1
|
Zhang G, Jiang A, Huang X, Yuan T, Wu H, Li L, Liu Z. Mechanism of One-Step Hydrothermally Synthesized Titanate Catalysts for Ozonation. Molecules 2022; 27:molecules27092706. [PMID: 35566056 PMCID: PMC9103479 DOI: 10.3390/molecules27092706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 02/01/2023] Open
Abstract
A titanate nanotube catalyst for ozonation was synthesized with a simple one-step NaOH hydrothermal treatment without energy-consuming calcination. The synthesized titania catalysts were characterized by X-ray diffraction (XRD), Raman, porosimetry analysis, high-resolution transmission electron microscopy (HR-TEM), Fourier transformed infrared (FTIR), and electron paramagnetic resonance (EPR) analysis. The catalyst treated with a higher concentration of NaOH was found to be more catalytically active for phenol removal due to its higher titanate content that would facilitate more OH groups on its surface. Furthermore, the main active oxidizing species of the catalytic ozonation process were recognized as singlet oxygen and superoxide radical, while the hydroxyl radical may only play a minor role. This work provides further support for the correlation between the properties of titania and catalytic performance, which is significant for understanding the mechanism of catalytic ozonation with titania-based materials.
Collapse
Affiliation(s)
- Geshan Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (T.Y.); (H.W.); (L.L.); (Z.L.)
- Correspondence: (G.Z.); (X.H.); Tel.: +86-571-8832-0412 (G.Z.)
| | - Anhua Jiang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China;
| | - Xinwen Huang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China;
- Correspondence: (G.Z.); (X.H.); Tel.: +86-571-8832-0412 (G.Z.)
| | - Tian Yuan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (T.Y.); (H.W.); (L.L.); (Z.L.)
| | - Hanrui Wu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (T.Y.); (H.W.); (L.L.); (Z.L.)
| | - Lichun Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (T.Y.); (H.W.); (L.L.); (Z.L.)
| | - Zongjian Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (T.Y.); (H.W.); (L.L.); (Z.L.)
| |
Collapse
|
2
|
Assessment of Titanate Nanolayers in Terms of Their Physicochemical and Biological Properties. MATERIALS 2021; 14:ma14040806. [PMID: 33567667 PMCID: PMC7915217 DOI: 10.3390/ma14040806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 01/02/2023]
Abstract
The surface modification of titanium substrates and its alloys in order to improve their osseointegration properties is one of widely studied issues related to the design and production of modern orthopedic and dental implants. In this paper, we discuss the results concerning Ti6Al4V substrate surface modification by (a) alkaline treatment with a 7 M NaOH solution, and (b) production of a porous coating (anodic oxidation with the use of potential U = 5 V) and then treating its surface in the abovementioned alkaline solution. We compared the apatite-forming ability of unmodified and surface-modified titanium alloy in simulated body fluid (SBF) for 1–4 weeks. Analysis of the X-ray diffraction patterns of synthesized coatings allowed their structure characterization before and after immersing in SBF. The obtained nanolayers were studied using Raman spectroscopy, diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), and scanning electron microscopy (SEM) images. Elemental analysis was carried out using X-ray energy dispersion spectroscopy (SEM EDX). Wettability and biointegration activity (on the basis of the degree of integration of MG-63 osteoblast-like cells, L929 fibroblasts, and adipose-derived mesenchymal stem cells cultured in vitro on the sample surface) were also evaluated. The obtained results proved that the surfaces of Ti6Al4V and Ti6Al4V covered by TiO2 nanoporous coatings, which were modified by titanate layers, promote apatite formation in the environment of body fluids and possess optimal biointegration properties for fibroblasts and osteoblasts.
Collapse
|
3
|
Miyazaki T, Hosokawa T, Yokoyama K, Shiraishi T. Compositional dependence of the apatite formation ability of Ti-Zr alloys designed for hard tissue reconstruction. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:110. [PMID: 33165675 DOI: 10.1007/s10856-020-06448-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Ti-Zr alloys are expected to be novel biomaterials with low stress shielding owing to their lower Young's moduli than pure Ti. The drawback of metallic biomaterials is that their bone-bonding abilities are relatively low. NaOH and heat treatments have been performed to provide Ti-50Zr with apatite-forming ability in the body environment, which is essential for bone bonding. However, the systematic compositional dependence of apatite formation has not been revealed. In the present study, NaOH treatment of Ti-Zr alloys with various compositions and bone-bonding abilities was assessed in vitro by apatite formation in simulated body fluid (SBF). The corrosion current density in NaOH aqueous solution and the amount of Na incorporated into the surface tended to decrease with increasing Zr content. The apatite-forming ability of the treated alloy significantly decreased when the Zr content was ≥60 atom%. This phenomenon is attributed to the (1) low OH content on the surface, (2) low Na incorporation into the treated alloy surface, which enhances apatite formation, and (3) low ability of P adsorption to the Ti-Zr alloy in SBF following Ca adsorption to trigger apatite nucleation. Although the adhesion of the titanate/zirconate layer formed on the surfaces to the substrates increased as Zr content increased, the adhesion between the apatite and the substrate was still low.
Collapse
Affiliation(s)
- Toshiki Miyazaki
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Japan.
| | - Tomoya Hosokawa
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| | - Ken'ichi Yokoyama
- Department of Materials Science and Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| | - Takanobu Shiraishi
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
4
|
The Use of Simulated Body Fluid (SBF) for Assessing Materials Bioactivity in the Context of Tissue Engineering: Review and Challenges. Biomimetics (Basel) 2020; 5:biomimetics5040057. [PMID: 33138246 PMCID: PMC7709622 DOI: 10.3390/biomimetics5040057] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 01/16/2023] Open
Abstract
Some special implantable materials are defined as “bioactive” if they can bond to living bone, forming a tight and chemically-stable interface. This property, which is inherent to some glass compositions, or can be induced by applying appropriate surface treatments on otherwise bio-inert metals, can be evaluated in vitro by immersion studies in simulated body fluid (SBF), mimicking the composition of human plasma. As a result, apatite coating may form on the material surface, and the presence of this bone-like “biomimetic skin” is considered predictive of bone-bonding ability in vivo. This review article summarizes the story and evolution of in vitro bioactivity testing methods using SBF, highlighting the influence of testing parameters (e.g., formulation and circulation of the solution) and material-related parameters (e.g., composition, geometry, texture). Suggestions for future methodological refinements are also provided at the end of the paper.
Collapse
|
5
|
Abstract
The topic of titanium alloys for dental implants has been reviewed. The basis of the review was a search using PubMed, with the large number of references identified being reduced to a manageable number by concentrating on more recent articles and reports of biocompatibility and of implant durability. Implants made mainly from titanium have been used for the fabrication of dental implants since around 1981. The main alloys are so-called commercially pure titanium (cpTi) and Ti-6Al-4V, both of which give clinical success rates of up to 99% at 10 years. Both alloys are biocompatible in contact with bone and the gingival tissues, and are capable of undergoing osseointegration. Investigations of novel titanium alloys developed for orthopaedics show that they offer few advantages as dental implants. The main findings of this review are that the alloys cpTi and Ti-6Al-4V are highly satisfactory materials, and that there is little scope for improvement as far as dentistry is concerned. The conclusion is that these materials will continue to be used for dental implants well into the foreseeable future.
Collapse
|
6
|
Mancardi G, Hernandez Tamargo C, Terranova U, de Leeuw NH. Calcium Phosphate Deposition on Planar and Stepped (101) Surfaces of Anatase TiO 2: Introducing an Interatomic Potential for the TiO 2/Ca-PO 4/Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:10144-10152. [PMID: 30059229 DOI: 10.1021/acs.langmuir.8b00984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Titanium is commonly employed in orthopaedic and dental surgery, owing to its good mechanical properties. The titanium metal is usually passivated by a thin layer of its oxide, and in order to promote its integration with the biological tissue, it is covered by a bioactive material such as calcium phosphate (CaP). Here, we have investigated the deposition of calcium and phosphate species on the anatase phase of titanium dioxide (TiO2) using interatomic potential-based molecular dynamics simulations. We have combined different force fields developed for CaP, TiO2, and water, benchmarking the results against density functional theory calculations. On the basis of our study, we consider that the new parameters can be used successfully to study the nucleation of CaP on realistic anatase and rutile TiO2 nanoparticles, including surface defects.
