1
|
Aghazadeh S, Peng Q, Dardmeh F, Hjortdal JØ, Zachar V, Alipour H. Immunophenotypical Characterization of Limbal Mesenchymal Stromal Cell Subsets during In Vitro Expansion. Int J Mol Sci 2024; 25:8684. [PMID: 39201371 PMCID: PMC11354999 DOI: 10.3390/ijms25168684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Limbal mesenchymal stromal cells (LMSCs) reside in the limbal niche, supporting corneal integrity and facilitating regeneration. While mesenchymal stem/stromal cells (MSCs) are used in regenerative therapies, there is limited knowledge about LMSC subpopulations and their characteristics. This study characterized human LMSC subpopulations through the flow cytometric assessment of fifteen cell surface markers, including MSC, wound healing, immune regulation, ASC, endothelial, and differentiation markers. Primary LMSCs were established from remnant human corneal transplant specimens and passaged eight times to observe changes during subculture. The results showed the consistent expression of typical MSC markers and distinct subpopulations with the passage-dependent expression of wound healing, immune regulation, and differentiation markers. High CD166 and CD248 expressions indicated a crucial role in ocular surface repair. CD29 expression suggested an immunoregulatory role. Comparable pigment-epithelial-derived factor (PEDF) expression supported anti-inflammatory and anti-angiogenic roles. Sustained CD201 expression indicated maintained differentiation capability, while VEGFR2 expression suggested potential endothelial differentiation. LMSCs showed higher VEGF expression than fibroblasts and endothelial cells, suggesting a potential contribution to ocular surface regeneration through the modulation of angiogenesis and inflammation. These findings highlight the heterogeneity and multipotent potential of LMSC subpopulations during in vitro expansion, informing the development of standardized protocols for regenerative therapies and improving treatments for ocular surface disorders.
Collapse
Affiliation(s)
- Sara Aghazadeh
- Regenerative Medicine, Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (S.A.); (Q.P.); (F.D.); (V.Z.)
| | - Qiuyue Peng
- Regenerative Medicine, Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (S.A.); (Q.P.); (F.D.); (V.Z.)
| | - Fereshteh Dardmeh
- Regenerative Medicine, Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (S.A.); (Q.P.); (F.D.); (V.Z.)
| | | | - Vladimir Zachar
- Regenerative Medicine, Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (S.A.); (Q.P.); (F.D.); (V.Z.)
| | - Hiva Alipour
- Regenerative Medicine, Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (S.A.); (Q.P.); (F.D.); (V.Z.)
| |
Collapse
|
2
|
Ko VH, Yu LJ, Secor JD, Pan A, Mitchell PD, Kishikawa H, Puder M. Deficiency in pigment epithelium-derived factor accelerates pulmonary growth and development in a compensatory lung growth model. FASEB J 2021; 35:e21850. [PMID: 34569654 DOI: 10.1096/fj.202002661rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 01/05/2023]
Abstract
Children with hypoplastic lung disease associated with congenital diaphragmatic hernia (CDH) continue to suffer significant morbidity and mortality secondary to progressive pulmonary disease. Recently published work from our lab demonstrated the potential of Roxadustat (FG-4592), a prolyl hydroxylase inhibitor, as a treatment for CDH-associated pulmonary hypoplasia. Treatment with Roxadustat led to significantly accelerated compensatory lung growth (CLG) through downregulation of pigment epithelium-derived factor (PEDF), an anti-angiogenic factor, rather than upregulation of vascular endothelial growth factor (VEGF). PEDF and its role in pulmonary development is a largely unexplored field. In this study, we sought to further evaluate the role of PEDF in accelerating CLG. PEDF-deficient mice demonstrated significantly increased lung volume, total lung capacity, and alveolarization compared to wild type controls following left pneumonectomy without increased VEGF expression. Furthermore, Roxadustat administration in PEDF-deficient mice did not further accelerate CLG. Human microvascular endothelial lung cells (HMVEC-L) and human pulmonary alveolar epithelial cells (HPAEC) similarly demonstrated decreased PEDF expression with Roxadustat administration. Additionally, downregulation of PEDF in Roxadustat-treated HMVEC-L and HPAEC, a previously unreported finding, speaks to the potential translatability of Roxadustat from small animal studies. Taken together, these findings further suggest that PEDF downregulation is the primary mechanism by which Roxadustat accelerates CLG. More importantly, these data highlight the critical role PEDF may have in pulmonary growth and development, a previously unexplored field.
