mallard
- Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska Academy Gothenburg, Sweden
| |
Collapse
|
24
|
Role of Matricellular Proteins in Disorders of the Central Nervous System. Neurochem Res 2016; 42:858-875. [DOI: 10.1007/s11064-016-2088-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/17/2016] [Accepted: 10/21/2016] [Indexed: 12/15/2022]
|
25
|
Nio-Kobayashi J. Tissue- and cell-specific localization of galectins, β-galactose-binding animal lectins, and their potential functions in health and disease. Anat Sci Int 2016; 92:25-36. [PMID: 27590897 DOI: 10.1007/s12565-016-0366-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 08/17/2016] [Indexed: 01/13/2023]
Abstract
Fifteen galectins, β-galactose-binding animal lectins, are known to be distributed throughout the body. We herein summarize current knowledge on the tissue- and cell-specific localization of galectins and their potential functions in health and disease. Galectin-3 is widely distributed in epithelia, including the simple columnar epithelium in the gut, stratified squamous epithelium in the gut and skin, and transitional epithelium and several regions in nephrons in the urinary tract. Galectin-2 and galectin-4/6 are gut-specific, while galectin-7 is found in the stratified squamous epithelium in the gut and skin. The reproductive tract mainly contains galectin-1 and galectin-3, and their expression markedly changes during the estrous/menstrual cycle. The galectin subtype expressed in the corpus luteum (CL) changes in association with luteal function. The CL of women and cows displays a "galectin switch" with coordinated changes in the major galectin subtype and its ligand glycoconjugate structure. Macrophages express galectin-3, which may be involved in phagocytotic activity. Lymphoid tissues contain galectin-3-positive macrophages, which are not always stained with the macrophage marker, F4/80. Subsets of neurons in the brain and dorsal root ganglion express galectin-1 and galectin-3, which may contribute to the regeneration of damaged axons, stem cell differentiation, and pain control. The subtype-specific contribution of galectins to implantation, fibrosis, and diabetes are also discussed. The function of galectins may differ depending on the tissues or cells in which they act. The ligand glycoconjugate structures mediated by glycosyltransferases including MGAT5, ST6GAL1, and C2GnT are important for revealing the functions of galectins in healthy and disease states.
Collapse
Affiliation(s)
- Junko Nio-Kobayashi
- Laboratory of Histology and Cytology, Hokkaido University Graduate School of Medicine, Kita 15-Nishi 7, Kita-ku, Sapporo, 060-8638, Japan.
| |
Collapse
|
26
|
Yan XJ, Yu GF, Jie YQ, Fan XF, Huang Q, Dai WM. Role of galectin-3 in plasma as a predictive biomarker of outcome after acute intracerebral hemorrhage. J Neurol Sci 2016; 368:121-7. [PMID: 27538613 DOI: 10.1016/j.jns.2016.06.071] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 06/18/2016] [Accepted: 06/30/2016] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Inflammation is involved in pathophysiological mechanisms underlying secondary brain injury after intracerebral hemorrhage. Enhanced circulating levels of galectin-3, a proinflammatory cytokine, have close relation to poor prognosis of some inflammatory illnesses. This study was designed to investigate whether plasma galectin-3 levels are related to the inflammation, severity and prognosis following intracerebral hemorrhage. METHODS In this observational, prospective study, plasma galectin-3 levels of 110 patients and 110 controls were determined. We further assessed the association of galectin-3 levels with inflammation reflected by systemic C-reactive protein levels, severity indicated by hematoma volumes and National Institutes of Health Stroke Scale (NIHSS) scores, and endpoints including 1-week mortality, 6-month mortality, 6-month overall survival and 6-month unfavorable outcome (modified Rankin Scale score>2). RESULTS Plasma galectin-3 levels of patients were significantly higher than those of controls. Galectin-3 was identified as an independent prognostic predictor for 1-week mortality, 6-month mortality, 6-month overall survival and 6-month unfavorable outcome, as well as had strong relation to C-reactive protein levels, hematoma volumes and NIHSS scores. Compared with NIHSS scores and hematoma volumes, plasma galectin-3 levels had similar areas under receiver operating characteristic curve (AUC). Moreover, galectin-3 levels significantly improved AUCs of NIHSS scores or hematoma volumes alone for prediction of 6-month mortality and 6-month unfavorable outcome. CONCLUSIONS Elevated plasma galectin-3 levels are strongly associated with the inflammation, severity and poor prognosis after intracerebral hemorrhage, indicating galectin-3, involved in brain inflammation, might have the potential to be a prognostic biomarker for hemorrhagic stroke.
Collapse
Affiliation(s)
- Xin-Jiang Yan
- Department of Neurosurgery, Quzhou People's Hospital, 2 Zhongloudi Road, Kecheng District, Quzhou 324100, China
| | - Guo-Feng Yu
- Department of Neurosurgery, Quzhou People's Hospital, 2 Zhongloudi Road, Kecheng District, Quzhou 324100, China
| | - Yuan-Qing Jie
- Department of Neurosurgery, Quzhou People's Hospital, 2 Zhongloudi Road, Kecheng District, Quzhou 324100, China
| | - Xiao-Feng Fan
- Department of Neurosurgery, Quzhou People's Hospital, 2 Zhongloudi Road, Kecheng District, Quzhou 324100, China
| | - Qiang Huang
- Department of Neurosurgery, Quzhou People's Hospital, 2 Zhongloudi Road, Kecheng District, Quzhou 324100, China
| | - Wei-Min Dai
- Department of Neurosurgery, Quzhou People's Hospital, 2 Zhongloudi Road, Kecheng District, Quzhou 324100, China.
