1
|
Carroll AS, Park SB, Lin CSY, Taylor MS, Kwok F, Simon NG, Reilly MM, Kiernan MC, Vucic S. Axonal excitability as an early biomarker of nerve involvement in hereditary transthyretin amyloidosis. Clin Neurophysiol 2024; 159:81-95. [PMID: 38377648 DOI: 10.1016/j.clinph.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/26/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024]
Abstract
OBJECTIVES The treatment of hereditary transthyretin amyloidosis polyneuropathy (ATTRv-PN) has been revolutionised by genetic therapies, with dramatic improvements in patient outcomes. Whilst the optimal timing of treatment initiation remains unknown, early treatment is desirable. Consequently, the aim of the study was to develop biomarkers of early nerve dysfunction in ATTRv-PN. METHODS Ulnar motor and sensory axonal excitability studies were prospectively undertaken on 22 patients with pathogenic hereditary transthyretin amyloid (ATTRv) gene variants, 12 with large fibre neuropathy (LF+) and 10 without (LF-), with results compared to age- and sex-matched healthy controls. RESULTS In motor axons we identified a continuum of change from healthy controls, to LF- and LF+ ATTRv with progressive reduction in hyperpolarising threshold electrotonus (TEh40(10-20 ms): p = 0.04, TEh40(20-40 ms): p = 0.01 and TEh40(90-10 ms): p = 0.01), suggestive of membrane depolarisation. In sensory axons lower levels of subexcitability were observed on single (SubEx) and double pulse (SubEx2) recovery cycle testing in LF+ (SubEx: p = 0.015, SubEx2: p = 0.015, RC(2-1): p = 0.04) suggesting reduced nodal slow potassium conductance, which promotes sensory hyperexcitability, paraesthesia and pain. There were no differences in sensory or motor excitability parameters when comparing different ATTRv variants. CONCLUSIONS These progressive changes seen across the disease spectrum in ATTRv-PN suggest that axonal excitability has utility to identify early and progressive nerve dysfunction in ATTRv, regardless of genotype. SIGNIFICANCE Axonal excitability is a promising early biomarker of nerve dysfunction in ATTRv-PN.
Collapse
Affiliation(s)
- Antonia S Carroll
- Brain and Mind Centre, Faculty of Medicine and Health, Translational Research Collective University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Sydney, Australia; Westmead Amyloidosis Centre, Westmead Hospital, University of Sydney, Sydney, Australia; Centre for Neuromuscular Disease, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK.
| | - Susanna B Park
- Brain and Mind Centre, Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Cindy S Y Lin
- Brain and Mind Centre, Faculty of Medicine and Health, Translational Research Collective University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Mark S Taylor
- Westmead Amyloidosis Centre, Westmead Hospital, University of Sydney, Sydney, Australia
| | - Fiona Kwok
- Westmead Amyloidosis Centre, Westmead Hospital, University of Sydney, Sydney, Australia
| | - Neil G Simon
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Mary M Reilly
- Centre for Neuromuscular Disease, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Matthew C Kiernan
- Brain and Mind Centre, Faculty of Medicine and Health, Translational Research Collective University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Steve Vucic
- Brain and Nerve Centre, Concord Hospital, University of Sydney, Sydney, Australia
| |
Collapse
|
2
|
Klein C, Liu H, Zhao C, Huang W. Altered flexor carpi radialis motor axon excitability properties after cerebrovascular stroke. Front Neurol 2023; 14:1172960. [PMID: 37284180 PMCID: PMC10240235 DOI: 10.3389/fneur.2023.1172960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/12/2023] [Indexed: 06/08/2023] Open
Abstract
Background Spinal motoneurons may become hyperexcitable after a stroke. Knowledge about motoneuron hyperexcitability remains clinically important as it may contribute to a number of phenomena including spasticity, flexion synergies, and abnormal limb postures. Hyperexcitability seems to occur more often in muscles that flex the wrist and fingers (forearm flexors) compared to other upper limb muscles. The cause of hyperexcitability remains uncertain but may involve plastic changes in motoneurons and their axons. Aim To characterize intrinsic membrane properties of flexor carpi radialis (FCR) motor axons after stroke using nerve excitability testing. Methods Nerve excitability testing using threshold tracking techniques was applied to characterize FCR motor axon properties in persons who suffered a first-time unilateral cortical/subcortical stroke 23 to 308 days earlier. The median nerve was stimulated at the elbow bilaterally in 16 male stroke subjects (51.4 ± 2.9 y) with compound muscle action potentials recorded from the FCR. Nineteen age-matched males (52.7 ± 2.4 y) were also tested to serve as controls. Results Axon parameters after stroke were consistent with bilateral hyperpolarization of the resting potential. Nonparetic and paretic side axons were modeled by a 2.6-fold increase in pump currents (IPumpNI) together with an increase (38%-33%) in internodal leak conductance (GLkI) and a decrease (23%-29%) in internodal H conductance (Ih) relative to control axons. A decrease (14%) in Na+ channel inactivation rate (Aah) was also needed to fit the paretic axon recovery cycle. "Fanning out" of threshold electrotonus and the resting I/V slope (stroke limbs combined) correlated with blood potassium [K+] (R = -0.61 to 0.62, p< 0.01) and disability (R = -0.58 to 0.55, p < 0.05), but not with spasticity, grip strength, or maximal FCR activity. Conclusion In contrast to our expectations, FCR axons were not hyperexcitable after stroke. Rather, FCR axons were found to be hyperpolarized bilaterally post stroke, and this was associated with disability and [K+]. Reduced FCR axon excitability may represent a kind of bilateral trans-synaptic homeostatic mechanism that acts to minimize motoneuron hyperexcitability.
Collapse
|
3
|
Carroll AS, Howells J, Lin CS, Park SB, Simon N, Reilly MM, Vucic S, Kiernan MC. Differences in nerve excitability properties across upper limb sensory and motor axons. Clin Neurophysiol 2021; 136:138-149. [DOI: 10.1016/j.clinph.2021.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/16/2021] [Accepted: 12/07/2021] [Indexed: 11/24/2022]
|
4
|
Luu MJ, Jones KE, Collins DF. Decreased excitability of motor axons contributes substantially to contraction fatigability during neuromuscular electrical stimulation. Appl Physiol Nutr Metab 2021; 46:346-355. [DOI: 10.1139/apnm-2020-0366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The present study was designed to (i) determine the time course of changes in motor axon excitability during and after neuromuscular electrical stimulation (NMES); and (ii) characterize the relationship between contraction fatigability, NMES frequency, and changes at the axon, neuromuscular junction, and muscle. Eight neurologically intact participants attended 3 sessions. NMES was delivered over the common peroneal nerve at 20, 40, or 60 Hz for 8 min (0.3 s “on”, 0.7 s “off”). Threshold tracking was used to measure changes in axonal excitability. Supramaximal stimuli were used to assess neuromuscular transmission and force-generating capacity of the tibialis anterior muscle. Torque decreased by 49% and 62% during 8 min of 40 and 60 Hz NMES, respectively. Maximal twitch torque decreased only during 60 Hz NMES. Motor axon excitability decreased by 14%, 27%, and 35% during 20, 40, and 60 Hz NMES, respectively. Excitability recovered to baseline immediately (20 Hz) and at 2 min (40 Hz) and 4 min (60 Hz) following NMES. Overall, decreases in axonal excitability best predicted how torque declined over 8 min of NMES. During NMES, motor axons become less excitable and motor units “drop out” of the contraction, contributing substantially to contraction fatigability and its dependence on NMES frequency. Novelty: The excitability of motor axons decreased during NMES in a frequency-dependent manner. As excitability decreased, axons failed to reach threshold and motor units dropped out of the contraction. Overall, decreased excitability best predicted how torque declined and thus is a key contributor to fatigability during NMES.
Collapse
Affiliation(s)
- M. John Luu
- Faculty of Kinesiology, Sport, and Recreation, Neuroscience and Mental Health Institute, Sensorimotor Rehabilitation Neuroscience Group, University of Alberta, Edmonton, AB T6G 2H9, Canada
- Faculty of Kinesiology, Sport, and Recreation, Neuroscience and Mental Health Institute, Sensorimotor Rehabilitation Neuroscience Group, University of Alberta, Edmonton, AB T6G 2H9, Canada
| | - Kelvin E. Jones
- Faculty of Kinesiology, Sport, and Recreation, Neuroscience and Mental Health Institute, Sensorimotor Rehabilitation Neuroscience Group, University of Alberta, Edmonton, AB T6G 2H9, Canada
- Faculty of Kinesiology, Sport, and Recreation, Neuroscience and Mental Health Institute, Sensorimotor Rehabilitation Neuroscience Group, University of Alberta, Edmonton, AB T6G 2H9, Canada
| | - David F. Collins
- Faculty of Kinesiology, Sport, and Recreation, Neuroscience and Mental Health Institute, Sensorimotor Rehabilitation Neuroscience Group, University of Alberta, Edmonton, AB T6G 2H9, Canada
- Faculty of Kinesiology, Sport, and Recreation, Neuroscience and Mental Health Institute, Sensorimotor Rehabilitation Neuroscience Group, University of Alberta, Edmonton, AB T6G 2H9, Canada
| |
Collapse
|
5
|
Fisher KM, Baker SN. A Re-evaluation of Whether Non-monosynaptic Homonymous H Reflex Facilitation Tests Propriospinal Circuits. Front Syst Neurosci 2021; 15:641816. [PMID: 33833670 PMCID: PMC8021928 DOI: 10.3389/fnsys.2021.641816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/02/2021] [Indexed: 11/13/2022] Open
Abstract
The C3-C4 propriospinal system is an important pathway mediating movement in cats; it contributes to movements in primates (including humans), and may have a role in recovery after lesion. Validated clinical tests of this system would find many applications, therefore we sought to test whether non-monosynaptic homonymous facilitation of the forearm flexor H reflex is mediated solely via a C3-C4 propriospinal pathway. In one anesthetized macaque monkey, median nerve stimulation elicited an H reflex in the flexor carpi radialis (FCR). Median nerve conditioning stimuli at sub-threshold intensities facilitated the H reflex, for inter-stimulus intervals up to 30 ms. Successive spinal surgical hemisections were then made. C2 lesion left the homonymous facilitation intact, suggesting mediation by spinal, not supraspinal pathways. Facilitation also remained after a second lesion at C5, indicating a major role for segmental (C7-C8) rather than propriospinal (C3-C4) interneurons. In separate experiments in five healthy human subjects, a threshold tracking approach assessed changes in peripheral axon excitability after conditioning stimulation. This was found to be enhanced up to 20 ms after the conditioning stimulus, and could partly, although not completely, underlie the H reflex facilitation seen. We conclude that homonymous facilitation of the H reflex in FCR can be produced by segmental spinal mechanisms, as well as by a supranormal period of nerve excitability. Unfortunately, this straightforward test cannot therefore be used for selective assessment of propriospinal circuits.