Collapse
Affiliation(s)
- Victoria H Ko
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lumeng J Yu
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jordan D Secor
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Amy Pan
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Paul D Mitchell
- Institutional Centers for Clinical and Translational Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Hiroko Kishikawa
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mark Puder
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Jarvis C, Nelius T, Martinez-Marin D, Sennoune SR, Filleur S. Cabazitaxel regimens inhibit the growth of prostate cancer cells and enhances the anti-tumor properties of PEDF with various efficacy and toxicity. Prostate 2018; 78:905-914. [PMID: 29749077 DOI: 10.1002/pros.23647] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/16/2018] [Indexed: 01/14/2023]
Abstract
BACKGROUND Taxanes chemotherapies represent the major therapeutic alternative for symptomatic mCRPC. While docetaxel is the most commonly prescribed Taxane for mCRPC; cabazitaxel has been approved for patients unresponsive to docetaxel. Still mCRPC remains incurable and patients often experience severe side effects. Recently, the FIRSTANA trial first demonstrated the absence of superiority in overall survival between cabazitaxel and docetaxel in mCRPC patients. Inversely, different toxicity were reported suggesting that cabazitaxel may provide a first line treatment option for some patients urging for a deeper characterization of cabazitaxel mechanisms of action as well as a re-evaluation of cabazitaxel conventional dose and schedule. In this study, our goal was therefore to evaluate the anti-tumor efficacy of various cabazitaxel regimens delivered as monotherapy or in combination with PEDF, a known anti-angiogenic and anti-neoplastic agent. METHODS CRPC cells undergoing Taxane treatment were evaluated for cell proliferation, migration and death, and apoptosis using crystal violet staining, chemotaxis, cell cycle, and TUNEL assays. In vitro data were corroborated in CL1 CRPC xenografts where mice received intermittent or metronomic low-doses cabazitaxel ± PEDF. RESULTS We found that cabazitaxel inhibits the proliferation of CRPC cells with a higher efficacy than docetaxel in vitro. As expected, high-doses of Taxanes blocked the cells in mitosis. Surprisingly, low-doses of cabazitaxel induced more cell death than docetaxel mainly through apoptosis. In vivo, intermittent cabazitaxel lead to disease stabilization when combined with PEDF. Unexpectedly, low-doses of cabazitaxel delayed tumor growth with severe toxicity for some of the doses tested. Other results showed that PEDF and low-doses of cabazitaxel combination inhibited the migration of tumor cell and increased the tumoricidal activity of macrophages toward prostate tumor cells. CONCLUSIONS Our findings highlight the great promise of cabazitaxel drug and predict a possible move of cabazitaxel forward within the therapeutic sequence of prostate cancer.
Collapse
Affiliation(s)
- Courtney Jarvis
- Department of Urology, Texas Tech University-Health Sciences Center, Lubbock, Texas
- Department of Immunology and Molecular Microbiology, Texas Tech University-Health Sciences Center, Lubbock, Texas
| | - Thomas Nelius
- Department of Urology, Texas Tech University-Health Sciences Center, Lubbock, Texas
| | - Dalia Martinez-Marin
- Department of Urology, Texas Tech University-Health Sciences Center, Lubbock, Texas
| | - Souad R Sennoune
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University-Health Sciences Center, Lubbock, Texas
| | - Stéphanie Filleur
- Department of Urology, Texas Tech University-Health Sciences Center, Lubbock, Texas
- Department of Immunology and Molecular Microbiology, Texas Tech University-Health Sciences Center, Lubbock, Texas
| |
Collapse
|
4
|
Michalczyk ER, Chen L, Fine D, Zhao Y, Mascarinas E, Grippo PJ, DiPietro LA. Pigment Epithelium-Derived Factor (PEDF) as a Regulator of Wound Angiogenesis. Sci Rep 2018; 8:11142. [PMID: 30042381 PMCID: PMC6057962 DOI: 10.1038/s41598-018-29465-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 07/10/2018] [Indexed: 12/15/2022] Open
Abstract
Although the inflammatory and proliferative phases of wound healing have been well described, much less is known about how healing resolves. During the resolution phase, pruning of the capillary bed and maturation of capillaries occurs and influences the final strength and fidelity of the wound. PEDF, an endogenous anti-angiogenic factor, is produced in wounds and may contribute to the removal of capillaries during wound resolution. This study utilized PEDF-/- mice to examine how PEDF influences wound angiogenesis, particularly capillary density and permeability. The absence of PEDF led to transient changes in dermal wound closure and collagen content, but caused substantial changes in wound angiogenesis. Compared to wild type (WT) mice, wounds from PEDF-/- mice exhibited a significant increase in capillaries during the proangiogenic phase of repair, and a delay in capillary pruning. Conversely, the addition of rPEDF caused a reduction in capillary density within skin wounds in WT mice. In vitro studies showed that PEDF inhibited migration and tube formation by dermal microvascular endothelial cells, and caused a decrease in the expression of VEGFR2, VCAM-1, and other surface receptors. The results demonstrate that loss of PEDF causes a distinctive wound healing phenotype that is characterized by increased angiogenesis and delayed resolution. The findings suggest that PEDF most likely acts through multiple mechanisms to regulate proper capillary refinement in wounds.