| |
Collapse
|
27
|
Shen YF, Yu WH, Dong XQ, Du Q, Yang DB, Wu GQ, Zhang ZY, Wang H, Jiang L. The change of plasma galectin-3 concentrations after traumatic brain injury. Clin Chim Acta 2016; 456:75-80. [DOI: 10.1016/j.cca.2016.02.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 02/27/2016] [Accepted: 02/29/2016] [Indexed: 12/28/2022]
|
28
|
van der Hoeven NW, Hollander MR, Yıldırım C, Jansen MF, Teunissen PF, Horrevoets AJ, van der Pouw Kraan TCTM, van Royen N. The emerging role of galectins in cardiovascular disease. Vascul Pharmacol 2016; 81:31-41. [PMID: 26945624 DOI: 10.1016/j.vph.2016.02.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 12/08/2015] [Accepted: 02/22/2016] [Indexed: 01/06/2023]
Abstract
Galectins are an ancient family of β-galactoside-specific lectins and consist of 15 different types, each with a specific function. They play a role in the immune system, inflammation, wound healing and carcinogenesis. In particular the role of galectin in cancer is widely studied. Lately, the role of galectins in the development of cardiovascular disease has gained attention. Worldwide cardiovascular disease is still the leading cause of death. In ischemic heart disease, atherosclerosis limits adequate blood flow. Angiogenesis and arteriogenesis are highly important mechanisms relieving ischemia by restoring perfusion to the post-stenotic myocardial area. Galectins act ambiguous, both relieving ischemia and accelerating atherosclerosis. Atherosclerosis can ultimately lead to myocardial infarction or ischemic stroke, which are both associated with galectins. There is also a role for galectins in the development of myocarditis by their influence on inflammatory processes. Moreover, galectin acts as a biomarker for the severity of myocardial ischemia and heart failure. This review summarizes the association between galectins and the development of multiple cardiovascular diseases such as myocarditis, ischemic stroke, myocardial infarction, heart failure and atrial fibrillation. Furthermore it focuses on the association between galectin and more general mechanisms such as angiogenesis, arteriogenesis and atherosclerosis.
Collapse
Affiliation(s)
| | - Maurits R Hollander
- Department of Cardiology, VU University Medical Center, Amsterdam, The Netherlands
| | - Cansu Yıldırım
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Matthijs F Jansen
- Department of Cardiology, VU University Medical Center, Amsterdam, The Netherlands
| | - Paul F Teunissen
- Department of Cardiology, VU University Medical Center, Amsterdam, The Netherlands
| | - Anton J Horrevoets
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Niels van Royen
- Department of Cardiology, VU University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
29
|
Wang X, Zhang S, Lin F, Chu W, Yue S. Elevated Galectin-3 Levels in the Serum of Patients With Alzheimer's Disease. Am J Alzheimers Dis Other Demen 2015; 30:729-32. [PMID: 23823143 PMCID: PMC10852776 DOI: 10.1177/1533317513495107] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder of the central nervous system. Galectin-3 (Gal-3) is characterized by a conserved sequence within the carbohydrate recognition domain. The effect of Gal-3 in AD is presently unknown. In this study, we found significantly increased Gal-3 serum levels in patients with AD compared to control participants (P=.017). There was no significant difference between patients with mild cognitive impairment (MCI) and healthy controls (P=.143) or between patients with AD and MCI (P=.688). The degree of cognitive impairment, as measured by the Mini-Mental Status Examination score, was found to have a significant correlation with the Gal-3 serum levels in all patients and healthy controls. These data suggest that Gal-3 potentially plays a role in the neuropathogenesis of AD. The Gal-3 found in serum could be a potential candidate for a biomarker panel for AD diagnosis.
Collapse
Affiliation(s)
- Xuexin Wang
- Department of Rehabilitation Medicine, Qilu Hospital of Shandong University, Ji'nan, Shandong, People's Republic of China Department of Rehabilitation Medicine, Yuhuangding Hospital, Yantai, Shandong, People's Republic of China
| | - Shuping Zhang
- Department of Clinical Laboratory, Yantai Hospital for Infectious Diseases, Yantai, Shandong, People's Republic of China
| | - Faliang Lin
- Department of Rehabilitation Medicine, Yuhuangding Hospital, Yantai, Shandong, People's Republic of China
| | - Wenzheng Chu
- Department of Neurology, Yuhuangding Hospital, Yantai, Shandong, People's Republic of China
| | - Shouwei Yue
- Department of Rehabilitation Medicine, Qilu Hospital of Shandong University, Ji'nan, Shandong, People's Republic of China
| |
Collapse
|
30
|
James RE, Hillis J, Adorján I, Gration B, Mundim MV, Iqbal AJ, Majumdar MM, Yates RL, Richards MMH, Goings GE, DeLuca GC, Greaves DR, Miller SD, Szele FG. Loss of galectin-3 decreases the number of immune cells in the subventricular zone and restores proliferation in a viral model of multiple sclerosis. Glia 2015; 64:105-21. [PMID: 26337870 DOI: 10.1002/glia.22906] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 08/06/2015] [Accepted: 08/07/2015] [Indexed: 12/30/2022]
Abstract
Multiple sclerosis (MS) frequently starts near the lateral ventricles, which are lined by subventricular zone (SVZ) progenitor cells that can migrate to lesions and contribute to repair. Because MS-induced inflammation may decrease SVZ proliferation and thus limit repair, we studied the role of galectin-3 (Gal-3), a proinflammatory protein. Gal-3 expression was increased in periventricular regions of human MS in post-mortem brain samples and was also upregulated in periventricular regions in a murine MS model, Theiler's murine encephalomyelitis virus (TMEV) infection. Whereas TMEV increased SVZ chemokine (CCL2, CCL5, CCL, and CXCL10) expression in wild type (WT) mice, this was inhibited in Gal-3(-/-) mice. Though numerous CD45+ immune cells entered the SVZ of WT mice after TMEV infection, their numbers were significantly diminished in Gal-3(-/-) mice. TMEV also reduced neuroblast and proliferative SVZ cell numbers in WT mice but this was restored in Gal-3(-/-) mice and was correlated with increased numbers of doublecortin+ neuroblasts in the corpus callosum. In summary, our data showed that loss of Gal-3 blocked chemokine increases after TMEV, reduced immune cell migration into the SVZ, reestablished SVZ proliferation and increased the number of progenitors in the corpus callosum. These results suggest Gal-3 plays a central role in modulating the SVZ neurogenic niche's response to this model of MS.