Collapse
Affiliation(s)
- Karen M. Fisher
- Henry Wellcome Building, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Stuart N. Baker
- Henry Wellcome Building, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
6
|
Kandula T, Farrar MA, Cohn RJ, Carey KA, Johnston K, Kiernan MC, Krishnan AV, Park SB. Changes in long term peripheral nerve biophysical properties in childhood cancer survivors following neurotoxic chemotherapy. Clin Neurophysiol 2020; 131:783-790. [PMID: 32066096 DOI: 10.1016/j.clinph.2019.12.411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 11/14/2019] [Accepted: 12/07/2019] [Indexed: 12/28/2022]
Abstract
OBJECTIVE In the context of increasing numbers of childhood cancer survivors (CCS), this study aimed to enhance understanding of the biophysical basis for long term chemotherapy induced peripheral neuropathy from different chemotherapy agents in CCS. METHODS Detailed cross-sectional neurophysiological examination, using median nerve axonal excitability studies, alongside clinical assessments, in 103 long term CCS (10.5 ± 0.6 years post-treatment). RESULTS Cisplatin treated CCS (n = 16) demonstrated multiple sensory axonal excitability changes including increased threshold (P < 0.05), alterations in depolarising and hyperpolarising threshold electrotonus (P < 0.05) and reduction in resting and minimum IV slope (P < 0.01). Vincristine treated CCS (n = 73) were comparable to controls, except for prolonged distal motor latency (P = 0.001). No differences were seen in the non-neurotoxic chemotherapy group (n = 14). Abnormalities were more evident in the cisplatin subgroup with greater clinical neuropathy manifestations. CONCLUSION Persistent long term changes in axonal biophysical properties vary with different chemotherapy agents, most evident after cisplatin exposure. Longitudinal studies of nerve function during chemotherapy treatment are required to further evaluate these differences and their mechanistic basis. SIGNIFICANCE This study provides a unique biophysical perspective for persistent cisplatin related neurotoxicity in children, previously under recognised.
Collapse
Affiliation(s)
- T Kandula
- School of Women's and Children's Health, UNSW Medicine, UNSW Sydney, Australia; Department of Neurology, Sydney Children's Hospital, Australia
| | - M A Farrar
- School of Women's and Children's Health, UNSW Medicine, UNSW Sydney, Australia; Department of Neurology, Sydney Children's Hospital, Australia
| | - R J Cohn
- Kids Cancer Centre, Sydney Children's Hospital, Australia
| | - K A Carey
- School of Women's and Children's Health, UNSW Medicine, UNSW Sydney, Australia
| | - K Johnston
- Kids Cancer Centre, Sydney Children's Hospital, Australia
| | - M C Kiernan
- Brain & Mind Centre, University of Sydney, Australia
| | - A V Krishnan
- Prince of Wales Clinical School, UNSW Medicine, UNSW Sydney, Australia
| | - S B Park
- Brain & Mind Centre, University of Sydney, Australia; Prince of Wales Clinical School, UNSW Medicine, UNSW Sydney, Australia.
| |
Collapse
|
7
|
Marmoy OR, Furlong PL, Moore CEG. Upper and lower limb motor axons demonstrate differential excitability and accommodation to strong hyperpolarizing currents during induced hyperthermia. J Neurophysiol 2019; 121:2061-2070. [PMID: 30917073 DOI: 10.1152/jn.00464.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Length-dependent peripheral neuropathy typically involves the insidious onset of sensory loss in the lower limbs before later progressing proximally. Recent evidence proposes hyperpolarization-activated cyclic nucleotide-gated (HCN) channels as dysfunctional in rodent models of peripheral neuropathy, and therefore differential expression of HCN channels in the lower limbs was hypothesized as a pathophysiological mechanism accounting for the pattern of symptomatology within this study. We studied six healthy participants, using motor axon excitability including strong and long [-70% and -100% hyperpolarizing threshold electrotonus (TEh)] hyperpolarizing currents to preferably study HCN channel function from the median and tibial nerves from high (40%) and low (20%) threshold. This was recorded at normothermia (~32°C) and then repeated during hyperthermia (~40°C) as an artificial hyperpolarizing axon stress. Significant differences between recovery cycle, superexcitability, accommodation to small depolarizing currents, and alterations in late stages of the inward-rectifying currents of strongest (-70% and -100% TEh) currents were observed in the lower limbs during hyperthermia. We demonstrate differences in late IH current flow, which implies higher expression of HCN channel isoforms. The findings also indicate their potential inference in the symptomatology of length-dependent peripheral neuropathies and may be a unique target for minimizing symptomatology and pathogenesis in acquired disease. NEW & NOTEWORTHY This study demonstrates nerve excitability differences between the upper and lower limbs during hyperthermia, an experimentally induced axonal stress. The findings indicate that there is differential expression of slow hyperpolarization-activated cyclic nucleotide-gated (HCN) channel isoforms between the upper and lower limbs, which was demonstrated through strong, long hyperpolarizing currents during hyperthermia. Such mechanisms may underlie postural control but render the lower limbs susceptible to dysfunction in disease states.
Collapse
Affiliation(s)
- Oliver R Marmoy
- Department of Clinical Neurophysiology, Portsmouth Hospitals NHS Trust, Portsmouth , United Kingdom.,Aston University , Birmingham , United Kingdom
| | | | - Christopher E G Moore
- Department of Clinical Neurophysiology, Portsmouth Hospitals NHS Trust, Portsmouth , United Kingdom
| |
Collapse
|
8
|
Zheng C, Zhu Y, Nie C, Lu F, Zhu D, Weber R, Jiang J. Altered motor axonal excitability in patients with cervical spondylotic amyotrophy. Clin Neurophysiol 2018; 129:1383-1389. [DOI: 10.1016/j.clinph.2018.03.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 03/19/2018] [Accepted: 03/30/2018] [Indexed: 12/13/2022]
|
9
|
Bolzoni F, Esposti R, Bruttini C, Zenoni G, Jankowska E, Cavallari P. Direct current stimulation modulates the excitability of the sensory and motor fibres in the human posterior tibial nerve, with a long-lasting effect on the H-reflex. Eur J Neurosci 2017; 46:2499-2506. [PMID: 28892581 DOI: 10.1111/ejn.13696] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 02/06/2023]
Abstract
Several studies demonstrated that transcutaneous direct current stimulation (DCS) may modulate central nervous system excitability. However, much less is known about how DC affects peripheral nerve fibres. We investigated the action of DCS on motor and sensory fibres of the human posterior tibial nerve, with supplementary analysis in acute experiments on rats. In forty human subjects, electric pulses at the popliteal fossa were used to elicit either M-waves or H-reflexes in the Soleus, before (15 min), during (10 min) and after (30 min) DCS. Cathodal or anodal current (2 mA) was applied to the same nerve. Cathodal DCS significantly increased the H-reflex amplitude; the post-polarization effect lasted up to ~ 25 min after the termination of DCS. Anodal DCS instead significantly decreased the reflex amplitude for up to ~ 5 min after DCS end. DCS effects on M-wave showed the same polarity dependence but with considerably shorter after-effects, which never exceeded 5 min. DCS changed the excitability of both motor and sensory fibres. These effects and especially the long-lasting modulation of the H-reflex suggest a possible rehabilitative application of DCS that could be applied either to compensate an altered peripheral excitability or to modulate the afferent transmission to spinal and supraspinal structures. In animal experiments, DCS was applied, under anaesthesia, to either the exposed peroneus nerve or its Dorsal Root, and its effects closely resembled those found in human subjects. They validate therefore the use of the animal models for future investigations on the DCS mechanisms.
Collapse
Affiliation(s)
- Francesco Bolzoni
- Human Physiology Section of the De.P.T., Università degli Studi di Milano, Via Mangiagalli 32, I-20133, Milan, Italy.,Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Roberto Esposti
- Human Physiology Section of the De.P.T., Università degli Studi di Milano, Via Mangiagalli 32, I-20133, Milan, Italy
| | - Carlo Bruttini
- Human Physiology Section of the De.P.T., Università degli Studi di Milano, Via Mangiagalli 32, I-20133, Milan, Italy
| | - Giuseppe Zenoni
- Human Physiology Section of the De.P.T., Università degli Studi di Milano, Via Mangiagalli 32, I-20133, Milan, Italy
| | - Elzbieta Jankowska
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Paolo Cavallari
- Human Physiology Section of the De.P.T., Università degli Studi di Milano, Via Mangiagalli 32, I-20133, Milan, Italy
| |
Collapse
|
10
|
Klein CS, Zhao CN, Liu H, Zhou P. Differences in excitability properties between medial gastrocnemius, tibialis anterior, and abductor pollicis brevis motor axons. Muscle Nerve 2017. [PMID: 28621464 DOI: 10.1002/mus.25722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Excitability properties of motor nerves to different muscles are different, but the explanation is uncertain. We characterized motor axon excitability properties to the medial gastrocnemius (MG) in 27 adults, and made comparisons with the peroneal nerve to the tibialis anterior (TA) and median nerve to the abductor pollicis brevis (APB) in 10 subjects. METHODS Recordings of multiple excitability properties were made using threshold tracking, stimulating the nerves at the wrist or knee. RESULTS Threshold electrotonus and superexcitability differed between nerves (APB>MG>TA axons) that may reflect differences in fast K+ conductance. APB axons had larger S2 accommodation and undershoot than TA and MG axons, indicating greater slow K+ conductance. TA axons demonstrated greater accommodation during hyperpolarizing currents than MG and APB axons, suggestive of greater inwardly rectifying current. DISCUSSION Inherent differences in several conductances underlie nerve differences in excitability, presumably related to muscle or motoneuron properties. Muscle Nerve 57: E60-E69, 2018.