Collapse
Affiliation(s)
- Giulia Mancardi
- Department of Chemistry , University College London , 20 Gordon Street , London WC1H 0AJ , U.K
- School of Chemistry , Cardiff University , Main Building, Park Place , Cardiff , CF10 3AT , U.K
| | | | - Umberto Terranova
- School of Chemistry , Cardiff University , Main Building, Park Place , Cardiff , CF10 3AT , U.K
| | - Nora H de Leeuw
- Department of Chemistry , University College London , 20 Gordon Street , London WC1H 0AJ , U.K
- School of Chemistry , Cardiff University , Main Building, Park Place , Cardiff , CF10 3AT , U.K
| |
Collapse
|
7
|
|
8
|
Miyazaki T, Sueoka M, Shirosaki Y, Shinozaki N, Shiraishi T. Development of hafnium metal and titanium-hafnium alloys having apatite-forming ability by chemical surface modification. J Biomed Mater Res B Appl Biomater 2017; 106:2519-2523. [PMID: 29274252 DOI: 10.1002/jbm.b.34068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 12/05/2017] [Accepted: 12/10/2017] [Indexed: 11/11/2022]
Abstract
Hafnium (Hf) has attracted considerable attention as a component of biomedical titanium (Ti) alloys with low Young's moduli and/or shape-memory functionalities, because its cytotoxicity is as low as that of Ti. The drawback of metals is that their bone-bonding ability is generally low. It is known that apatite formation in the body is a prerequisite for bone-bonding. Although several chemical treatments have been proposed for preparing Ti for bone-bonding, there have been no similar investigations for Hf. In the present study, NaOH- and heat-treatments were applied to pure Hf and Ti-Hf alloys and their bone-bonding ability was assessed in vitro with the use of simulated body fluid (SBF). After NaOH- and heat-treatments, anatase formed on alloys with low Hf content (20-40% (atom%) Hf); mixtures of sodium titanate and hafnium titanate formed on alloys with similar Ti and Hf content (60% Hf); and hafnium oxide formed on alloys with high Hf content (80% Hf and pure Hf). Precipitates of apatite were observed on all the metals in SBF, except for the alloy with 60% Hf. We speculated that the hafnium titanate formed on this alloy had a low apatite-forming ability owing to its high negative surface charge, which inhibited P adsorption. The apatite-forming abilities of the Ti-Hf alloys strongly depended on their Hf content. The present results indicate that Hf-based materials have good potential for bone-bonding. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2519-2523, 2018.
Collapse
Affiliation(s)
- Toshiki Miyazaki
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| | - Masaya Sueoka
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| | - Yuki Shirosaki
- Graduate School of Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| | - Nobuya Shinozaki
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| | - Takanobu Shiraishi
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
9
|
Surface characteristics of bioactive Ti fabricated by chemical treatment for cartilaginous-integration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:495-502. [DOI: 10.1016/j.msec.2017.03.250] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/23/2017] [Accepted: 03/26/2017] [Indexed: 12/23/2022]
|
10
|
Bock RM, Marin E, Rondinella A, Boschetto F, Adachi T, McEntire BJ, Bal BS, Pezzotti G. Development of a SiYAlON glaze for improved osteoconductivity of implantable medical devices. J Biomed Mater Res B Appl Biomater 2017; 106:1084-1096. [PMID: 28503805 DOI: 10.1002/jbm.b.33914] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 04/11/2017] [Accepted: 04/22/2017] [Indexed: 12/20/2022]
Abstract
The application of bioactive coatings onto orthopaedic appliances is commonly performed to compensate for the otherwise bioinert nature of medical devices and to improve their osseointegration. Calcium phosphates, hydroxyapatite (HAp), and bioglasses are commercially available for this purpose. Until recently, few other inorganic compounds have been identified with similar biofunctionality. However, silicon nitride (Si3 N4 ) has emerged as a new orthopaedic material whose unique surface chemistry also enhances osteoconductivity. Recent research has confirmed that its minority intergranular phase, consisting of silicon yttrium aluminum oxynitride (SiYAlON), is principally responsible for this improvement. As a result, it was hypothesized that SiYAlON itself might serve as an effective osteoconductive coating or glaze for medical devices. To test this hypothesis, a process inspired by traditional ceramic whiteware glazing was developed. A slurry containing ingredients similar to the intergranular SiYAlON composition was applied to a Si3 N4 surface, which was then subjected to a heat treatment to form a glaze. Various analytical tools were employed to assess its chemistry and morphology. It was found that the glaze was comprised predominately of Y5 Si3 O12 N, a compound commonly referred to as N-apatite, which is isostructural to native HAp. Subsequent exposure of the glazed surface to acellular simulated body fluid led to increased deposition of biomimetic HAp-like crystals, while exposure to Saos-2 osteosarcoma cells in vitro resulted in greater HAp deposition relative to control samples. The observation that SiYAlON exhibits enhanced osteoconductivity portends its potential as a therapeutic aid in bone and tissue repair. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1084-1096, 2018.
Collapse
Affiliation(s)
- Ryan M Bock
- Amedica Corporation, Salt Lake City, Utah, 84119
| | - Elia Marin
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, 606-8126, Kyoto, Japan
| | - Alfredo Rondinella
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, 606-8126, Kyoto, Japan.,Department of Dental Medicine, Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji, Kamigyo-ku, 602-8566, Kyoto, Japan
| | - Francesco Boschetto
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, 606-8126, Kyoto, Japan.,Department of Dental Medicine, Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji, Kamigyo-ku, 602-8566, Kyoto, Japan
| | - Tetsuya Adachi
- Department of Dental Medicine, Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji, Kamigyo-ku, 602-8566, Kyoto, Japan.,Department of Immunology, Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji, Kamigyo-ku, 602-8566, Kyoto, Japan
| | | | - B Sonny Bal
- Amedica Corporation, Salt Lake City, Utah, 84119.,Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri, 65212
| | - Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, 606-8126, Kyoto, Japan
| |
Collapse
|
11
|
Effect of Ca-P compound formed by hydrothermal treatment on biodegradation and biocompatibility of Mg-3Al-1Zn-1.5Ca alloy; in vitro and in vivo evaluation. Sci Rep 2017; 7:712. [PMID: 28386061 PMCID: PMC5428810 DOI: 10.1038/s41598-017-00656-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 03/07/2017] [Indexed: 11/17/2022] Open
Abstract
Chemical combinations of Ca-P produced via plasma electrolytic oxidation (PEO) and a hydrothermal treatment were fabricated to improve the initial corrosion resistance and biocompatibility of a biodegradable Mg-3Al-1Zn-1.5Ca alloy. For the formation of an amorphous calcium phosphate composite layer on the surface of a magnesium alloy, a PEO layer composed of MgO and Mg3(PO4)2 was formed by PEO in electrolytes containing preliminary phosphate ions. During the second stage, a thick and dense Ca layer was formed by Ca electrodeposition after PEO. Finally, a hydrothermal treatment was carried out for chemical incorporation of P ions in the PEO layer and Ca ions in the electrodeposition layer. The amorphous calcium phosphate composite layer formed by the hydrothermal treatment enhanced osteoblast activity and reduced H2O2 production, which is a known stress indicator for cells. As a result of co-culturing osteoblast cells and RAW 264.7 cells, the formation of amorphous calcium phosphate increased osteoblast cell differentiation and decreased osteoclast cell differentiation. Implanting the alloy, which had an amorphous calcium phosphate composite layer that had been added through hydrothermal treatment, in the tibia of rats led to a reduction in initial biodegradation and promoted new bone formation.
Collapse
|
12
|
Zhai J, Wang Q, Zeng J, Chen J, Yi X, Shi Z, Tan G, Yu P, Ning C. Spatial charge manipulated set-selective apatite deposition on micropatterned piezoceramic. RSC Adv 2017. [DOI: 10.1039/c7ra04226d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Apatite was selectively deposited with the manipulation of spatial charge on the micropatterned piezoelectric K0.5Na0.5NbO3.