Collapse
Affiliation(s)
- Rachel E James
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, OX1 3HS, United Kingdom
| | - James Hillis
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, OX1 3HS, United Kingdom
| | - István Adorján
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, OX1 3HS, United Kingdom
| | - Betty Gration
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, OX1 3HS, United Kingdom
| | - Mayara V Mundim
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, OX1 3HS, United Kingdom
| | - Asif J Iqbal
- Dunn School of Pathology, University of Oxford, Oxford, OX1 3HS, United Kingdom
| | - Moon-Moon Majumdar
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, OX1 3HS, United Kingdom
| | - Richard L Yates
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, OX1 3HS, United Kingdom
| | - Maureen M H Richards
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Gwendolyn E Goings
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Gabriele C DeLuca
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, OX1 3HS, United Kingdom
| | - David R Greaves
- Dunn School of Pathology, University of Oxford, Oxford, OX1 3HS, United Kingdom
| | - Stephen D Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Francis G Szele
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, OX1 3HS, United Kingdom
| |
Collapse
|
31
|
Sirko S, Irmler M, Gascón S, Bek S, Schneider S, Dimou L, Obermann J, De Souza Paiva D, Poirier F, Beckers J, Hauck SM, Barde YA, Götz M. Astrocyte reactivity after brain injury-: The role of galectins 1 and 3. Glia 2015; 63:2340-61. [PMID: 26250529 PMCID: PMC5042059 DOI: 10.1002/glia.22898] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/14/2015] [Accepted: 07/22/2015] [Indexed: 01/18/2023]
Abstract
Astrocytes react to brain injury in a heterogeneous manner with only a subset resuming proliferation and acquiring stem cell properties in vitro. In order to identify novel regulators of this subset, we performed genomewide expression analysis of reactive astrocytes isolated 5 days after stab wound injury from the gray matter of adult mouse cerebral cortex. The expression pattern was compared with astrocytes from intact cortex and adult neural stem cells (NSCs) isolated from the subependymal zone (SEZ). These comparisons revealed a set of genes expressed at higher levels in both endogenous NSCs and reactive astrocytes, including two lectins-Galectins 1 and 3. These results and the pattern of Galectin expression in the lesioned brain led us to examine the functional significance of these lectins in brains of mice lacking Galectins 1 and 3. Following stab wound injury, astrocyte reactivity including glial fibrillary acidic protein expression, proliferation and neurosphere-forming capacity were found significantly reduced in mutant animals. This phenotype could be recapitulated in vitro and was fully rescued by addition of Galectin 3, but not of Galectin 1. Thus, Galectins 1 and 3 play key roles in regulating the proliferative and NSC potential of a subset of reactive astrocytes.
Collapse
Affiliation(s)
- Swetlana Sirko
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Sergio Gascón
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Sarah Bek
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Germany
| | - Sarah Schneider
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Leda Dimou
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Jara Obermann
- Research Unit Protein Science, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Daisylea De Souza Paiva
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Germany.,Department of Physiology, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Francoise Poirier
- Institut Jacques Monod, CNRS-University Paris Diderot, Paris, France
| | - Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,Chair of Experimental Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Freising-Weihenstephan, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Yves-Alain Barde
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Magdalena Götz
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,SYNERGY, Excellence Cluster of Systems Neurology, Ludwig-Maximilians-University Munich, Germany
| |
Collapse
|
32
|
Galectin-3 is expressed in the myocardium very early post–myocardial infarction. Cardiovasc Pathol 2015; 24:213-23. [DOI: 10.1016/j.carpath.2014.12.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 11/26/2014] [Accepted: 12/04/2014] [Indexed: 12/17/2022] Open
|
33
|
Peruzzotti-Jametti L, Donegá M, Giusto E, Mallucci G, Marchetti B, Pluchino S. The role of the immune system in central nervous system plasticity after acute injury. Neuroscience 2014; 283:210-221. [PMID: 24785677 DOI: 10.1016/j.neuroscience.2014.04.036] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/21/2014] [Accepted: 04/21/2014] [Indexed: 01/21/2023]
Abstract
Acute brain injuries cause rapid cell death that activates bidirectional crosstalk between the injured brain and the immune system. In the acute phase, the damaged CNS activates resident and circulating immune cells via the local and systemic release of soluble mediators. This early immune activation is necessary to confine the injured tissue and foster the clearance of cellular debris, thus bringing the inflammatory reaction to a close. In the chronic phase, a sustained immune activation has been described in many CNS disorders, and the degree of this prolonged response has variable effects on spontaneous brain regenerative processes. The challenge for treating acute CNS damage is to understand how to optimally engage and modify these immune responses, thus providing new strategies that will compensate for tissue lost to injury. Herein we have reviewed the available information regarding the role and function of the innate and adaptive immune responses in influencing CNS plasticity during the acute and chronic phases of after injury. We have examined how CNS damage evolves along the activation of main cellular and molecular pathways that are associated with intrinsic repair, neuronal functional plasticity and facilitation of tissue reorganization.
Collapse
Affiliation(s)
| | - Matteo Donegá
- John van Geest Centre for Brain Repair, Dept of Clinical Neurosciences
| | - Elena Giusto
- John van Geest Centre for Brain Repair, Dept of Clinical Neurosciences
| | - Giulia Mallucci
- John van Geest Centre for Brain Repair, Dept of Clinical Neurosciences.,Department of Brain and Behavioural sciences, National Neurological Institute C. Mondino, 27100 Pavia, Italy
| | - Bianca Marchetti
- Department of Clinical and Molecular Biomedicine, Pharmacology Section, Medical School, University of Catania, 95125 Catania, Italy.,OASI Institute for Research and Care on Mental Retardation and Brain Aging, Neuropharmacology Section, 94018 Troina, Italy
| | - Stefano Pluchino
- John van Geest Centre for Brain Repair, Dept of Clinical Neurosciences.,NIHR Biomedical Research Centre.,Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, CB2 0PY, UK
| |
Collapse
|
34
|
Young CC, Al-Dalahmah O, Lewis NJ, Brooks KJ, Jenkins MM, Poirier F, Buchan AM, Szele FG. Blocked angiogenesis in Galectin-3 null mice does not alter cellular and behavioral recovery after middle cerebral artery occlusion stroke. Neurobiol Dis 2013; 63:155-64. [PMID: 24269916 DOI: 10.1016/j.nbd.2013.11.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 10/24/2013] [Accepted: 11/12/2013] [Indexed: 12/31/2022] Open
Abstract
Angiogenesis is thought to decrease stroke size and improve behavioral outcomes and therefore several clinical trials are seeking to augment it. Galectin-3 (Gal-3) expression increases after middle cerebral artery occlusion (MCAO) and has been proposed to limit damage 3days after stroke. We carried out mild MCAO that damages the striatum but spares the cerebral cortex and SVZ. Gal-3 gene deletion prevented vascular endothelial growth factor (VEGF) upregulation after MCAO. This inhibited post-MCAO increases in endothelial proliferation and angiogenesis in the striatum allowing us to uniquely address the function of angiogenesis in this model of stroke. Apoptosis and infarct size were unchanged in Gal-3(-/-) mice 7 and 14 days after MCAO, suggesting that angiogenesis does not affect lesion size. Microglial and astrocyte activation/proliferation after MCAO was similar in wild type and Gal-3(-/-) mice. In addition, openfield activity, motor hemiparesis, proprioception, reflex, tremors and grooming behaviors were essentially identical between WT and Gal-3(-/-) mice at 1, 3, 7, 10 and 14 days after MCAO, suggesting that penumbral angiogenesis has limited impact on behavioral recovery. In addition to angiogenesis, increased adult subventricular zone (SVZ) neurogenesis is thought to provide neuroprotection after stroke in animal models. SVZ neurogenesis and migration to lesion were overall unaffected by the loss of Gal-3, suggesting no compensation for the lack of angiogenesis in Gal-3(-/-) mice. Because angiogenesis and neurogenesis are usually coordinately regulated, identifying their individual effects on stroke has hitherto been difficult. These results show that Gal-3 is necessary for angiogenesis in stroke in a VEGF-dependant manner, but suggest that angiogenesis may be dispensable for post-stroke endogenous repair, therefore drawing into question the clinical utility of augmenting angiogenesis.