Collapse
Affiliation(s)
- Cliff S Klein
- Guangdong Work Injury Rehabilitation Center, 68 Qide Road, Baiyun District, Guangzhou, China, 510440
| | - Chen Ning Zhao
- Guangdong Work Injury Rehabilitation Center, 68 Qide Road, Baiyun District, Guangzhou, China, 510440
| | - Hui Liu
- Guangdong Work Injury Rehabilitation Center, 68 Qide Road, Baiyun District, Guangzhou, China, 510440
| | - Ping Zhou
- Guangdong Work Injury Rehabilitation Center, 68 Qide Road, Baiyun District, Guangzhou, China, 510440.,Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, Houston, Texas, USA, 77030
| |
Collapse
|
11
|
Arnold R, Moldovan M, Rosberg MR, Krishnan AV, Morris R, Krarup C. Nerve excitability in the rat forelimb: a technique to improve translational utility. J Neurosci Methods 2017; 275:19-24. [DOI: 10.1016/j.jneumeth.2016.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/01/2016] [Accepted: 10/18/2016] [Indexed: 01/09/2023]
|
12
|
Strength-Duration Curves of the Common Fibular Nerve Show Hypoexcitability in People With Functional Ankle Instability. PM R 2015; 8:536-44. [PMID: 26409196 DOI: 10.1016/j.pmrj.2015.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 09/10/2015] [Accepted: 09/16/2015] [Indexed: 11/21/2022]
Abstract
BACKGROUND Some motor impairments, such as decreased reaction of peroneal muscles, altered kinematics, or poor postural control, have been described in people with functional ankle instability. Evidence shows a possible relationship between fibular nerve impairments and functional ankle instability. OBJECTIVE To investigate the electrophysiologic excitability of the common fibular nerve, as measured by strength-duration curves, in subjects with functional ankle instability compared with a control group without ankle impairment. DESIGN A cross-sectional study. SETTING University Research laboratory. PARTICIPANTS Fifty subjects with functional ankle instability (35 men, 15 women; ages 24.36 ± 5.01 years) and 63 uninjured control patients (44 men, 19 women; ages 22.67 ± 4.85 years) were recruited by convenience sampling. INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES Strength-duration curves of the common fibular nerve were made in all participants. Rheobase, chronaxie, Bawen index, accommodation index, galvano-tetanic threshold, and intensity thresholds for different pulse durations were obtained and compared between the 2 groups. RESULTS Subjects with functional ankle instability show increased values of chronaxie (0.58 ± 0.24 ms versus 0.47 ± 0.16 ms; P = .004), Bawen index (1.53 ± 0.24 versus 1.39 ± 0.21; P = .002), and intensity thresholds for pulse durations ≤2 ms both for rectangular and triangular pulse wave forms. The accommodation index was smaller in subjects with functional ankle instability than controls (3.7 ± 0.72 versus 4.05 ± 0.98; P = .036). The remaining parameters did not show significant differences between groups. CONCLUSIONS These findings suggest that subjects with functional ankle instability show a decreased excitability in their common fibular nerve when compared with subjects without ankle injuries.
Collapse
|
13
|
Lorenz C, Jones KE. IH activity is increased in populations of slow versus fast motor axons of the rat. Front Hum Neurosci 2014; 8:766. [PMID: 25309406 PMCID: PMC4174588 DOI: 10.3389/fnhum.2014.00766] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/10/2014] [Indexed: 11/25/2022] Open
Abstract
Much is known about the electrophysiological variation in motoneuron somata across different motor units. However, comparatively less is known about electrophysiological variation in motor axons and how this could impact function or electrodiagnosis in healthy or diseased states. We performed nerve excitability testing on two groups of motor axons in Sprague–Dawley rats that are known to differ significantly in their chronic daily activity patterns and in the relative proportion of motor unit types: one group innervating the soleus (“slow motor axons”) and the other group innervating the tibialis anterior (“fast motor axons”) muscles. We found that slow motor axons have significantly larger accommodation compared to fast motor axons upon application of a 100 ms hyperpolarizing conditioning stimulus that is 40% of axon threshold (Z = 3.24, p = 0.001) or 20% of axon threshold (Z = 2.67, p = 0.008). Slow motor axons had larger accommodation to hyperpolarizing currents in the current-threshold measurement (-80% Z = 3.07, p = 0.002; -90% Z = 2.98, p = 0.003). In addition, we found that slow motor axons have a significantly smaller rheobase than fast motor axons (Z = -1.99, p = 0.047) accompanied by a lower threshold in stimulus-response curves. The results provide evidence that slow motor axons have greater activity of the hyperpolarization-activated inwardly rectifying cation conductance (IH) than fast motor axons. It is possible that this difference between fast and slow axons is caused by an adaptation to their chronic differences in daily activity patterns, and that this adaptation might have a functional effect on the motor unit. Moreover, these findings indicate that slow and fast motor axons may react differently to pathological conditions.
Collapse
Affiliation(s)
- Chad Lorenz
- Faculty of Physical Education and Recreation, University of Alberta Edmonton, AB, Canada
| | - Kelvin E Jones
- Faculty of Physical Education and Recreation, University of Alberta Edmonton, AB, Canada ; Neuroscience and Mental Health Institute, University of Alberta Edmonton, AB, Canada
| |
Collapse
|
14
|
Shibuya K, Misawa S, Nasu S, Sekiguchi Y, Mitsuma S, Beppu M, Ohmori S, Iwai Y, Ito S, Kanai K, Sato Y, Kuwabara S. Split hand syndrome in amyotrophic lateral sclerosis: different excitability changes in the thenar and hypothenar motor axons. J Neurol Neurosurg Psychiatry 2013; 84:969-72. [PMID: 23467416 DOI: 10.1136/jnnp-2012-304109] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND In amyotrophic lateral sclerosis (ALS), muscle wasting preferentially affects the abductor pollicis brevis (APB) and first dorsal interosseous over the abductor digit minimi (ADM), and this is termed 'split hand'. Previous axonal excitability studies have suggested increased nodal persistent sodium current and reduced potassium current in motor axons in ALS, but the extent of excitability changes in APB and ADM axons in ALS has never been compared. OBJECTIVE To elucidate the peripheral axonal pathophysiology of split hand. METHODS In both APB and ADM motor axons of 21 patients with ALS and 17 age-matched normal controls, threshold tracking was used to measure excitability indices such as strength-duration time constant (SDTC; a measure of persistent sodium current) and threshold electrotonus. RESULTS In normal controls, SDTC was significantly longer for APB than ADM axons, suggesting that axonal excitability is physiologically higher in APB axons. Compared with normal controls, patients with ALS had longer SDTC and greater threshold changes in depolarising threshold electrotonus in both APB and ADM axons. Furthermore, the difference in extent of SDTC prolongation between normal subjects and patients with ALS was greater in APB than ADM axons. CONCLUSIONS APB axons have physiologically higher excitability than ADM axons, and, in ALS, the hyperexcitability is more prominent in APB axons. Although cortical mechanisms would also be involved, more prominent hyperexcitability of APB axons may contribute to development of split hand, and the altered axonal properties are possibly associated with motor neuronal death in ALS.
Collapse
Affiliation(s)
- Kazumoto Shibuya
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
BoËRio D, Z'graggen WJ, Tan SV, Guetg A, Ackermann K, Bostock H. Muscle velocity recovery cycles: Effects of repetitive stimulation on two muscles. Muscle Nerve 2012; 46:102-11. [DOI: 10.1002/mus.23267] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Sawai S, Misawa S, Kanai K, Isose S, Shibuya K, Noto Y, Fujimaki Y, Sekiguchi Y, Nasu S, Nomura F, Kuwabara S. Altered axonal excitability properties in juvenile muscular atrophy of distal upper extremity (Hirayama disease). Clin Neurophysiol 2011; 122:205-9. [DOI: 10.1016/j.clinph.2010.06.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Revised: 06/17/2010] [Accepted: 06/19/2010] [Indexed: 11/24/2022]
|
17
|
Dalton BH, Jakobi JM, Allman BL, Rice CL. Differential age-related changes in motor unit properties between elbow flexors and extensors. Acta Physiol (Oxf) 2010; 200:45-55. [PMID: 20158505 DOI: 10.1111/j.1748-1716.2010.02100.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AIM Healthy adult ageing of the human neuromuscular system is comprised of changes that include atrophy, weakness and slowed movements with reduced spinal motor neurone output expressed by lower motor unit discharge rates (MUDRs). The latter observation has been obtained mostly from hand and lower limb muscles. The purpose was to determine the extent to which elbow flexor and extensor contractile properties, and MUDRs in six old (83 +/- 4 years) and six young (24 +/- 1 years) men were affected by age, and whether any adaptations were similar for both muscle groups. METHODS Maximal isometric voluntary contraction (MVC), voluntary activation, twitch contractile properties, force-frequency relationship and MUDRs from sub-maximal to maximal intensities were assessed in the elbow flexors and extensors. RESULTS Both flexor and extensor MVCs were significantly (P < 0.05) less (approximately 42% and approximately 46% respectively) in the old than in the young. Contractile speeds and the force-frequency relationship did not show any age-related differences (P > 0.05). For the elbow flexors contraction duration was approximately 139 ms and for the extensors it was approximately 127 ms for both age groups (P > 0.05). The mean MUDRs from 25% MVC to maximum were lower (approximately 10% to approximately 36%) in the old than in the young (P < 0.01). These age-related differences were larger for biceps (Cohen's d = 8.25) than triceps (Cohen's d = 4.79) brachii. CONCLUSION Thus, at least for proximal upper limb muscles, mean maximal MUDR reductions with healthy adult ageing are muscle specific and not strongly related to contractile speed.