Collapse
Affiliation(s)
- Jinxia Zhai
- College of Materials Science and Engineering
- South China University of Technology
- Guangzhou
- China
- Key Laboratory of Biomedical Sciences and Engineering
| | - Qiyou Wang
- Department of Spine Surgery
- The Third Affiliated Hospital of Sun Yat-sen University
- Guangzhou
- China
| | | | - Junqi Chen
- College of Materials Science and Engineering
- South China University of Technology
- Guangzhou
- China
- Key Laboratory of Biomedical Sciences and Engineering
| | - Xin Yi
- School of Medicine
- South China University of Technology
- Guangzhou
- China
- Key Laboratory of Biomedical Sciences and Engineering
| | - Zhifeng Shi
- College of Materials Science and Engineering
- South China University of Technology
- Guangzhou
- China
- Key Laboratory of Biomedical Sciences and Engineering
| | - Guoxin Tan
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| | - Peng Yu
- College of Materials Science and Engineering
- South China University of Technology
- Guangzhou
- China
- Key Laboratory of Biomedical Sciences and Engineering
| | - Chengyun Ning
- College of Materials Science and Engineering
- South China University of Technology
- Guangzhou
- China
- Key Laboratory of Biomedical Sciences and Engineering
| |
Collapse
|
13
|
Kokubo T, Yamaguchi S. Novel bioactive materials developed by simulated body fluid evaluation: Surface-modified Ti metal and its alloys. Acta Biomater 2016; 44:16-30. [PMID: 27521496 DOI: 10.1016/j.actbio.2016.08.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 08/01/2016] [Accepted: 08/10/2016] [Indexed: 12/22/2022]
Abstract
UNLABELLED Until the discovery of the bone-bonding activity of Bioglass by Hench et al. in the early 1970s, it had not been demonstrated that a synthetic material could bond to living bone without eliciting a foreign body reaction. Since then, various kinds of materials based on calcium phosphate, such as sintered hydroxyapatite and β-tricalcium phosphate have also been shown to bond to living bone. Until the discovery of the bone-bonding activity of Ti metal formed with a sodium titanate surface layer by the present authors in 1996, it had not been shown that a metallic material could bond to living bone. Since then, various kinds of surface-modified Ti metal and its alloys have been found to bond to living bone. Until the discovery of the osteoinduction of porous hydroxyapatite by Yamasaki in 1990, it was unknown whether a synthetic material could induce bone formation even in muscle tissue. Since then, various kinds of porous calcium phosphate ceramics have been shown to induce osteoinduction. Until the discovery of osteoinduction induced by a porous Ti metal formed with a titanium oxide surface layer by Fujibayashi et al. in 2004, it had been unclear whether porous metals would be able to induce osteoinduction. These novel bioactive materials have been developed by systematic research into the apatite formation that occurs on surface-modified Ti metal and its related materials in an acellular simulated body fluid (SBF) having ion concentrations almost equal to those of human blood plasma. Some of the novel bioactive materials based on Ti metal are already in clinical use or clinical trials, such as artificial hip joints and spinal fusion devices. In the present paper, we review how these novel bioactive materials based on Ti metal have been developed based on an evaluation of apatite formation in SBF. Without the SBF evaluation, these novel bioactive materials would most likely never have been developed. STATEMENT OF SIGNIFICANCE On the basis of systematic study of apatite formation on a material in a simulated body fluid, various kinds of novel bioactive materials possessing not only bone-bonding activity and but also various other functions such as bone growth promotion, antibacterial activity and osteoinduction have been developed. Some of them are already successfully applied to clinical applications or trials for artificial hip joints and spinal fusion devices. It is shown in the present paper how these novel bioactive materials have been developed.
Collapse
Affiliation(s)
- Tadashi Kokubo
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Aichi 487-8901, Japan.
| | - Seiji Yamaguchi
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Aichi 487-8901, Japan
| |
Collapse
|
14
|
Fatigue behavior of Ti–6Al–4V alloy in saline solution with the surface modified at a micro- and nanoscale by chemical treatment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 67:425-432. [DOI: 10.1016/j.msec.2016.04.099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/23/2016] [Accepted: 04/29/2016] [Indexed: 01/03/2023]
|
15
|
Toita R, Tsuru K, Ishikawa K. A superhydrophilic titanium implant functionalized by ozone gas modulates bone marrow cell and macrophage responses. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:127. [PMID: 27344451 DOI: 10.1007/s10856-016-5741-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/18/2016] [Indexed: 06/06/2023]
Abstract
Bone-forming cells and Mϕ play key roles in bone tissue repair. In this study, we prepared a superhydrophilic titanium implant functionalized by ozone gas to modulate osteoconductivity and inhibit inflammatory response towards titanium implants. After 24 h of ozone gas treatment, the water contact angle of the titanium surface became zero. XPS analysis revealed that hydroxyl groups were greatly increased, but carbon contaminants were largely decreased 24 h after ozone gas functionalization. Also, ozone gas functionalization did not alter titanium surface topography. Superhydrophilic titanium (O3-Ti) largely increased the aspect ratio, size and perimeter of cells when compared with untreated titanium (unTi). In addition, O3-Ti facilitated rat bone marrow derived MSCs differentiation and mineralization evidenced by greater ALP activity and bone-like nodule formation. Interestingly, O3-Ti did not affect RAW264.7 Mϕ proliferation. However, naive RAW264.7 Mϕ cultured on unTi produced a two-fold larger amount of TNFα than that on O3-Ti. Furthermore, O3-Ti greatly mitigated proinflammatory cytokine production, including TNFα and IL-6 from LSP-stimulated RAW264.7 Mϕ. These results demonstrated that a superhydrophilic titanium prepared by simple ozone gas functionalization successfully increased MSCs proliferation and differentiation, and mitigated proinflammatory cytokine production from both naive and LPS-stimulated Mϕ. This superhydrophilic surface would be useful as an endosseous implantable biomaterials and as a biomaterial for implantation into other tissues.
Collapse
Affiliation(s)
- Riki Toita
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan.
| | - Kanji Tsuru
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
16
|
Effect upon biocompatibility and biocorrosion properties of plasma electrolytic oxidation in trisodium phosphate electrolytes. Biointerphases 2016; 11:011006. [DOI: 10.1116/1.4940769] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
17
|
New Ti-Alloys and Surface Modifications to Improve the Mechanical Properties and the Biological Response to Orthopedic and Dental Implants: A Review. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2908570. [PMID: 26885506 PMCID: PMC4738729 DOI: 10.1155/2016/2908570] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/30/2015] [Indexed: 12/14/2022]
Abstract
Titanium implants are widely used in the orthopedic and dentistry fields for many decades, for joint arthroplasties, spinal and maxillofacial reconstructions, and dental prostheses. However, despite the quite satisfactory survival rates failures still exist. New Ti-alloys and surface treatments have been developed, in an attempt to overcome those failures. This review provides information about new Ti-alloys that provide better mechanical properties to the implants, such as superelasticity, mechanical strength, and corrosion resistance. Furthermore, in vitro and in vivo studies, which investigate the biocompatibility and cytotoxicity of these new biomaterials, are introduced. In addition, data regarding the bioactivity of new surface treatments and surface topographies on Ti-implants is provided. The aim of this paper is to discuss the current trends, advantages, and disadvantages of new titanium-based biomaterials, fabricated to enhance the quality of life of many patients around the world.
Collapse
|
18
|
Kokubo T, Yamaguchi S. Growth of Novel Ceramic Layers on Metals via Chemical and Heat Treatments for Inducing Various Biological Functions. Front Bioeng Biotechnol 2015; 3:176. [PMID: 26579517 PMCID: PMC4621495 DOI: 10.3389/fbioe.2015.00176] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/13/2015] [Indexed: 12/23/2022] Open
Abstract
The present authors' systematic studies on growth of novel ceramic layers on Ti metal and its alloys by chemical and heat treatments for inducing bone-bonding bioactivity and some other biological functions are reviewed. Ti metal formed an apatite on its surface in a simulated body fluid, when heat-treated after exposure to strong acid solutions to form rutile surface layer, or to strong alkali solutions to form sodium titanate surface layer. Both types of Ti metal tightly bonded to the living bone. The alkali and heat treatment was applied to the surface Ti metal of an artificial hip joint and successfully used in the clinic since 2007. The acid and heat treatments was applied to porous Ti metal to induce osteoconductivity as well as osteoinductivity. The resulting product was successfully used in clinical trials for spinal fusion devices. For the Ti-based alloys, the alkali and heat treatment was little modified to form calcium titanate surface layer. Bone-growth promoting Mg, Sr, and Zn ions as well as the antibacterial Ag ion were successfully incorporated into the calcium titanate layer.