Collapse
Affiliation(s)
- Elizabeth R Michalczyk
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Lin Chen
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - David Fine
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Yan Zhao
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Emman Mascarinas
- Division of Gastroenterology and Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Paul J Grippo
- Division of Gastroenterology and Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Luisa A DiPietro
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
5
|
Nwani NG, Deguiz ML, Jimenez B, Vinokour E, Dubrovskyi O, Ugolkov A, Mazar AP, Volpert OV. Melanoma Cells Block PEDF Production in Fibroblasts to Induce the Tumor-Promoting Phenotype of Cancer-Associated Fibroblasts. Cancer Res 2016; 76:2265-76. [PMID: 26921338 DOI: 10.1158/0008-5472.can-15-2468] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 02/06/2016] [Indexed: 01/28/2023]
Abstract
Loss of pigment epithelium-derived factor (PEDF, SERPINF1) in cancer cells is associated with poor prognosis and metastasis, but the contribution of stromal PEDF to cancer evolution is poorly understood. Therefore, we investigated the role of fibroblast-derived PEDF in melanoma progression. We demonstrate that normal dermal fibroblasts expressing high PEDF levels attenuated melanoma growth and angiogenesis in vivo, whereas PEDF-depleted fibroblasts exerted tumor-promoting effects. Accordingly, mice with global PEDF knockout were more susceptible to melanoma metastasis. We also demonstrate that normal fibroblasts in close contact with PEDF-null melanoma cells lost PEDF expression and tumor-suppressive properties. Further mechanistic investigations underlying the crosstalk between tumor and stromal cells revealed that melanoma cells produced PDGF-BB and TGFβ, which blocked PEDF production in fibroblasts. Notably, cancer-associated fibroblasts (CAF) isolated from patient-derived tumors expressed markedly low levels of PEDF. Treatment of patient CAF and TGFβ-treated normal fibroblasts with exogenous PEDF decreased the expression of CAF markers and restored PEDF expression. Finally, expression profiling of PEDF-depleted fibroblasts revealed induction of IL8, SERPINB2, hyaluronan synthase-2, and other genes associated with tumor promotion and metastasis. Collectively, our results demonstrate that PEDF maintains tumor-suppressive functions in fibroblasts to prevent CAF conversion and illustrate the mechanisms by which melanoma cells silence stromal PEDF to promote malignancy. Cancer Res; 76(8); 2265-76. ©2016 AACR.
Collapse
Affiliation(s)
- Nkechiyere G Nwani
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Maria L Deguiz
- Department of Biochemistry, Universidad Autónoma de Madrid, Madrid, Spain. Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain. Instituto de Investigación I+12, Madrid, Spain
| | - Benilde Jimenez
- Department of Biochemistry, Universidad Autónoma de Madrid, Madrid, Spain. Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain. Instituto de Investigación I+12, Madrid, Spain
| | - Elena Vinokour
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Oleksii Dubrovskyi
- Northwestern University Center for Developmental Therapeutics, Evanston, Illinois
| | - Andrey Ugolkov
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois
| | - Andrew P Mazar
- Northwestern University Center for Developmental Therapeutics, Evanston, Illinois. Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois. Robert H Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois. Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Olga V Volpert
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois. Northwestern University Center for Developmental Therapeutics, Evanston, Illinois. Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois. Robert H Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois. Feinberg Cardiovascular Institute at Northwestern University Feinberg School of Medicine, Chicago, Illinois Illinois.
| |
Collapse
|
6
|
Wietecha MS, Król MJ, Michalczyk ER, Chen L, Gettins PG, DiPietro LA. Pigment epithelium-derived factor as a multifunctional regulator of wound healing. Am J Physiol Heart Circ Physiol 2015; 309:H812-26. [PMID: 26163443 DOI: 10.1152/ajpheart.00153.2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 07/08/2015] [Indexed: 01/12/2023]
Abstract
During dermal wound repair, hypoxia-driven proliferation results in dense but highly permeable, disorganized microvascular networks, similar to those in solid tumors. Concurrently, activated dermal fibroblasts generate an angiopermissive, provisional extracellular matrix (ECM). Unlike cancers, wounds naturally resolve via blood vessel regression and ECM maturation, which are essential for reestablishing tissue homeostasis. Mechanisms guiding wound resolution are poorly understood; one candidate regulator is pigment epithelium-derived factor (PEDF), a secreted glycoprotein. PEDF is a potent antiangiogenic in models of pathological angiogenesis and a promising cancer and cardiovascular disease therapeutic, but little is known about its physiological function. To examine the roles of PEDF in physiological wound repair, we used a reproducible model of excisional skin wound healing in BALB/c mice. We show that PEDF is abundant in unwounded and healing skin, is produced primarily by dermal fibroblasts, binds to resident microvascular endothelial cells, and accumulates in dermal ECM and epidermis. PEDF transcript and protein levels were low during the inflammatory and proliferative phases of healing but increased in quantity and colocalization with microvasculature during wound resolution. Local antibody inhibition of endogenous PEDF delayed vessel regression and collagen maturation during the remodeling phase. Treatment of wounds with intradermal injections of exogenous, recombinant PEDF inhibited nascent angiogenesis by repressing endothelial proliferation, promoted vascular integrity and function, and increased collagen maturity. These results demonstrate that PEDF contributes to the resolution of healing wounds by causing regression of immature blood vessels and stimulating maturation of the vascular microenvironment, thus promoting a return to tissue homeostasis after injury.