Collapse
Affiliation(s)
- B H Dalton
- Canadian Centre for Activity and Aging, School of Kinesiology, University of Western Ontario, London, ON, Canada
| | | | | | | |
Collapse
|
18
|
Nodera H, Kaji R. Ulnar neuropathy at the elbow: not simply a compressive neuropathy? Clin Neurophysiol 2010; 122:1-2. [PMID: 20580310 DOI: 10.1016/j.clinph.2010.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 05/31/2010] [Accepted: 06/01/2010] [Indexed: 11/27/2022]
|
19
|
Candidi M, Vicario CM, Abreu AM, Aglioti SM. Competing mechanisms for mapping action-related categorical knowledge and observed actions. ACTA ACUST UNITED AC 2010; 20:2832-41. [PMID: 20237242 DOI: 10.1093/cercor/bhq033] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Responses to pictures of famous tennis and soccer athletes are slower when the responding effector is a hand or foot, respectively, indicating that visual recognition of individuals characterized by skilled motor behavior interferes with the motor reactivity of nonproficient observers. By contrast, directly viewing actions induces motor facilitation, suggesting that actions are mapped in the observers' motor system. Here, we used single-pulse Transcranial Magnetic Stimulation to determine 1) whether observing and recognizing the identity of famous tennis and soccer athletes selectively reduce the corticospinal excitability of arm and leg representations (categorization), 2) whether any athlete-related inhibition effect contrasts the facilitation associated with direct action observation (categorization + action), and 3) whether the classic action observation-related facilitation effect is found when viewing "in action" nonathlete models (action). In 3 experiments, we found that amplitude of motor evoked potentials (MEPs) recorded from leg and arm muscles gradually shifted from reduction to facilitation, moving from the categorization to the action observation tasks. Thus, semantic derivation of motor skills is reflected in limb-specific reduction of MEP amplitude, indicating that even abstract action knowledge is embodied in the motor system and that mapping others' actions on the basis of categorization or of their direct observation relies on competing functional mechanisms.
Collapse
Affiliation(s)
- Matteo Candidi
- Dipartimento di Psicologia, Università di Roma La Sapienza, Via dei Marsi 78, Rome, Italy.
| | | | | | | |
Collapse
|
20
|
Boërio D, Greensmith L, Bostock H. Excitability properties of motor axons in the maturing mouse. J Peripher Nerv Syst 2009; 14:45-53. [PMID: 19335539 DOI: 10.1111/j.1529-8027.2009.00205.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Non-invasive excitability tests have been developed to appraise axonal membrane properties in peripheral nerves and are contributing to our understanding of neuropathies and neuronopathies. These techniques have been adapted to in vivo and in vitro rat models, but little data are available on mice, although mice provide more transgenic models of neurological disorders. This study was therefore undertaken to assess the suitability of mice to model human nerve excitability measurements and to document changes during maturation. Female mice, aged 4-19 weeks, were recorded under isoflurane anesthesia. Electrical stimuli were applied via surface electrodes to the caudal motor nerve and compound muscle action potentials (CMAPs) recorded from the tail with needle electrodes. Then, the sciatic nerve was stimulated above the ankle and CMAPs recorded from plantar muscles. The method was only minimally invasive, enabling the same animal to be tested up to eight times at weekly intervals. As in human studies, the multiple excitability program recorded stimulus-response, strength-duration, and current-threshold relationships; threshold electrotonus; and recovery cycle. The response waveforms were qualitatively similar to those from human axons. This resemblance was closer for the caudal nerve, which also showed more marked changes with age. Early hyperpolarizing electrotonus fell sharply from weeks 4 to 13 (p < 0.0001), while a progressive increase in superexcitability occurred throughout the period studied (p < 0.001). We conclude that multiple measures of nerve excitability can be performed reliably in mice in vivo, preferentially on the tail, and are suitable for longitudinal studies, but age matching is critical for younger animals.
Collapse
Affiliation(s)
- Delphine Boërio
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, UK
| | | | | |
Collapse
|
21
|
Bae JS, Sawai S, Misawa S, Kanai K, Isose S, Kuwabara S. Differences in excitability properties of FDI and ADM motor axons. Muscle Nerve 2009; 39:350-4. [PMID: 19208410 DOI: 10.1002/mus.21107] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The first dorsal interosseous (FDI) and abductor digiti minimi (ADM) muscles are innervated by the same ulnar nerve, but studies have shown that the former is much more severely affected in amyotrophic lateral sclerosis. In this study, threshold tracking was used to investigate whether membrane properties differ between FDI and ADM motor axons. In 12 normal subjects, compound muscle action potentials were recorded from FDI and ADM after ulnar nerve stimulation at the wrist. The strength-duration time constant was significantly longer in the FDI axons than in the ADM axons, and latent addition studies showed greater threshold changes at the conditioning-test stimulus of 0.2 ms in FDI than in ADM axons. These findings suggest that nodal persistent sodium conductances are more prominent in FDI axons than in ADM axons, and therefore excitability is physiologically higher in FDI axons. Even in the same nerve at the same sites, membrane properties of FDI and ADM motor axons differ significantly, and thus their axonal/neuronal responses to disease may also differ.
Collapse
Affiliation(s)
- Jong Seok Bae
- Department of Neurology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Visser GH, Blok JH. The CMAP scan. MOTOR UNIT NUMBER ESTIMATION (MUNE) AND QUANTITATIVE EMG - SELECTED PRESENTATIONS FROM THE SECOND INTERNATIONAL SYMPOSIUM ON MUNE AND QEMG, SNOWBIRD, UTAH, USA, 18–20 AUGUST 2006 2009; 60:65-77. [DOI: 10.1016/s1567-424x(08)00006-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Jankelowitz S, Burke D. Axonal excitability in the forearm: Normal data and differences along the median nerve. Clin Neurophysiol 2009; 120:167-73. [DOI: 10.1016/j.clinph.2008.08.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 08/04/2008] [Accepted: 08/10/2008] [Indexed: 10/21/2022]
|
24
|
Sawai S, Kanai K, Nakata M, Hiraga A, Misawa S, Isose S, Hattori T, Kuwabara S. Changes in excitability properties associated with axonal regeneration in human neuropathy and mouse Wallerian degeneration. Clin Neurophysiol 2008; 119:1097-105. [DOI: 10.1016/j.clinph.2008.01.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 01/15/2008] [Accepted: 01/25/2008] [Indexed: 10/22/2022]
|
25
|
Boërio D, Hogrel JY, Bassez G, Lefaucheur JP. Neuromuscular excitability properties in myotonic dystrophy type 1. Clin Neurophysiol 2007; 118:2375-82. [PMID: 17890147 DOI: 10.1016/j.clinph.2007.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Revised: 07/05/2007] [Accepted: 07/28/2007] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To study neuromuscular excitability in patients with dystrophia myotonica type 1 (DM1). METHODS The neuromuscular recovery cycle following motor nerve stimulation was assessed in 16 DM1 patients who had no sign of peripheral neuropathy or diabetes. Compound muscle action potentials were recorded from the adductor digiti minimi muscle to ulnar nerve stimulation at the wrist. Paired pulses were delivered, consisting of a conditioning stimulus of supramaximal intensity, followed by a submaximal test stimulus. Interstimuli intervals (ISIs) ranged between 1 and 8ms. Durations of the absolute and relative refractory periods (ARP, RRP) and percentages of refractoriness and supernormality at ISIs of 2.6 and 7ms, respectively, were computed using a subtraction method. The results obtained in the series of DM1 patients were compared to those obtained in six patients with other forms of myotonia and to normative values established in a series of age-matched healthy subjects. Correlations were made between excitability parameters, the number of cytosine-thymine-guanine (CTG) repeats, and the severity of myotonia, scored clinically. RESULTS Compared to controls, DM1 patients presented prolonged durations of ARP and RRP, increased refractoriness and reduced supernormality. The decrease in refractoriness correlated with both the number of CTG repeats and the severity of myotonia. CONCLUSIONS Changes in the recovery cycle following supramaximal motor nerve stimulation revealed the existence of subtle alterations of neuromuscular excitability in DM1 patients. SIGNIFICANCE Increase in refractoriness together with a reduced supernormality was consistent with a process of membrane depolarization. Such a depolarization may be related to the loss of chloride channels or to alterations in sodium conductance in the motor axon or the muscle fiber.
Collapse
Affiliation(s)
- Delphine Boërio
- Service de Physiologie--Explorations Fonctionnelles, Hôpital Henri Mondor, Assistance Publique--Hôpitaux de Paris, Créteil, France
| | | | | | | |
Collapse
|
26
|
Abstract
This study aims to assess the potential of the electrophysiological muscle scan or stimulus-response curve as a diagnostic instrument. If stimulus intensity is gradually increased from subthreshold to supramaximal values, all motor units in a muscle are successively activated. Thus, by plotting response size versus stimulus intensity, an impression (scan) of the entire muscle can be obtained. We recorded 54 detailed scans from 34 patients and 11 healthy subjects, and analyzed them visually and quantitatively. The scan summarized much diagnostic information in a single picture. Specific patterns in or properties of the scan (steps, maximum, variability, decrements, stimulus intensities used) provide clinically relevant information regarding motor unit number, size, and stability, and neuromuscular transmission and axonal excitability. The scan can be recorded noninvasively in about 5 minutes and is fairly easy to interpret. Because it is built up from contributions of all functioning motor units, the scan shows if and how many large motor units are present. There is no sample bias. For these reasons, further exploration and exploitation of this tool in the clinical setting are warranted.