Collapse
Affiliation(s)
- Christopher C Young
- University of Oxford, Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3QX, UK
| | - Osama Al-Dalahmah
- University of Oxford, Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3QX, UK
| | - Nicola J Lewis
- University of Oxford, Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3QX, UK
| | - Keith J Brooks
- Nuffield Department of Clinical Medicine, University of Oxford, OX1 3QX, UK
| | - Micaela M Jenkins
- Nuffield Department of Clinical Medicine, University of Oxford, OX1 3QX, UK
| | - Françoise Poirier
- Institut Jacques Monod, UMR CNRS 7592, Université Paris Diderot, 75205 Paris 13, France
| | - Alastair M Buchan
- Nuffield Department of Clinical Medicine, University of Oxford, OX1 3QX, UK
| | - Francis G Szele
- University of Oxford, Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3QX, UK.
| |
Collapse
|
35
|
Nikodemova M, Small AL, Smith SMC, Mitchell GS, Watters JJ. Spinal but not cortical microglia acquire an atypical phenotype with high VEGF, galectin-3 and osteopontin, and blunted inflammatory responses in ALS rats. Neurobiol Dis 2013; 69:43-53. [PMID: 24269728 DOI: 10.1016/j.nbd.2013.11.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 10/18/2013] [Accepted: 11/12/2013] [Indexed: 02/08/2023] Open
Abstract
Activation of microglia, CNS resident immune cells, is a pathological hallmark of amyotrophic lateral sclerosis (ALS), a neurodegenerative disorder affecting motor neurons. Despite evidence that microglia contribute to disease progression, the exact role of these cells in ALS pathology remains unknown. We immunomagnetically isolated microglia from different CNS regions of SOD1(G93A) rats at three different points in disease progression: presymptomatic, symptom onset and end-stage. We observed no differences in microglial number or phenotype in presymptomatic rats compared to wild-type controls. Although after disease onset there was no macrophage infiltration, there were significant increases in microglial numbers in the spinal cord, but not cortex. At disease end-stage, microglia were characterized by high expression of galectin-3, osteopontin and VEGF, and concomitant downregulated expression of TNFα, IL-6, BDNF and arginase-1. Flow cytometry revealed the presence of at least two phenotypically distinct microglial populations in the spinal cord. Immunohistochemistry showed that galectin-3/osteopontin positive microglia were restricted to the ventral horns of the spinal cord, regions with severe motor neuron degeneration. End-stage SOD1(G93A) microglia from the cortex, a less affected region, displayed similar gene expression profiles to microglia from wild-type rats, and displayed normal responses to systemic inflammation induced by LPS. On the other hand, end-stage SOD1(G93A) spinal microglia had blunted responses to systemic LPS suggesting that in addition to their phenotypic changes, they may also be functionally impaired. Thus, after disease onset, microglia acquired unique characteristics that do not conform to typical M1 (inflammatory) or M2 (anti-inflammatory) phenotypes. This transformation was observed only in the most affected CNS regions, suggesting that overexpression of mutated hSOD1 is not sufficient to trigger these changes in microglia. These novel observations suggest that microglial regional and phenotypic heterogeneity may be an important consideration when designing new therapeutic strategies targeting microglia and neuroinflammation in ALS.
Collapse
Affiliation(s)
- Maria Nikodemova
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Alissa L Small
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Stephanie M C Smith
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Gordon S Mitchell
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Jyoti J Watters
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
36
|
Jha MK, Seo M, Kim JH, Kim BG, Cho JY, Suk K. The secretome signature of reactive glial cells and its pathological implications. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2418-28. [PMID: 23269363 DOI: 10.1016/j.bbapap.2012.12.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 11/23/2012] [Accepted: 12/12/2012] [Indexed: 12/12/2022]
|
37
|
Bell MT, Puskas F, Agoston VA, Cleveland JC, Freeman KA, Gamboni F, Herson PS, Meng X, Smith PD, Weyant MJ, Fullerton DA, Reece TB. Toll-Like Receptor 4–Dependent Microglial Activation Mediates Spinal Cord Ischemia–Reperfusion Injury. Circulation 2013; 128:S152-6. [DOI: 10.1161/circulationaha.112.000024] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background—
Paraplegia continues to complicate thoracoabdominal aortic interventions. The elusive mechanism of spinal cord ischemia–reperfusion injury has delayed the development of pharmacological adjuncts. Microglia, the resident macrophages of the central nervous system, can have pathological responses after a variety of insults. This can occur through toll-like receptor 4 (TLR-4) in stroke models. We hypothesize that spinal cord ischemia–reperfusion injury after aortic occlusion results from TLR-4–mediated microglial activation in mice.
Methods and Results—
TLR-4 mutant and wild-type mice underwent aortic occlusion for 5 minutes, followed by 60 hours of reperfusion when spinal cords were removed for analysis. Spinal cord cytokine production and microglial activation were assessed at 6 and 36 hours after surgery. Isolated microglia from mutant and wild-type mice were subjected to oxygen and glucose deprivation for 24 hours, after which the expression of TLR-4 and proinflammatory cytokines was analyzed. Mice without functional TLR-4 demonstrated decreased microglial activation and cytokine production and had preserved functional outcomes and neuronal viability after thoracic aortic occlusion. After oxygen and glucose deprivation, wild-type microglia had increased TLR-4 expression and production of proinflammatory cytokines.