Collapse
Affiliation(s)
- Tadashi Kokubo
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University , Kasugai , Japan
| | - Seiji Yamaguchi
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University , Kasugai , Japan
| |
Collapse
|
19
|
Bearing-Foreign Material Deposition on Retrieved Co-Cr Femoral Heads: Composition and Morphology. BIOMED RESEARCH INTERNATIONAL 2015; 2015:967278. [PMID: 26236744 PMCID: PMC4506823 DOI: 10.1155/2015/967278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 05/29/2015] [Accepted: 06/03/2015] [Indexed: 11/18/2022]
Abstract
Bearing-foreign material deposition onto a femoral head can occur from contact with an acetabular shell due to dislocation, reduction, or subluxation. The purpose of this study was to comprehensively characterize deposit regions on retrieved cobalt-chrome femoral heads from metal-on-polyethylene total hip arthroplasties that had experienced such adverse events. The morphology, topography, and composition of deposition regions were characterized using macrophotography, optical profilometry, scanning electron microscopy, energy dispersive spectroscopy, and X-ray photoelectron spectroscopy. The deposit areas were relatively large, they were much rougher than the surrounding undamaged clean areas, and they displayed several distinct morphologies. Titanium alloy elements were the predominant constituents. Calcium and phosphorous were also detected within the deposit areas, in a composition that could nucleate abrasive hydroxyapatite. In addition, tungsten-rich particles, likely present as tungsten carbide, were observed on top of the titanium deposits. The increased roughness associated with these deposition features would be expected to accelerate damage and wear of the opposing liner and hence accelerate the development of osteolysis.
Collapse
|
20
|
Surface Properties and In Vitro Bioactivity of Fluorapatite/TiO2 Coatings Deposited on Ti Substrates by Nd:YAG Laser Cladding. J Med Biol Eng 2015. [DOI: 10.1007/s40846-015-0048-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Biomimetic approaches in bone tissue engineering: Integrating biological and physicomechanical strategies. Adv Drug Deliv Rev 2015; 84:1-29. [PMID: 25236302 DOI: 10.1016/j.addr.2014.09.005] [Citation(s) in RCA: 282] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 09/01/2014] [Accepted: 09/05/2014] [Indexed: 02/06/2023]
Abstract
The development of responsive biomaterials capable of demonstrating modulated function in response to dynamic physiological and mechanical changes in vivo remains an important challenge in bone tissue engineering. To achieve long-term repair and good clinical outcomes, biologically responsive approaches that focus on repair and reconstitution of tissue structure and function through drug release, receptor recognition, environmental responsiveness and tuned biodegradability are required. Traditional orthopedic materials lack biomimicry, and mismatches in tissue morphology, or chemical and mechanical properties ultimately accelerate device failure. Multiple stimuli have been proposed as principal contributors or mediators of cell activity and bone tissue formation, including physical (substrate topography, stiffness, shear stress and electrical forces) and biochemical factors (growth factors, genes or proteins). However, optimal solutions to bone regeneration remain elusive. This review will focus on biological and physicomechanical considerations currently being explored in bone tissue engineering.
Collapse
|
22
|
Kokubo T, Yamaguchi S. Bioactive titanate layers formed on titanium and its alloys by simple chemical and heat treatments. Open Biomed Eng J 2015; 9:29-41. [PMID: 25893014 PMCID: PMC4391211 DOI: 10.2174/1874120701509010029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/26/2014] [Accepted: 08/27/2014] [Indexed: 12/26/2022] Open
Abstract
To reveal general principles for obtaining bone-bonding bioactive metallic titanium, Ti metal was heat-treated after exposure to a solution with different pH. The material formed an apatite layer at its surface in simulated body fluid when heat-treated after exposure to a strong acid or alkali solution, because it formed a positively charged titanium oxide and negatively charged sodium titanate film on its surface, respectively. Such treated these Ti metals tightly bonded to living bone. Porous Ti metal heat-treated after exposure to an acidic solution exhibited not only osteoconductive, but also osteoinductive behavior. Porous Ti metal exposed to an alkaline solution also exhibits osteoconductivity as well as osteoinductivity, if it was subsequently subjected to acid and heat treatments. These acid and heat treatments were not effective for most Ti-based alloys. However, even those alloys exhibited apatite formation when they were subjected to acid and heat treatment after a NaOH treatment, since the alloying elements were removed from the surface by the latter. The NaOH and heat treatments were also not effective for Ti-Zr-Nb-Ta alloys. These alloys displayed apatite formation when subjected to CaCl2 treatment after NaOH treatment, forming Ca-deficient calcium titanate at their surfaces after subsequent heat and hot water treatments. The bioactive Ti metal subjected to NaOH and heat treatments has been clinically used as an artificial hip joint material in Japan since 2007. A porous Ti metal subjected to NaOH, HCl and heat treatments has successfully undergone clinical trials as a spinal fusion device.
Collapse
Affiliation(s)
- Tadashi Kokubo
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University 1200 Matsumoto-chow, Kasugai, Aichi 487-8501 Japan
| | - Seiji Yamaguchi
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University 1200 Matsumoto-chow, Kasugai, Aichi 487-8501 Japan
| |
Collapse
|
23
|
Gandolfi MG, Taddei P, Siboni F, Perrotti V, Iezzi G, Piattelli A, Prati C. Micro-topography and reactivity of implant surfaces: an in vitro study in simulated body fluid (SBF). MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2015; 21:190-203. [PMID: 25667970 DOI: 10.1017/s1431927614014615] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The creation of micro-textured dental implant surfaces possessing a stimulating activity represents a challenge in implant dentistry; particularly, the formation of a thin, biologically active, calcium-phosphate layer on their surface could help to strengthen the bond to the surrounding bone. The aim of the present study was to characterize in terms of macrostructure, micro-topography and reactivity in simulated body fluid (SBF), the surface of titanium (Ti) implants blasted with TiO2 particles, acid etched with hydrofluoric acid, and activated with Ca and Mg-containing nanoparticles. Sandblasted and acid-etched implants were analyzed by ESEM-EDX (environmental scanning electron microscope with energy dispersive X-ray system) to study the micromorphology of the surface and to perform elemental X-ray microanalysis (microchemical analyses) and element mapping. ESEM-EDX analyses were performed at time 0 and after a 28-day soaking period in SBF Hank's balanced salt solution (HBSS) following ISO 23317 (implants for surgery—in vitro evaluation for apatite-forming ability of implant materials). Microchemical analyses (weight % and atomic %) and element mapping were carried out to evaluate the relative element content, element distribution, and calcium/phosphorus (Ca/P) atomic ratio. Raman spectroscopy was used to assess the possible presence of impurities due to manufacturing and to investigate the phases formed upon HBSS soaking. Micro-morphological analyses showed a micro-textured, highly rough surface with microgrooves. Microchemical analyses showed compositional differences among the apical, middle, and distal thirds. The micro-Raman analyses of the as-received implant showed the presence of amorphous Ti oxide and traces of anatase, calcite, and a carbonaceous material derived from the decomposition of an organic component of lipidic nature (presumably used as lubricant). A uniform layer of Ca-poor calcium phosphates (CaPs) (Ca/P ratio <1.47) was observed after soaking in HBSS; the detection of the 961 cm⁻¹ Raman band confirms this finding. These implants showed a micro-textured surface supporting the formation of CaPs when immersed in SBF. These properties may likely favor bone anchorage and healing by stimulation of mineralizing cells.