Collapse
Affiliation(s)
- Joleen H Blok
- Department of Clinical Neurophysiology, Erasmus MC, University Medical Center, 3000 CA, Rotterdam, The Netherlands.
| | | | | | | |
Collapse
|
27
|
Abstract
Axonal excitability studies have been used in several diseases to investigate the underlying pathophysiology. The threshold tracking technique was developed to measure noninvasively several indices of axonal excitability, such as strength-duration properties. This study investigated the possible effects of botulinum toxin on strength-duration time constant (SDTC) in patients with the symptoms and signs of botulism. The clinical and electrophysiological findings of 13 patients who were admitted to the authors' clinic with botulism signs and symptoms were evaluated in a 5-day period after exposure to the toxin prospectively. After routine diagnostic electroneuromyographic examinations and electromyogram with repetitive nerve stimulation at 20-50 Hz, SDTC was studied. The results were compared with 13 age- and sex-matched healthy volunteers. The SDTCs were 381 +/- 60 micros and 471 +/- 84 micros in patients and controls, respectively. There was a statistical difference between the two groups (p = .003, Mann Whitney U test). These findings suggest a possible effect of botulinum toxin, known to be effective at neuromuscular junction, on Na(+)/K(+) pump activity, and Na(+) or K(+) conductance.
Collapse
Affiliation(s)
- Deniz Yerdelen
- Department of Neurology, Cukurova University Medical School, Adana, Turkey
| | | | | |
Collapse
|
28
|
Kuwabara S, Misawa S, Kanai K, Tamura N, Nakata M, Sawai S, Hattori T. The effects of physiological fluctuation of serum potassium levels on excitability properties in healthy human motor axons. Clin Neurophysiol 2007; 118:278-82. [PMID: 17141564 DOI: 10.1016/j.clinph.2006.10.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 10/11/2006] [Accepted: 10/17/2006] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Previous axonal excitability studies suggest hyperkalemia or hypokalemia can significantly alter membrane potential and thereby, excitability properties. We studied whether physiological fluctuation of serum potassium levels affects axonal excitability in normal human axons. METHODS Threshold tracking was used to measure strength-duration properties, refractory periods, supernormality, and threshold electrotonus in median motor axons of 12 normal volunteers. In each subject, the excitability indices and serum potassium levels were measured three times (baseline, 2h later, and 2 weeks later). RESULTS The pooled data (n=36) showed significant correlation of the relative refractory period, supernormality, and depolarizing threshold electrotonus with potassium levels. Among each trial (12 subjects) the correlation did not reach statistical significance occasionally. Strength-duration properties, refractoriness, late subnormality, and hyperpolarizing threshold electrotonus were not significantly affected by serum potassium levels. CONCLUSIONS Even in the normal range, serum potassium levels could slightly alter axonal excitability of human axons. Among excitability indices, the relative refractory period, supernormality, and threshold electrotonus are sensitive to potassium levels. SIGNIFICANCE Physiological fluctuation of serum potassium levels could partly be responsible for inter- and intra-subject variability of excitability indices.
Collapse
Affiliation(s)
- Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | | | | | | | | | | | | |
Collapse
|
29
|
Van Den Berg LH, Franssen H, Van Asseldonk JTH, Van Den Berg-Vos RM, Wokke JHJ. Chapter 12 Multifocal and other motor neuropathies. HANDBOOK OF CLINICAL NEUROLOGY 2007; 82:229-245. [PMID: 18808897 DOI: 10.1016/s0072-9752(07)80015-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Leonard H Van Den Berg
- Neuromuscular Research Group, Rudolf Magnus Institute of Neuroscience, Department of Neurology, University Medical Center Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
30
|
Vucic S, Black K, Chong PST, Cros D. Multifocal motor neuropathy with conduction block: Distribution of demyelination and axonal degeneration. Clin Neurophysiol 2007; 118:124-30. [PMID: 17095292 DOI: 10.1016/j.clinph.2006.09.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Revised: 08/28/2006] [Accepted: 09/27/2006] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Multifocal motor neuropathy with conduction block (MMN) is an immune-mediated neuropathy, characterized by progressive muscle weakness. Although demyelination is regarded as the underlying pathophysiologic mechanism of MMN, recently, it was reported that different pathophysiologic mechanisms were responsible for disease in the upper and lower limbs. Specifically, demyelination in the upper limbs and axonal loss in the lower limbs. Consequently, the aim of the present study was to assess, through clinical neurophysiology studies, whether different pathophysiologic mechanisms were occurring in the upper and lower extremities. Furthermore, we wanted to investigate whether the presence of conduction block (CB) correlated with axonal degeneration (AD), and to determine the electrophysiological abnormalities that correlate with muscle weakness. METHODS We reviewed medical records of 18 patients with MMN for clinical features (using the Medical Research Council score and Guys Neurology Disability Scale) and neurophysiologic abnormalities (CB, AD prolongation of distal motor and F-wave latencies, and reduction of conduction velocity in the demyelinating range). RESULTS Electrophysiological abnormalities deemed specific of demyelination were non-significantly different in the upper and lower extremities. The presence of axonal degeneration correlated significantly with conduction block (odds ratio 10.4, 95% CI 4.2-25.6), and both parameters correlated with muscle weakness (P<0.01). CONCLUSION Our study suggests that the same pathophysiologic process occurs in the upper and lower extremity nerves. Moreover, one pathophysiologic process may be responsible for the development of CB and AD, and therefore muscle weakness. SIGNIFICANCE The present study has established that both AD and CB occur in MMN, irrespective of extremity, and both correlate with muscle weakness.
Collapse
Affiliation(s)
- Steve Vucic
- Institute of Neurological Sciences, Prince of Wales Hospital, University of New South Wales, Randwick, 2035, Sydney, Australia
| | | | | | | |
Collapse
|
31
|
Yerdelen D, Uysal H, Koc F, Sarica Y. Effects of sex and age on strength–duration properties. Clin Neurophysiol 2006; 117:2069-72. [PMID: 16875875 DOI: 10.1016/j.clinph.2006.05.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Revised: 04/25/2006] [Accepted: 05/21/2006] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To evaluate the possible effects of sex and age on strength-duration time constant (SDTC). METHODS The SDTC of 126 healthy volunteers was measured following stimulation of right median nerve at the wrist. Variations in values were evaluated according to sex and age. RESULTS The SDTC was 438.6+/-114.5 micros in women and 396.2+/-90.3 in men (P=.023). In men, as age increased, so did SDTC. However, this was not true in women. Comparing the values of women and men, aged below 40, demonstrated a difference in excitability, confined to younger patients. CONCLUSIONS As SDTC depends on the biophysical properties of the axonal membrane and can provide some information about Na(+) channel function, these data raise the possibility of a difference in Na(+) channel function between men and women and a difference in the conductance with age. SIGNIFICANCE The age- and sex-related differences shown in this study suggest a possible biochemical or hormonal influence on axonal excitability.
Collapse
Affiliation(s)
- Deniz Yerdelen
- Department of Neurology, Cukurova University Medical School, Adana, Turkey.
| | | | | | | |
Collapse
|
32
|
Nakata M, Kuwabara S, Kanai K, Misawa S, Tamura N, Sawai S, Hattori T, Bostock H. Distal excitability changes in motor axons in amyotrophic lateral sclerosis. Clin Neurophysiol 2006; 117:1444-8. [PMID: 16765084 DOI: 10.1016/j.clinph.2006.04.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2006] [Revised: 03/24/2006] [Accepted: 04/07/2006] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Previous axonal excitability studies in amyotrophic lateral sclerosis (ALS) have suggested that impaired potassium channel function could be responsible for the generation of fasciculations, but the ectopic activity arises predominantly from the motor nerve terminals. This study tested the hypothesis that dysfunction of potassium channels is more pronounced in the more distal parts of axons. METHODS Threshold electrotonus was used to compare accommodation at the motor point of abductor pollicis brevis, and at the wrist portion of the median nerve, between 22 patients with ALS and 19 normal subjects. As target responses for motor point stimulation, movement-related potentials were recorded using an accelerometer. RESULTS Compared to normal subjects, ALS patients showed greater threshold changes to depolarizing conditioning currents at both the motor point and wrist, suggesting less accommodation by potassium currents. Differences in the threshold electrotonus curves between the normal and ALS groups were much more prominent at the motor point than at the wrist. CONCLUSIONS In ALS, axonal potassium channels are impaired more prominently in distal portions of axons than at the nerve trunk, and this is consistent with evidence that fasciculations mostly arise from the nerve terminals. SIGNIFICANCE Excitability testing at the motor point provides additional information about the pathophysiology of ALS.
Collapse
Affiliation(s)
- Miho Nakata
- Department of Neurology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Kuwabara S, Misawa S, Tamura N, Nakata M, Kanai K, Sawai S, Ogawara K, Hattori T. Latent addition in human motor and sensory axons: Different site-dependent changes across the carpal tunnel related to persistent Na+ currents. Clin Neurophysiol 2006; 117:810-4. [PMID: 16497550 DOI: 10.1016/j.clinph.2005.11.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Revised: 11/14/2005] [Accepted: 11/19/2005] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To compare site-dependent changes across the carpal tunnel in axonal persistent Na+ conductances in motor and sensory axons. Positive sensory symptoms are prominent features in carpal tunnel syndrome, and a persistent Na+ current is a major determinant of axonal excitability. METHODS The technique of latent addition was used to estimate persistent Na+ currents in median motor and sensory axons at the wrist and palm of 10 normal subjects. Brief hyperpolarizing conditioning current pulses were delivered, and threshold change at the conditioning-test interval of 0.2 ms was measured as an indicator of persistent Na+ currents. RESULTS Threshold changes at 0.2 ms were greater in sensory than in motor axons at both the wrist and palm. In motor axons, the threshold changes were significantly smaller at the palm (mean, 4.9%) than at the wrist (10.0%). By contrast, the threshold changes were similar at the two sites of sensory axons (12.6 and 13.1%). The passive membrane time constant was similar for motor and sensory axons at the palm and wrist. CONCLUSIONS Nodal persistent Na+ conductances have substantial site-dependent changes decreasing distally across the carpal tunnel in median motor axons, but not in sensory axons. SIGNIFICANCE Whereas sensory axons generally have higher excitability than motor axons, the sensory-motor differences become more prominent across, and possibly at the carpal tunnel than the nerve trunk, and it is suggested that this contributes to the predominance of positive sensory symptoms in carpal tunnel syndrome.