Collapse
Affiliation(s)
- Mateusz S Wietecha
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois; and
| | - Mateusz J Król
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois; and
| | - Elizabeth R Michalczyk
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois; and
| | - Lin Chen
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois; and
| | - Peter G Gettins
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois
| | - Luisa A DiPietro
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois; and
| |
Collapse
|
7
|
Anisimov SV, Christophersen NS, Correia AS, Hall VJ, Sandelin I, Li JY, Brundin P. Identification of molecules derived from human fibroblast feeder cells that support the proliferation of human embryonic stem cells. Cell Mol Biol Lett 2011; 16:79-88. [PMID: 21161417 PMCID: PMC6275915 DOI: 10.2478/s11658-010-0039-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 11/29/2010] [Indexed: 11/23/2022] Open
Abstract
The majority of human embryonic stem cell lines depend on a feeder cell layer for continuous growth in vitro, so that they can remain in an undifferentiated state. Limited knowledge is available concerning the molecular mechanisms that underlie the capacity of feeder cells to support both the proliferation and pluripotency of these cells. Importantly, feeder cells generally lose their capacity to support human embryonic stem cell proliferation in vitro following long-term culture. In this study, we performed large-scale gene expression profiles of human foreskin fibroblasts during early, intermediate and late passages using a custom DNA microarray platform (NeuroStem 2.0 Chip). The microarray data was validated using RT-PCR and virtual SAGE analysis. Our comparative gene expression study identified a limited number of molecular targets potentially involved in the ability of human neonatal foreskin fibroblasts to serve as feeder cells for human embryonic stem cell cultures. Among these, the C-KIT, leptin and pigment epithelium-derived factor (PEDF) genes were the most interesting candidates.
Collapse
Affiliation(s)
- Sergey V. Anisimov
- Neuronal Survival Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, BMC A10, Sölvegatan 17, 221 84 Lund, Sweden
- Research Department of Cell and Gene Engineering, V. A. Almazov Federal Center for Heart, Blood & Endocrinology, Saint-Petersburg, 197341 Russia
- Department of Intracellular Signalling and Transport, Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, 194064 Russia
| | - Nicolaj S. Christophersen
- Neuronal Survival Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, BMC A10, Sölvegatan 17, 221 84 Lund, Sweden
| | - Ana S. Correia
- Neuronal Survival Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, BMC A10, Sölvegatan 17, 221 84 Lund, Sweden
- Faculty of Medicine, Centre de Recherche du CHUL, Neuroscience Axis, Université Laval, Québec, G1V4G2 QC Canada
| | - Vanessa J. Hall
- Neuronal Survival Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, BMC A10, Sölvegatan 17, 221 84 Lund, Sweden
- Department of Basic Animal and Veterinary Sciences, Faculty of Life Sciences, University of Copenhagen, Copenhagen, DK-1870 Denmark
| | - Ingrid Sandelin
- Neuronal Survival Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, BMC A10, Sölvegatan 17, 221 84 Lund, Sweden
- IVF Kliniken Cura, 200 74 Malmö, Sweden
| | - Jia-Yi Li
- Neuronal Survival Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, BMC A10, Sölvegatan 17, 221 84 Lund, Sweden
| | - Patrik Brundin
- Neuronal Survival Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, BMC A10, Sölvegatan 17, 221 84 Lund, Sweden
| |
Collapse
|
8
|
Abstract
Angiogenesis is regulated by a local balance between the levels of endogenous stimulators and inhibitors of angiogenesis. Understanding of the mechanism of angiogenesis has advanced significantly since the discovery of two members of the family of angiogenesis stimulators, i.e., vascular endothelial growth factor family proteins and angiopoietins. These factors act on endothelial cells to stimulate angiogenesis. In contrast, most of angiogenesis inhibitors do not seem to have such characteristics. Very few genes encoding molecules that selectively inhibit angiogenesis have been discovered. This review will focus on our current understanding of endogenous inhibitors of angiogenesis.