Conclusions—
The absence of functional TLR-4 attenuated neuronal injury and microglial activation after thoracic aortic occlusion in mice. Furthermore, microglial upregulation of TLR-4 occurred after oxygen and glucose deprivation, and the absence of functional TLR-4 significantly attenuated the production of proinflammatory cytokines. In conclusion, TLR-4–mediated microglia activation in the spinal cord after aortic occlusion is critical in the mechanism of paraplegia after aortic cross-clamping and may provide targets for pharmacological intervention.
Collapse
Affiliation(s)
- Marshall T. Bell
- From the Departments of Cardiothoracic Surgery (M.T.B., V.A.A., J.C.C., K.A.F., F.G., X.M., P.D.S., M.J.W., D.A.F., T.B.R.) and Anesthesiology (F.P., P.S.H.), University of Colorado, Denver, CO
| | - Ferenc Puskas
- From the Departments of Cardiothoracic Surgery (M.T.B., V.A.A., J.C.C., K.A.F., F.G., X.M., P.D.S., M.J.W., D.A.F., T.B.R.) and Anesthesiology (F.P., P.S.H.), University of Colorado, Denver, CO
| | - Viktor A. Agoston
- From the Departments of Cardiothoracic Surgery (M.T.B., V.A.A., J.C.C., K.A.F., F.G., X.M., P.D.S., M.J.W., D.A.F., T.B.R.) and Anesthesiology (F.P., P.S.H.), University of Colorado, Denver, CO
| | - Joseph C. Cleveland
- From the Departments of Cardiothoracic Surgery (M.T.B., V.A.A., J.C.C., K.A.F., F.G., X.M., P.D.S., M.J.W., D.A.F., T.B.R.) and Anesthesiology (F.P., P.S.H.), University of Colorado, Denver, CO
| | - Kirsten A. Freeman
- From the Departments of Cardiothoracic Surgery (M.T.B., V.A.A., J.C.C., K.A.F., F.G., X.M., P.D.S., M.J.W., D.A.F., T.B.R.) and Anesthesiology (F.P., P.S.H.), University of Colorado, Denver, CO
| | - Fabia Gamboni
- From the Departments of Cardiothoracic Surgery (M.T.B., V.A.A., J.C.C., K.A.F., F.G., X.M., P.D.S., M.J.W., D.A.F., T.B.R.) and Anesthesiology (F.P., P.S.H.), University of Colorado, Denver, CO
| | - Paco S. Herson
- From the Departments of Cardiothoracic Surgery (M.T.B., V.A.A., J.C.C., K.A.F., F.G., X.M., P.D.S., M.J.W., D.A.F., T.B.R.) and Anesthesiology (F.P., P.S.H.), University of Colorado, Denver, CO
| | - Xianzhong Meng
- From the Departments of Cardiothoracic Surgery (M.T.B., V.A.A., J.C.C., K.A.F., F.G., X.M., P.D.S., M.J.W., D.A.F., T.B.R.) and Anesthesiology (F.P., P.S.H.), University of Colorado, Denver, CO
| | - Phillip D. Smith
- From the Departments of Cardiothoracic Surgery (M.T.B., V.A.A., J.C.C., K.A.F., F.G., X.M., P.D.S., M.J.W., D.A.F., T.B.R.) and Anesthesiology (F.P., P.S.H.), University of Colorado, Denver, CO
| | - Michael J. Weyant
- From the Departments of Cardiothoracic Surgery (M.T.B., V.A.A., J.C.C., K.A.F., F.G., X.M., P.D.S., M.J.W., D.A.F., T.B.R.) and Anesthesiology (F.P., P.S.H.), University of Colorado, Denver, CO
| | - David A. Fullerton
- From the Departments of Cardiothoracic Surgery (M.T.B., V.A.A., J.C.C., K.A.F., F.G., X.M., P.D.S., M.J.W., D.A.F., T.B.R.) and Anesthesiology (F.P., P.S.H.), University of Colorado, Denver, CO
| | - T. Brett Reece
- From the Departments of Cardiothoracic Surgery (M.T.B., V.A.A., J.C.C., K.A.F., F.G., X.M., P.D.S., M.J.W., D.A.F., T.B.R.) and Anesthesiology (F.P., P.S.H.), University of Colorado, Denver, CO
| |
Collapse
|
38
|
Lloyd-Burton SM, York EM, Anwar MA, Vincent AJ, Roskams AJ. SPARC regulates microgliosis and functional recovery following cortical ischemia. J Neurosci 2013; 33:4468-81. [PMID: 23467362 PMCID: PMC6704956 DOI: 10.1523/jneurosci.3585-12.2013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 01/22/2013] [Accepted: 01/25/2013] [Indexed: 01/12/2023] Open
Abstract
Secreted protein acidic rich in cysteine (SPARC) is a matricellular protein that modulates the activity of growth factors, cytokines, and extracellular matrix to play multiple roles in tissue development and repair, such as cellular adhesion, migration, and proliferation. Throughout the CNS, SPARC is highly localized in mature ramified microglia, but its role in microglia--in development or during response to disease or injury--is not understood. In the postnatal brain, immature amoeboid myeloid precursors only induce SPARC expression after they cease proliferation and migration, and transform into mature, ramified resting microglia. SPARC null/CX3CR1-GFP reporter mice reveal that SPARC regulates the distribution and branching of mature microglia, with significant differences between cortical gray and white matter in both controls and SPARC nulls. Following ischemic and excitotoxic lesion, reactive, hypertrophic microglia rapidly downregulate and release SPARC at the lesion, concomitant with reactive, hypertrophic perilesion astrocytes upregulating SPARC. After photothrombotic stroke in the forelimb sensorimotor cortex, SPARC nulls demonstrate enhanced microgliosis in and around the lesion site, which accompanies significantly enhanced functional recovery by 32 d after lesion. Microglia from SPARC nulls also intrinsically proliferate at a greater rate in vitro--an enhanced effect that can be rescued by the addition of exogenous SPARC. SPARC is thus a novel regulator of microglial proliferation and structure, and, in addition to regulating glioma progression, may play an important role in differently regulating the gray and white matter microglial responses to CNS lesion--and modulating behavioral recovery--after injury.