Collapse
Affiliation(s)
- Satoshi Kuwabara
- Department of Neurology, Chiba University School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Misawa S, Kuwabara S, Kanai K, Tamura N, Nakata M, Ogawara K, Yagui K, Hattori T. Nodal persistent Na+ currents in human diabetic nerves estimated by the technique of latent addition. Clin Neurophysiol 2006; 117:815-20. [PMID: 16495151 DOI: 10.1016/j.clinph.2005.11.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2005] [Revised: 10/31/2005] [Accepted: 11/19/2005] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To investigate the effects of hyperglycemia on persistent Na+ currents in human diabetic nerves, eliminating the factors of passive membrane properties as a factor. Previous studies show that strength-duration time constant of a nerve is shortened under hyperglycemia, suggesting reduced axonal persistent Na+ currents. However, the time constant is also affected by changes in passive membrane properties. Latent addition using computerized threshold tracking is a new method that can separately evaluate Na+ currents and passive membrane properties. METHODS Latent addition was used to estimate nodal Na+ currents in median motor axons of 83 diabetic patients. Brief hyperpolarizing conditioning current pulses were delivered, and threshold changes at the conditioning-test interval of 0.2 ms were measured as an indicator of nodal persistent Na+ currents. Seventeen patients were examined before and after insulin treatment. RESULTS There was an inverse linear relationship between hemoglobin A1c levels and threshold changes at 0.2 ms (P=0.02); the higher hemoglobin A1c levels were associated with smaller threshold changes. After insulin treatment, there was a significant improvement in nerve conduction velocities associated with greater threshold changes at 0.2 ms (P=0.03), suggesting an increase in persistent Na+ currents. The fast component of latent addition, an indicator of passive membrane properties, was not affected by the state of glycemic control. CONCLUSIONS Hyperglycemia could suppress nodal persistent Na+ currents, presumably because of reduced trans-axonal Na+ gradient or impaired Na+ channels, and this can be rapidly restored by glycemic control. SIGNIFICANCE Reduced nodal Na+ currents may partly contribute to the pathophysiology of human diabetic neuropathy.
Collapse
Affiliation(s)
- Sonoko Misawa
- Department of Neurology, Chiba University School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Kanai K, Kuwabara S, Misawa S, Tamura N, Ogawara K, Nakata M, Sawai S, Hattori T, Bostock H. Altered axonal excitability properties in amyotrophic lateral sclerosis: impaired potassium channel function related to disease stage. ACTA ACUST UNITED AC 2006; 129:953-62. [PMID: 16467388 DOI: 10.1093/brain/awl024] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Fasciculations are a characteristic feature of amyotrophic lateral sclerosis (ALS), and can arise proximally or distally in the motor neuron, indicating a widespread disturbance in membrane excitability. Previous studies of axonal excitability properties (i.e. threshold electrotonus, strength-duration time constant) have suggested respectively that change in potassium or sodium channels may be involved. To reinvestigate these changes and explore their correlation with disease stage, multiple axonal excitability properties (threshold electrotonus, strength-duration time constant, recovery cycle and current-threshold relationship) were measured for the median nerve at the wrist in 58 ALS patients, and compared with 25 age-matched controls. In ALS, there were greater changes in depolarizing threshold electrotonus (i.e. less accommodation) (P < 0.001) and greater supernormality in the recovery cycles (P < 0.001). These abnormalities were more prominent in patients with moderately reduced CMAP (1-5 mV). Modelling the excitability changes in this group supported the hypothesis that axonal potassium conductances are reduced, resulting in increased supernormality despite membrane depolarization. The tendency for strength-duration time constant to be prolonged in ALS was only significant for patients with normal CMAP amplitude (>5 mV). Patients with severely reduced CMAP (<1 mV) alone showed reduced threshold changes to hyperpolarizing current. These results suggest a changing pattern of abnormal membrane properties with disease progression. First, persistent Na+ conductance increases, possibly associated with collateral sprouting, and then K(+) conductances decline. Both changes cause axonal hyperexcitability, and may contribute to the generation of fasciculations. These serial changes in axonal properties could provide insights into the pathophysiology of ALS, and implications for future therapeutic options.
Collapse
Affiliation(s)
- Kazuaki Kanai
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Henderson RD, Ridall GR, Pettitt AN, McCombe PA, Daube JR. The stimulus–response curve and motor unit variability in normal subjects and subjects with amyotrophic lateral sclerosis. Muscle Nerve 2006; 34:34-43. [PMID: 16634059 DOI: 10.1002/mus.20561] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The behavior and stability of motor units (MUs) in response to electrical stimulation of different intensities can be assessed with the stimulus-response curve, which is a graphical representation of the size of the compound muscle action potential (CMAP) in relation to stimulus intensity. To examine MU characteristics across the whole stimulus range, the variability of CMAP responses to electrical stimulation, and the differences that occur between normal and disease states, the curve was studied in 11 normal subjects and 16 subjects with amyotrophic lateral sclerosis (ALS). In normal subjects, the curve showed a gradual increase in CMAP size with increasing stimulus intensity, although one or two discrete steps were sometimes observed in the upper half of the curve, indicating the activation of large MUs at higher intensities. In ALS subjects, large discrete steps, due to loss of MUs and collateral sprouting, were frequently present. Variability of the CMAP responses was greater than baseline variability, indicating variability of MU responses, and at certain levels this variability was up to 100 microVms. The stimulus-response curve shows differences between normal and ALS subjects and provides information on MU activation and variability throughout the curve.
Collapse
Affiliation(s)
- R D Henderson
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, Queensland 4029, Australia.
| | | | | | | | | |
Collapse
|
37
|
Olree KS, Horch KW. Differential activation and block of peripheral nerve fibers by magnetic fields. Muscle Nerve 2006; 34:189-96. [PMID: 16691601 DOI: 10.1002/mus.20571] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The ability to noninvasively and reversibly block conduction in peripheral nerves would have several clinical applications. As an initial step in this direction, we investigated the possibility of magnetically generating and differentially blocking activity in mammalian peripheral nerve fibers in vitro. Compound action potentials at each end of individual explanted phrenic nerves were recorded in response to currents induced at the midpoint of the nerve with an externally placed magnetic coil. Current in the coil was then reversed and the recordings repeated. In all cases, the area under the compound action potential on the virtual anode side of the magnetic stimulus was reduced (mean of 18.2 +/- 8.8%) in comparison to the area on the virtual cathode side. This indicates that peripheral nerve activity can be differentially induced by magnetic stimulation. Extension of this effect to the point of generating unidirectional action potentials in vivo may prove clinically useful in a number of contexts, such as reducing contractures secondary to spasticity and generating magnetically induced anesthesia in limbs. Further investigations of this effect seem warranted.
Collapse
Affiliation(s)
- Kenneth S Olree
- Department of Bioengineering, 50 South Central Campus Drive, 2480 MEB, University of Utah, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|
38
|
Van Asseldonk JTH, Franssen H, Van den Berg-Vos RM, Wokke JHJ, Van den Berg LH. Multifocal motor neuropathy. Lancet Neurol 2005; 4:309-19. [PMID: 15847844 DOI: 10.1016/s1474-4422(05)70074-0] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Multifocal motor neuropathy (MMN) is an immune-mediated disorder characterised by slowly progressive, asymmetrical weakness of limbs without sensory loss. The clinical presentation of MMN mimics that of lower-motor-neuron disease, but in nerve-conduction studies of patients with MMN motor-conduction block has been found. By contrast with chronic inflammatory demyelinating polyneuropathy, treatment with prednisolone and plasma exchange is generally ineffective in MMN and even associated with clinical worsening in some patients. Of the immunosuppressants, cyclophosphamide has been reported as effective but only anecdotally. Various open trials and four placebo-controlled trials have shown that treatment with high-dose intravenous immunoglobulin leads to improvement of muscle strength in patients with MMN. Although clinical, pathological, imaging, immunological, and electrophysiological studies have improved our understanding of MMN over the past 15 years, further research is needed to elucidate pathogenetic disease mechanisms in the disorder.
Collapse
Affiliation(s)
- Jan-Thies H Van Asseldonk
- Department of Clinical Neurophysiology, Neuromuscular Research Group, Rudolf Magnus Institute of Neuroscience, University Medical Centre Utrecht, Netherlands
| | | | | | | | | |
Collapse
|
39
|
Misawa S, Kuwabara S, Kanai K, Tamura N, Hiraga A, Nakata M, Ogawara K, Hattori T. Axonal potassium conductance and glycemic control in human diabetic nerves. Clin Neurophysiol 2005; 116:1181-7. [PMID: 15826860 DOI: 10.1016/j.clinph.2004.12.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Revised: 11/13/2004] [Accepted: 12/31/2004] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To investigate the effects of hyperglycemia on axonal excitability and potassium conductance in human diabetic nerves. METHODS Threshold tracking was used to measure excitability indices, which depend on potassium channels (supernormality, late subnormality, threshold electrotonus, and a current/threshold relationship) in median motor axons of 96 diabetic patients. The effects of hyperglycemia on these indices were analyzed. RESULTS Among diabetic patients, higher serum hemoglobin A1c (HbA1c) levels were significantly associated with greater supernormality (P = 0.04) and smaller late subnormality (P = 0.02), suggestive of reduced nodal/paranodal potassium currents under hyperglycemia. Threshold electrotonus and current/threshold relationships did not correlate with HbA1c levels, but partly related with nerve conduction slowing. CONCLUSIONS Hyperglycemia could reduce nodal potassium conductances, possibly due to reduced membranous potassium gradient or suppression of potassium channels. In contrast, internodal potassium conductances may be determined by both metabolic factors and structural changes such as exposure of internodal channels by demyelination. SIGNIFICANCE Measurements of the excitability indices could provide new insights into nodal and internodal axonal membrane properties in human diabetic neuropathy, whereas multiple factors can affect especially internodal properties.