Collapse
Affiliation(s)
- Yasufumi Sato
- Department of Vascular Biology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan.
| |
Collapse
|
9
|
Kojima T, Nakahama KI, Yamamoto K, Uematsu H, Morita I. Age- and cell cycle-dependent changes in EPC-1/PEDF promoter activity in human diploid fibroblast-like (HDF) cells. Mol Cell Biochem 2006; 293:63-9. [PMID: 16896539 DOI: 10.1007/s11010-006-2680-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Accepted: 09/01/2005] [Indexed: 11/24/2022]
Abstract
The changes in gene expression during senescence are very interesting. Early population doubling cDNA-1 (EPC-1, also known as pigment epithelial derived factor, PEDF) is one of the genes whose expression decreases dramatically during cellular aging. We examined whether or not EPC-1/PEDF promoter activity was affected by the cellular ageing using human diploid lung fibroblast cells in culture. Here we showed the promoter/enhancer region of EPC-1/PEDF existed at more than 1760 bp upstream from the transcriptional initiation site of the gene, and was regulated by both aging and cell cycle. These findings suggest that the expression of the EPC-1/PEDF gene is, at least in part, regulated transcriptionally in the cells. The analysis of the promoter region of the EPC-1/PEDF gene in this paper suggests the age- and cell cycle-dependent expression of specific transcriptional factor(s).
Collapse
Affiliation(s)
- Toshihiko Kojima
- Department of Cellular Physiological Chemistry, Graduated School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | | | | | | | | |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW We review the continuum model of stem cell regulation. A series of studies on purified lineage negative rhodamine low Hoechst low murine stem cells driven through cell cycle by cytokine exposure have shown that many phenotypic features show reversible changes with cycle progression. RECENT FINDINGS We and others have shown that purified murine marrow stem cells are a cycling population. Features that are labile with cycle progression are in-vivo engraftment, progenitor numbers, expression of adhesion proteins and cytokine receptors, global gene expression and differentiation into granulocytes and megakaryocytes. These observations have led to a theory that regulation of hematopoietic stem cells is on a continuum and not in a hierarchy. Out-of-tissue plasticity in which marrow cells show a capacity to produce nonhematopoietic cells in non-marrow tissues also exists. We have shown 'robust' production of lung and skeletal muscle cells by marrow cells in the presence of appropriate tissue injury and demonstrated that the capacity of marrow cells to produce nonhematopoietic cells in the lung also varies reversibly with cell cycle status. SUMMARY Thus, stem cells show a plastic plasticity and the continuum appears to hold for both nonhematopoietic and hematopoietic lineages.
Collapse
Affiliation(s)
- Peter J Quesenberry
- Roger Williams Medical Center, Department of Research, Providence, Rhode Island 02908, USA.
| |
Collapse
|
11
|
Torres C, Lewis L, Cristofalo VJ. Proteasome inhibitors shorten replicative life span and induce a senescent-like phenotype of human fibroblasts. J Cell Physiol 2006; 207:845-53. [PMID: 16523493 DOI: 10.1002/jcp.20630] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The proteasome constitutes the main non-lysosomal cellular protease activity, and plays a crucial role not only in the disposal of unwanted material, but also in the regulation of numerous cellular processes. Previously, we have reported that during the replicative senescence of WI-38 fibroblasts there is a significant impairment in proteasome activity, which probably has important implications in the control of MAPK signaling and cellular proliferation. In this study, we report the potential role of the proteasome in the generation of the senescent phenotype in WI-38 fibroblasts. Our results indicate that inhibition of proteasome activity leads to an impairment in cell proliferation, and a shortening of the life span. The results also indicate that inhibition of the proteasome in young cells induces a premature senescent-like phenotype, as indicated by the increase in senescence-associated beta-galactosidase (SA beta-gal) activity and the abundance of both p21 and collagenase mRNAs, as well as a decreased level of EPC-1 mRNA known markers of cellular senescence, not previously shown to depend on proteasome activity. Together, our results suggest a molecular mechanism for the lack of responsiveness of human cells to growth factors, and point towards a role for the proteasome in the control of the life span of both cells and organisms.
Collapse
Affiliation(s)
- Claudio Torres
- The Lankenau Institute for Medical Research and The Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19096, USA.