Collapse
Affiliation(s)
- Samantha M. Lloyd-Burton
- Department of Zoology, Life Sciences Institute and Brain Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada and
| | - Elisa M. York
- Department of Zoology, Life Sciences Institute and Brain Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada and
| | - Mohammad A. Anwar
- Department of Zoology, Life Sciences Institute and Brain Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada and
| | - Adele J. Vincent
- Menzies Research Institute, University of Tasmania, Hobart, TAS 7000, Australia
| | - A. Jane Roskams
- Department of Zoology, Life Sciences Institute and Brain Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada and
| |
Collapse
|
39
|
Wesley UV, Vemuganti R, Ayvaci ER, Dempsey RJ. Galectin-3 enhances angiogenic and migratory potential of microglial cells via modulation of integrin linked kinase signaling. Brain Res 2012; 1496:1-9. [PMID: 23246924 DOI: 10.1016/j.brainres.2012.12.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 11/06/2012] [Accepted: 12/07/2012] [Indexed: 12/15/2022]
Abstract
Focal cerebral ischemia initiates self-repair mechanisms that include the production of neurotrophic factors and cytokines. Galectin-3 is an important angiogenic cytokine. We have previously demonstrated that expression of galectin 3 (Gal-3), a carbohydrate binding protein is significantly upregulated in activated microglia in the brains of rats subjected to focal ischemia. Further blocking of Gal-3 function with Gal-3 neutralizing antibody decreased the microvessel density in ischemic brain. We currently show that Gal-3 significantly increases the viability of microglia BV2 cells subjected to oxygen glucose deprivation (OGD) and re-oxygenation. Exogenous Gal-3 promoted the formation of pro-angiogenic structures in an in vitro human umbilical vein endothelial (HUVEC) and BV2 cell co-culture model. Gal-3 induced angiogenesis was associated with increased expression of vascular endothelial growth factor. The conditioned medium of BV2 cells exposed to OGD contained increased Gal-3 levels, and promoted the formation of pro-angiogenic structures in an in vitro HUVEC culture model. Gal-3 also augmented the in vitro migratory potential of BV2 microglia. Gal-3 mediated functions were associated with increased levels of integrin-linked kinase (ILK) signaling as demonstrated by the impaired angiogenesis and migration of BV2 cells following targeted silencing of ILK expression by siRNA. Furthermore, we show that ILK levels correlate with the levels of phos-AKT and ERK1/2 that are downstream effectors of ILK pathway. Taken together, our studies indicate that Gal-3 contributes to angiogenesis and microglia migration that may have implications in post stroke repair.
Collapse
Affiliation(s)
- Umadevi V Wesley
- Department of Neurological Surgery, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792, USA.
| | | | | | | |
Collapse
|
40
|
Sävman K, Heyes MP, Svedin P, Karlsson A. Microglia/macrophage-derived inflammatory mediators galectin-3 and quinolinic acid are elevated in cerebrospinal fluid from newborn infants after birth asphyxia. Transl Stroke Res 2012; 4:228-35. [PMID: 23807898 PMCID: PMC3685715 DOI: 10.1007/s12975-012-0216-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 09/25/2012] [Accepted: 10/02/2012] [Indexed: 01/08/2023]
Abstract
Activation of microglia/macrophages is important in neonatal hypoxic–ischemic (HI) brain injury. Based on experimental studies, we identified macrophage/microglia-derived mediators with potential neurotoxic effects after neonatal HI and examined them in cerebrospinal fluid (CSF) from newborn infants after birth asphyxia. Galectin-3 is a novel inflammatory mediator produced by microglia/macrophages. Galectin-3 is chemotactic for inflammatory cells and activates nicotinamide adenine dinucleotide phosphate (NADPH) oxidase resulting in production and release of reactive oxygen species (ROS). Matrix metalloproteinase-9 (MMP-9) is a tissue-degrading protease expressed by activated microglia in the immature brain after HI. Both galectin-3 and MMP-9 contribute to brain injury in animal models for neonatal HI. Quinolinic acid (QUIN) is a neurotoxic N-methyl-d-aspartate (NMDA) receptor agonist also produced by activated microglia/macrophages. Galectin-3 and MMP-9 were measured by ELISA and QUIN by mass spectrometry. Asphyxiated infants (n = 20) had higher levels of galectin-3 (mean (SEM) 2.64 (0.43) ng/mL) and QUIN (335.42 (58.9) nM) than controls (n = 15) (1.36 (0.46) ng/mL and 116.56 (16.46) nM, respectively), p < 0.05 and p < 0.01. Infants with septic infections (n = 10) did not differ from controls. Asphyxiated infants with abnormal outcome had higher levels of galectin-3 (3.96 (0.67) ng/mL) than those with normal outcome (1.76 (0.32) ng/mL), p = 0.02, and the difference remained significant in the clinically relevant group of infants with moderate encephalopathy. MMP-9 was detected in few infants with no difference between groups. The potentially neurotoxic macrophage/microglia-derived mediators galectin-3 and QUIN are increased in CSF after birth asphyxia and could serve as markers and may contribute to injury.
Collapse
Affiliation(s)
- Karin Sävman
- Perinatal Center, Department of Pediatrics, Sahlgrenska Academy, University of Gothenburg, 416 85 Göteborg, Sweden ; Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 416 85 Göteborg, Sweden ; Perinatal Center, The Queen Silvia Children's Hospital, 416 85 Göteborg, Sweden
| | | | | | | |
Collapse
|
41
|
Yang M, Kim J, Kim T, Kim SH, Kim JC, Kim J, Takayama C, Hayashi A, Joo HG, Shin T, Moon C. Possible involvement of galectin-3 in microglial activation in the hippocampus with trimethyltin treatment. Neurochem Int 2012; 61:955-62. [PMID: 23063466 DOI: 10.1016/j.neuint.2012.09.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 09/21/2012] [Accepted: 09/30/2012] [Indexed: 11/16/2022]
Abstract
Trimethyltin (TMT) is an organotin neurotoxicant with effects that are selectively localized to the limbic system (especially the hippocampus), which produces memory deficits and temporal lobe seizures. Galectin-3 (Gal-3) is a beta-galactoside-binding lectin that is important in cell proliferation and regulation of apoptosis. The present study evaluated the temporal expression of Gal-3 in the hippocampus of adult BALB/c mice after TMT treatment (i.p., 2.5mg/kg). Western blotting analyses showed that Gal-3 immunoreactivity began to increase days after treatment; the immunoreactivity peaked significantly within days after treatment but significantly declined between days 4 and 8. Immunohistochemical analysis indicated that Gal-3 expression was very rare in the hippocampi of vehicle-treated controls. However, Gal-3 immunoreactivity appeared between 2 and 8 days after TMT treatment and was primarily localized to the hippocampal dentate gyrus (DG), in which neuronal degeneration occurred. The immunoreactivity was detected predominantly in most of the Iba1-positive microglia and in some GFAP-positive astrocytes of the hippocampal DG. Furthermore, Gal-3 expression co-localized with the pro-inflammatory enzymes cyclooxygenase-2 and inducible nitric oxide synthase in the hippocampal DG. Therefore, we suggest that Gal-3 is involved in the inflammatory process of neurodegenerative disorder induced by organotin intoxication.