Collapse
Affiliation(s)
- Sonoko Misawa
- Department of Neurology, Chiba University School of Medicine, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Boërio D, Hogrel JY, Créange A, Lefaucheur JP. A reappraisal of various methods for measuring motor nerve refractory period in humans. Clin Neurophysiol 2005; 116:969-76. [PMID: 15792907 DOI: 10.1016/j.clinph.2004.11.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Revised: 10/20/2004] [Accepted: 11/18/2004] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To compare various techniques of stimulation and methods of analysis to estimate absolute (ARP) and relative (RRP) refractory periods in motor nerve trunks of humans. METHODS Double collision (DC) technique and two types of paired pulse (PP) technique, with test stimulation of supramaximal (PP(supra)) or submaximal (PP(sub)) intensity, were applied to 32 healthy subjects. The ulnar nerve was stimulated either at a single site (wrist) for the PP techniques or at two sites (wrist and elbow) for the DC technique, with various distal interstimuli intervals (ISIs). The elicited compound muscle action potentials (CMAPs) were recorded from the abductor digitorum minimi muscle. The DC technique provided estimates of minimal and maximal ARPs, whereas maximal RRP values were obtained with the PP techniques. Data were analyzed using three methods: a visual reading of the raw ISI-CMAP curves and two computer-aided analyses of the regression curve fitting the ISI-CMAP plots. Pain induced by each technique was assessed on a 0-10 visual analogue scale. A test-retest study was performed with the PP techniques in 12 subjects. RESULTS RP estimates varied with both the stimulation technique and the analysis method. The DC technique was more painful than the PP techniques, but provided shorter and more accurate ARP values, whereas the PP(sub) technique provided longer, but valid RRP values. Computer-aided methods of data analysis gave the lowest coefficients of test-retest variation. CONCLUSIONS Compared to the PP techniques, the DC technique allowed the evaluation of the whole distribution of ARP estimates, not distorted by muscle fiber RPs. For RRP estimation, the PP(sub) technique can be preferred to the PP(supra) technique. Finally, computer-aided methods are preferable to analyze ISI-CMAP curves. SIGNIFICANCE The distribution of RP estimates can be easily and reliably assessed in whole motor nerve trunks of humans, providing valuable information to assess peripheral nerve excitability.
Collapse
Affiliation(s)
- Delphine Boërio
- Service de Physiologie-Explorations Fonctionnelles, Hôpital Henri Mondor, 51 avenue du Maréchal de Lattre de Tassigny, AP-HP, Créteil 94010, France
| | | | | | | |
Collapse
|
41
|
Bostock H, Lin CSY, Howells J, Trevillion L, Jankelowitz S, Burke D. After-effects of near-threshold stimulation in single human motor axons. J Physiol 2005; 564:931-40. [PMID: 15746167 PMCID: PMC1464467 DOI: 10.1113/jphysiol.2005.083394] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Subthreshold electrical stimuli can generate a long-lasting increase in axonal excitability, superficially resembling the phase of superexcitability that follows a conditioning nerve impulse. This phenomenon of 'subthreshold superexcitability' has been investigated in single motor axons in six healthy human subjects, by tracking the excitability changes produced by conditioning stimuli of different amplitudes and waveforms. Near-threshold 1 ms stimuli caused a mean decrease in threshold at 5 ms of 22.1 +/- 6.0% (mean +/-s.d.) if excitation occurred, or 6.9 +/- 2.6% if excitation did not occur. The subthreshold superexcitability was maximal at an interval of about 5 ms, and fell to zero at 30 ms. It appeared to be made up of two components: a passive component linearly related to conditioning stimulus amplitude, and a non-linear active component. The active component appeared when conditioning stimuli exceeded 60% of threshold, and accounted for a maximal threshold decrease of 2.6 +/- 1.3%. The passive component was directly proportional to stimulus charge, when conditioning stimulus duration was varied between 0.2 and 2 ms, and could be eliminated by using triphasic stimuli with zero net charge. This change in stimulus waveform had little effect on the active component of subthreshold superexcitability or on the 'suprathreshold superexcitability' that followed excitation. It is concluded that subthreshold superexcitability in human motor axons is mainly due to the passive electrotonic effects of the stimulating current, but this is supplemented by an active component (about 12% of suprathreshold superexcitability), due to a local response of voltage-dependent sodium channels.
Collapse
Affiliation(s)
- Hugh Bostock
- Sobell Department of Neurophysiology, Institute of Neurology, Queen Square, London WC1N 3BG, UK.
| | | | | | | | | | | |
Collapse
|
42
|
Misawa S, Kuwabara S, Ogawara K, Kitano Y, Hattori T. Strength-duration properties and glycemic control in human diabetic motor nerves. Clin Neurophysiol 2005; 116:254-8. [PMID: 15661101 DOI: 10.1016/j.clinph.2004.08.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2004] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To investigate the influences of hyperglycemia on axonal excitability in human diabetic nerves. Hyperglycemia results in decreased Na+-K+ pump function, presumably leading to intra-axonal Na+ accumulation and thereby, reduced Na+ currents. METHODS The strength-duration time constant (tau(SD)), which partly depends on persistent Na+ conductance active at the resting membrane potential, was measured in median motor axons of 79 diabetic patients. The relationship of tau(SD) with the state of glycemic control (hemoglobin A1c [HbA1c] levels) was analyzed. RESULTS The mean tau(SD) was longer for diabetic patients than for normal controls, but the difference was not significant. Among diabetic patients, the subgroup of patients with good glycemic control (HbA1c<7%) had significantly longer tau(SD) than the patient group with poor control (HbA1c>9%; P=0.04). The mean tau(SD) was longest at the HbA1c level of 5-6%, gradually decreasing and reaching a plateau around the HbA1c level of 9%. There was an inverse relationship between HbA1c levels and tau(SD), when the HbA1c levels ranged from 5 to 9% (P=0.04). CONCLUSIONS In diabetic nerves, tau(SD) is generally longer than normal, but hyperglycemia is associated with paradoxically shortened tau(SD), because of a decrease in axonal persistent Na+ conductance, possibly related to reduced membranous Na+ gradient, tissue acidosis, or other metabolic factors. SIGNIFICANCE Measurements of tau(SD) could provide a new insight into changes in ionic conductance in human diabetic nerves.
Collapse
Affiliation(s)
- Sonoko Misawa
- Department of Neurology, Chiba University School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | | | | | | | | |
Collapse
|
43
|
Boërio D, Hogrel JY, Créange A, Lefaucheur JP. Méthodes et intérêt clinique de la mesure de la période réfractaire nerveuse périphérique chez l'homme. Neurophysiol Clin 2004; 34:279-91. [PMID: 15890161 DOI: 10.1016/j.neucli.2004.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Accepted: 08/03/2004] [Indexed: 11/17/2022] Open
Abstract
Immediately after action potential occurrence, owing to transient sodium channel inactivation, axon excitability is reduced for a short period of time, including the absolute refractory period, a first period of total inexcitability, followed by the relative refractory period. There are basically two different stimulation protocols to estimate axonal refractoriness, i.e. "paired-pulse" and "collision" techniques. Refractory period has been assessed in various conditions and appeared to depend on several physiological or methodological factors, featuring the type of nerve or the characteristics of the subject, but also the technique of stimulation or the method of data analysis. In addition, refractory periods can be altered by pathological conditions. Several studies showed prolonged refractory periods in patients suffering from alcoholic, diabetic or toxic neuropathies. Refractory period abnormality is a sensitive marker of axonal dysfunction as observed in Guillain-Barré syndrome, carpal tunnel syndrome or multiple sclerosis. Thus, the measurement of the refractory periods is a valuable tool to study the pathophysiology of peripheral nerves, complementary to standard nerve conduction studies. However, the application of these techniques in the routine practice of clinical neurophysiology remains limited.
Collapse
Affiliation(s)
- D Boërio
- Service de Physiologie, Explorations Fonctionnelles, Hôpital Henri-Mondor, AP-HP, 51, avenue du Maréchal-de-Lattre-de-Tassigny, Créteil, France
| | | | | | | |
Collapse
|
44
|
Hales JP, Lin CSY, Bostock H. Variations in excitability of single human motor axons, related to stochastic properties of nodal sodium channels. J Physiol 2004; 559:953-64. [PMID: 15272032 PMCID: PMC1665177 DOI: 10.1113/jphysiol.2004.068726] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Threshold variability of single human motor axons was studied by delivering 0.1 ms constant current stimuli of randomly varied intensity over the ulnar nerve at the elbow, and recording all-or-none potentials from flexor carpi ulnaris. In nine normal subjects, a single unit was tested with 8-11,000 stimuli at intervals of 0.5 s. After allowing for slow changes in excitability, the probability of excitation was in all cases well fitted by a cumulative Gaussian function. The relative spread (RS) of thresholds (S.D./mean) averaged 1.65 +/- 0.26% (mean +/- S.D., n = 9). When threshold was tested 20 ms after the start of a polarizing current, RS increased on depolarization and decreased on hyperpolarization. The product RS x mean threshold also increased on depolarization, especially when threshold was reduced by more than 50%. When the mean was reduced by 90%, RS increased above 50% and the axon sometimes fired spontaneously. Threshold variability was simulated by a computer model of a single node of Ranvier, in which the variability arose because of the stochastic behaviour of nodal sodium channels. The observed values of RS, and potential dependence of RS, were well modelled by a node with 60,000 sodium channels, of which about 1% were modelled as persistent sodium channels. Threshold variations in the model at resting potential were not primarily due to fluctuations in the state of the node before the stimulus was delivered, but rather to the variable activation of channels by the stimulus pulse. On depolarization, however, current through (mainly persistent) sodium channels caused appreciable fluctuations in membrane potential, which increased RS and the probability of spontaneous firing.