Collapse
Affiliation(s)
- M G Gandolfi
- 1Department of Biomedical and NeuroMotor Sciences,University of Bologna - Via San Vitale 59 - 40126,Bologna,Italy
| | - P Taddei
- 1Department of Biomedical and NeuroMotor Sciences,University of Bologna - Via San Vitale 59 - 40126,Bologna,Italy
| | - F Siboni
- 1Department of Biomedical and NeuroMotor Sciences,University of Bologna - Via San Vitale 59 - 40126,Bologna,Italy
| | - V Perrotti
- 2Department of Medical,Oral and Biotechnological Sciences,University of Chieti-Pescara - Via dei Vestini 1 - 66100,Chieti,Italy
| | - G Iezzi
- 2Department of Medical,Oral and Biotechnological Sciences,University of Chieti-Pescara - Via dei Vestini 1 - 66100,Chieti,Italy
| | - A Piattelli
- 2Department of Medical,Oral and Biotechnological Sciences,University of Chieti-Pescara - Via dei Vestini 1 - 66100,Chieti,Italy
| | - C Prati
- 1Department of Biomedical and NeuroMotor Sciences,University of Bologna - Via San Vitale 59 - 40126,Bologna,Italy
| |
Collapse
|
24
|
Rodríguez-Valencia C, López-Álvarez M, Stefanov S, Chiussi S, Serra J, González P. Biomineralization of marine-patterned C-scaffolds. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2014. [DOI: 10.1680/bbn.13.00029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Patterned surfaces of marine-derived carbon scaffolds were subjected to a biomimetic approach to be covered with a calcium phosphate thin film. The process was based on Dulbecco’s phosphate-buffered saline solution and investigated in different periods of immersion (from hours to days). A complete physicochemical characterization was performed to demonstrate the optimal calcium/phosphorus ratio, thickness and adherence to the substrate of these biomimetic calcium phosphate coatings, which still retained the naturally derived patterning. A chemical mechanism to explain the coating formation has been proposed and documented, based mainly on the presence of carboxylic groups on the C-scaffold surface, what promoted the anchorage of calcium ions at the first stage and the later binding of phosphate groups to calcium ions. The biological response of MC3T3-E1 preosteoblasts on the calcium phosphate–coated scaffolds was investigated to demonstrate the non-cytotoxicity, adequate morphology and spreading of cells after 7 d of culture, being this proliferation aligned, promoted by the patterning of the scaffold.
Collapse
Affiliation(s)
- Cosme Rodríguez-Valencia
- PhD student, New Materials Group, Applied Physics Department, School of Industrial Engineering, Campus Lagoas-Marcosende, Institute of Biomedical Research of Vigo, University of Vigo, Vigo, Spain
| | - Miriam López-Álvarez
- Doctor, New Materials Group, Applied Physics Department, School of Industrial Engineering, Campus Lagoas-Marcosende, Institute of Biomedical Research of Vigo, University of Vigo, Vigo, Spain
| | - Stefan Stefanov
- PhD student, New Materials Group, Applied Physics Department, School of Industrial Engineering, Campus Lagoas-Marcosende, Institute of Biomedical Research of Vigo, University of Vigo, Vigo, Spain
| | - Stefano Chiussi
- Doctor, New Materials Group, Applied Physics Department, School of Industrial Engineering, Campus Lagoas-Marcosende, Institute of Biomedical Research of Vigo, University of Vigo, Vigo, Spain
| | - Julia Serra
- Doctor, New Materials Group, Applied Physics Department, School of Industrial Engineering, Campus Lagoas-Marcosende, Institute of Biomedical Research of Vigo, University of Vigo, Vigo, Spain
| | - Pío González
- Professor, New Materials Group, Applied Physics Department, School of Industrial Engineering, Campus Lagoas-Marcosende, Institute of Biomedical Research of Vigo, University of Vigo, Vigo, Spain
| |
Collapse
|
25
|
Chien CS, Ko YS, Kuo TY, Liao TY, Lee TM, Hong TF. Effect of TiO2 addition on surface microstructure and bioactivity of fluorapatite coatings deposited using Nd:YAG laser. Proc Inst Mech Eng H 2014; 228:379-87. [PMID: 24662108 DOI: 10.1177/0954411914528307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
To study the effect of titania (TiO2) addition on the surface microstructure and bioactivity of fluorapatite coatings, fluorapatite was mixed with TiO2 in 1:0.5 (FA + 0.5TiO2), 1:0.8 (FA + 0.8TiO2), and 1:1 (FA + TiO2) ratios (wt%) and clad on Ti-6Al-4V substrates using an Nd:YAG laser system. The experimental results show that the penetration depth of the weld decreases with increasing TiO2 content. Moreover, the subgrain structure of the coating layer changes from a fine cellular-like structure to a cellular-dendrite-like structure as the amount of TiO2 increases. Consequently, as the proportion of TiO2 decreases (increase in fluorapatite content), the Ca/P ratio of the coating layer also decreases. The immersion of specimens into simulated body fluid resulted in the formation of individual apatite. With a lower Ca/P ratio before immersion, the growth of the apatite was faster and then the coating layer provided a better bioactivity. X-ray diffraction analysis results show that prior to simulated body fluid immersion, the coating layer in all three specimens was composed mainly of fluorapatite, CaTiO3, and Al2O3 phases. Following simulated body fluid immersion, a peak corresponding to hydroxycarbonated apatite appeared after 2 days in the FA + 0.5TiO2 and FA + 0.8TiO2 specimens and after 7 days in the FA + TiO2 specimen. Overall, the results show that although the bioactivity of the coating layer tended to decrease with increasing TiO2 content, in accordance with the above-mentioned ratios, the bioactivity of all three specimens remained generally good.
Collapse
Affiliation(s)
- Chi-Sheng Chien
- Chimei Foundation Hospital, Tainan, Taiwan, R.O.C
- Department of Electrical Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan, R.O.C
| | - Yu-Sheng Ko
- Department of Mechanical Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan, R.O.C
| | - Tsung-Yuan Kuo
- Department of Mechanical Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan, R.O.C
| | - Tze-Yuan Liao
- Department of Materials Engineering, National Cheng Kung University, Tainan, Taiwan, R.O.C
| | - Tzer-Min Lee
- Institute of Oral Medicine, Medical College, National Cheng Kung University, Tainan, Taiwan, R.O.C
| | - Ting-Fu Hong
- Graduate Institute of Materials Engineering, National Pingtung University of Science and Technology, Pingtung, Taiwan, R.O.C
| |
Collapse
|
26
|
Zadpoor AA. Relationship between in vitro apatite-forming ability measured using simulated body fluid and in vivo bioactivity of biomaterials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 35:134-43. [DOI: 10.1016/j.msec.2013.10.026] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/04/2013] [Accepted: 10/19/2013] [Indexed: 02/04/2023]
|
27
|
Walter MS, Frank MJ, Sunding MF, Gómez-Florit M, Monjo M, Bucko MM, Pamula E, Lyngstadaas SP, Haugen HJ. Increased reactivity and in vitro cell response of titanium based implant surfaces after anodic oxidation. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:2761-2773. [PMID: 23912792 DOI: 10.1007/s10856-013-5020-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 07/26/2013] [Indexed: 06/02/2023]
Abstract
In the quest for improved bone growth and attachment around dental implants, chemical surface modifications are one possibility for future developments. The biological properties of titanium based materials can be further enhanced with methods like anodic polarization to produce an active rather than a passive titanium oxide surface. Here we investigate the formation of hydroxide groups on sand blasted and acid etched titanium and titanium-zirconium alloy surfaces after anodic polarization in an alkaline solution. X-ray photoelectron spectroscopy shows that the activated surfaces had increased reactivity. Furthermore the activated surfaces show up to threefold increase in OH(-) concentration in comparison to the original surface. The surface parameters Sa, Sku, Sdr and Ssk were more closely correlated to time and current density for titanium than for titanium-zirconium. Studies with MC3T3-E1 osteoblastic cells showed that OH(-) activated surfaces increased mRNA levels of osteocalcin and collagen-I.