Collapse
Affiliation(s)
- Miyoung Yang
- College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Swinnen N, Smolders S, Avila A, Notelaers K, Paesen R, Ameloot M, Brône B, Legendre P, Rigo JM. Complex invasion pattern of the cerebral cortex bymicroglial cells during development of the mouse embryo. Glia 2012; 61:150-63. [PMID: 23001583 DOI: 10.1002/glia.22421] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 08/28/2012] [Indexed: 12/12/2022]
Abstract
Microglia are the immune cells of the central nervous system. They are suspected to play important roles in adult synaptogenesis and in the development of the neuronal network. Microglial cells originate from progenitors in the yolk sac. Although it was suggested that they invade the cortex at early developmental stages in the embryo, their invasion pattern remains largely unknown. To address this issue we analyzed the pattern of cortical invasion by microglial cells in mouse embryos at the onset of neuronal cell migration using in vivo immunohistochemistry and ex vivo time-lapse analysis of microglial cells. Microglial cells begin to invade the cortex at 11.5 days of embryonic age (E11.5). They first accumulate at the pial surface and within the lateral ventricles, after which they spread throughout the cortical wall, avoiding the cortical plate region in later embryonic ages. The invasion of the cortical parenchyma occurs in different phases. First, there is a gradual increase of microglial cells between E10.5 and E14.5. From E14.5 to E15.5 there is a rapid phase with a massive increase in microglia, followed by a slow phase again from E15.5 until E17.5. At early stages, many peripheral microglia are actively proliferating before entering the parenchyma. Remarkably, activated microglia accumulate in the choroid plexus primordium, where they are in the proximity of dying cells. Time-lapse analysis shows that embryonic microglia are highly dynamic cells.
Collapse
Affiliation(s)
- Nina Swinnen
- Hasselt University, BIOMED, Agoralaan (Gebouw C), Diepenbeek B-3590, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Cho KO, Lee KE, Youn DY, Jeong KH, Kim JY, Yoon HH, Lee JH, Kim SY. Decreased vulnerability of hippocampal neurons after neonatal hypoxia-ischemia in bis-deficient mice. Glia 2012; 60:1915-29. [PMID: 22907804 DOI: 10.1002/glia.22407] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 07/24/2012] [Indexed: 11/07/2022]
Abstract
The Bcl-2-interacting death suppressor (Bis) protein is involved in antiapoptosis and antistress pathways. However, its roles after neonatal hypoxia-ischemia remain obscure. Therefore, we investigated the effects of Bis deletion on hippocampal cell death following neonatal hypoxia-ischemia. We transected the right common carotid artery of bis(+/+) and bis(-/-) mice at postnatal Day 7 and subjected them to hypoxia for 35 min. Cresyl violet staining showed that hypoxia-ischemia induced progressive cell death in the hippocampi of bis(+/+) mice. Moreover, Bis was expressed in astrocytes, not microglia, in sham-manipulated hippocampi of bis(+/+) mice, and was markedly enhanced after hypoxia-ischemia. Immunoblotting showed that Bis expression significantly increased 3 and 7 days following hypoxia-ischemia. Unexpectedly, 7 days after hypoxia-ischemia, the number of hippocampal NeuN-positive cells was higher in the bis(-/-) mice than in the bis(+/+) mice. We subsequently performed transcriptomic analysis and quantitative real time polymerase chain reaction to search for the underlying genes responsible for resistance to hypoxia-ischemia in the bis(-/-) hippocampus. These studies showed that 6 h after hypoxia-ischemia, galectin 3 and filamin C levels increased to a lesser extent in the bis(-/-) hippocampi compared with the bis(+/+) hippocampi. Finally, our in vitro hypoxia-ischemia model, using A172 glioma cells and primary astrocytes, showed that downregulation of Bis blocked the enhanced expression of galectin 3 after oxygen-glucose deprivation. This study demonstrated that Bis was upregulated in the astrocytes after hypoxia-ischemia. In addition, we showed that hippocampal neurons are less vulnerable to hypoxia-ischemia in mice lacking Bis, possibly because of the modulation of galectin 3 induction.
Collapse
Affiliation(s)
- Kyung-Ok Cho
- Department of Pharmacology, Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Galectin-1 deactivates classically activated microglia and protects from inflammation-induced neurodegeneration. Immunity 2012; 37:249-63. [PMID: 22884314 DOI: 10.1016/j.immuni.2012.05.023] [Citation(s) in RCA: 271] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 04/05/2012] [Accepted: 05/01/2012] [Indexed: 12/27/2022]
Abstract
Inflammation-mediated neurodegeneration occurs in the acute and the chronic phases of multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Classically activated (M1) microglia are key players mediating this process. Here, we identified Galectin-1 (Gal1), an endogenous glycan-binding protein, as a pivotal regulator of M1 microglial activation that targets the activation of p38MAPK-, CREB-, and NF-κB-dependent signaling pathways and hierarchically suppresses downstream proinflammatory mediators, such as iNOS, TNF, and CCL2. Gal1 bound to core 2 O-glycans on CD45, favoring retention of this glycoprotein on the microglial cell surface and augmenting its phosphatase activity and inhibitory function. Gal1 was highly expressed in the acute phase of EAE, and its targeted deletion resulted in pronounced inflammation-induced neurodegeneration. Adoptive transfer of Gal1-secreting astrocytes or administration of recombinant Gal1 suppressed EAE through mechanisms involving microglial deactivation. Thus, Gal1-glycan interactions are essential in tempering microglial activation, brain inflammation, and neurodegeneration, with critical therapeutic implications for MS.