Collapse
Affiliation(s)
- John Paul Hales
- Sobell Department of Neurophysiology, Institute of Neurology, Queen Square, London, UK
| | | | | |
Collapse
|
45
|
Kuwabara S, Bostock H, Ogawara K, Sung JY, Misawa S, Kitano Y, Mizobuchi K, Lin CSY, Hattori T. Excitability properties of human median axons measured at the motor point. Muscle Nerve 2004; 29:227-33. [PMID: 14755487 DOI: 10.1002/mus.10551] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Threshold tracking was used to measure excitability indices (strength-duration properties, threshold electrotonus, and the current-threshold relationship) at the motor point of the abductor pollicis brevis, and the results were compared with those of the median nerve at the wrist. Using an accelerometer placed at the thumb tip, movement-related potentials were recorded as target responses. When stimulating at the same site, excitability measurements were no different, and their variability no greater, when the target responses were movements rather than muscle action potentials. Motor point stimulation resulted in significantly shorter strength-duration time-constant and higher rheobase than wrist stimulation. In addition, the technique of latent addition showed that a slow component was much smaller at the motor point than at the wrist. In threshold electrotonus, threshold changes in response to depolarizing and hyperpolarizing conditioning currents were significantly smaller at the motor point than at the wrist. The differences in strength-duration time-constant and latent addition suggest that persistent Na(+) current at the resting potential is smaller at the motor point. The differences in threshold electrotonus may depend in part on altered fiber geometry but suggest that inward and possibly outward rectification are increased distally. Motor point excitability testing may provide new insights into the pathophysiology of the nerve terminals in a variety of peripheral neuropathies and motor neuron disorders.
Collapse
Affiliation(s)
- Satoshi Kuwabara
- Department of Neurology, Chiba University School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Arezzo JC, Zotova E. Electrophysiologic measures of diabetic neuropathy: mechanism and meaning. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 50:229-55. [PMID: 12198812 DOI: 10.1016/s0074-7742(02)50079-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Whole nerve electrophysiologic procedures afford a battery of measures that can provide a noninvasive and objective index of the onset and progression of diabetic polyneuropathy (DPN). Advances in physiologic procedures, digital hardware, and mathematical models have allowed assessment of activity in slower conducting fibers, as well as measures that reflect changes in refractory periods and threshold excitability. These expanded options can augment standard measures of maximal conduction velocity and compound amplitude and greatly enhance the sensitivity of whole nerve measure to both structural (e.g. demyelination) and "nonstructural" (e.g. redistribution of ion channels) deficits associated with DPN. The mechanisms underlying the physiologic events in DPN are multifactorial and their sequence in complex, with different mechanisms contributing to change at overlapping, but distinct points in the progression. Factors influencing early change in velocity may differ from those contributing to chronic deficits and these mechanisms may also differ in their response to various putative therapies. This review attempts to summarize the pattern of whole nerve electrophysiologic change associated with DPN, outlines the strengths and limitations of the various measures that are feasible, and discusses the specific impact of know pathophysiologic mechanisms on these end points.
Collapse
Affiliation(s)
- Joseph C Arezzo
- Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
47
|
Van Asseldonk JTH, Van den Berg LH, Van den Berg-Vos RM, Wieneke GH, Wokke JHJ, Franssen H. Demyelination and axonal loss in multifocal motor neuropathy: distribution and relation to weakness. Brain 2003; 126:186-98. [PMID: 12477706 DOI: 10.1093/brain/awg019] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Multifocal motor neuropathy (MMN) is characterized by a slowly progressive, asymmetric weakness of the limbs without sensory loss. The arms are usually affected to a greater extent than the legs, and distal muscles more than proximal muscles. The distribution of electrophysiological abnormalities and its correlation with weak muscle groups in MMN have not been investigated systematically. The aim of the present study was to assess whether electrophysiological abnormalities have a preferential or random distribution, whether electrophysiological abnormalities in a nerve correlate with weakness in the innervated muscles, and whether these results are relevant for the development of optimal electrodiagnostic protocols. We compared the pattern of weakness and electrophysiological abnormalities in 39 patients with a lower motoneuron syndrome and a positive response to intravenous immunoglobulins. All patients underwent an extensive standardized electrophysiological examination. Electrophysiological evidence of demyelination was found more often in the nerves of the arms and was distributed randomly over lower arm, upper arm and shoulder segments. Electrophysiological evidence of axonal loss presented more frequently in longer nerves, occurring most often in the leg nerves. For the arm nerves, it is possible that the length dependence of axonal loss is due to the random distribution of demyelinating lesions that lead to axonal degeneration. Weakness was associated with features of demyelination and axonal loss in the nerves of the arm, and with features of axonal loss in leg nerves. However, a substantial number (approximately one-third) of electrophysiological abnormalities were found in nerves innervating non-weakened muscles. These results imply that in MMN, conduction block is most likely to be found in long arm nerves innervating weakened muscles, but if conduction block cannot be detected in these nerves, the electrophysiological examination should be extended to other arm nerves including those innervating non-weakened muscles.
Collapse
Affiliation(s)
- J T H Van Asseldonk
- Department of Neurology, Rudolf Magnus Institute for Neurosciences, University Medical Centre Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
48
|
Cappelen-Smith C, Kuwabara S, Lin CSY, Burke D. Abnormalities of axonal excitability are not generalized in early multifocal motor neuropathy. Muscle Nerve 2002; 26:769-76. [PMID: 12451600 DOI: 10.1002/mus.10262] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The clinical and neurophysiological features of multifocal motor neuropathy (MMN) indicate selective involvement of motor axons, but pathological abnormalities in sensory axons suggest a more widespread disease process. The present study was undertaken to determine whether the focal abnormalities are associated with widespread subclinical abnormalities in motor axons. Threshold tracking was used to measure excitability properties (stimulus-response curves, strength-duration properties, recovery cycle, and threshold electrotonus) of the median nerve in five patients with MMN with lesions proximal to the site of testing. Patients were compared with 25 healthy controls. The changes in excitability indices were similar to those in controls, and in one patient there was no alteration after treatment with intravenous gammaglobulin. In this patient, indices of axonal excitability were also measured before, during, and after ischemia of the arm for 10 min. Again no differences were detected. This study provides no evidence for a generalized subclinical abnormality in MMN, at least when disease duration is less than 6 years.
Collapse
Affiliation(s)
- Cecilia Cappelen-Smith
- Department of Clinical Neurophysiology, Prince of Wales Hospital and Prince of Wales Medical Research Institute, University of New South Wales, Barker Street, Randwick, Sydney, New South Wales 2031, Australia
| | | | | | | |
Collapse
|
49
|
Kuwabara S, Ogawara K, Sung JY, Mori M, Kanai K, Hattori T, Yuki N, Lin CSY, Burke D, Bostock H. Differences in membrane properties of axonal and demyelinating Guillain-Barré syndromes. Ann Neurol 2002; 52:180-7. [PMID: 12210788 DOI: 10.1002/ana.10275] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Guillain-Barré syndrome is classified into acute motor axonal neuropathy (AMAN) and acute inflammatory demyelinating polyneuropathy (AIDP) by electrodiagnostic and pathological criteria. In AMAN, the immune attack appears directed against the axolemma and nodes of Ranvier. Threshold tracking was used to measure indices of axonal excitability (refractoriness, supernormality, and threshold electrotonus) for median nerve axons at the wrist of patients with AMAN (n = 10) and AIDP (n = 8). Refractoriness (the increase in threshold current during the relative refractory period) was greatly increased in AMAN patients, but the abruptness of the threshold increases at short interstimulus intervals indicated conduction failure distal to the stimulation (ie, an increased refractory period of transmission). During the 4 week period from onset, the high refractoriness returned toward normal, and the amplitude of the compound muscle action potential increased, consistent with improvement in the safety margin for impulse transmission in the distal nerve. In contrast, refractoriness was normal in AIDP, even though there was marked prolongation of distal latencies. Supernormality and threshold electrotonus were normal in both groups of patients, suggesting that, at the wrist, membrane potential was normal and pathology was relatively minor. These results support the view that the predominantly distal targets of immune attack are different for AMAN and AIDP. Possible mechanisms for the reduced safety factor in AMAN are discussed.
Collapse
Affiliation(s)
- Satoshi Kuwabara
- Department of Neurology, Chiba University School of Medicine, Chiba, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kuwabara S, Kanai K, Sung JY, Ogawara K, Hattori T, Burke D, Bostock H. Axonal hyperpolarization associated with acute hypokalemia: multiple excitability measurements as indicators of the membrane potential of human axons. Muscle Nerve 2002; 26:283-7. [PMID: 12210395 DOI: 10.1002/mus.10169] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Multiple nerve excitability measurements have been proposed for clinical testing of nerve function, and an important determinant of excitability is membrane potential. We report a patient with acquired hypokalemic paralysis in whom multiple excitability indices (stimulus-response curve, strength-duration properties, threshold electrotonus, recovery cycle) were measured during and after an acute hypokalemic attack (serum K(+) level, 2.1 mEq/L and 4.5 mEq/L, respectively). During hypokalemia, there was a shift of the stimulus-response curve to the right, a decrease in strength-duration time constant, a "fanning-out" of responses during threshold electrotonus, a reduction in relative refractory period, and an increase in superexcitability; all of these indicate axonal hyperpolarization, presumably due to the K(+) equilibrium potential being more negative. These indices returned to normal 20 h later, associated with normalization of the serum K(+) level. These results demonstrate that the changes associated with hypokalemic paralysis are not confined to muscle and that axons undergo hyperpolarization in vivo. Multiple excitability measurements can be used as a tool to identify changes in membrane potential of human axons.
Collapse
Affiliation(s)
- Satoshi Kuwabara
- Department of Neurology, Chiba University School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | | | | | | | | | | | | |
Collapse
|