Collapse
Affiliation(s)
- M S Walter
- Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, PO Box 1109 Blindern, 0317, Oslo, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ponta O, Gruian C, Vanea E, Oprea B, Steinhoff HJ, Simon S. Nanostructured biomaterials/biofluids interface processes: Titanium effect on methaemoglobin adsorption on titanosilicate microspheres. J Mol Struct 2013. [DOI: 10.1016/j.molstruc.2013.01.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
29
|
Zhang F, Zhang CF, Yin MN, Ren LF, Lin HS, Shi GS. Effect of heat treatment on H2O2/HCl etched pure titanium dental implant: an in vitro study. Med Sci Monit 2012; 18:BR265-72. [PMID: 22739726 PMCID: PMC3560775 DOI: 10.12659/msm.883204] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Background Surface chemistry of dental implant plays an important role in osseointegration. Heat treatment might alter surface chemistry and result in different biological response. The aim of this study was to investigate the roles of heat treatment of H2O2/HCl-treated Ti implants in cell attachment, proliferation and osteoblastic differentiation. Material/Methods Sandblasted, dual acid-etched and H2O2/HCl heat-treated discs were set as the control group and sandblasted, dual acid-etched H2O2/HCl-treated discs were the test group. Both groups’ discs were sent for surface characterization. MC3T3-E1 cells were seeded on these 2 groups’ discs for 3 hours to 14 days, and then cell attachment, cell proliferation and cell differentiation were evaluated. Results Scanning electron microscope analysis revealed that the titanium discs in the 2 groups shared the same surface topography, while x-ray diffraction examination showed an anatase layer in the control group and titanium hydride diffractions in the test group. The cell attachment of the test group was equivalent to that of the control group. Cell proliferation was slightly stimulated at all time points in the control group, but the alkaline phosphatase (ALP) activity and osteocalcin (OC) production increased significantly in the test group compared with those in the control group at every time point investigated (p<0.05 or p<0.01). Moreover, the osteoblastic differentiation-related genes AKP-2, osteopontin (OPN) and OC were greatly up-regulated in the test group (p<0.05 or p<0.01). Conclusions The results implied that surface chemistry played an important role in cell response, and H2O2/HCl etched titanium surface without subsequent heat treatment might improve osseointegration response.
Collapse
Affiliation(s)
- Feng Zhang
- Stomatology Center, Taizhou Hospital, Zhejiang Province, Linhai, China
| | | | | | | | | | | |
Collapse
|
30
|
Yu X, Ning C, Li J, Huang S, Guo Y, Deng F. In vivo
evaluation of novel amine‐terminated nanopore Ti surfaces. J Biomed Mater Res A 2012; 100:3428-35. [PMID: 22791696 DOI: 10.1002/jbm.a.34269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 03/21/2012] [Accepted: 05/10/2012] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaolin Yu
- Guanghua School and Hospital of Stomatology and Institute of Stomatological Research, Sun Yat‐sen University, Guangzhou, China
| | - Chengyun Ning
- College of Materials Science and Technology, South China University of Technology, Guangzhou, China
| | - Jingping Li
- Guanghua School and Hospital of Stomatology and Institute of Stomatological Research, Sun Yat‐sen University, Guangzhou, China
| | - Shanshan Huang
- College of Materials Science and Technology, South China University of Technology, Guangzhou, China
| | - Yuanjun Guo
- College of Materials Science and Technology, South China University of Technology, Guangzhou, China
| | - Feilong Deng
- Guanghua School and Hospital of Stomatology and Institute of Stomatological Research, Sun Yat‐sen University, Guangzhou, China
| |
Collapse
|
31
|
Kawashita M, Taninai K, Li Z, Ishikawa K, Yoshida Y. Preparation of low-crystalline apatite nanoparticles and their coating onto quartz substrates. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:1355-1362. [PMID: 22426746 DOI: 10.1007/s10856-012-4614-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 03/08/2012] [Indexed: 05/31/2023]
Abstract
We prepared low-crystalline apatite nanoparticles and coated them onto a surface of a Au/Cr-plated quartz substrate by the electrophoretic deposition (EPD) method or by using a self-assembled monolayer of 11-mercaptoundecanoic acid (SAM method). Low-crystalline apatite nanoparticles around 10 nm in size with extremely low contents of undesirable residual products were obtained by adding (NH(4))(2)HPO(4) aqueous droplets into a modified synthetic body fluid solution that contained Ca(CH(3)COO)(2). The apatite nanoparticles were successfully coated by either the EPD method or the SAM method; the nanoparticle coating achieved by the SAM method was more uniform than that achieved by the EPD method. The present SAM method is expected to be a promising technique for obtaining a quartz substrate coated with apatite nanoparticles, which can be used as a quartz crystal microbalance device.
Collapse
Affiliation(s)
- Masakazu Kawashita
- Graduate School of Biomedical Engineering, Tohoku University, Aoba-ku, Sendai, Japan.
| | | | | | | | | |
Collapse
|
32
|
Pattanayak DK, Yamaguchi S, Matsushita T, Nakamura T, Kokubo T. Apatite-forming ability of titanium in terms of pH of the exposed solution. J R Soc Interface 2012; 9:2145-55. [PMID: 22417910 DOI: 10.1098/rsif.2012.0107] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In order to elucidate the main factor governing the capacity for apatite formation of titanium (Ti), Ti was exposed to HCl or NaOH solutions with different pH values ranging from approximately 0 to 14 and then heat-treated at 600°C. Apatite formed on the metal surface in a simulated body fluid, when Ti was exposed to solutions with a pH less than 1.1 or higher than 13.6, while no apatite formed upon exposure to solutions with an intermediate pH value. The apatite formation on Ti exposed to strongly acidic or alkaline solutions is attributed to the magnitude of the positive or negative surface charge, respectively, while the absence of apatite formation at an intermediate pH is attributed to its neutral surface charge. The positive or negative surface charge was produced by the effect of either the acidic or alkaline ions on Ti, respectively. It is predicted from the present results that the bone bonding of Ti depends upon the pH of the solution to which it is exposed, i.e. Ti forms a bone-like apatite on its surface in the living body and bonds to living bone through the apatite layer upon heat treatment after exposure to a strongly acidic or alkaline solution.
Collapse
|
33
|
Wang QQ, Li W, Yang BC. Regulation on the biocompatibility of bioactive titanium metals by type I collagen. J Biomed Mater Res A 2011; 99:125-34. [DOI: 10.1002/jbm.a.33142] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 03/28/2011] [Accepted: 04/21/2011] [Indexed: 11/07/2022]
|
34
|
Nanomechanical and nanotribological properties of bioactive titanium surfaces prepared by alkali treatment. J Mech Behav Biomed Mater 2011; 4:756-65. [DOI: 10.1016/j.jmbbm.2010.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 07/02/2010] [Accepted: 07/10/2010] [Indexed: 11/19/2022]
|
35
|
Fukuda A, Takemoto M, Saito T, Fujibayashi S, Neo M, Yamaguchi S, Kizuki T, Matsushita T, Niinomi M, Kokubo T, Nakamura T. Bone bonding bioactivity of Ti metal and Ti-Zr-Nb-Ta alloys with Ca ions incorporated on their surfaces by simple chemical and heat treatments. Acta Biomater 2011; 7:1379-86. [PMID: 20883837 DOI: 10.1016/j.actbio.2010.09.026] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 09/17/2010] [Accepted: 09/20/2010] [Indexed: 10/19/2022]
Abstract
Ti15Zr4Nb4Ta and Ti29Nb13Ta4.6Zr, which do not contain the potentially cytotoxic elements V and Al, represent a new generation of alloys with improved corrosion resistance, mechanical properties, and cytocompatibility. Recently it has become possible for the apatite forming ability of these alloys to be ascertained by treatment with alkali, CaCl2, heat, and water (ACaHW). In order to confirm the actual in vivo bioactivity of commercially pure titanium (cp-Ti) and these alloys after subjecting them to ACaHW treatment at different temperatures, the bone bonding strength of implants made from these materials was evaluated. The failure load between implant and bone was measured for treated and untreated plates at 4, 8, 16, and 26 weeks after implantation in rabbit tibia. The untreated implants showed almost no bonding, whereas all treated implants showed successful bonding by 4 weeks, and the failure load subsequently increased with time. This suggests that a simple and economical ACaHW treatment could successfully be used to impart bone bonding bioactivity to Ti metal and Ti-Zr-Nb-Ta alloys in vivo. In particular, implants heat treated at 700 °C exhibited significantly greater bone bonding strength, as well as augmented in vitro apatite formation, in comparison with those treated at 600 °C. Thus, with this improved bioactive treatment process these advantageous Ti-Zr-Nb-Ta alloys can serve as useful candidates for orthopedic devices.