| | | | | |
Collapse
|
12
|
Bowman TV, McCooey AJ, Merchant AA, Ramos CA, Fonseca P, Poindexter A, Bradfute SB, Oliveira DM, Green R, Zheng Y, Jackson KA, Chambers SM, McKinney-Freeman SL, Norwood KG, Darlington G, Gunaratne PH, Steffen D, Goodell MA. Differential mRNA processing in hematopoietic stem cells. Stem Cells 2005; 24:662-70. [PMID: 16373690 DOI: 10.1634/stemcells.2005-0552] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Hematopoietic stem cells (HSCs) maintain tissue homeostasis by rapidly responding to environmental changes. Although this function is well understood, the molecular mechanisms governing this characteristic are largely unknown. We used a sequenced-based strategy to explore the role of both transcriptional and post-transcriptional regulation in HSC biology. We characterized the gene expression differences between HSCs, both quiescent and proliferating, and their differentiated progeny. This analysis revealed a large fraction of sequence tags aligned to intronic sequences, which we showed were derived from unspliced transcripts. A comparison of the biological properties of the observed spliced versus unspliced transcripts in HSCs showed that the unspliced transcripts were enriched in genes involved in DNA binding and RNA processing. In addition, levels of unspliced message decreased in a transcript-specific fashion after HSC activation in vivo. This change in unspliced transcript level coordinated with increases in gene expression of splicing machinery components. Combined, these results suggest that post-transcriptional regulation is important in HSC activation in vivo.
Collapse
Affiliation(s)
- Teresa V Bowman
- Cell and Gene Therapy Center, Baylor College of Medicine, N1030, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Angiogenesis, the formation of new blood vessels, is required for many pathologic processes, including invasive tumor growth as well as physiologic organ/tissue maintenance. Angiogenesis during development and adulthood is likely regulated by a balance between endogenous proangiogenic and antiangiogenic factors. It is speculated that tumor growth requires disruption of such balance; thus, the angiogenic switch must be turned "on" for cancer progression. If the angiogenic switch needs to be turned on to facilitate the tumor growth, the question remains as to what the physiologic status of this switch is in the adult human body; is it "off," with inhibitors outweighing the stimulators, or maintained at a fine "balance," keeping the proangiogenic properties of many factors at a delicate "activity" balance with endogenous inhibitors of angiogenesis. The physiologic status of this balance is important to understand as it might determine an individual's predisposition to turn the switch on during pathologic events dependent on angiogenesis. Conceivably, if the physiologic angiogenesis balance in human population exists somewhere between off and even balance, an individual's capacity and rate to turn the switch on might reflect their normal physiologic angiogenic status. In this regard, although extensive knowledge has been gained in our understanding of endogenous growth factors that stimulate angiogenesis, the activities associated with endogenous inhibitors are poorly understood. In this review, we will present an overview of the knowledge gained in studies related to the identification and characterization of 27 different endogenous inhibitors of angiogenesis.
Collapse
Affiliation(s)
- Pia Nyberg
- Center for Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
14
|
Cosgrove GP, Brown KK, Schiemann WP, Serls AE, Parr JE, Geraci MW, Schwarz MI, Cool CD, Worthen GS. Pigment epithelium-derived factor in idiopathic pulmonary fibrosis: a role in aberrant angiogenesis. Am J Respir Crit Care Med 2004; 170:242-51. [PMID: 15117744 DOI: 10.1164/rccm.200308-1151oc] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pigment epithelium-derived factor (PEDF) is a 50-kD protein with angiostatic and neurotrophic activities that regulates vascular development within the eye. PEDF expression was increased in the lungs of patients with idiopathic pulmonary fibrosis (IPF) based on microarray analyses. Angiogenesis has been implicated in the pathogenesis of fibrotic lung diseases, we therefore hypothesized that regional abnormalities in vascularization occur in IPF as a result of an imbalance between PEDF and vascular endothelial growth factor. We demonstrated that vascular density is regionally decreased in IPF within the fibroblastic foci, and that within these areas PEDF was increased, whereas vascular endothelial growth factor was decreased. PEDF colocalized with the fibrogenic cytokine, transforming growth factor (TGF)-beta 1, particularly within the fibrotic interstitium and the fibroblastic focus, and prominently within the epithelium directly overlying the fibroblastic focus. This suggested that TGF-beta 1 might regulate PEDF expression. Using 3T3-L1 fibroblasts and human lung fibroblasts, we showed that PEDF was indeed a TGF-beta 1 target gene. Collectively, our findings implicate PEDF as a regulator of pulmonary angiogenesis and an important mediator in IPF.