Collapse
|
45
|
Doi K. Mechanisms of neurotoxicity induced in the developing brain of mice and rats by DNA-damaging chemicals. J Toxicol Sci 2012; 36:695-712. [PMID: 22129734 DOI: 10.2131/jts.36.695] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
It is not widely known how the developing brain responds to extrinsic damage, although the developing brain is considered to be sensitive to diverse environmental factors including DNA-damaging agents. This paper reviews the mechanisms of neurotoxicity induced in the developing brain of mice and rats by six chemicals (ethylnitrosourea, hydroxyurea, 5-azacytidine, cytosine arabinoside, 6-mercaptopurine and etoposide), which cause DNA damage in different ways, especially from the viewpoints of apoptosis and cell cycle arrest in neural progenitor cells. In addition, this paper also reviews the repair process following damage in the developing brain.
Collapse
Affiliation(s)
- Kunio Doi
- Nippon Institute for Biological Science, Ome, Tokyo, Japan.
| |
Collapse
|
46
|
Stimulation of transient receptor potential vanilloid 4 channel suppresses abnormal activation of microglia induced by lipopolysaccharide. Glia 2012; 60:761-70. [DOI: 10.1002/glia.22306] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 01/18/2012] [Accepted: 01/20/2012] [Indexed: 12/13/2022]
|
47
|
Chograni M, Chaabouni M, Mâazoul F, Bouzid H, Kraiem A, Chaabouni HBB. Absence of mutations in four genes encoding for congenital cataract and expressed in the human brain in Tunisian families with cataract and mental retardation. BMC Ophthalmol 2011; 11:35. [PMID: 22103961 PMCID: PMC3258189 DOI: 10.1186/1471-2415-11-35] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 11/21/2011] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND To identify the genetic defect associated with autosomal recessive congenital cataract (ARCC), mental retardation (MR) and ARCC, MR and microcephaly present in most patients in four Tunisian consanguineous families. METHODS We screened four genes implicated in congenital cataract by direct sequencing in two groups of patients; those affected by ARCC associated to MR and those who presented also microcephaly. Among its three genes PAX6, PITX3 and HSF4 are expressed in human brain and one gene LIM2 encodes for the protein MP20 that interact with the protein galectin-3 expressed in human brain and plays a crucial role in its development. All genes were screened by direct sequencing in two groups of patients; those affected by ARCC associated to MR and those who presented also microcephaly. RESULTS We report no mutation in the four genes of congenital cataract and its flanking regions. Only variations that did not segregate with the studied phenotypes (ARCC associated to MR, ARCC associated with MR and microcephaly) are reported. We detected three intronic variations in PAX6 gene: IVS4 -274insG (intron 4), IVS12 -174G>A (intron12) in the four studied families and IVS4 -195G>A (intron 4) in two families. Two substitutions polymorphisms in PITX3 gene: c.439 C>T (exon 3) and c.930 C>A (exon4) in one family. One intronic variation in HSF4 gene: IVS7 +93C>T (intron 7) identified in one family. And three intronic substitutions in LIM2 gene identified in all four studied families: IVS2 -24A>G (intron 2), IVS4 +32C>T (intron 4) and c.*15A>C (3'-downstream sequence). CONCLUSION Although the role of the four studied genes: PAX6, PITX3, HSF4 and LIM2 in both ocular and central nervous system development, we report the absence of mutations in all studied genes in four families with phenotypes associating cataract, MR and microcephaly.
Collapse
Affiliation(s)
- Manèl Chograni
- University Tunis Elmanar, Laboratoire Génétique Humaine, Tunis, Tunisia
| | | | | | | | | | | |
Collapse
|
48
|
Satoh K, Niwa M, Binh NH, Nakashima M, Kobayashi K, Takamatsu M, Hara A. Increase of galectin-3 expression in microglia by hyperthermia in delayed neuronal death of hippocampal CA1 following transient forebrain ischemia. Neurosci Lett 2011; 504:199-203. [DOI: 10.1016/j.neulet.2011.09.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 09/08/2011] [Accepted: 09/11/2011] [Indexed: 11/25/2022]
|
49
|
Stancic M, van Horssen J, Thijssen VL, Gabius HJ, van der Valk P, Hoekstra D, Baron W. Increased expression of distinct galectins in multiple sclerosis lesions. Neuropathol Appl Neurobiol 2011; 37:654-71. [DOI: 10.1111/j.1365-2990.2011.01184.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
50
|
Comte I, Kim Y, Young CC, van der Harg JM, Hockberger P, Bolam PJ, Poirier F, Szele FG. Galectin-3 maintains cell motility from the subventricular zone to the olfactory bulb. J Cell Sci 2011; 124:2438-47. [PMID: 21693585 DOI: 10.1242/jcs.079954] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The adult brain subventricular zone (SVZ) produces neuroblasts that migrate through the rostral migratory stream (RMS) to the olfactory bulb (OB) in a specialized niche. Galectin-3 (Gal-3) regulates proliferation and migration in cancer and is expressed by activated macrophages after brain injury. The function of Gal-3 in the normal brain is unknown, but we serendipitously found that it was expressed by ependymal cells and SVZ astrocytes in uninjured mice. Ependymal cilia establish chemotactic gradients and astrocytes form glial tubes, which combine to aid neuroblast migration. Whole-mount preparations and electron microscopy revealed that both ependymal cilia and SVZ astrocytes were disrupted in Gal3(-/-) mice. Interestingly, far fewer new BrdU(+) neurons were found in the OB of Gal3(-/-) mice, than in wild-type mice 2 weeks after labeling. However, SVZ proliferation and cell death, as well as OB differentiation rates were unaltered. This suggested that decreased migration in vivo was sufficient to decrease the number of new OB neurons. Two-photon time-lapse microscopy in forebrain slices confirmed decreased migration; cells were slower and more exploratory in Gal3(-/-) mice. Gal-3 blocking antibodies decreased migration and dissociated neuroblast cell-cell contacts, whereas recombinant Gal-3 increased migration from explants. Finally, we showed that expression of phosphorylated epidermal growth factor receptor (EGFR) was increased in Gal3(-/-) mice. These results suggest that Gal-3 is important in SVZ neuroblast migration, possibly through an EGFR-based mechanism, and reveals a role for this lectin in the uninjured brain.
Collapse
Affiliation(s)
- Isabelle Comte
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | | | | | | | | | | | | | | |
Collapse
|