Collapse
|
36
|
Aparicio C, Rodriguez D, Gil F. Variation of roughness and adhesion strength of deposited apatite layers on titanium dental implants. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2011. [DOI: 10.1016/j.msec.2010.09.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Zhang L, Ayukawa Y, Legeros RZ, Matsuya S, Koyano K, Ishikawa K. Tissue-response to calcium-bonded titanium surface. J Biomed Mater Res A 2010; 95:33-9. [PMID: 20740598 DOI: 10.1002/jbm.a.32763] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Our previous study demonstrated that calcium-bonded titanium surface (Ca-Ti) can be obtained by hydrothermal reaction between titanium (Ti) and CaCl(2) and that bone-apatite like formation was observed after immersion in simulated body fluid. The purpose of the study was to determine the in vivo response to Ca-Ti surface using a rodent tibia model. Cylinders of commercially pure Ti were divided into three groups: (1) untreated group; (2) NaOH+hTi group: soaked in 5 mol/L NaOH solution at 60 degrees C then heated at 400 degrees C for 1 h; and (3) Ca-Ti group: hydrothermally treated in the presence of 10 mmol/L CaCl(2) at 200 degrees C for 24 h. The cylinders implanted in surgically created defects in tibias of 8-week old male Wistar rats were retrieved after 1, 2, and 4 weeks. Histomorphometric evaluations were made on stained decalcified thin sections. Results showed that at 1, 2, and 4 week after implantation, respectively, bone contact was 55.2 +/- 16.4%, 88.1 +/- 9.9%, and 96.1 +/- 4.8% for Ca-Ti implants, 5.7 +/- 5.3%, 19.9 +/- 1.2%, 57.4 +/- 4.8% for untreated; and 27.2 +/- 0.7%, 70.9 +/- 7.7%, and 96.0 +/- 5.1% for NaOH+hTi implants. These results suggest that hydrothermal treatment with CaCl(2) provides a bioactive Ca-Ti bonded surface that allows bone formation greater than that obtained with NaOH+heat treated Ti surfaces.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | | | | | | | | | | |
Collapse
|
38
|
Tugulu S, Löwe K, Scharnweber D, Schlottig F. Preparation of superhydrophilic microrough titanium implant surfaces by alkali treatment. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2010; 21:2751-2763. [PMID: 20725770 DOI: 10.1007/s10856-010-4138-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 07/26/2010] [Indexed: 05/29/2023]
Abstract
A new strategy to render intrinsically hydrophobic microrough titanium implant surfaces superhydrophilic is reported, which is based on a rapid treatment with diluted aqueous sodium hydroxide solutions. The physicochemical characterization and protein interaction of the resulting superhydrophilic implant surfaces are presented. The superhydrophilicity of alkali treated microrough titanium substrates was mainly attributed to deprotonation and ion exchange processes in combination with a strong enhancement of wettability due to the roughness of the used substrates. Albeit these minor and mostly reversible chemical changes qualitative and quantitative differences between the protein adsorption on untreated and alkali treated microrough titanium substrates were detected. These differences in protein adsorption might account for the enhanced osseointegrative potential of superhydrophilic alkali treated microrough implant surfaces. The presented alkali treatment protocol represents a new clinically applicable route to superhydrophilic microrough titanium substrates by rendering the implant surface superhydrophilic "in situ of implantation".
Collapse
Affiliation(s)
- Stefano Tugulu
- Thommen Medical AG, Headquarters, Waldenburg, Switzerland.
| | | | | | | |
Collapse
|
39
|
Portela A, Vasconcelos M, Branco R, Gartner F, Faria M, Cavalheiro J. An in vitro and in vivo investigation of the biological behavior of a ferrimagnetic cement for highly focalized thermotherapy. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2010; 21:2413-2423. [PMID: 20549312 DOI: 10.1007/s10856-010-4093-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2008] [Accepted: 05/05/2010] [Indexed: 05/29/2023]
Abstract
The cancer treatment by local hyperthermia, using a high frequency electromagnetic field is an extensively studied subject. For this propose it was developed a ferrimagnetic cement (FC) to be injected directly into the tumor. In this study it was determined the FC injectability, its capability to generate heat when placed within a magnetic field and its interaction with a modified simulated body fluid using SEM/EDS and XRD. The FC biological response was assessed by the intramuscular implantation in rats and histological analysis of the surrounding tissues. The results suggest that FC can be injected directly into the tumor, its temperature can be increased when exposed to a magnetic field and the surface of the immersed samples quickly becomes coated with precipitate denoting its ionic change with the surrounding medium. The histological analysis revealed a transient local inflammatory reaction, similar to the control material, only slightly more abundant during the first weeks, with a gradual decrease over the implantation time. Based on these results, we concluded that FC might be useful for highly focalized thermotherapy, with a good potential for clinical use.
Collapse
Affiliation(s)
- Ana Portela
- Faculty of Dental Medicine, University of Porto, Porto, Portugal.
| | | | | | | | | | | |
Collapse
|
40
|
Chen C, Lee IS, Zhang SM, Yang HC. Biomimetic apatite formation on calcium phosphate-coated titanium in Dulbecco's phosphate-buffered saline solution containing CaCl(2) with and without fibronectin. Acta Biomater 2010; 6:2274-81. [PMID: 19962459 DOI: 10.1016/j.actbio.2009.11.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 11/22/2009] [Accepted: 11/29/2009] [Indexed: 11/30/2022]
Abstract
Calcium phosphate (CaP) thin films with different degrees of crystallinity were coated on the surfaces of commercially pure titanium by electron beam evaporation. The details of apatite nucleation and growth on the coating layer were investigated in Dulbecco's phosphate-buffered saline solutions containing calcium chloride (DPBS) or DPBS with fibronectin (DPBSF). The surfaces of the samples were examined by field emission scanning electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The concentrations of fibronectin and calcium ions (Ca(2+)) were monitored by the bicinchoninic acid method (BCA) and use of a calcium assay kit (DICA-500), respectively. Apatite initially formed at the fastest rate on the CaP-coated samples with the lowest degree of crystallinity and reached the maximum Ca(2+) concentration after immersion in DPBS solution for 15min. After 15min the concentration of Ca(2+) decreased with the growth of apatite on the coating layers. For all the samples the maximum Ca(2+) concentration in the DPBS solutions decreased with increasing crystallinity and immersion time to reach the maximum concentration increased. The presence of fibronectin in the DPBS solutions delayed the formation and affected the morphology of the apatite. Fibronectin incorporated into apatite deposited on the surface of titanium did not affect its biological activity in terms of promoting osteoblast adhesion.
Collapse
Affiliation(s)
- Cen Chen
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | | | | | | |
Collapse
|
41
|
Yamaguchi S, Takadama H, Matsushita T, Nakamura T, Kokubo T. Apatite-forming ability of Ti-15Zr-4Nb-4Ta alloy induced by calcium solution treatment. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2010; 21:439-444. [PMID: 19842018 DOI: 10.1007/s10856-009-3904-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 10/05/2009] [Indexed: 05/28/2023]
Abstract
Ti-15Zr-4Nb-4Ta alloy free from cytotoxic elements shows high mechanical strength and high corrosion resistance. However, simple NaOH and heat treatments cannot induce its ability to form apatite in the body environment. In the present study, this alloy was found to exhibit high apatite-forming ability when it was treated with NaOH and CaCl(2) solutions, and then subjected to heat and hot water treatments to form calcium titanate, rutile, and anatase on its surface. Its high apatite-forming ability was maintained even in 95% relative humidity at 80 degrees C after 1 week. The surface layer of the treated alloy had scratch resistance high enough for handling hard surgical devices. Thus, the treated alloy is believed to be useful for orthopedic and dental implants.
Collapse
Affiliation(s)
- Seiji Yamaguchi
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai-city, Aichi, 487-8501, Japan.
| | | | | | | | | |
Collapse
|
42
|
Abstract
Sodium titanate formed on Ti metal by NaOH and heat treatments induces apatite formation on its surface in a body environment and bonds to living bone. These treatments have been applied to porous Ti metal in artificial hip joints, and have been used clinically in Japan since 2007. Calcium titanate formed on Ti-15Zr-4Nb-4Ta alloy by NaOH, CaCl2, heat, and water treatments induces apatite formation on its surface in a body environment. Titanium oxide formed on porous Ti metal by NaOH, HCl, and heat treatments exhibits osteoinductivity as well as osteoconductivity. This is now under clinical tests for application to a spinal fusion device.