Collapse
Affiliation(s)
- Gregory P Cosgrove
- Pulmonary Division, Department of Medicine, National Jewish Medical and Research Center and Program in Cell Biology, Department of Pediatrics, University of Colorado Health Sciences Center, Denver, Colorado CO 80206, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Grayhack JT, Smith ND, Ilio K, Wambi C, Kasjanski R, Crawford SE, Doll JA, Wang Z, Lee C, Kozlowski JM. Pigment Epithelium-Derived Factor, a Human Testis Epididymis Secretory Product, Promotes Human Prostate Stromal Cell Growth in Culture. J Urol 2004; 171:434-8. [PMID: 14665949 DOI: 10.1097/01.ju.0000088774.80045.c4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE We identified and characterized unrecognized testicular secretory proteins that impact human prostate growth. MATERIALS AND METHODS Human spermatocele fluid served as a source of testicular epididymal secretions and prostatectomy specimen benign prostatic hyperplasia stromal cells as the in vitro prostate growth promoting effects indicator. RMPI plus medium supplemented with 10% fetal bovine serum MALDI-TOF, MS FBS and ITS+ (Collaborative Research-Becton Dickinson, Bedford, Massachusetts) served as positive and negative controls, respectively. Whole and fractionated spermatocele fluid or specific proteins without and with select polyclonal or monoclonal antibodies were added to routine 6-day cultures. The observation of significantly increased 6-day cell counts compared with appropriate controls (p <0.05) was judged to reflect cell growth. Amino acid microsequencing and MALDI-TOF MS sequence analysis were done on persistent protein bands from active spermatocele fluid fractions. RESULTS Whole and fractionated human spermatocele fluid increased stromal cell culture numbers significantly. Sequence analysis of 47 and 17 kDa 1-dimensional gel bands in the final active fraction identified a major peptide with sequence homology to human pigment epithelium-derived factor (PEDF). The presence of PEDF was confirmed by Western blot analysis. Addition of recombinant PEDF to incomplete medium significantly increased stromal cell culture number. PEDF antibodies neutralized or markedly decreased the stromal stimulating effect of spermatocele fluid and PEDF. CONCLUSIONS The observations presented provide evidence for human testis/epididymis secretion of PEDF and for a PEDF in vitro growth promoting effect on benign prostatic hyperplasia stroma. The concept that testicular epididymal secretory proteins may influence normal and abnormal prostate growth warrants continued consideration.
Collapse
Affiliation(s)
- John T Grayhack
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Affiliation(s)
- Joyce Tombran-Tink
- Division of Pharmaceutical Sciences, University of Missouri-Kansas City, 5005 Rockhill Road, Kansas City, Missouri 64110, USA.
| | | |
Collapse
|
17
|
Pignolo RJ, Francis MK, Rotenberg MO, Cristofalo VJ. Putative role for EPC-1/PEDF in the G0 growth arrest of human diploid fibroblasts. J Cell Physiol 2003; 195:12-20. [PMID: 12599204 DOI: 10.1002/jcp.10212] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
EPC-1/PEDF expression is closely associated with reversible growth arrest in normal human diploid fibroblast-like (HDF) cells and is diminished with proliferative senescence in vitro. EPC-1 expression in HDF cells is induced under conditions of density-dependent contact inhibition and growth factor deprivation. Antiserum generated against EPC-1 recognizes a secreted protein of approximately 50 kDa from medium conditioned by early passage HDF cells, but not from senescent cells. The addition of EPC-1 antiserum to early population doubling level (PDL) cultures near the plateau phase of growth significantly increases the number of cells entering DNA synthesis. Affinity purified EPC-1 antibodies alone enhance the ability of near plateau-phase early PDL WI-38 cells to synthesize DNA by as much as threefold. Further, the addition of recombinant EPC-1 (rEPC-1) to logarithmically growing cells resulted in a marked decrease in the ability of these cells to enter DNA synthesis. We also demonstrate the loss of EPC-1 expression in WI-38 and IMR-90 HDF cell lines with both senescence and simian virus 40 (SV40) transformation. The loss of EPC-1 expression with SV40 transformation occurs at the level of steady-state mRNA and protein accumulation with genomic EPC-1 sequences grossly intact. Taken together, these results suggest that EPC-1 may play a role in the entry of early passage fibroblasts into a G(0) state or the maintenance of such a state once reached.
Collapse
Affiliation(s)
- Robert J Pignolo
- Center for Gerontological Research, Medical College of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
18
|
Cuadrado A, Navarro-Yubero C, Furneaux H, Kinter J, Sonderegger P, Muñoz A. HuD binds to three AU-rich sequences in the 3'-UTR of neuroserpin mRNA and promotes the accumulation of neuroserpin mRNA and protein. Nucleic Acids Res 2002; 30:2202-11. [PMID: 12000840 PMCID: PMC115279 DOI: 10.1093/nar/30.10.2202] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2001] [Revised: 03/18/2002] [Accepted: 03/18/2002] [Indexed: 11/12/2022] Open
Abstract
Neuroserpin is an axonally secreted serine protease inhibitor expressed in the nervous system that protects neurons from ischemia-induced apoptosis. Mutant neuroserpin forms have been found polymerized in inclusion bodies in a familial autosomal encephalopathy causing dementia, or associated with epilepsy. Regulation of neuroserpin expression is mostly unknown. Here we demonstrate that neuroserpin mRNA and the RNA-binding protein HuD are co-expressed in the rat central nervous system, and that HuD binds neuroserpin mRNA in vitro with high affinity. Gel-shift, supershift and T1 RNase assays revealed three HuD-binding sequences in the 3'-untranslated region (3'-UTR) of neuroserpin mRNA. They are AU-rich and 20, 51 and 19 nt in length. HuD binding to neuroserpin mRNA was also demonstrated in extracts of PC12 pheochromocytoma cells. Additionally, ectopic expression of increasing amounts of HuD in these cells results in the accumulation of neuroserpin 3'-UTR mRNA. Furthermore, stably transfected PC12 cells over-expressing HuD contain increased levels of both neuroserpin mRNAs (3.0 and 1.6 kb) and protein. Our results indicate that HuD stabilizes neuroserpin mRNA by binding to specific AU-rich sequences in its 3'-UTR, which prolongs the mRNA lifetime and increases protein level.
Collapse
Affiliation(s)
- Ana Cuadrado
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Arturo Duperier 4, E-28029 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
19
|
Gao G, Li Y, Gee S, Dudley A, Fant J, Crosson C, Ma JX. Down-regulation of vascular endothelial growth factor and up-regulation of pigment epithelium-derived factor: a possible mechanism for the anti-angiogenic activity of plasminogen kringle 5. J Biol Chem 2002; 277:9492-7. [PMID: 11782462 DOI: 10.1074/jbc.m108004200] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously shown that intravitreal injection of plasminogen kringle 5 (K5), a potent angiogenic inhibitor, inhibits ischemia-induced retinal neovascularization in a rat model. Here we report that K5 down-regulates an endogenous angiogenic stimulator, vascular endothelial growth factor (VEGF) and up-regulates an angiogenic inhibitor, pigment epithelium-derived factor (PEDF) in a dose-dependent manner in vascular cells and in the retina. The regulation of VEGF and PEDF by K5 in the retina correlates with its anti-angiogenic effect in a rat model of ischemia-induced retinopathy. Retinal RNA levels of VEGF and PEDF are also changed by K5. K5 inhibits the p42/p44 MAP kinase activation and nuclear translocation of hypoxia-inducible factor-1alpha, which may be responsible for the down-regulation of VEGF. Down-regulation of endogenous angiogenic stimulators and up-regulation of endogenous angiogenic inhibitors, thus leading toward restoration of the balance in angiogenic control, may represent a mechanism for the anti-angiogenic activity of K5.
Collapse
Affiliation(s)
- Guoquan Gao
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina 29403, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Simonovic M, Gettins PG, Volz K. Crystal structure of human PEDF, a potent anti-angiogenic and neurite growth-promoting factor. Proc Natl Acad Sci U S A 2001; 98:11131-5. [PMID: 11562499 PMCID: PMC58695 DOI: 10.1073/pnas.211268598] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2001] [Indexed: 11/18/2022] Open
Abstract
Pigment epithelium-derived factor (PEDF), a noninhibitory member of the serpin superfamily, is the most potent inhibitor of angiogenesis in the mammalian ocular compartment. It also has neurotrophic activity, both in the retina and in the central nervous system, and is highly up-regulated in young versus senescent fibroblasts. To provide a structural basis for understanding its many biological roles, we have solved the crystal structure of glycosylated human PEDF to 2.85 A. The structure revealed the organization of possible receptor and heparin-binding sites, and showed that, unlike any other previously characterized serpin, PEDF has a striking asymmetric charge distribution that might be of functional importance. These results provide a starting point for future detailed structure/function analyses into possible mechanisms of PEDF action that could lead to development of therapeutics against uncontrolled angiogenesis.
Collapse
Affiliation(s)
- M Simonovic
- Department of Biochemistry, College of Medicine, University of Illinois, Chicago, IL 60612-7334, USA
| | | | | |
Collapse
|
21
|
Gao G, Li Y, Zhang D, Gee S, Crosson C, Ma J. Unbalanced expression of VEGF and PEDF in ischemia-induced retinal neovascularization. FEBS Lett 2001; 489:270-6. [PMID: 11165263 DOI: 10.1016/s0014-5793(01)02110-x] [Citation(s) in RCA: 188] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Retinal levels of vascular endothelial growth factor (VEGF) and pigment epithelium-derived factor (PEDF), an angiogenic inhibitor, were measured and correlated with the ischemia-induced retinal neovascularization in rats. The retinas with neovascularization showed a 5-fold increase in VEGF while 2-fold decrease in PEDF, compared to the age-matched controls, resulting in an increased VEGF/PEDF ratio. The time course of the VEGF/PEDF ratio change correlated with the progression of retinal neovascularization. Changes in the VEGF and PEDF mRNAs preceded their protein level changes. These results suggest that an unbalance between angiogenic stimulators and inhibitors may contribute to retinal neovascularization.
Collapse
Affiliation(s)
- G Gao
- Department of Ophthalmology, Medical University of South Carolina, 167 Ashley Ave., Charleston, SC 29403, USA
| | | | | | | | | | | |
Collapse
|