Collapse
|
43
|
Nakagawa M, Yamazoe J. Effect of CaCl₂ hydrothermal treatment on the bone bond strength and osteoconductivity of Ti-0.5Pt and Ti-6Al-4V-0.5Pt alloy implants. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2009; 20:2295-2303. [PMID: 19544048 DOI: 10.1007/s10856-009-3799-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 06/04/2009] [Indexed: 05/27/2023]
Abstract
To achieve osteoconductivity, Ti-0.5Pt and Ti-6Al-4V-0.5Pt alloys were hydrothermally treated at 200 degrees C in 10 mmol/l CaCl(2) aqueous solution for 24 h (HT-treatment). We conducted histological investigations of the HT-treated materials by using Wistar strain rats (SD rats) to evaluate the usefulness of the treatment. To measure the bone bond strength, the specimens were implanted in the tibia of SD rats, and a pull-out test was conducted. From the early postoperative stages, direct bone contact was obtained for the HT-treated implants. Within 1-4 weeks of implantation, the bone contact ratios and bone bond strengths of the HT-treated implants were higher than those of the non-treated implants. The Ti-0.5Pt and Ti-6Al-4V-0.5Pt alloys with HT-treatment showed the potential to develop a new implant with a high bone bond strength and rapid osteoconduction.
Collapse
Affiliation(s)
- Masaharu Nakagawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | | |
Collapse
|
44
|
Yao C, Webster TJ. Prolonged antibiotic delivery from anodized nanotubular titanium using a co-precipitation drug loading method. J Biomed Mater Res B Appl Biomater 2009; 91:587-595. [PMID: 19582847 DOI: 10.1002/jbm.b.31433] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Advances in nanotechnology have led to the development of novel orthopedic implant materials that not only have better cytocompatibility properties but can also be used as unique drug delivery platforms. In the present study, currently used titanium was anodized to possess nanotubular surface structures (80 nm inner diameter and 200 nm deep) capable of drug delivery. Such anodized nanotubular titanium surfaces promote bone cell functions (such as adhesion and differentiation) in vitro and in vivo compared with unanodized titanium. To achieve local drug delivery, anodized titanium with nanotubular structures were loaded with penicillin-based antibiotics using a co-precipitation method in which drug molecules were mixed in simulated body fluid to collectively precipitate with calcium phosphate crystals. Results showed for the first time that such co-precipitated coatings on anodized nanotubular titanium could release drug molecules for up to 3 weeks whereas previous studies have demonstrated only a 150-minute release of antibiotics through simple physical adsorption. Furthermore, drug release using co-precipitation from anodized nanotubular titanium was determined to be a diffusion process dependent on first-order kinetics. In addition, contrary to conventional thinking that penicillin-based drug release should decrease cell functions (including both bacteria and mammalian cells), results of this study showed similar osteoblast (bone-forming cell) adhesion between non-drug loaded and drug loaded precipitated calcium phosphate coatings on anodized titanium. Due to the above, these findings represent a promising surface treatment for titanium that could be used for local drug delivery for improving orthopedic applications and, thus, should be studied further.
Collapse
Affiliation(s)
- Chang Yao
- Division of Engineering, Brown University, Providence, Rhode Island 02912
| | - Thomas J Webster
- Division of Engineering, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
45
|
Xin Y, Jiang J, Huo K, Hu T, Chu PK. Bioactive SrTiO(3) nanotube arrays: strontium delivery platform on Ti-based osteoporotic bone implants. ACS NANO 2009; 3:3228-3234. [PMID: 19736918 DOI: 10.1021/nn9007675] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Development of strontium releasing implants capable of stimulating bone formation and inhibiting bone resorption is a desirable solution for curing osteoporosis. In this work, well-ordered SrTiO(3) nanotube arrays capable of Sr release at a slow rate and for a long time are successfully fabricated on titanium by simple hydrothermal treatment of anodized titania nanotubes. This surface architecture combines the functions of nanoscaled topography and Sr release to enhance osseointegration while at the same time leaving space for loading of other functional substances. In vitro experiments reveal that the SrTiO(3) nanotube arrays possess good biocompatibility and can induce precipitation of hydroxyapatite from simulated body fluids (SBF). This Ti-based implant with SrTiO(3) nanotube arrays is an ideal candidate for osteoporotic bone implants. The proposed method can also be extended to load other biologically useful elements such as Mg and Zn.
Collapse
Affiliation(s)
- Yunchang Xin
- Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | | | | | | | | |
Collapse
|
46
|
Kinetics of hydrothermal crystallization under saturated steam pressure and the self-healing effect by nanocrystallite for hydroxyapatite coatings. Acta Biomater 2009; 5:2728-37. [PMID: 19376760 DOI: 10.1016/j.actbio.2009.03.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2009] [Revised: 03/10/2009] [Accepted: 03/18/2009] [Indexed: 11/20/2022]
Abstract
Hydroxyapatite coatings (HACs) with a low crystalline state were prepared using the plasma spraying process followed by hermetic autoclaving hydrothermal treatment at 100, 150 and 200 degrees C. Experimental evidence confirmed that the HACs became significantly crystallized and the content of amorphous calcium phosphate decreased by performing the autoclaving hydrothermal treatment in an ambient saturated steam pressure system. The obvious chemisorbed hydroxy groups (OH) peak in the X-ray photoelectron spectra detected from the hydrothermally crystallized HAC specimens means that the hydroxyl-deficient state of plasma-sprayed HACs is significantly improved by the abundant replenished OH groups. The HA nanocrystallite observed from scanning electron microscopy and transmission electron microscopy images within hydrothermally treated HACs is the result of nucleation and grain growth through the replenishment of OH groups into the hydroxyl-deficient HA crystal structure. The microstructural self-healing effect is a result of reduction in defects (pores, microcracks and lamellar boundaries) due to new-growth HA nanocrystallite. According to the systematic derivation of the Arrhenius equation, the HA crystallization is a second-order Arrhenius reaction kinetics. Besides the effects of heating temperature and an atmosphere with abundant water molecules, the saturated steam pressure is a crucial factor which significantly improves the crystallization rate constant and further reduces the activation energy for the hydrothermal HA crystallization.
Collapse
|
47
|
Watanabe K, Okawa S, Kanatani M, Homma K. Surface analysis of commercially pure titanium implant retrieved from rat bone. Part 1: initial biological response of sandblasted surface. Dent Mater J 2009; 28:178-84. [PMID: 19496397 DOI: 10.4012/dmj.28.178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To gain insight on the early biological response to commercial pure titanium (cpTi), the surface properties of cpTi implants retrieved from rat bone were examined by X-ray photoelectron spectroscopy (XPS). To this end, semi-cylindrical bullets, 1.1 mm in diameter and 3.5 mm in length, were implanted into the femurs of Wistar rats and then retrieved after either 3 hours or 7 days. Regardless of implantation interval, elements of Ti, O, C, and N were observed on the retrieved implants and that the thickness of the adsorbed film (mainly protein) was estimated to be about 2.5 nm. Small amounts of both Ca and P were also detected, whereby the Ca/P atomic ratios after 3 hours and 7 days were very small compared to that of hydroxyapatite. Furthermore, no correlation was found between the Ca and P distributions in the element maps. In conclusion, no calcium phosphate compounds were formed on the implant in vivo after 7 days.
Collapse
Affiliation(s)
- Kouichi Watanabe
- Division of Biomaterial Science, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, 5274 Gakkoucho-dori 2, Chuo-ku, Niigata 951-8514, Japan.
| | | | | | | |
Collapse
|
48
|
Ün S, Durucan C. Preparation of hydroxyapatite-titania hybrid coatings on titanium alloy. J Biomed Mater Res B Appl Biomater 2009; 90:574-83. [DOI: 10.1002/jbm.b.31319] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
49
|
Göransson A, Arvidsson A, Currie F, Franke-Stenport V, Kjellin P, Mustafa K, Sul YT, Wennerberg A. Anin vitrocomparison of possibly bioactive titanium implant surfaces. J Biomed Mater Res A 2009; 88:1037-47. [DOI: 10.1002/jbm.a.31911] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
CUI X, KIM H, KAWASHITA M, WANG L, XIONG T, KOKUBO T, NAKAMURA T. Preparation of bioactive titania films on titanium metal via anodic oxidation. Dent Mater 2009; 25:80-6. [DOI: 10.1016/j.dental.2008.04.012] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Accepted: 04/15/2008] [Indexed: 11/27/2022]
|